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Abstract

Despite the advantages, big transport data are characterized by a considerable

disadvantage as well. Personal and activity-travel information are often lacking,

making it necessary to deduce this information with data mining techniques.

However, some studies predict many unique activity type classes (ATCs),

while others merge multiple activity types into larger ATCs. This action en-

hances the activity inference estimation, but destroys important activity infor-

mation. Previous studies do not provide a strong justification for this practice.

An objectively optimized set of ATCs, balancing model prediction accuracy and

preserving activity information from the original data, becomes essential.

Previous research developed a classification methodology in which the op-

timal set of ATCs was identified by analyzing all possible ATC combinations.

However, this approach is practically impossible in a finite amount of time for

e.g. the US National Household Travel Survey (NHTS) 2009 data set, which

comprises 36 ATCs (home activity excluded), since there would be 3.82 · 1030

unique combinations (an exponential increase).

The aim of this paper is to optimize which original ATCs should be grouped

into a new class, and this for data sets for which it is impossible or impractical

to simply calculate all ATC combinations. The proposed method defines an
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optimization parameter U (based on classification accuracy and information re-

tention) which is maximized in an iterative local search algorithm. The optimal

set of ATCs for the NHTS 2009 data set was determined. A comparison finds

that this optimum is considerably better than many expert opinion activity type

classification systems. Convergence was confirmed and large performance gains

were found.

Keywords: Activity type classification, (Big) transport data annotation,

optimal set of activity types, local search algorithm, classification accuracy,

entropy indices

1. Introduction

These days, big data sets are collected continuously and in real time, making

large amounts of data that are temporally and spatially referenced available to

researchers [1]. Due to the availability of spatio-temporal information, big trans-

port data are very effective in exploring individual mobility patterns. Despite5

the advantages, however, big transport data are characterized by a considerable

disadvantage as well: personal and activity-travel information are often lacking

[2], making it necessary to deduce this information from the available travel

patterns.

In order to overcome this shortcoming, behavioral data mining techniques10

are frequently used to infer activity types (sometimes otherwise denoted as trip

or travel purposes, activity classes, activity categories or activity encoding) from

behavioral attributes, such as temporal attributes and spatial information (e.g.

[3, 4, 5]). However, in these researches different classifications of activity types

exist. Some studies infer many activity classes, while others aggregate or group15

several activity types, limiting the number of activity type classes (ATCs) [6].

As argued in [6], in none of such studies a strong justification is established.

The activity type classification in the majority of researches merely relies on

the travel survey design, due to a lack of clear standards for ATCs which are

grounded by a theoretical background [7].20
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The ATCs (and the size of this set of classes) strongly affect the classification

accuracy. Often, activity types are aggregated (or grouped) in order to enhance

the activity inference estimation. However, by aggregating activity types, and

thus enhancing the activity inference estimation, important activity information

is lost. Therefore, the need for a standardized method for activity categorization25

arises. An optimal set of activity types is an essential prerequisite for a robust

and sound transport data annotation in a particular study area.

Previous research [6] developed a classification methodology using a rule-

based heuristic algorithm in which the optimal grouping of ATCs was identified.

This methodology is an objective alternative to the subjective choice of ATCs30

based on intuition or expert-opinion. The optimization method searches for

an optimal balance between improving model accuracy and preserving activity

information from the original data set. The method was applied to two house-

hold travel surveys (HTSs), i.e. the Seoul HTS and the Flanders (Belgium) HTS

called OVG.35

The optimization method in [6], however, might not be appropriate when the

initial data set contains too many unique ATCs. The optimization strategy com-

prises three stages, where in the first stage all possible combinations of ATCs

are generated. Considering 10 distinct activity types in the OVG and Seoul

HTS, this brute-force approach calculated approximately 117,000 unique sets of40

combinations of classes. However, for the US National Household Travel Survey

(NHTS) 2009 data set [8] which comprises 36 ATCs (home activity excluded,

see section 3), calculating classifiers for all possible grouping combinations is

impossible since the increase in distinct combinations is exponential. In other

words, a large number of initial activity types which are considered for aggrega-45

tion will result in an extremely large set of grouping combinations that needs to

be processed as shown in Table 1. Subsection 4.1 will discuss how the number

of possible ATCs in Table 1 can be calculated. The computation time of the

second stage of the optimization method would rise up to 1.13 · 1023 years for

the US NHTS data set using the same setup as in [6]. Note that the age of the50

universe is only 13.8 · 109 years [9]. Because of this reason, the earlier proposed
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Table 1: Number of possible activity type class (ATC) grouping combinations N as a function

of the number of activity types n

n N n N n N n N

1 1 11 6.786E+05 21 4.749E+14 31 1.029E+25

2 2 12 4.214E+06 22 4.507E+15 32 1.281E+26

3 5 13 2.764E+07 23 4.415E+16 33 1.630E+27

4 15 14 1.909E+08 24 4.460E+17 34 2.120E+28

5 52 15 1.383E+09 25 4.639E+18 35 2.816E+29

6 203 16 1.048E+10 26 4.963E+19 36 3.820E+30

7 877 17 8.286E+10 27 5.457E+20 37 5.287E+31

8 4,140 18 6.821E+11 28 6.161E+21 38 7.463E+32

9 21,147 19 5.833E+12 29 7.134E+22 39 1.074E+34

10 115,975 20 5.172E+13 30 8.467E+23 40 1.575E+35

method cannot be used for cases with copious activity types.

