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Abstract 

Signal plasticity is a building block of complex animal communication systems. A particular form of 

signal plasticity is the Lombard effect, in which a signaler increases its vocal amplitude in response to an 

increase in the background noise. The Lombard effect is a basic mechanism for communication in noise 

that is well-studied in human speech and which has also been reported in other mammals and several bird 

species. Sometimes, but not always, the Lombard effect is accompanied by additional changes in signal 

parameters. However, the evolution of the Lombard effect and other related vocal adjustments in birds are 

still unclear because so far only three major avian clades have been studied. We report the first evidence 

for the Lombard effect in an anseriform bird, the mallard (Anas platyrhynchos). In association with the 

Lombard effect, the fifteen ducklings in our experiment also increased the peak frequency of their calls in 

noise. However, they did not change the duration of call syllables or their call rates as has been found in 

other bird species. Our findings support the notion that all extant birds use the Lombard effect to solve the 

common problem of maintaining communication in noise, i.e. it is an ancestral trait shared among all 

living avian taxa, which means that it has evolved more than 70 million years ago within that group. At 

the same time, our data suggest that parameter changes associated with the Lombard effect follow more 

complex patterns, with marked differences between taxa, some of which might be related to proximate 

constraints. 

 

Keywords: Anas platyrhynchos, animal communication, Lombard effect, noise, signal plasticity  
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Introduction 

Signal plasticity is a key feature of derived animal communication systems that allows individual signal 

adjustments in response to changes in the environment. Animals use this capacity in situations such as 

changing social contexts (e.g. Janik 2000, Brumm and Slater 2006a, Gavassa et al. 2013) or coping with 

challenging conditions for signal detection in fluctuating environments (e.g. Lengagne et al. 1999, Ord et 

al. 2007, Goodwin and Podos 2013). Indeed, there is growing evidence that signal detection constraints 

are one of the major forces driving the evolution of animal communication systems across different taxa 

(Brumm 2013, Wiley 2015).  

In acoustic communication, signal detection is particularly constrained by background noise 

(Klump 1996, Brumm and Slabbekoorn 2005). One efficient form of signal plasticity that mitigates 

masking by noise is the Lombard effect, i.e. the regulation of vocal amplitude in relation to the noise level 

(Zollinger and Brumm 2011). This phenomenon is found in many birds and mammals, including human 

speech (reviewed in Brumm and Zollinger 2011, Hotchkin and Parks 2013). Recently, the Lombard effect 

has also been reported in two frog species (Halfwerk et al. 2016, Shen and Xu 2016) but it is absent in 

another anuran species (Love and Bee 2010), and it is also absent in a non-avian reptile (Brumm and 

Zollinger 2017). 

 Several studies have addressed how the strength of the Lombard effect is affected by noise 

characteristics (e.g. Sinnott et al. 1975, Manabe et al. 1998, Brumm and Todt 2002, Stowe and Golob 

2013) or social factors (e.g. Kobayasi and Okanoya 2003, Garnier et al. 2010). Others have investigated 

the neural substrate underlying the effect (Nonaka et al. 1997, Hage et al. 2006, Eliades and Wang 2012). 

In echolocating bats and singing canaries (Serinus canaria), the Lombard effect is triggered at least 30-

320 milliseconds after noise onset (Hage et al. 2013, Hardman et al. 2017, Luo et al. 2017a), which means 

that vocal amplitude can track noise levels more or less in real time.  

Sometimes the Lombard effect is accompanied by changes in other vocal parameters, although 

such multiple adjustments are not universal (reviewed in Brumm and Zollinger 2011). For instance, 

primates (e.g. Van Summers et al. 1988, Brumm et al. 2004, Hotchkin et al. 2015), a bat (Luo et al. 2015), 

a songbird (Leonard and Horn 2005), and a parrot (Osmanski and Dooling 2009) also increase the 

duration of brief vocalizations, which further increases detectability (Klump and Maier 1990,  Pohl et al. 

2013, Luo et al. 2015). In contrast, domestic fowl (Gallus gallus) do not increase call syllables duration 

with Lombard-induced increases in amplitude (although, like other birds, they show the Lombard effect) 

(Brumm et al. 2009). Likewise, spectral signal changes may also accompany the Lombard effect in some 
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species but not in others. In human speech, for instance, the Lombard effect is often associated with a 

concurrent increase in fundamental frequency and/or a shift in spectral tilt (e.g. Lienard and Di Benedetto 

1999, Jessen et al. 2005, Cooke and Lu 2010). Both phenomena have also been found in the calls of a 

New World monkey (Hotchkin et al. 2015). In contrast, echolocating bats may adjust their call 

frequencies in noise but this response appears to be independent from the Lombard effect (e.g. Hage et al. 

