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ABSTRACT In this paper, the secrecy performance of single-input–multiple-output systems over correlated
κ-µ shadowed fading channels is investigated. In particular, based on the classic Wyner’s wiretap model,
we derive analytical expressions for secure outage probability (SOP) and the probability of strictly positive
secrecy capacity (SPSC) over correlated κ-µ shadowed fading channels. In order to further study the impact
of channel parameters on the secrecy performance, novel SOP and the probability of SPSC over independent
and identically distributed κ-µ shadowed fading channels are also obtained. In addition, we discuss the
asymptotic expressions of the SOP and the SPSC. The match between the analytical results and simulations
is excellent for all parameters under considerations. It is interesting to find that the results show that when
the signal-to-noise ratio of the main channel is lower than that of the eavesdropping channel, the larger value
of correlation coefficient is helpful to improve the secrecy performance and vice versa.

INDEX TERMS Single-input multiple-output, κ-µ shadowed fading, the probability of strictly positive
secrecy capacity (SPSC), secure outage probability (SOP).

I. INTRODUCTION
Security is an important measure of wireless communica-
tion quality, which represents the resistance of future com-
munication systems to human destructions and threats [1].
Wireless communication systems are particularly subject to
more security threats than closed wired communication sys-
tems. According to the open system interconnection reference
model, the information security technology in the traditional
wireless communication system mainly focuses on the net-
work layer and the upper layers, moreover, it is assumed
that the physical layer has provided the error free transmis-
sion. Unlike traditional cryptographic encryption and decryp-
tion methods, physical layer security (PLS) has become an

The associate editor coordinating the review of this manuscript and
approving it for publication was Edith C.-H. Ngai.

important aspect of providing trustworthiness and reliabil-
ity for the future wireless communication even without the
use of cryptographic protocols in the corresponding litera-
tures [2]–[9]. Based on Shannon’s communication principle
of secrecy system [2], Wyner put forward the classic wiretap
channel model in which confidential information is transmit-
ted from the sender to the legitimate user and the eavesdrop-
per [3]. The definition of secrecy capacity was given in [4],
in addition, the SOP, the probability of SPSC and the average
secrecy capacity (ASC) were obtained with Rayleigh fading
channels. In order to deal with the fluctuation of millimeter
wave signals, the authors in [5] put forward a fluctuating
two-ray (FTR) model and studied the security performance of
the FTR model with arbitrary parameters by analyzing ASC,
SOP, and SPSC. Hyadi et al. in [6] summarized the influence
of the channel state information at the transmitter (CSIT)
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uncertainty on the communication security performance, and
analyzed three different sources of CSIT in detail. To better
evaluate the security performance of wireless communication
systems, three performance metrics which can reflect the
eavesdropper’s ability to decode the transmitted information
and the leakage rate of confidential information were pro-
posed in [7]. Liu in [8] derived the closed-form expression of
SPSC over Rician/Rician fading channels. In order to better
understand and solve the performance measures of physical
layer security, a unified analytical model for the probability
of nonzero secrecy capacity, SOP, and the secrecy capacity of
multiple-antenna systems was given in [9].

Recently, the secure performance of communication sys-
tems over generalized fading channels has attracted a con-
siderable amount of research since the generalized channels
are close to the real environment and includes other chan-
nels as special cases. For instance, the generalized Gamma
distribution can be used to characterize many classical dis-
tributions [10], The authors in [11] performed an analysis of
PLS over generalized Gamma fading channels. By employing
a mixture gamma distribution, the ASC, the probability of
SPSC and SOP over generalized-K (GK ) fading channels
were derived in [12]. Wu et al. [13] analyzed the secrecy per-
formance for amplify-and-forward (AF) relaying networks
over GK fading channels, where analytical expressions for
the ASC, SOP and SPSC were derived. The performance
of PLS was investigated over κ-µ fading channels by ana-
lyzing the SPSC and the lower bound of the SOP in [14].
A closed-form expression for the ASC over α-µ fading
channels was presented in [15]. Analytical expressions for
the lower bound of the SOP and the SPSC of α-µ/κ-µ and
κ-µ/α-µ fading models were obtained to study the secrecy
capacity of physical layer [16].

Different from the single antenna transceiver system,
multiple-input multiple-output (MIMO) technology can
improve the quality of communication by sending and receiv-
ing signals through multiple antennas [17], [18]. As a result,
many works [19]–[26] on the PLS performance over MIMO
fading channels have been carried out. Based on the cor-
related single-input multiple-output (SIMO) Nakagami-m
channel, Sun et al. in [19] derived the expressions of SPSC
and SOP, and presented the influence of the correlation coef-
ficient on the system security capacity in the different signal-
to-noise ratio (SNR) conditions. The PLS performance of
SIMO underlay cognitive radio networks (CRN) over GK
fading channels were investigated in [20], which provided
the statistical characteristics of independent and identically
distributed (i.i.d.) GK distribution and the theoretical expres-
sion of SOP. Some benchmarks including achievable sum rate
(ASR), symbol error ratio (SER) and outage probability (OP)
were derived in [21] over semi-correlated MIMO K fading
channels using zero forcing receivers. In order to enhance
the performance of PLS between two multi-antenna nodes,
a novel solution in view of beamforming with prespecified
signal-to-interference-plus-noise ratio (SINR) was provided
in [22], which can minimize transmission power. In addition,