Considering that the US NHTS is not the only data set that includes a large

number of activity types, this computation time issue will also surface for other

travel data sets. In the UK HTS data set [10], for example, 22 distinct activity55

types are employed. In Table 2, several travel data sets are listed, together with

the number of activity types that are considered in each case. In most cases

the number of activity types is much larger than 10, preventing the use of the

method of [6].

To overcome this process time issue, the research in this paper proposes an60

update of the optimization methodology using a ‘local search’ algorithm. The

local search algorithm starts from a predefined ATC grouping combination and

iteratively tries to optimize this group by applying random changes, hereby

reducing the required computation process time. Subsequently, the algorithm is

used to determine an optimal set of ATCs for the US NHTS as, to the knowledge65

of the authors, this HTS has the most copious activity type variable.

The remainder of this paper is structured as follows. Next section provides

4



Table 2: Examples of household travel survey data sets with their number of distinct activity

type classes (ATCs)

Data set
Country (or region)

of origin

Number of

person days

surveyed

Number

of ATCs*

AUS VISTA 2007 & 2009 [11, 12] Australia 67,060 12

BEL Beldam 2010 [13] Belgium 11,279 11

BEL OVG 3.0-4.5 [14] Belgium (Flanders) 13,522 10

CHE Thurgau 2003 [15] Switzerland 8,522 25

DEU Mobidrive 1999 [16] Germany 13,244 22

FIN HLT 2010-2011 [17] Finland 10,137 19

FRA ENTD 2008 [18] France 17,996 31

GBR NTS 2009-2014 [10] United Kingdom 551,234 22

IRL NTS 2009 [19] Ireland 5,023 9

KOR Seoul HTS 2010 [20, 21] Republic of Korea 219,269 10

NLD OViN 2013 [22] The Netherlands 34,710 13

SVN Ljubljana 2013 [23] Slovenia 3,426 12

SWE RVU 2011-2014 [24] Sweden 31,457 25

USA NHTS 2009 [8]
United States of

America
257,586 36

* ‘Home’ activity excluded, see also section 3
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the results of a literature review. It is followed by a description of the data and

afterwards the methodology. Subsequently, the results of the convergence of the

local search algorithm are presented, followed by a presentation of the optimal70

ATCs for annotation. Finally, a conclusion is formulated.

2. Literature review

Advancements in information and communication technologies (ICT) and

the improvement of location-aware technologies facilitate the collection of trans-

port data, e.g. daily trajectories. The new transport data-collection methods75

support researchers with refined, detailed data sets of real-time data. Social

media can be a rich source for the understanding of urban activity patterns

[25]. These large collections of spatio-temporal information offer research op-

portunities, i.e. they enable a better investigation and understanding of human

travel behavior.80

Wolf et al. [26] presented a successful proof of concept with their early work

on the trip purpose detection from GPS logs combined with land use informa-

tion. A significant number of contributions followed in this domain of activity

type inference, e.g. [27, 28, 29, 30, 31], yet none discussed a thorough justifi-

cation for a particular set of inferred ATCs. However, some activity inference85

research recognized in their studies that there exists a need to determine an

optimal set of activity type categories [32], or that ATC inference accuracy

could (inappropriately) be increased by reducing the number of predicted ATCs

[33]. To the authors’ best knowledge, these concerns were not comprehensively

addressed in literature yet [6].90

The problem is augmented by the fact that each HTS data set is different,

and considers different sets of ATCs. This observation shows that there is no

uniformity in the way ATCs are selected for a study [7]. Table 3 illustrates the

rather problematic differences in ATCs as how they might occur in different

HTSs (here for the Seoul HTS and the US NHTS which are both used in this95

research). Each ATC may be defined according to some set of constraints, which
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allow to find corresponding ATCs in the different HTSs (based on the class

definitions used in these HTSs). One notices the different levels of refinement

of ATCs, the absence of categories in some HTSs, different definitions etc. For

example, ‘work’ in the Seoul HTS corresponds to ‘Go to work’ in the NHTS,100

whilst such a definition would be interpreted as the act of traveling itself in the

Seoul HTS (and for which it has different ATCs).

Previous research by the authors [6] developed a classification methodology

in which the optimal set of ATCs was identified by analyzing all possible ATC

combinations. The optimization strategy comprises three stages, where in the105

first stage all possible combinations of ATCs are generated. This brute-force ap-

proach calculated approximately 117,000 unique sets of combinations of classes

for both HTSs that were used in the study (both HTS data sets considered

10 distinct activity types, after removing the ‘Being at home’ activity). In the

second stage of the optimization strategy, classifiers are trained and tested on110

the data that were transformed according to the ATC combinations of the first

stage. Finally, the optimal set of ATCs is defined in the third stage of the

optimization method. On a server equipped with two intel Xeon EQ-2643 v2

processors (running at approximately 80% capacity, i.e. 20 threads) estimating

117,000 classifiers took roughly 30 hours of computation time.115

As detailed in the introduction, running the above algorithm for the 36

ATCs in the US NHTS would be impossible given the exponential increase of

combinations in stage one. Therefore, the proposed method of the current study

will define an optimization parameter U (based on classification accuracy and

information retention) which is maximized in an iterative local search algorithm.120