2014, Luo & Wiegrebe 2016). In birds, Lombard-related increases in vocal pitch were observed in a 

tinamou (Schuster et al. 2012) and a parrot (Osmanski and Dooling 2009) but not in songbirds (Potvin 

and Mulder 2013, Templeton et al. 2016, Zollinger et al. 2017). These differences between bird species 

cannot be explained by the fact that songbirds are vocal learners because parrots also acquire their calls 

through vocal production learning. It may be that the concurrent increase of amplitude and pitch in some 

species reflects a physical coupling of the two parameters during vocal production (Beckers et al. 2003, 

Elemans et al. 2008) that can be decoupled in songbirds. The fact that the Lombard effect is widespread 

in birds and mammals, while the suite of associated parameter changes differs between species, parallels 

findings from modelling studies suggesting that the Lombard effect is more efficient in increasing signal 

detection in noise than the other frequently observed changes in other signal parameters (Nemeth and 

Brumm 2010, Luo et al. 2015).  

Despite the wealth of studies on the Lombard effect in many different species, the evolutionary 

history of the trait remains unclear. Though the effect is present in all tested bird and mammal species 

(reviewed in Brumm and Zollinger 2013, Hotchkin and Parks 2013) it is not possible to establish whether 

or not it is ancestral in either clade because in both groups major lineages have not yet been investigated. 

Extant birds are divided into Palaeognathae, and Neognathae, with the latter comprising more than 99% 

of all extant species (Mayr 2017). The Lombard effect is present in a paleognath clade, the Tinamiformes, 

and in two of the three neognath lineages, the Galliformes and Neoaves (reviewed in Brumm and 

Zollinger 2011). However, the character state is not documented in the Anseriformes, the third neognath 

lineage. To fill this gap, we tested whether an anseriform bird, the mallard (Anas platyrhynchos), exhibits 

the Lombard effect. We also examined if a potential Lombard effect is accompanied by other call 

parameter changes in this species. The results will help reconstructing the phylogenetic origin of the 

Lombard effect and other related vocal changes in birds and they will also allow testing the hypothesis 

that an uncoupling of amplitude and pitch during the Lombard effect is a derived feature of songbirds. 
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Methods 

 

Animals and housing 

The experiment was conducted at the Max Planck Institute for Ornithology in Radolfzell, Germany. We 

used 15 mallard ducklings, aged between two to ten days post hatching. The birds came from three 

different clutches and all subjects were kept with their parents and siblings in family outdoor aviaries 

(3.95 x 2.90 x 2.60 m), equipped with a pond and roof. The birds were fed on an ad libitum diet.  

As in many precocial birds, vocalizing in mallard ducklings can readily be elicited by separating them 

from their brood (Gaioni and Evans 1986, Gaioni and Platte 1982). Typical mallard separation calls 

consist of series of several of relatively short, frequency modulated call elements (Fig. 1).  

 

Experimental set-up 

The subjects were placed singly in a wire cage (48x36x60 cm) in the centre of a test arena (2.55 x 1.64 m) 

which was surrounded by sound absorbing materials. An omnidirectional microphone (Sennheiser ME66) 

connected to a digital recorder (Marantz PMD660) was suspended 40 cm above the cage to record the 

calls of the ducklings. Recording with the microphone above the animal and facing downwards reduces 

variation due to the orientation of the animal and the directional pattern of vocal sound radiation (Brumm 

2002, Brumm and Zollinger 2011). Filtered white noise (bandwidth 0-12 kHz) was broadcast from a PC, 

fed through an amplifier (Technics SU-V300M2) and then to four loudspeakers (JBL PRO III N108) that 

were placed in the middle of each of the four sides of the arena. Experimental treatments consisted of 

noise played at two levels, 60 and 70 dB(A) SPL (measured with a Voltcraft SL 400 sound level meter in 

the center of the test cage at the height of the ducklings’ heads) and no noise in random order. The mean 

ambient noise level, when no experimental noise was broadcast, was 44 dB(A) SPL. After a duckling had 

produced at least 15 call elements, which took on average about one minute, the noise treatment was 

changed.          

