
Please cite the Published Version

Santos, Nelson, Lentini, Salvatore, Grosso, Enrico, Ghita, Bogdan and Masala, Giovanni (2019)
Performance analysis of data fragmentation techniques on a cloud server. International Journal of
Grid and Utility Computing, 10 (4). pp. 392-401. ISSN 1741-847X

DOI: https://doi.org/10.1504/ijguc.2019.10022144

Publisher: Inderscience Publishers

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/623412/

Usage rights: In Copyright

Additional Information: This is an Accepted Manuscript of an article in International Journal of
Grid and Utility Computing published by Inderscience.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-6734-9424
https://doi.org/10.1504/ijguc.2019.10022144
https://e-space.mmu.ac.uk/623412/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Int. J. Xxxxxx Xxxxxxx Xxxxxxx, Vol. X, No. Y, XXXX

Copyright © 201x Inderscience Enterprises Ltd.

Performance Analysis of Data Fragmentation
Techniques on a Cloud Server

Nelson Santos1,Salvatore Lentini1*, Enrico Grosso2, Bogdan
Ghita3, Giovanni Masala1*

1Big Data Group, University of Plymouth, Drake Circus, PL4 8AA, Plymouth, United

Kingdom

nelson.santos@students.plymouth.ac.uk; Salvatore.lentini@postgrad.plymouth.ac.uk;

Giovanni.masala@plymouth.ac.uk;

2Centre for Security, Communications and Network Research, University of Plymouth,

Drake Circus, PL4 8AA, Plymouth, United Kingdom

Bogdan.ghita@plymouth.ac.uk

3Computer Vision Laboratory, University of Sassari, Viale Mancini, 5, 07100, Sassari,

Italy

grosso@uniss.it

Abstract: The advancements in virtualization and distributed computing have

allowed the cloud paradigm to become very popular among users and resources.

It allows companies to save costs on infrastructure and maintenance and to focus

on the development of products. However, this fast-growing paradigm has

brought along some concerns from users, such as the integrity and security of the

data, particularly in environments where users rely entirely on providers to secure

their data. This paper explores different techniques to fragment data on the cloud

and prevent direct unauthorized access to the data. It explores their performance

on a cloud instance, where the total time to perform the operation, including the

upload and download of the data, is considered. Results from this experiment

indicate that fragmentation algorithms show better performance compared to

encryption. Moreover, when combining encryption with fragmentation, there is

an increase in the security, with the trade-off of the performance.

Keywords: Cloud Security, Data Fragmentation, Data Security, Privacy in Cloud

Computing

Reference to this paper should be made as follows: Author(s) (2006) ‘paper title ’, Int.

J. Ad Hoc and Ubiquitous Computing, Vol. X, No. Y4, pp.000–000.

1 Introduction

Cloud computing has grown in such a way that can

be considered one of the most promising IT

paradigms, in which most applications are now

hosted as services on the Internet. Such services

can be divided into three main categories:

Software-as-a-Service (SaaS), Platform-as-a-

Service (PaaS) and Infrastructure-as-a-Service

(IaaS). NIST (2011) defines cloud computing as a

model that allows access to a pool of resources

such as networks, storage or applications that are

provisioned with minimal effort from the provider.

In this scenario, virtualization and distributed

computing are the cornerstones. This allows the

customers to reduce the cost of the storage and

computing clusters, as well deviate from the

burden of maintaining the infrastructure and shift

all the focus towards the development of

applications (Bahrami & Singhal, 2015).

Although cloud computing brought many benefits,

it also generated a number of challenges. Among

them, the protection of the data being stored in the

240 B. Kusý et al.

cloud and the privacy of the users are the most

significant ones. Surveys conducted by the Intel IT

Center (2012) and the Cloud Security Alliance

(2013), indicated that the top three cloud security

concerns are the inability to measure the provider’s

security services, the lack of control over data and

the confidence in the capabilities of the provider.