the work of [12] was extended in [23] to the case of SIMO
system where the exact ASC, SOP and SPSC over SIMO GK
fading channels were investigated. For κ-µ fading channels,
the authors in [24] presented the derivation of both the ASC
and SOP. Pan et al. in [25] provided the derivations of ASC
in three considered scenarios, namely independent lognormal
fading, correlated lognormal fading, or independent com-
posite fading. By means of moment matching, Peppas et al.
in [26] derived the analytical expressions of secrecy capac-
ity and SOP with generalized selection combining under
the considered multi-antenna system over η-µ fading
channels.

The κ-µ shadowed fading is a generalized composite dis-
tribution which encompasses the κ-µ fading and the Rician
shadowed fading and can be equivalent to other fading chan-
nels with suitable parameters [27]. This channel model can
be applied to different scenarios such as device-to-device
communication [28], fifth generation (5G) [29] and satellite
communication system [30]. Besides, since many statisti-
cal properties of the model can be written as closed-form
expressions, κ-µ shadowed distribution is more suitable for
performance analysis. In recent years, many researchers have
investigated the performance over κ-µ shadowed fading
channels. For instance, in [31], performance analysis of PLS
over κ-µ shadowed fading channels using the classicWyner’s
wiretapmodel was studied, where the lower bound of the SOP
and SPSC were explored by the method of moment match-
ing. The effective rate over single-input single-output (SISO)
and multiple-input-single-output (MISO) systems over κ-µ
shadowed fading channels were studied in [32] and [33],
respectively.

Channel correlation has a great impact on the security
performance of the system.Many studies [34]–[38] have been
done in this area. the authors in [34] deduced the ASC and
SOP based on correlation Rayleigh channel. In the case of
high SNR. The approximate SOP was obtained over cor-
related lognormal fading channels [35]. SOP was derived
from a correlated Nakagami-m/Gamma composite fading
channels which considers both multipath fading and shadow
fading [36]. Under the premise of the probability density
function (PDF) provided in [37] over i.i.d. and correlated
κ-µ shadowed fading channels, Zhang et al. in [38] derived
high-order capacity statistics of spectrum aggregation sys-
tems with maximal ratio combining (MRC) scheme.

Unlike reference [31], this paper extends security perfor-
mance analysis to multi-antenna scenarios, and studies the
effects of correlation and independence between antennas
on physical layer security performance. To the best of the
authors’ knowledge, there is no work in the open literature
that investigated the performance of PLS on the correlated
κ-µ shadowed fading channels. To compensate for this gap,
we dedicate this paper to study the security performance
for κ-µ shadowed fading channels based on two scenarios,
namely, correlation and i.i.d.. The main contribution of this
work resides in deriving closed-form analytical expressions
of both SOP and SPSC over correlated and i.i.d. SIMO κ-µ
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FIGURE 1. System model.

fading channels.1 The analytical method can be applied to
other fading channels when the correlated PDF are given. All
derived expressions contain only well-known power series
and gamma functions. Moreover, the theoretical results are
confirmed via Monte Carlo simulations.

The structure of this paper is as follows. Section II
describes the systemmodel as well as PDF and the cumulative
density function (CDF) for SIMO systems in correlated and
i.i.d. κ-µ shadowed distribution. In Section III, we present
the derivation of SOP and the probability of SPSC over the
correlated SIMO κ-µ shadowed fading channels. Section IV
derives the expressions for the SOP and SPSC over the
i.i.d. SIMO κ-µ shadowed fading channels, and in Section V,
the results of theoretical analysis and statistical simulations
are compared and the influence of channel parameters on
the secrecy performance is given. Finally, we summarize the
paper in Section VI.

II. SYSTEM MODEL AND STATISTICAL CHARACTERISTICS
OF THE SIMO κ-µ SHADOWED DISTRIBUTION
A. SYSTEM MODEL
As illustrated in Fig. 1, the system model considered in this
paper is the classical Wyner’s wiretap model which involves
a sender (S) with single antenna, a legal receiver (D) with
LD antennas and an eavesdropper (E) with LE antennas.
We define the channel from S to D as the main channel and
the channel from S to E as the eavesdropper channel. Con-
fidential signals are transmitted through the main channel.
However, the eavesdropper can also get the signal through
the eavesdropper channel. It is assumed that both channels
are correlated or i.i.d. SIMO κ-µ shadowed fading channels.
Moreover, in a coherent time block, the receiver has enough
time to process the received signal, and the fading coefficients
remain unchanged. Thus, the signals at the receivers,D andE ,
can be written as

yi = hix + n, i ∈ {D,E}, (1)

1In addition, the ASC is also a fundamental secrecy performance metric,
which denotes the average maximum achievable secrecy rate, this problem
will be as our future work.

where x is the confidential signal transmitted from S, hi ∈
CNt×1 represents the SIMO κ-µ shadowed fading vector
between the sender and the multi-antenna receiver, the sym-
bol C denotes a set of complex numbers, yi ∈ CNt×1 is
the received signal vector, i ∈ {D,E} represents the main
channel or the eavesdropper channel, and n ∼ CN (0, σ 2) is
a complex Gaussian vector with zero mean value and fixed
standard deviation σ .