In recent studies on activity-travel data mining, different inference tech-

niques and data sources are investigated. The methods used can be classified

into probability and rule-based heuristic approaches. In studies regarding the

former, the näıve Bayes classifier is usually adopted to generate the probability

of an alternative (e.g. [37, 38]), while the rule-based heuristic approach studies125

consider machine learning algorithms (e.g. [39]). Examples are decision trees

(DTs), random forests, and support vector machines. This study employs DTs
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Table 3: Activity type classes and potential classification definitions in different HTS data

sets

Urgency

constraints

[34, 35]

Work &

flexibility

constraints

Temporal

constraints

Spatial

constraints

Activity types in

HTS Seoul [36]

Activity types in NHTS

2009 [8]

Mandatory

Work

Fixed start &

end time
Fixed

destination

Work*

Work Go to work

Return to work

Business Attend business meeting/trip

Other work related

Non-work

fixed

School/religious activity

Go to school as student

School Go to library - school related

Education service

Opening hours Day care

Maintenance

Non-work

flexible

Fixed start &

end time

Fixed

destination
Bring/get

Transport someone

Pick up someone;

Take and wait

Drop someone off

Opening hours

Available

facilities

Shopping/errands

Shopping Buy goods

Buy services

Use professional services

Use personal services:

grooming, haircut, nails

Unconstrained Buy gas

Unconstrained /

Opening hours
Pet care

Non-work

fixed

Fixed start &

end time

Family personal

business/obligations

Fixed

destination

Attend funeral/wedding

Opening hours Medical/dental services

Discretionary

Non-work

flexible

Fixed start &

end time

Available

facilities

Personal & religious

activities
Rest or relaxation/vacation

Opening hours

Go to gym/exercise/

play sports

Meals

Get/eat meal

Coffee/ice cream/snacks

Unconstrained

Other reason

Every zone

Leisure/recreation/

communication
Social/recreational

Social event

Go out/hang out

Visit public place

Fixed

destination
Visit friends/relatives

Non-work

fixed

Fixed start &

end time

Available

facilities
Go to religious activity

Fixed

destination

Attend meeting: PTA/

home owners association/

Home Unconstrained
Home

location
Being at home Home

Travelling**
Work

Fixed start &

end time

Fixed

destination
Back to office

Non-work

flexible
Unconstrained

Home

location
Back home

* The ‘Work’ activity (NHTS-code 10) is slightly peculiar and differs from the expected interpretation.

Subsection 5.2 and Table 5 provide more details.

** The act of traveling itself. 8



and therefore integrates rule-based concepts. However, the type of classifier can

be varied (see also subsubsection 4.2.2).

3. Data description130

Two HTSs were used in this research. The first HTS, the Seoul HTS, was

conducted in the Seoul Metropolitan Area (SMA), Republic of Korea, in 2010.

This data set consists of self-reported daily household activity-travel data from

approximately 76,000 individuals. As reported in Table 2, this data set contains

11 distinct trip motives (or activity types), of which the ‘home’ activity will be135

excluded. The home activity is excluded from the experiments because this

activity type is quite easy to classify and is mostly predicted with a very high

accuracy (e.g. [40]). Additionally, due to a large share of home activities in

the data set, its good classification capability obscures the sub-optimal or bad

classifications of out-of-home activities. The Seoul HTS was included in this140

study to confirm the correct convergence of the proposed search algorithm to the

optimum which was found in [6], and to benchmark the algorithm’s performance

gains. The convergence on this data set will be discussed and the performance

of the algorithm will be compared to the approach in [6], justifying the need and

benefits of the iterative search approach. The optimum set of ATCs of this data145

set will however not be discussed here. Interested readers may find a thorough

analysis in [6].

The second HTS used in this study is the NHTS 2009 from the USA. It

contains surveyed information from 308,901 individuals. This massive data set

contains detailed trip information of approximately 1.17 · 106 trips, of which150

the trip purpose is encoded in 37 distinct classes. After excluding trips having

the ‘home’ trip purpose, approximately 768,000 records remain to train activity

type classifiers. The copious activity types in this data set are the reason for the

development of the proposed methodology, as explained in the introduction. To

the author’s best knowledge, this is the richest activity type encoding in a HTS155

(not considering time-use surveys); see also Table 2. It is therefore a challenge
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to find the optimal set of activity types, which may be used in any activity

type inference or annotation research. Additionally, this data set is employed in

many studies to train their models. Finding and using an optimal set of activity

types may enable the seamless consolidation of multiple research outcomes.160

Only temporal variables such as activity start time and duration are used

to train classifiers in this study. All other variables in the data are disregarded.

This choice was made in order to present a generic categorization method which

is applicable to as many big data sources and study areas as possible. Addition-

ally, many applications start from e.g. GPS recordings, smart card data etc. for165

which classification based on temporal variables gives already good results [37].

Other types of attributes, e.g. spatial information, can however also be used in

the proposed method.

The data was split in a train set (75%) and test set (25%). According to

common practice, the train set is used to train a classifier, whilst the test set is170

used to evaluate its prediction accuracy on ‘new’ data.