 

Acoustic analysis and statistics 

The calls were recorded as WAV files with a sampling rate of 44.1 kHz and 16-bit resolution. All 

acoustic analyses were done using the software using Avisoft SASLab Pro version 5.2.0.8 (Avisoft 

Bioacoustics, Germany). Call rates were determined from spectrograms (FFT size 1024 points, Hamming 

window) and the peak frequencies and durations of the call elements were measured using the automatic 
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measurement function of Avisoft (durations were measured at 10 dB below the peak, frequency 

resolution: 43.1 Hz). The maximum rms amplitude of each element was measured with an integration 

time of 50 milliseconds and then the background noise value was subtracted following published 

procedures (Brumm and Zollinger 2011). The amplitude measurements were calibrated with a recording 

of white noise of known sound pressure level recorded with the experimental recording set-up (70 dB 

SPL, measured at the position of the recording microphone with a Voltcraft SL 400 SPL meter).  

All statistical analyses were performed with R 3.1.1 (R Core Team 2013). We fitted linear 

mixed-effects models and general linear models using the “lmer” and “glmer” functions (R package 

lme4). Additionally, we used the “sim” function (package arm) to simulate the posterior distribution of 

the model parameters, values were extracted based on 2000 simulations (Gelman and Hill 2007). The 

statistical significance of fixed effects and interactions were assessed based on the 95% credible intervals 

(CI) around the mean (estimate). We considered an effect to be “significant” in the frequentist’s sense 

when the 95% CI did not overlap zero. We fitted one model for each call parameter, our response 

variables were the parameters and background noise (dB SPL) was fitted as fixed effect and individual ID 

as random effect. To examine effects of noise on call rate and the number of elements per series we fitted 

general linear models (glm) with a poisson distribution. In the call-rate model we fitted the number of 

calls as the response variable, taking into account in the model duration of the series as a covariate. Since 

all the individuals were tested with the three treatments, all the models were run taking into account the 

order in which the treatment were presented to each individual, as well as the age of the individual (days-

post hatched). However we did not find any significant correlations with the order of treatment nor with 

age. Thus, we present only the reduced models without these variables. A general correlation between the 

peak frequency and the amplitude of call elements was investigated with a Spearman rank correlation. For 

this test, we randomly selected 45 elements from each individual, irrespective of the noise treatment (for 

five birds 45 elements was the total number of elements recorded during the experiment). 

 

 

Results  

On average we recorded 3 call series comprising in total between 15 and 30 elements per bird and 

treatment (median: 17 elements). The amplitude of the call elements increased significantly in response to 

an increase of background noise (Table 1, Fig 2). Thus, the subjects tested showed the Lombard effect, 

with an average increase of a 4.8 dB between no-noise (when ambient noise was approx. 44 dB(A) SPL) 
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and the 70dB noise conditions. The 10-day old birds showed a much stronger Lombard effect than the 

younger birds, with individual increases of up to over 20 dB (Fig. 3). 

In addition to the Lombard effect, the ducklings also increased the peak frequency of their call elements 

in noise (Table 1, Fig. 2). Between the no-noise and the 70dB conditions call peak frequencies increased 

on average by 227 Hz. Peak frequency and call level were significantly correlated independent of the 

noise treatment (Pearson correlation: r = 0.44; N = 675, p< 0.001; Fig. 4). 

In contrast, increases in noise level resulted in no significant changes in call element duration, call rate or 

serial redundancy, measured as the number of elements per call series (Table 1, Fig. 2). 

 

 

Discussion  

 
We found that mallards exhibited the Lombard effect and that this noise-dependent regulation of call 

amplitude was associated with an increase in call peak frequencies. In contrast, the tested birds did not 

adjust their duration of call elements, their call rates or the serial redundancy of call series. The presence 

of the Lombard effect in an anseriform bird corroborates the notion that the common problem of 

communicating in noisy environments has led to the common solution of the Lombard effect in birds 

(Brumm and Zollinger 2013). 

 

Multiple signal changes in noise 

Concurrent with the Lombard effect, the ducklings also increased the peak frequency of their call 

elements. Such additional parameter changes are often associated with the Lombard effect, but which 

parameters exactly are adjusted differs between species and contexts (reviewed in Brumm and Zollinger 

2011). In some cases, a whole suite of spectral and temporal traits changes along with the Lombard effect, 

e.g. in human speech, but not every signal change is necessarily adaptive in the context of signal 

transmission (Brumm and Zollinger 2011). For instance, a rise in vocal pitch, like the one that we 

observed in our ducklings, typically occurs during the Lombard effect irrespective of any release from 

signal masking (Osmanski and Dooling 2009, Lu and Cooke 2009, Schuster et al. 2012).  