B. STATISTICAL CHARACTERISTICS OF THE
SIMO κ-µ SHADOWED FADING
The κ-µ shadowed fading channels is closer to the actual
environment because it can reflect the random variation of
inhomogeneous fading channels. Furthermore, some statis-
tical properties of the channel, such as the PDF, CDF and
the moment generating function (MGF) can be expressed in
closed-form, hence, the κ-µ shadowed model has excellent
analytical characteristics. In the considered systemmodel, the
main and eavesdropper channels both undergo correlated or
i.i.d. SIMO k-µ shadowed fading. Referring to [27], we can
obtain the PDF of κ-µ shadowed random variable (RV) as

fi(γ )=
µi
µimimi (1+ ki)µi

0(µi)(µiki + mi)mi�i
µi
γ µi−1

× exp
(
−
µi(1+ ki)

�i
γ

)
×1F1

(
mi, µi;

µ2
i ki(1+ ki)

(µiki + mi)�i
γ

)
, i ∈ {D,E}, (2)

where ki,µi andmi denote the fading parameters of κ-µ shad-
owed fading channels, and �i is the average SNR, subscript
i indicates the main channel or the eavesdropper channel,
0(·) is the Gamma function as defined in [39, Eq. (8.310.1)]
and 1F1(·) is the confluent hypergeometric function
[39, Eq. (9.14.1)].

We consider that the combination method used by the
receiver is the MRC scheme. Therefore, the instantaneous
SNR of the main channel or the eavesdropper channel can
be written as

γi =

Li∑
j=1

γi,j, i ∈ {D,E}. (3)

where γi,j represents received SNR at jth antenna of the main
channel or the eavesdropper channel.

1) SUM OF CORRELATED SQUARED κ-µ SHADOWED RVS
With the help of [38], we can obtain the PDF of the sum of
L correlated squared κ-µ shadowed RVs as

fcor,i(γ ) = Ai

(
ηi

�i

)Ui
γUi−1 exp

(
−
ηi

�i
γ

) ∞∑
k=0

Dk

×1F1

(
Lmi + ki,Ui;

ηiγ

�i(1+ λi−1)

)
, (4)

where i ∈ {D,E} represents the main or the eavesdrop-
per channel, U =

∑L
l=1 µl , η =

∑L
l=1 µl(1 + kl),
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A =
∏L

l=1 (λ1/λl)
m, where λ1 = min{λl} and {λl}Ll=1 are the

eigenvalues of the matrix DC in which D = diag{µlkl/m}Ll=1
and C represents the L × L positive define matrix given by

C =


1

√
ρ12 · · ·

√
ρ1L

√
ρ21 1 · · ·

√
ρ2L

...
...

. . .
...

√
ρL1

√
ρL2 · · · 1

 , (5)

where ρij ∈ [0, 1] is the correlation coeffcient of the domi-
nating components of the κ-µ shadowed RVs, the parameter
Dk in (4) can be calculated by

Dk =
δk

λ1
Lm+k0(U )

(1+ λ1)−(Lm+k), k = 0, 1, . . . , (6)

where δk can be recursively obtained with δ0 = 1 using

δk =
m

k + 1

k+1∑
i=1

 L∑
j=1

(
1−

λ1

λJ

)iδk+1−i, k = 0, 1, . . . .

(7)

Utilizing the series representation

1F1(a, b; x) =
∞∑
q=0

(a)qx
q

(b)qq!
, (8)

we can rewrite (4) as

fcor,i(γ ) = Ai

(
ηi

�i

)Ui
γUi−1 exp

(
−
ηi

�i
γ

) ∞∑
k=0

Dk

×

∞∑
q=0

(Lmi + ki)q
(Ui)qq!

(
ηi

�i(1+ λi−1)
γ

)q
, (9)

where (a)n = a(a+1) · · · (a+n−1) = 0(a+n)/0(a) is the
pochammer symbol defined in [30].

Based on [39, Eq. (3.326.2)] and [39, Eq. (8.352.6)], the
CDF of sum of L correlated squared κ-µ Shadowed RVs is
derived as

Fcor,i(γ ) = Ai
∞∑
k=0

Dk,i
∞∑
q=0

(Lmi + k)q
(Ui)qq!

×

(
1

1+ λ1,i−1

)q
(Ui + q− 1)!

×

1− exp
(
ηDγ

�D

) Ui+q−1∑
s=0

(ηiγ )
s

�i
ss!