4. Methodology

4.1. Grouping of activity types

This section discusses the combinatorial challenge of grouping or aggregating

activity types into new classes. For example, in the set of ATCs [[1], [2], [3],

[4], [5], [6], [7], [8], [9], [10]], activity types 3 and 6 may be merged into a new

class as such: [[1], [2], [3, 6], [4], [5], [7], [8], [9], [10]]. The number of possible

ATCs grows exponentially with the number of distinct activity types: n. This

is the result of all the permutations of activity types across possible groups

and the different combinations of possible group sizes. The order of activity

types within a group, and the order of the groups among themselves does not

matter. The possible group size combinations for a given n may be obtained

by computing the integer partitions pn,i. For example, for n = 4 the integer

partitions p4,i
∣∣
i=1..5

are {1+1+1+1, 2+1+1, 2+2, 3+1, 4}. Each element in

these partitions represents a group’s size. The first partition represents the case

10



where no activity types are merged, the final one represents the case where

all 4 activity types are grouped in one group of size 4. For each partition

pn,i : g1 +g2 + ...+gj = n where gj is an element in partition pn,i representing a

group’s size, there are xn,i number of ways to distribute n activity types across

the groups:

xn,i =
n!∏

j

(
gj ! ·

1
fj
√
fj !

) (1)

where fj represents the frequency of a particular element in the partition (which

represents a group’s size). For example, in the partition 2+1+1, element ‘2’ has175

a frequency of 1. In partition 2+2, element 2 has a frequency of 2. The factor∏
j

(
1
fj
√
fj !

)
corrects xn,i for the permutations of equal-sized groups as the

order of these equal-sized groups is unimportant, and should not increase xn,i

(that is, 2a + 2b = 2b + 2a). The total number of possible ATC combinations

N(n) is the sum of all xn,i for a given n: N(n) =
∑

i xn,i . These values180

are listed in Table 1. One observes how the increase of possible combinations

increases exponentially, hereby strengthening the justification for the need of

the proposed methodology.

4.2. Optimization through local search

In order to optimize the ATCs, the proposed method combines some of the185

original activity types into a new class, and subsequently calculates the classi-

fication accuracy and entropy of the activity type variable. The classification

accuracy represents the performance of predicting an ATC, and the entropy

represents the amount of information such a prediction is giving. The entropy

(or embedded information) is greatest when no activity types are merged into190

a new class, yet the classification accuracy increases when activity types are

merged into new classes (as there are fewer classes to predict). Grouping or

aggregating activity types into a new class will destroy some of the information

entailed in the data.

For example, if two activity types ‘Go to gym/exercising/play sports’ and195

‘Go out/hang out: entertainment...’ are merged into a new class ‘Recreational’,

11



one can no longer make any distinction on the type of recreational activity.

However, if one attempts to infer the activity type of a detected stop in a GPS

trace, the prediction accuracy will be higher in case of the new class ‘Recre-

ational’ compared to when using the two original classes. As a rule of thumb,200

classification accuracy increases with decreasing number of classes to predict.

4.2.1. The optimization parameter U

The aim of this paper is to optimize which original activity types should

be grouped into a new class, and this for data sets for which it is impractical

or impossible to simply calculate all ATC combinations (due to an extremely205

large amount of combinations). The proposed method defines an optimization

parameter U which is maximized in an iterative search algorithm.

At the heart of the optimization strategy in [6] is the optimization parameter

which may be calculated using Equation 2:

U =
Ai −A0

RA
− a

E0 − Ei

RE
(2)

where Ai is the test set accuracy and Ei the activity type entropy of a particular

combination i of ATCs. A0 and E0 are, respectively, the test set accuracy and

activity type entropy of the reference case of no activity type aggregation into

new classes. RA = Amax − Amin is the range in test set accuracy improvement

and RE = Emax − Emin is the range in entropy reduction, observed within

the set of results of all ATC combinations. Parameter a can be used to give

a relative weight to either the classification accuracy improvement or to the

entropy retention if there exists such an intrinsic bias for one of these indices.

A sensitivity analysis of this parameter is described in [6]. The entropy may be

calculated with Equation 3:

E = −
∑
j

pj log2(pj) (3)

where pj is the probability on class j. However, Equation 2 can only be used

when the results from all ATC combinations are known, as RE depends on the

minimum entropy Emin, and RA requires the maximum classification accuracy210

12



Amax to be known. Note that the maximum entropy Emax and minimum clas-

sification accuracy Amin can be obtained from the reference case in which no

activity types are grouped into a new class. In [6], the optimization parameter U

was calculated only after the entropy and classification accuracy for all approx.

117,000 ATC combinations were calculated. Since calculating the entropy and215

classification accuracy for all possible combinations of ATCs is impossible given

a large number of distinct activity types in the US NHTS (see Introduction),

Emin and Amax need to be substituted.

The answer consists of allowing the trivial solution, that is, the case when

all activity types are grouped into a single large class. In this trivial case,

the entropy is zero (all activity type information is lost) and the classification

accuracy is 100% (as only one class remains to predict). The results in [6]

reveal that in practice Emin and Amax are in fact very close to, respectively,

zero and one, thus supporting the proposed measure. Doing so, Equation 2 may

be simplified to the following form in which all parameters (except Ai and Ei)

can be calculated from the start:

U =
Ai −A0

Amax −Amin
− a

E0 − Ei

Emax − Emin
=

Ai −A0

1−A0
− a

E0 − Ei

E0
(4)

As a result, U may be calculated without the need to determine the classifica-

tion accuracy and entropy for all possible ATC combinations beforehand. An220

iterative optimization approach is now possible.