  Like tinamous (Schuster et al. 2012) and parrots (Osmanski and Dooling 2009), but unlike 

songbirds (Potvin and Mulder 2013, Templeton et al. 2016, Zollinger et al. under revision), the Lombard-

induced increase in call amplitude led to a concurrent increase in vocal pitch in the ducklings in our study. 

This finding supports the hypothesis that a decoupling of amplitude and frequency during the Lombard 
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effect may be a derived trait of songbirds. The increase in call frequency in noise in ducks and other birds 

is most likely a passive by-product of the Lombard effect, due to a physical coupling of amplitude and 

frequency during phonation (Beckers et al. 2003, Elemans et al. 2008). Perhaps the more derived syrinx 

anatomy of songbirds (King 1989) allows them to control amplitude and frequency of their vocalizations 

independently and thus enables them to uncouple both parameters during Lombard-induced increases of 

vocal amplitude. Such capacity might be related to the sophisticated fine-tuning of air pressure by the 

songbird syrinx that controls the modulation of fundamental frequency (Amador and Margoliash 2013). 

The lack of noise-dependent adjustments of call element durations in our ducks is in line with 

previous findings in domestic fowl (Brumm et al. 2009). However, birds more distantly related to ducks, 

such as parrots (Osmanski and Dooling 2009), as well as primates (e.g. Van Summers et al. 1988, Brumm 

et al. 2004, Hotchkin et al. 2015) and bats (Luo et al. 2015) do increase call element durations in 

Lombard-induced vocalizations and it remains to be investigated why domestic fowl and mallards do not. 

The absence of this trait deserves particular attention because an increase in element duration increases 

the detectability of the calls (Klump and Maier 1990, Pohl et al. 2013, Luo et al. 2015) and thus helps 

maintain communication in constant broad-band noise as it was used in our and other experiments. Both 

ducks and domestic fowl belong to an early divergent bird clade, the Galloanserae, and the lack of 

duration adjustments in noise might be indicative that this capacity is a synapomorphy of Neoaves (and a 

convergent trait in mammals).  

We also did not find evidence for noise-related adjustments of call rate nor serial redundancy in 

the tested ducklings. This is in contrast to previous studies on galliform birds (the sister taxon of the 

Anseriformes): Japanese quail (Coturnix coturnix japonica) increased both their call rates and the number 

of elements per call series in response to experimentally elevated noise levels (Potash 1972). Domestic 

fowl also increase their call rates along with increasing noise levels but at noise amplitudes above 70 dB 

they decrease call rates again (Brumm et al. 2009). Further evidence for a noise-related adjustment of 

serial signal  redundancy comes from correlative field studies in other neoaves: as the environmental 

noise levels rises, king penguins (Aptenodytes patagonicus) produce more call syllables (Lengagne et al. 

1999) and chaffinches (Fringilla coelebs) repeat song types more often (Brumm and Slater 2006b). Taken 

together, the evidence shows that birds do not exercise an increase in call rates or redundancy for 

communication in noise as generically as the Lombard effect. Maybe the separation of the ducklings in 

our experiment already triggered maximum call rates and thus the tested birds could not further increase 

their call rates in noise. Considering that the variation in call rates did not differ between individuals, this 
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might well be the case. Alternatively, the lack of increased call rates in noise may be due to the fact that 

some species utilize call element rates to encode information (Bradbury and Vehrencamp 2011) and 

therefore rates cannot be adjusted to increase signal transmission without compromising the information 

content of the signal. 

Interestingly, some of the changes that may be associated with the Lombard effect can also occur 

in species that do not exhibit a Lombard effect. For example, Cope’s grey tree frogs (Hyla chrysoscelis) 

increase their call duration in masking noise, even though call amplitude does not change (Love and Bee 

2011). Likewise, tokay geckos (Gekko gecko) do not exhibit the Lombard effect, but, like the tree frogs, 

do increase the duration of their call syllables in noise (Brumm and Zollinger 2017). These findings 

demonstrate that some noise-related signal changes may occur independently from the Lombard effect 

and are perhaps phylogentically older than it. 