 . (10)

2) SUM OF I.I.D. SQUARED κ-µ SHADOWED RVS
If all the entries of hi follow i.i.d. κ-µ shadowed distribution,
the PDF of the sum of L i.i.d. squared κ-µ shadowed RVs is
given by [38]

fi.i.d,i(γ ) =
(
Lµi(1+ ki)

�i

)Lµi( mi
mi + kiµi

)Lmi
×
γ Lµi−1

0(Lµi)
exp

(
−
Lµi(1+ ki)

�i
γ

)

× 1F1

(
Lmi,Lµi;

Lkiµi2(1+ ki)γ
�i(mi + kiµi)

)
, (11)

where L represents the number of receiving antennas at D
or E .

Substituting (8) into (11), we can derive the PDF as

fi.i.d,i(γ ) = (Lai)Lµi(bi)−Lmi
1

0(Lµi)

∞∑
q=0

(Lmi)q
(Lµi)qq!

×

(
Laikiµi
bimi

)q
γ Lµi+q−1 exp (−Laiγ ) , (12)

where ai =
µi(1+ki)
�i

, bi =
µiki+mi

mi
. Referring to (12) and [39,

Eq. (3.326.2)], we can derive the CDF of the sum of L i.i.d.
squared κ-µ shadowed RVs as

Fi.i.d,i(γ ) = (bi)−Lmi
1

0(Lµi)

∞∑
q=0

(Lmi)q
(
kiµi
bimi

)q
(Lµi)qq!

×ϒ(Lµi + q,Laiγ ), (13)

where ϒ(α, x) =
∫ x
0 e
−t tα−1dt is interpreted as the lower

incomplete Gamma function [39, Eq. (8.350.1)]. By utilizing
[39, Eq. (8.352.6)], (13) can be expressed in an alternative
form as

Fi.i.d,i(γ )= (bi)−Lmi
1

0(Lµi)

∞∑
q=0

(Lmi)q
(
kiµi
bimi

)q
(Lµi)qq!

×(Lµi + q− 1)!

×

1−
Lµi+q−1∑

s=0

(Lai)s

s!
γ s exp(−Laiγ )

. (14)

III. SECRECY ANALYSIS OF SIMO SYSTEMS OVER
CORRELATED κ-µ SHADOWED FADING CHANNELS
In this section, we assume that the RVs of each path at D
or E are correlated with correlation coefficient ρij, whereas
the RVs between the main and the eavesdropper channels
are uncorrelated. More specifically, we derive the analytical
and asymptotic expressions for SOP and SPSC on correlated
SIMO k-µ shadowed fading channels.

A. SOP ANALYSIS
As a significant measure to evaluate the security perfor-
mance, the SOP denotes the probability that the target rate is
greater than the instantaneous secrecy capacity [40]. Accord-
ing to [11], SOP can be expressed as

SOP =
∫
∞

0
FD(2γE +2− 1)fE (γE )dγE , (15)

where 2 = exp(Cth) ≥ 0, and the meaning of Cth is target
rate.
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Theorem 1: For SIMO correlated k-µ shadowed fading
channels, the analytical SOP is given as

SOPcor = ADAE
∞∑
k=0

Dk,D
∞∑
n=0

Dn,E

×

∞∑
q=0

∞∑
p=0

(LDmD + k)q
(UD)qq!

(
1

1+ λ1,D−1

)q
×

(LmE + n)p
(UE )pp!

(
ηE

�E

)UE+p( 1

1+ λ1,E−1

)p

× (UD + q− 1)!

0(UE + p)(
ηE
�E

)UE+p
− exp

(
−
ηD

�D
(2− 1)

) UD+q−1∑
s=0

ηD
s

�D
ss!

s∑
t=0

(s
t
)

×2t(2− 1)s−t
0(UE + p+ t)(

ηE
�E
+2

ηD
�D

)UE+p+t
 , (16)

where (·)! is the factorial operation,
(
s
t
)
=

s
s!(s−t)! denotes the

binomial coefficient.
Proof: According to (15), (4) and (10), the SOP can be

obtained as

SOPcor =
∫
∞

0
AD

∞∑
k=0

Dk,D
∞∑
q=0

(LDmD + k)q
(UD)qq!

×

(
1

1+ λ1,D−1

)q
(UD + q− 1)!

×

(
1− exp

(
−
ηD

�D
(2γE +2− 1)

)

×

UD+q−1∑
s=0

ηD
s

�D
ss!

s∑
t=0

(s
t
)
2t (2− 1)s−tγE t


×AE

(
ηE

�E

)UE ∞∑
n=0

Dn,E

×

∞∑
p=0

(LmE + n)p
(UE )pp!

(
ηE

�E (1+ λ−1)

)p

×γE
UE+p−1 exp

(
−
ηE

�E
γE

)
dγE (17)

In addition to the constant coefficients, the integral term
contains a power function and an exponential function in (17).
Employing [39, Eq. (3.326.2)], and after some simple manip-
ulations, we can finally derive the SOP as (16).
Corollary 1: In the high-SNR regime (�D → ∞),

the asymptotic SOP on correlated SIMO k-µ shadowed

fading channels can be given as

SOP∞cor = ADAE
∞∑
k=0

Dk,D
∞∑
n=0

Dn,E

×

∞∑
p=0

(LmE + n)p
(UE )pp!