4.2.2. The optimization algorithm

The parameter U (Equation 4) is used in the proposed optimization algo-

rithm. The algorithm is described in pseudo code in Algorithm 1.

It starts with a seed (or ‘reference’) set of ATCs, for example this set of ten225

distinct activity types where no activity types were grouped into new classes

(all activity types form their own group): [[1], [2], [3], [4], [5], [6], [7], [8], [9],

[10]]. Different ‘seed’ sets may be used; each case could potentially converge

to a different (and therefore local) optimum. If however consistently the same

solution is found, this may be considered evidence for a global optimum. This230

13



Algorithm 1 Pseudo code for the activity type class (ATC) optimization

Require:

Input data: activity-travel data . e.g. from household travel survey

E0 ← entropy based on original input data (Equation 3)

A0 ← classification accuracy after training classifier on original data

ATCs0 ← chosen seed set of ATCs . e.g. fully (dis-)aggregated

function U(ATCs)

E ← entropy based on ATCs & input data (Equation 3)

A← classification accuracy after training a classifier for the ATCs

U ← A−A0

1−A0
− aE0−E

E0
(Equation 4) . Assume weighting factor a = 1

return U

end function

ATCsbest ← ATCs0

Ubest ← U(ATCs0)

while convergence criterion not satisfied do

ATCs← apply random change to ATCsbest

if U(ATCs) > Ubest then

Ubest ← U(ATCs)

ATCsbest ← ATCs

end if

end while

return ATCsbest

14



research uses both the fully disaggregated and the fully aggregated set of ATCs

as reference set (seed). This is an approximate validation of the convergence to

a single optimal solution.

Next, some random changes are applied to the set of ATCs, e.g. activity

type ‘2’ and ‘10’ could be merged into a new class: [[1], [2, 10], [3], [4], [5],235

[6], [7], [8], [9]]. A random change is defined as the exchange of one activity

type from one group to another (this can be an empty group). The number of

random changes that are applied are according to an exponential distribution:

the probability of a single change is 64.4%, that of two changes 23.7%, that of

three changes 8.7% etc. and this up to a maximum of ten random changes. Using240

this approach decreases the probability that the algorithm gets stuck in a local

optimum and increases the probability that it will reach the global optimum.

Note that this step is not completely random, as previously generated random

grouping schemes are never used again (for obvious performance reasons). The

random change generator is insensitive to the size of an existing group. This245

prevents a bias of large groups getting only larger, or vice versa. Multiple blocks

of grouped ATCs can arise without biasness.

For this new set of ATCs, a DT is trained on the train set. The C4.5 (J48 in

Weka [41]) DT classification algorithm yields an excellent classification accuracy

and requires only a short time to train [6]. Therefore, this was the classifier of250

choice. Next, the activity classification accuracy is calculated based on the test

set. The entropy retention in the data is determined as well. The optimization

parameter U (Equation 4) is computed (considering a = 1 for this study). If the

newly calculated U is larger than Ubest of the best grouping scheme, the newly

found grouping scheme will replace the previous best grouping scheme.255

The previous steps of randomly changing the set of ATCs, training a DT

classifier and calculating U is repeated until a stopping criterion is satisfied.

The stopping criterion consists of a certain number of iterations without change

in best U , which indicates that the algorithm converged to a (local) optimum

(which is possibly equal to the global optimum). For the Seoul HTS data set,260

iterations were stopped after 100 cycles without a change in best U , whilst for

15



the US NHTS data set this threshold was set to 4000 cycles. This predefined

number was chosen after initial experimentation and may not be optimal. It is

however critical that this number is chosen sufficiently large for cases of copious

distinct activity types (more about this in subsection 5.1). This is important265

since more combinations of classes are possible and thus the optimum becomes

more difficult to find. The algorithm needs sufficient time to try random different

combinations before one can conclude convergence.

Note that, given a minimum amount of data, the sample size (see Table 2)

has little influence. This is i.a. a consequence of the pruning stage in the DT270

learning phase. However, if not only temporal variables are used, then the sam-

ple size should perhaps also increase proportionally to ensure as much behavior

as possible is captured in the DT.

In the experiments described in this paper, the algorithm was run for 10

(Seoul HTS 2010) or 32 (US NHTS 2009) times. Of these 32 runs on the275

US NHTS, 17 used the fully disaggregated set of ATCs as seed, the other 15

considered the fully aggregated set of ATCs as reference set. Due to the random

changes applied to the ATCs during iterations, each run had a different path

of convergence. Yet, as will be discussed in the results section, consistently the

same optimum was found giving evidence for a global optimum.280

5. Results

5.1. Convergence of the local search algorithm

First the proposed algorithm was run for the Seoul HTS data set, similar as

in [6]. The intention of this experiment is to confirm that the proposed algorithm

works, and that it yields major improvements in performance. Compared to [6],285

slightly different values for U are expected since an adapted formula is used

in this study. The algorithm ran for 10 times (independently) and converged

each time to the same optimum, which was reassuringly also the same as was

found in [6]. Figure 1 illustrates the convergence of these runs. Although each

run started at a different U value due to the random change at the start of290
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Figure 1: Convergence plot for 10 independent runs on the Seoul HTS 2010 data set. The

slowest run finished in just under 13 minutes (Intel Core i5-4210M CPU @ 2.60GHz) and

needed 255 iterations (100 part of the stopping criterion). All 15 found the same optimum.

the algorithm, they all converged to the same optimal U value. Figure 2 shows

how each of the runs also followed a distinct conversion path, here shown by

the evolution of the number of ATC during the conversion process. Notably,

this exact same result could be found in just a couple of minutes, whilst in the

approach of [6] approximately 30 hours on 20 threads of a high-end server were295

needed. As also concluded in that study, this optimum is considerably better

than many ‘expert opinion’ activity type classification systems being used.