  

Ontogeny of the Lombard effect 

Although we did not design our experiment to investigate the ontogeny of the Lombard effect in mallards, 

our observation that it is already present in birds as young as 2 days after hatching has implications for the 

development of this vocal trait. Previous studies have also documented the Lombard effect in young 

animals: in domestic chicken at four weeks after hatching (Brumm et al. 2009), in nestling tree swallows 

(Tachycineta bicolor) nine to ten days posthatch (Leonard and Horn 2005), and in in pale spear-nosed 

bats (Phyllostomus discolor) two weeks after birth (Luo et al. 2017b). These and our findings demonstrate 

an early developmental origin of the Lombard effect, suggesting a fast maturation of the neural circuits 

responsible for auditory-vocal feedback in birds and mammals. The neural circuits underlying the 

Lombard effect are thought to be located in the brainstem (Nonaka et al. 1997, Hage et al. 2006) but 

higher cortical areas may also be involved (Eliades and Wang 2012). The early ontogenetic emergence of 

the effect suggests rather basic brain mechanisms that do not require extended maturation after birth. This 

basic control of the Lombard effect may then be modified by higher-level processes that may fully 

develop later in life. In addition, the magnitude of the Lombard effect will also be affected by the general 

development of the vocal apparatus, and thus may increase when animals increase their vocal power 

capabilities during ontogeny (Brumm and Hultsch 2001, Leonard and Horn 2006). Such a developmental 

change may explain why the magnitude of the Lombard effect in young animals increased with age (Luo 

et al. 2017b) because older and larger animals may be able to produce louder vocalizations and therefore 

can use a wider range of amplitudes. It could also be that the vocal motor control of amplitude improves 
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with age. The latter may be accounted for our observation that ten-day old ducklings showed a much 

stronger Lombard effect than the younger birds not because the older birds produced higher call 

amplitudes in noise but rather they produced lower ones in the control treatment, suggesting greater 

control over amplitude modulation rather than increased power capabilities. However, the three ten-day 

old individuals in our experiment were all from the same clutch and thus we cannot exclude potential, yet 

unknown, genetic effects. 

 

Evolution of the Lombard effect 

Our results are in line with the hypothesis that the Lombard effect is present in all extant birds (Brumm 

and Zollinger 2011). With the new data on mallards the Lombard effect is now documented for all three 

major lineages of the Neognathae (Fig. 5). Therefore, we may conclude that the trait is probably ancestral 

in Neognathae, which comprise more than 99% of all extant bird species. The remaining species belong 

to an early diverging clade, the Palaeognathae, in which the Lombard effect is present in Tinamiformis 

(Fig. 5). If the effect is also a shared trait of the Palaeognathae, then it is most likely a synapomorphy of 

all birds. To test this hypothesis, the character state needs to be documented in other paleognathous 

species, especially ostriches and rheas, because the presence of the Lombard effect in these groups would 

strongly suggest that the trait was present in the common ancestor of the Palaeognathae (Fig. 5). 

Presuming that the Lombard effect is ancestral in birds, we can proceed to consider broader 

patterns of its evolutionary history. The absence of the Lombard effect in a lizard (Brumm and Zollinger 

2017) suggests that the noise-dependent regulation of vocal amplitude is either a convergent trait in birds 

and mammals or that it is a plesiomorphy that has been lost in Lepidosauria. Further Lombard 

experiments in Testudines and Crocodilia would be a critical test of these two alternative hypotheses. 

Both tortoises and crocodiles vocalize (Colafrancesco and Gridi-Papp 2016) and if, like geckos, they do 

not regulate their vocal amplitudes in relation to noise, it is likely that the Lombard effect has evolved 

independently in birds and mammals.   

Published Lombard tests in frogs are still scarce and the overall picture remains unclear. Tungara 

frogs, Engystomops pustulosus, (Halfwerk et al. 2016) and concave-eared torrent frogs, Odorrana 

tormota, (Shen and Xu 2016) have been reported to adjust their call levels depending on the level of 

background noise. However, the Lombard effect is absent in Cope’s grey tree frogs, Hyla chrysoscelis, 