(
ηE

�E

)UE+p

×

(
1

1+ λ1,E−1

)p ∞∑
q=0

(LmD + k)q
(UD)qq!

×

(
1

1+ λ1,D−1

)q ( ηD
�D

)UD+q
UD + q

UD+q∑
s=0

(
UD+q
s

)
×2s(2− 1)UD+q−s

0 (UE + p+ s)(
ηE
�E

)UD+p+s . (18)

Proof: According to the known equation provided as
exp(x) =

∑
∞

i=0
xi
i! , when �D→∞, we can derive

UD+q−1∑
s=0

(ηDγ )
s

�D
ss!
=exp

(
ηDγ

�D

)
−

(
ηDγ
�D

)UD+q
(UD + q)!

− o
(
ηDγ

�D

)
,

(19)

where o (·) is items of high order. Therefore, we can trans-
form (10) into

F∞cor,D(γ )

= AD
∞∑
k=0

Dk,D
∞∑
q=0

(LDmD + k)q
(UD)qq!

×

(
1

1+ λ1,D−1

)q ( ηDγ
�D

)UD+q
UD + q

exp
(
−
ηD

�D
γ

)
. (20)

Using (9) and (20), SOP in the high-SNR regime can be
expressed as

SOP∞cor =
∫
∞

0
F∞cor,D(2γE +2− 1)fcor,E (γE )dγE

= ADAE
∞∑
k=0

Dk,D
∞∑
n=0

Dn,E
∞∑
p=0

(LmE + n)p
(UE )qp!

×

(
ηE

�E

)UE+p( 1

1+ λ1,E−1

)p ∞∑
q=0

(LmD + k)q
(UD)qq!

×

(
1

1+ λ1,D−1

)q ( ηD
�D

)UD+q
UD + q

UD+q∑
s=0

(
UD+q
s

)
×2s(2− 1)UD+q−s

∫
∞

0
γE

s exp
(
−
ηD2γE

�D

)
× γE

UE−1 exp
(
−
ηE

�E
γE

)
γE

pdγE . (21)

By means of [39, Eq. (3.326.2)], and after some simple
integral operations, (18) is obtained.
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From (16) and (18), we can see that the expression of
SOP contains only elementary functions, moreover, SOP is an
decreasing function with regard to �D which is the average
SNR of main channel.

B. SPSC ANALYSIS
Another essential benchmark considered is SPSC which
means the probability of existence of strictly positive secrecy
capacity [40], SOP is the probability that the instanta-
neous secrecy capacity is less than a certain target value,
while SPSC represents the probability that the instanta-
neous secrecy capacity is greater than zero. SPSC can be
obtained by [11] as

SPSC = 1−
∫
∞

0
FD(γE )fE (γE )dγE . (22)

Theorem 2: For SIMO correlated k-µ shadowed fading
channels, the analytical SPSC is derived as

SPSCcor = 1− ADAE
∞∑
k=0

Dk,D
∞∑
n=0

Dn,E

×

∞∑
q=0

∞∑
p=0

(LDmD + k)q
(UD)qq!

(
1

1+ λ1,D−1

)q
× (UD + q− 1)!

(LmE + n)p
(UE )pp!

(
ηE

�E

)UE+p

×

(
1

1+ λ1,E−1

)p0(UE + p)(
ηE
�E

)UE+p
−

∞∑
s=0

ηD
s

�D
ss!

0(UE + p+ s)(
ηE
�E
+

ηD
�D

)UE+p+s
. (23)

Proof: Substituting (4) and (10) into (22), SPSC can be
presented as

SPSCcor = 1−
∫
∞

0
Fcor,D(γE )fcor,E (γE )dγE

= 1−
∫
∞

0
AD

∞∑
k=0

Dk,D
∞∑
q=0

(LDmD + k)q
(UD)qq!

×

(
1

1+ λ1,D−1

)q
(UD + q− 1)!

×

1− exp
(
−
ηD

�D
γE

) UD+q−1∑
s=0

ηD
s

�D
ss!
γE

s


×AE

(
ηE

�E

)UE ∞∑
n=0

Dn,E
∞∑
p=0

(LmE + n)p
(UE )pp!

×

(
ηE

�E

)p( 1

1+ λ1,E−1

)p
× γE

UE+p−1 exp
(
−
ηE

�E
γE

)
dγE . (24)

As suggested by [39, Eq. (3.326.2)], we can finally derive the
expression of (23) after some algebraic operations.
Corollary 2: In the high-SNR regime (�D → ∞),

the asymptotic SPSC on correlated SIMO k-µ shadowed
fading channels can be given as

SPSC∞cor = 1− ADAE
∞∑
k=0

Dk,D
∞∑
n=0

Dn,E

×

∞∑
q=0

(LmD + k)q
(UD)qq!

(
1

1+ λ1,D−1

)q ( ηD
�D

)UD+q
UD + q

×

∞∑
p=0

(LmE + n)p
(UE )qp!