After having confirmed the excellent performance of the method on the Seoul

HTS, the experiment was repeated on the US NHTS data set. In 32 independent

runs, each time the same set of ATCs was found. This is a strong evidence that300

the revealed set of ATCs is indeed a globally optimal set of ATCs for the US

NHTS. Figure 3 illustrates the convergence graphically. Of those 32 runs, 17

employed the original set of ATCs (fully disaggregated) as seed set (‘reference’

set), similarly as in the experiment on the Seoul HTS. The other 15 runs used

the fully aggregated seed. The two types of runs used the extremes of possible305
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Figure 2: Evolution of the number of activity type classes during convergence of 10 indepen-

dent runs on the Seoul HTS 2010 data set.

seed sets of ATCs: the first having as many as possible initial ATCs, the second

as few as possible. Finding the same optimum starting from these two extremes

using an iterative algorithm with such a large search space is a very positive

result. Figure 4 shows the evolution of the number of ATCs for both types

of runs. One clearly sees how both experiments start from 2 extremes (the310

maximum number of ATCs vs the minimum number of ATCs) and that they

converge to the same optimum.

Within 32 runs, approximately 309,290 combinations of ATCs were trialed.

As described in Algorithm 1, an equal number of DTs was trained. Combining

the results of the 32 runs there were 261,537 unique combinations. Table 4315

lists a selection of all those combinations, including also the most optimal set of

ATCs as the first entry in the table (see also next section for more discussions).

Of the runs with as seed the fully disaggregated set of ATCs, the fastest run

found the optimum in just under 79 hours (after 7,468 iterations), the slowest

one in a bit over 140 hours (16,256 iterations). Of the runs based on the fully320
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aggregated set of ATCs as seed set, the fastest run found the optimum in just

under 47 hours (5,636 iterations), the slowest one in a bit over 76 hours (9,687

iterations). Mind that in all runs the final 4,000 iterations were part of the

stopping criterion. Note that this is a mere fraction of the 3.82 · 1030 sets of

ATC combinations that would have to be analyzed with the method of [6].325

Compared to the Seoul HTS, processing time for US NHTS took considerably

longer. This is a consequence of the increased time to transform the ATCs in

the data and subsequently train the DTs on this large data set.

The runs which started from the fully aggregated ATC converged faster than

the ones starting from the set of disaggregated ATCs (see also Figure 3). This330

was somewhat unexpected, since the optimal set of ATCs (see subsection 5.2

and Table 4) appears to be more similar (i.e. ‘closer’) to the fully disaggregated

seed than to the fully aggregated seed. This effect can however be explained by

the fact that the search space is initially smaller (fewer possible alterations are

possible starting from the fully aggregated ATC) and the random changes are335

more likely to be in the right direction.

The conversion results presented above are sensitive to the convergence crite-

rion used in the algorithm. In earlier experiments, some runs failed to converge

to the same optimal set of ATCs found by other runs. The U value at which

these runs reached the stopping criterion was inferior to those of the other runs.340

Two likely causes were identified: (i) too few iterations occurred before the stop-

ping criterion was fulfilled (set to 2,000 in these initial experiments) or (ii) these

runs were stuck in a local optimum. The latter is unlikely, since by allowing up

to 10 random changes on the previous best scheme (see section 4.2.2) it would

be very likely that any local optimum could be avoided, on the condition that345

the algorithm is given enough time.

The first hypothesis was confirmed by the finding that the final set of ATCs

of those unexpected runs also could be found within the set of iterations of

the other runs (which did converge to the optimum). This means that there

existed a direct path that could lead to the same optimum. By chance (i.e.350

too few iterations before stopping criterion was fulfilled) such a path was not
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Figure 3: Combined convergence plot for 32 independent runs on the NHTS 2009 data set,

for the two experiments with different seed sets of activity type classes (fully disaggregated

(17 runs) and fully aggregated (15 runs)).
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Figure 4: Combined evolution plot of the number of activity type classes during convergence

of 32 independent runs on the NHTS 2009 data set, for the two experiments with different

seed sets of activity type classes (fully disaggregated (17 runs) and fully aggregated (15 runs)).
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found in these runs. Sufficient iterations should be allowed before convergence

is concluded.

5.2. Optimal activity type classes for annotation

Table 4 lists some interesting results from the experiments on the NHTS355

2009 data. The first entry is the most optimal ATC combination: 10, 11, 12,

13, 14, 20, 21, 23, 24, 50, 52, 54, 55, 60, 61, 62, 63, 64, 65, 70, 72, 80, 81, 83,

97, [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82]. Compared to the reference case,

its test set classification accuracy has more than doubled from 34.0% to 73.4%.