(Love and Bee 2010). Thus the evolutionary history of the Lombard effect in frogs is still largely 

unresolved. In birds and mammals, the number of species for which the character state has been 
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documented is also low, but all evidence supports the hypothesis of the Lombard effect being ancestral in 

both clades, whereas the current evidence in frogs does not. Some frogs may not show the Lombard effect 

because they always call close to their physical limitations and thus have little room for amplitude 

adjustments (Schwartz and Bee 2013). However, this is not true of all anuran species, as it has been 

shown that white-lipped frogs (Leptodactylus albilabris) can increase call amplitude in response to social 

cues (Lopez et al. 1988). Interestingly, males of this species may advertise in more rarefied choruses and 

Schwartz and Bee (2013) suggest that differences in the intensity of selection for maximizing call energy 

may be accounted for the differences in the ability to adjust call amplitude in anurans. On the other hand, 

the occurrence of the Lombard effect in birds and mammals suggests that either these animals are under 

less intense selection to maximize signal transmission or that the evolution of motor control over vocal 

amplitude enabled them to trade off the costs and benefits of high-amplitude signals (Zollinger and 

Brumm 2015). 

 

 
Conclusions 

Our study confirms an early appearance of the Lombard effect in terms of evolutionary history and 

ontogeny. The presence of the Lombard effect in an anseriform bird is in line with the hypothesis that the 

effect is a shared trait of all extant birds. If the Lombard effect is ancestral in birds, then, according to the 

phylogeny of Prum et al. (2015), it has evolved at least 70 million years ago. In addition to it being likely 

a shared character in birds and, probably convergently, in mammals, the Lombard effect in both groups 

appears to already be present in very young individuals, a few days after hatching or birth, respectively. 

These findings highlight how important the maintenance of vocal communication in changing 

environments is, and hence that the need to overcome noise should be regarded as a powerful driver of the 

evolution of animal communication systems. 
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FIGURE LEGENDS 

Figure 1: Typical separation call of a mallard duckling. In this example the call series consists of 7 

elements. In our sample the number of elements per series ranged between 6-23. 
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Figure 2: Change in call characteristics as a function of noise level. Data points give the mean estimates 

of the models with 95% credible intervals. Call level and call peak frequency varied significantly with the 

noise treatment, whereas the other variables did not (see Table 1 for details). 
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Figure 3: The strength of the Lombard effect in mallard ducklings as function of age in mallard 

ducklings. The Lombard strength is measured as the average increase in call level (in dB) between the 

quiet control and the 70 dB(A) SPL noise playback. 
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Figure 4: Relation between peak frequency and call level in mallard separations calls. Colours denote 

different individuals. Across all individuals, the two variables were significantly correlated with each 

other (see results for details). 
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Figure 5: The evolution of the Lombard effect in birds. Plus (+): Lombard effect present,  question mark 

(?): character state not documented. The cladogram is based on Prum et al. (2015). 
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TABLE LEGEND 

Table 1: Outcomes of models testing the effects of three noise treatments on acoustic characteristics of 
mallard separation calls.  
 

 

 

Parameters Estimate (β) 95%CrI 

Call level (lm) 

Fixed effects 
(Intercept) 45db 
60db 
70db  
Random effects 
Individual ID   
 

 
 
79.72 
3.14 
4.82 
Std. Dev (σ

2
 ) 

3.05 
 

 
 
77.36,82.20 
0.47,5.89 
1.98,7.53 
 

Peak frequency (lm) 

Fixed effects 
(Intercept) 45db 
60db 
70db 
Random effects 
Individual ID      

 
 
3825.20 
117.63 
227.41 
Std. Dev (σ

2
 ) 

232 
 

 
 
3667.39,3972.68 
-8.57,248.45 
103.83,359.73 
 
 

Call rate (glm) 

Fixed effects 
(Intercept) 45db 
60db 
70db 
Random effects 
Individual ID     
 

 
 
1.23 
0.009 
0.010 
Std. Dev (σ

2
 ) 

0 

 
 
1.11,1.34 
-0.15,0.17 
-0.15,0.17 

Call duration (lm) 

Fixed effects 
(Intercept) 45db 
60db 
70db 
Random effects 
Individual ID     
   

 
 
0.097 
0.0006 
-0.001 
Std. Dev (σ

2
 ) 

0.019 

 
 
0.08,0.11 
-0.005,0.00 
-0.006,0.004 
 
 
 

Number of call elements per series (glm) 

Fixed effects 
(Intercept) 45db 
60db 
70db 
Random effects 
Individual ID     
 

 
 
2.91 
-0.02 
0.02 
Std. Dev (σ

2
 ) 

0.33 

 
 
2.71,3.12 
-0.14,0.18 
-0.19,0.15 