(
ηE

�E

)UE+p
×

(
1

1+ λE−1

)p
0 (UE + p+ UD + q)(

ηE
�E

)UE+p+UD+q . (25)

Proof: Substituting (9) and (20) into (22), when
�D→∞, the asymptotic SPSC is obtained as

SPSC∞cor = 1−
∫
∞

0
F∞cor,D(γE )fcor,E (γE )dγE

= 1−
∫
∞

0
AD

∞∑
k=0

Dk,D
∞∑
q=0

(LmD + k)q
(UD)qq!

×

(
1

1+ λ1,D−1

)q ( ηDγE
�D

)UD+q
UD + q

×AE

(
ηE

�E

)UE
γ
UE−1
E exp

(
−
ηE

�E
γE

) ∞∑
n=0

Dn,E

×

∞∑
p=0

(LmE + n)p
(UE )qp!

(
ηE

�E (1+ λE−1)
γE

)p
dγE .

(26)

Then, making use of [39, Eq. (3.326.2)], we can derive the
expression of (26).

It should be noted that the value of SPSC increases with
the increase of�D, which means that a larger�D can lead to
higher security performance.

In summary, (16) and (23) represent the SOP and SPSC of
SIMO systems over correlated κ-µ shadowed fading chan-
nels, respectively. Correlation and i.i.d. are the relationship
between multiple antennas of the receiver, which can be
applicable to different practical scenarios. In addition, i.i.d.
channel model is a special case of the correlation (ρij = 0,
i 6= j ). For the sake of understanding the PLS performance
on SIMO κ-µ shadowed fading channels more deeply, it is
necessary to explore the security performance of i.i.d. chan-
nels. Based on this, we provide the closed-form expressions
for SOP and SPSC in the following chapter.
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IV. SECRECY ANALYSIS OF SIMO SYSTEMS OVER
I.I.D. κ-µ SHADOWED FADING CHANNELS
In this section, we further investigate the secrecy performance
of i.i.d. SIMO κ-µ shadowed fading channels in terms of SOP
and SPSC.

A. SOP ANALYSIS
Theorem 3: For SIMO i.i.d. k-µ shadowed fading chan-

nels, the analytical SOP is given as

SOPi.i.d = (LaE )LµE (bE )−LmE (bD)−LmD

×
1

0(LµE )

∞∑
p=0

∞∑
q=0

(LmE )p
(LµE )pp!

(
LaEkEµE
bEmE

)p
×

(LmD)q
(LµD)qq!

(
kDµD
bDmD

)q
(LµD + q− 1)!

×
1

0(LµD)

(
0(LµE + p)

(LaE )LµE+p

−

LµD+q−1∑
s=0

exp(−LaD(2− 1))
(LaD)s

s!

×

s∑
t=0

(s
t
)
2t(2− 1)s−t

×
0(LµE + p+ t)

0(L2aD + LaE )LµE+p+t

)
. (27)

Proof: According to (13) and [39, Eq. (1.111)], we can
obtain the CDF of SNR at legal receiver (D) as

Fi.i.d,D(2γE +2− 1)

= (bD)−LmD
1

0(LµD)

×

∞∑
q=0

(LmD)q
(LµD)qq!

(
kDµD
bDmD

)q
(LµD + q− 1)!

× (1− exp(−LaD2γE − LaD(2− 1))

×

LµD+q−1∑
s=0

(LaD)s

s!

×

s∑
t=0

(s
t
)
2tγE

t(2− 1)s−t
)
. (28)

Referring to (12), the PDF of SNR at eavesdropper (E) is
expressed as

fi.i.d,E (γ ) = (LaE )LµE (bE )−LmE
1

0(LµE )

×

∞∑
q=0

(LmE )q
(
LaE kEµE
bEmE

)q
(LµE )qq!

× γ LµE+q−1 exp (−LaEγ ) , (29)

substituting (28) and (29) into (15) and utilizing [39,
Eq. (3.326.2)], after some integral and algebraic operations,
we can complete the proof of (27).

Corollary 3: In the high-SNR regime (�D → ∞),
the asymptotic SOP on i.i.d. SIMO k-µ shadowed fading
channels can be given as

SOP∞i.i.d = (bD)
−LmD(bE )−LmE (LaE )LµE

×
1

0(LµD)
1

0(LµE )

∞∑
q=0

(LmD)q
(
kDµD
bDmD

)q
(LµD)qq!

×
(LaD)LµD+q

LµD + q

∞∑
p=0

(LmE )p
(LµE )pp!

(
LaEkEµE
bEmE

)p

×

LµD+q∑
s=0

(
LµD+q
s

)
2s(2− 1)LµD+q−s

×
0 (LµE + p+ s)

(LaE + LaD2)LµE+p+s
. (30)

Proof: Similar to the proof in section III, the CDF
for i.i.d. SIMO k-µ shadowed fading channels at legitimate
receiver (D) in the high-SNR system is obtained as

F∞i.i.d,D(γ ) = (bD)
−LmD 1

0(LµD)

∞∑
q=0

(LmD)q
(LµD)qq!