This comes at a cost of losing 2.06 bits of information. It suggests these 26360

distinct classes (excl. ‘Home’) are more optimal compared to the original 36. It

merges the following activity types into a new class:

• 22: Go to religious activity

• 30: Medical/dental services

• 40: Shopping/errands365

• 41: Buy goods: groceries/clothing/hardware store

• 42: Buy services: video rentals/dry cleaner/post office/car service/bank

• 43: Buy gas

• 51: Go to gym/exercise/play sports

• 53: Visit friends/relatives370

• 71: Pick up someone

• 73: Drop someone off

• 82: Get/eat meal

This is a class which is hard to define. Some are flexible in nature (buying

goods,) yet others have obligations to third parties and are not flexible (e.g.375

picking up or dropping off someone). However, none of them usually have a very
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Table 4: Most optimal sets of the combined results of the 32 independent runs on the US

NHTS 2009 data set and some interesting sets to compare with. Table 5 lists the encoding of

the activity types. The best set of activity classes (1st row in table) was the optimal set in all

32 runs.

Sets of activity classes (only grouped activity types

are shown)

Test Set

Accuracy

Entropy U(↓)

[22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.216 0.114273

[10, 23], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] * 0.734 2.216 0.114268

[23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.214 0.113756

[10, 23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.214 0.113751

[10, 62], [23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73,

82] *

0.734 2.214 0.113751

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 40, 41, 42, 43,

50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73,

80, 81, 82, 83, 97] (ref.: [42])

0.851 0.977 0.001754

Reference case (original 36 activity types) 0.340 4.276 0

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24, 30, 40, 41, 42, 43, 50,

51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 80,

81, 82, 83, 97] (ref.: [4])

0.895 0.618 -0.014185

[10, 11, 12, 13, 14], [23, 24, 30, 40, 41, 42, 43, 50, 51, 52, 53,

54, 55, 63, 64, 80, 81, 82, 83, 97], [20, 21, 22, 60, 61, 62, 65,

70, 71, 72, 73] (ref.: e.g. [43])

0.733 1.271 -0.107685

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [40, 41, 42, 43], [50,

51, 52, 53, 54, 55], [60, 61, 62, 63, 64, 65], [70, 71, 72, 73],

[80, 81, 82, 83] (ref.: [8] (first digit NHTS codes))

0.476 2.754 -0.150825

[24, 30, 40, 41, 42, 43, 61, 64, 65, 82], [10, 11, 12, 13, 14, 20,

21, 70, 71, 72, 73], [22, 23, 50, 51, 52, 53, 54, 55, 60, 62, 63,

80, 81, 83, 97] (ref. e.g. [44])

0.632 1.539 -0.197553

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 40, 41, 42, 43],

[50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73,

80, 81, 82, 83, 97] (ref.: [30])

0.599 1.741 -0.200993

[40, 41, 42, 43], [70, 71, 72, 73], [10, 11, 12, 13, 14], [20, 21,

22, 23, 24], [50, 51, 52, 53, 54, 55], [30, 60, 61, 62, 63, 64,

65, 80, 81, 82, 83, 97] (ref.: [45])

0.485 2.429 -0.213240

Note: italic* sets of activity classes represent multiple variations with 10: ‘Work’ (see text)
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long duration compared to others such as e.g. ‘Work’, and they could in theory

occur at almost any time within a day. All activity types occur at a relatively

high frequency (see Table 5). Many of these activities are likely to be chained

together: picking up or dropping off people whilst visiting friends/relatives or380

going to play sports, or getting something to eat before (or after) doing some

shopping etc. This makes it hard to distinguish between these activity types

based on only temporal profiles, and hence it makes sense to merge them into

a single class.

The next ATC schemes in the list combine 10: ‘Work’ with all other activity385

types which are not in the large group of the most optimal scheme (24 distinct

combinations, e.g. [10, 23]; [10, 70]; [10, 62]; etc.) and finally it also joins

the large group. Because of space constraints, only the best performing of all

those variations is listed in italics in Table 4. From Table 5 one observes that

activity type 10 is slightly peculiar, as its weighted frequency is many orders390

of magnitude smaller than other activity types. It is clearly different from ‘Go

to work’ as the latter has a frequency which is approximately 105 times larger.

The exact definition of the ‘Work’ activity could not be found. Because of

the very low frequency, the impact of this activity type on the classification

accuracy and entropy retention is very small. This experiment concludes that395

in practice these variations with activity type 10 may not be different from the

most optimal scheme and one could most likely ignore them.

Subsequently in Table 4 one finds the scheme where, in addition to the large

group from before, also 23: ‘Go to library: school related’ and 70: ‘Transport

someone’ are merged into a single class. This could make sense as this experi-400

ment used only time-related variables to train the DTs, and one could intuitively

think the temporal distributions of both activity types may be similar. Again

different combinations with activity type 10 are listed afterwards. The schemes

discussed so far perform similar as the most optimal scheme. One has to be cau-

tious when interpreting the rank in Table 4 as the algorithm does not guarantee405

to find all ATC combinations.