×

(
kDµD
bDmD

)q
(LaDγ )LµD+q

LµD + q
. (31)

Substituting (31) and (12) into (15), we can obtain

SOP∞i.i.d =
∫
∞

0
F∞i.i.d ,D(2γE +2− 1)fi.i.d,E (γE )dγE

= (bD)−LmD(bE )−LmE (LaE )LµE
1

0(LµD)
1

0(LµE )

×

LµD+q∑
s=0

(
LµD+q
s

)
2s(2− 1)LµD+q−s

×

∞∑
p=0

(LmE )p
(LµE )pp!

(
LaEkEµE
bEmE

)p

×

∫
∞

0
γE

LµE+p+s−1 exp (−LaEγE ) dγE . (32)

Then, the derivation of (30) is completed by using [39,
Eq. (3.326.2)].

B. SPSC ANALYSIS
Theorem 4: For SIMO i.i.d. k-µ shadowed fading chan-

nels, the analytical SPSC is obtained as

SPSCi.i.d = 1− (bD)−LmD(bE )−LmE (LaE )LµE

×
1

0(LµD)
1

0(LµE )

∞∑
q=0

∞∑
p=0

(LmE )p
(LµE )pp!

×

(
LaEkEµE
bEmE

)p (LmD)q
(LµD)qq!

(
kDµD
bDmD

)q
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× (LµD + q− 1)!
(
0 (LµE + p)

(LaE )LµE+p

−

LµD+q−1∑
s=0

(LaD)s0 (LµE + p+ s)

s!(LaE + LaD)LµE+p+s

 .
(33)

Proof: By using (22), SPSC can be expressed as

SPSCi.i.d = 1−
∫
∞

0
Fi.i.d,D(γE )fi.i.d,E (γE )dγE

= 1−
1

0(LµD)

∫
∞

0

∞∑
q=0

(LmD)q
(LµD)qq!

× (bD)−LmD
(
kDµD
bDmD

)q
(LµD + q− 1)!

×

1− exp (−LaDγE )
LµD+q−1∑

s=0

(LaDγE )s

s!


× (LaE )LµE (bE )−LmE

1
0(LµE )

×

∞∑
p=0

(LmE )p
(LµE )pp!

(
LaEkEµE
bEmE

)p
×γE

LµE+p−1 exp (−LaEγE ) dγE . (34)

With the aid of [39, Eq. (3.326.2)], we can get the derivation
of SPSC as in (33).
Corollary 4: In the high-SNR regime (�D → ∞),

the asymptotic SPSC on i.i.d. SIMO k-µ shadowed fading
channels can be given as

SPSC∞i.i.d = 1− (bD)−LmD(bE )−LmE (LaE )LµE

×
1

0(LµD)
1

0(LµE )

∞∑
q=0

(LmD)q
(
kDµD
bDmD

)q
(LµD)qq!

×
(LaD)LµD+q

LµD + q

∞∑
p=0

(LmE )p
(LµE )pp!

×

(
LaEkEµE
bEmE

)p
0 (LµE + p+ LµD + q)

(LaE )LµE+p+LµD+q
.

(35)

Proof: Similar to the proof in corollary 3, we can obtain
SPSC In the high-SNR regime as

SPSC∞i.i.d = 1−
∫
∞

0
F∞i.i.d,D(γE )fi.i.d,E (γE )dγE

= 1− (bD)−LmD(bE )−LmE (LaE )LµE
1

0(LµD)

×
1

0(LµE )

∞∑
q=0

(LmD)q
(
kDµD
bDmD

)q
(LµD)qq!

(LaD)LµD+q

LµD + q

×

∞∑
p=0

(LmE )p
(LµE )pp!

(
LaEkEµE
bEmE

)p
×

∫
∞

0
γE

LµE+p+LµD+q−1 exp (−LaEγE ) dγE .

(36)

Referring to [39, Eq. (3.326.2)], we obtain (35).

V. NUMERICAL RESULTS
In this section, some numerical results for the analytical
derivations of SOP and SPSC are provided. The analyti-
cal expressions of both SOP and SPSC over correlated and
i.i.d. SIMO k-µ shadowed fading channels contain infinite
series, through the simulation results in matlab, we obtain
that the infinite series converges to a constant value when all
the cycle times are greater than 55. By contrast, we present
Monte Carlo simulations to validate our analysis. In all simu-
lations, the parameters shared are as follows: Cth = 1 dB,
�D = λ�E , where λ represents the ratio of the SNR of
the main channel to the SNR of the eavesdropper channel.
In Monte Carlo simulations, we generate k-µ shadowed
RVs based on (2) and (9) by using the acceptance rejection
method which can realize random number generator with
arbitrary probability distribution. As seen from Figs. 2-13, the
results of theoretical simulation and Monte Carlo simulation
have very tight error margins. Further, we observe that the
secrecy performance becomes excellent as increasing λ, since
a higher λmeans that the quality ofmain channel is better than
that of the eavesdropper channel.

FIGURE 2. Correlated SOP with changing L versus λ, L =
{
4,2,1

}
, ρ = 0.2,

kD = kE = 1, µD = µE = 1, mD = mE = 1.