Next in Table 4 are seven interesting activity class combination schemes from
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Table 5: Trip motive codes in US NHTS 2009 which were used in this studys optimization of

activity type classes. There are 37 distinct codes (including Home)

NHTS 2009

codes
Description of trip motive

Weighted

frequency

1 Home 1.35E+11

10 Work 2.16E+05

11 Go to work 3.11E+10

12 Return to work 5.73E+09

13 Attend business meeting/trip 1.07E+09

14 Other work related 7.90E+09

20 School/religious activity 1.13E+09

21 Go to school as student 1.18E+10

22 Go to religious activity 6.98E+09

23 Go to library: school related 4.54E+08

24 OS - Day care 8.29E+08

30 Medical/dental services 6.30E+09

40 Shopping/errands 7.10E+09

41 Buy goods: groceries/clothing/hardware store 4.40E+10

42 Buy services: video rentals/dry cleaner/post office/car service/bank 1.12E+10

43 Buy gas 6.60E+09

50 Social/recreational 3.78E+09

51 Go to gym/exercise/play sports 1.34E+10

52 Rest or relaxation/vacation 3.28E+09

53 Visit friends/relatives 1.76E+10

54 Go out/hang out: entertainment/theater/sports event/go to bar 6.84E+09

55 Visit public place: historical site/museum/park/library 1.85E+09

60 Family personal business/obligations 4.48E+09

61 Use professional services: attorney/accountant 1.11E+09

62 Attend funeral/wedding 6.68E+08

63 Use personal services: grooming/haircut/nails 1.47E+09

64 Pet care: walk the dog/vet visits 2.94E+09

65 Attend meeting: PTA/home owners association/local government 1.61E+09

70 Transport someone 3.09E+08

71 Pick up someone 1.10E+10

72 Take and wait 1.19E+09

73 Drop someone off 1.20E+10

80 Meals 7.92E+08

81 Social event 2.49E+09

82 Get/eat meal 2.04E+10

83 Coffee/ice cream/snacks 2.98E+09

97 Other reason 2.59E+09
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literature to compare with the optimal scheme. An attempt was made to merge

ATCs in a similar fashion as in these studies. The most obvious comparison

may be made with an ATC scheme based on the first digit of the NHTS codes410

[8]. Even though there are much fewer activity classes to predict compared

to the most optimal scheme, its classification accuracy is much lower at 47.6%

compared to 73.4%. This deficiency outweighs the fact that this scheme retains

slightly more information than the optimal scheme. The scheme based on [45]

performs similarly. The ones inspired by [44] and [30] perform worse than the415

optimal scheme on both the classification accuracy and information retention.

The schemes inspired by [4],[42] and [43] have similar of better classification

accuracies compared to the optimal scheme, however these lost a major portion

of their information content as a consequence.

Depending on the research, there might exist a reason for employing one of420

the suboptimal schemes (e.g. some activity types need to be predicted and may

not be merged, or a predefined number of ATCs is required). Yet, without such

justification, this work suggests one should strongly consider using the revealed

most optimal set of ATCs in order to simultaneously maximize the prediction

accuracy and the information in that prediction.425

6. Conclusion

As demonstrated in previous research [6], there is a strong need for activity

categorization standards in the domain of trip purpose annotation (i.e. activity

type classification). Most existing researches use a suboptimal set of ATCs in

their methodology (without providing a justification), leading to high classifica-430

tion accuracies, but low information in the prediction. An optimization strategy

that was proposed in previous research [6], has shown a limitation: the issue of

copious distinct ATC combinations and its associated long computation time.

This issue makes it practically impossible to apply the optimization strategy to

data sets having copious activity type classes (ATCs).435

The aim of this paper is to optimize which original activity types should be
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merged into a new class, and this for data sets for which it is impractical or

impossible to simply calculate all ATC combinations due to an extremely large

amount of combinations. The paper suggests a revision of the optimization

method in [6]. The proposed method defines an optimization parameter U ,440

based on classification accuracy and information retention, which is maximized

in an iterative search algorithm.

The local search algorithm starts from a predefined set of ATCs and it-

eratively tries to optimize it by applying random changes. In each iteration,

the search algorithm randomly combines or disjoins (with constraints) some of445

the activity types into a new class, and subsequently calculates the classifica-

tion accuracy based on temporal variables, as well as the retained information

(entropy). The optimization parameter U which is based on both indices is

maximized.

Tests on the Seoul household travel survey (HTS) concluded that the pro-450

posed algorithm is (i) able to find the optimal set of ATCs and (ii) that it is

much more efficient at this task compared to previous research [6].

Experiments with the very large national household travel survey of the U.S.

(US NHTS 2009), which is to the authors’ knowledge the HTS with the most

copious trip purpose (activity type) variable, concluded that (i) the algorithm455

is capable of running this ‘worst-case-scenario’ in a reasonable amount of time

(ii) a global optimum was found thanks to using seeds at two ‘extremes’.

Depending on the research, there might exist a reason for employing one of

the suboptimal schemes (e.g. some activity types need to be predicted and may

not be merged, or a predefined number of ATCs is required). Yet, without such460

justification, this work suggests one should strongly consider using the proposed

algorithm to objectively determine the most optimal set of ATCs in order to

simultaneously maximize the prediction accuracy and the information in that

prediction.

Future research will also include spatial and regional variables to apply the465

methodology to a big transport data activity type annotation problem. Further-

more, the application of data fusion based on annotated optimized ATCs will
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be investigated. Models based on traditional ATCs and optimized ones can be

compared. The concept of an optimized set of classes could also be transferred

to other classification problems such as trip mode inference from GPS data.470
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