In Figs. 2-7, simulations and analytical results are com-
pared for SOP and SPSC versus λ over correlated SIMO k-µ
shadowed fading channels. From Figs. 2-5, we can find that
SPSC increases by increasing L andµD with λ > 6 dB, which
means that large L andµD can improve secrecy performance.
In Fig. 7, we can also find that when λ < −2 dB, SPSC
increases with ρ increasing, where ρ ∈ [0 ∼ 1] is the
correlation coefficient of the dominating components of the
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FIGURE 3. Correlated SPSC with changing L versus λ, L =
{
1,2,4

}
,

ρ = 0.2, kD = kE = 1, µD = µE = 1, mD = mE = 1.

FIGURE 4. Correlated SOP with changing
(
µD, µE

)
versus λ,(

µD, µE
)

=
{(

4,2
)
,
(
2,2

)
,
(
1,2

)}
, ρ = 0.2, kD = kE = 2, mD = mE = 1,

L = 2.

FIGURE 5. Correlated SPSC with changing
(
µD, µE

)
versus λ,(

µD, µE
)

=
{(

1,2
)
,
(
2,2

)
,
(
4,2

)}
, ρ = 0.2, kD = kE = 2, mD = mE = 1,

L = 2.

κ-µ shadowed RVs. Fig. 7 illustrates that when λ < −2
dB, large ρ is helpful in improving the performance of PLS.
However, when λ > 8 dB, it can be seen fromFig. 6 that small

FIGURE 6. Correlated SOP with changing ρ versus λ, ρ =
{
0.1,0.4,0.6

}
,

kD = kE = 1, µD = µE = 1, mD = mE = 1, L = 2.

FIGURE 7. Correlated SPSC with changing ρ versus λ, ρ =
{
0.1,0.4,0.6

}
,

kD = kE = 1, µD = µE = 1, mD = mE = 1, L = 2.

FIGURE 8. I.i.d. SOP with changing L versus λ, L =
{
4,2,1

}
, kD = kE = 2,

µD = µE = 2, mD = mE = 1.

ρ leads to low secure outage probability. Therefore, small
ρ can increase security performance under the premise of
λ > 8 dB, but the degree of improvement is not particularly
obvious.
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FIGURE 9. I.i.d. SPSC with changing L versus λ, L =
{
1,2,4

}
, kD = kE = 2,

µD = µE = 2, mD = mE = 1.

FIGURE 10. I.i.d. SOP with changing
(
kD,kE

)
versus λ,(

kD,kE
)

=
{(

0.5,2
)
,
(
2,2

)
, (6,2)

}
, L = 2, µD = µE = 2, mD = mE = 1.

FIGURE 11. I.i.d. SPSC with changing
(
kD,kE

)
versus λ,(

kD,kE
)

=
{(

6,2
)
,
(
2,2

)
, (0.5,2)

}
, L = 2, µD = µE = 2, mD = mE = 1.

In Figs. 8-13, the analytical SOP and SPSC are compared
with statistical simulations versus λ over i.i.d. SIMO k-µ
shadowed fading channels. From Figs. 8 and 9, it can be

FIGURE 12. I.i.d. SOP with changing
(
mD,mE

)
versus λ,(

mD,mE
)

=
{(

6,2
)
,
(
3,2

)
,
(
1,2

)}
, L = 2, kD = kE = 2, µD = µE = 2.

FIGURE 13. I.i.d. SPSC with changing
(
mD,mE

)
versus λ,(

mD,mE
)

=
{(

1,2
)
,
(
3,2

)
,
(
6,2

)}
, L = 2, kD = kE = 2, µD = µE = 2.

seen that when λ > 6 dB, the curves of SOP decrease
and the curves of SPSC increases with the increase of L,
which is the number of receiving antennas for D and E .
As shown in Fig. 10 and Fig. 11, SOP gradually increases and
SPSC gradually decreases as kD increasing with λ > 2 dB.
Fig. 12 and Fig. 13 reveal that larger mD leads to lower SOP
and higher SPSC when λ > 2 dB. Consequently, when the
channels undergo i.i.d. k-µ shadowed fading, we can get the
following results: in the case of high λ, larger L, mD and
smaller kD are help to enhance the secrecy performance of
the considered system. On the contrary, when λ < −2 dB,
smaller L,mD and larger kD contribute to the improvement of
security performance.

VI. CONCLUSION
In this paper, we analyze the secrecy performance for the
classic Wyner’s model over SIMO correlated κ-µ shadowed
channels. Exact analytical and asymptotic expressions for the
SOP and SPSC are derived. Furthermore, as a special case
of the correlation, the closed-form SOP and SPSC on SIMO

VOLUME 7, 2019 86099



J. Sun et al.: Secrecy Performance Analysis of SIMO Systems Over Correlated κ–µ Shadowed Fading Channels

system over i.i.d. κ-µ shadowed channels are presented.
Finally, we provide Monte Carlo simulations to verify all
the theoretical results and discuss the influences of correla-
tion coefficient, antenna number, and channel parameters on
the secrecy performance under different ratios of the SNR
between the main channel and the eavesdropper channel.
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