In addition, the data is handled by the provider,

which also oversees its safekeeping. According to

the Cloud Security Alliance, (2010), Kumar & Raj

(2018) and Hegarty & Haggerty (2015) the cloud

provider often does not disclose internal

procedures on storing and safekeeping the data to

the user. Furthermore, many of the organizations

that provide cloud services use data mining

techniques to extract information from the clients

and utilize or sell such information, often for

advertising purposes, as described by Chow, et al.

(2009) and Dev, et al. (2012). Such behavior

exposes users to attackers with unauthorized access

to the cloud (Dev, et al., 2012). Encryption

schemes often satisfy the data privacy problem,

however, they bring forward performance issues,

such as the complexity and computationally

expensive nature of the encryption algorithms

(Bahrami & Singhal, 2015 and Bahrami & Singhal,

2016). As a result, researchers shifted their focus

on alternative measures to protect the privacy of

users. This paper explores the use of data

fragmentation in the cloud, by analyzing the

performance of different fragmentation algorithms

on a cloud instance, hosted in the Amazon Web

Services (AWS), from (Amazon, 2018). It will start

by analyzing the state of the art in fragmentation

algorithms, followed by an explanation of the

different methods. Each mechanism will be thus

evaluated, and results analyzed and compared with

AES (Federal Information Processing Standards,

2001), a common encryption algorithm.

Furthermore, the combination of AES and Random

Pattern fragmentation is analyzed, showing that

this approach allows for the highest level of

security among all the tested methods. The

comparison of the methods gives a better

understanding of each mechanism, along with their

benefits and drawbacks.

2 State of the art

This section will highlight the current state of

the art with regards to research performed in the

data privacy on the cloud. It will investigate the use

of data anonymization, and data fragmentation.

The research community attempted to solve the

privacy on the cloud with various approaches,

some of which include encryption, and data

anonymization. As an example, Goswami and

Madan (2017) studied various well-known

anonymization methods for their advantages and

disadvantages. Barak, et al. (2016), applied

semantic labelling to achieve anonymization by

replacing location coordinates with semantic

categories. Ghinita, et al. (2007) attempted to solve

K-anonymity and l-diversity problems by mapping

multidimensional identifiers on a single

dimension. In Jang (2017), the author proposes a

method based on deep anonymization for big data,

to aid in the reduction of information loss.

Furthermore, Gkoulalas-Divanis and Loukides

(2011), address the issue of information loss by

using a method based on clustering. However, this

method may allow identification of an individual

based on their sensitive information. Jesu, et al.

(2017) also proposed a method based on clustering,

using the Hadoop Distributed File System. Al-

Zobbi, et al. (2015), proposed a novel

anonymization framework that takes a bottom-up

approach on the data and applies sensitivity on the

anonymization process instead of generalising

equivalent records. This approach is suitable for

big data environments and is compatible with the

MapReduce model. Furthermore, Canbary and

Sagiroglu (2017), proposed the use of spark and

MapReduce to anonymize streaming big data.

Some works where data fragmentation has been

applied as a mean to provide privacy include

Kapusta & Memmi (2015), who attempted to avoid

encryption by separating the data into distinct

groups, each with a distinct level of security, based

on the sensitivity of the data being stored.

However, when faced with large datasets, the

running time of their algorithm increased due to the

number of clusters formed. Hegarty & Haggerty

(2015) presented a system of extrusion detection of

files that are maliciously uploaded or downloaded

in the cloud. Dev, et al. (2012), approached the

problem by categorizing and fragmenting the data,

followed by storing the data on different providers.

Nevertheless, the constant access to the data

hinders the performance of the algorithm. Authors

in Memmi, et al. (2016) propose more complex

solutions, which include the use of GPUs to

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 241

incorporate fragmentation, encryption and

dispersion. Ciriani, et al (2010), also addressed the

data privacy issue by combining encryption with

fragmentation, by modelling the sensitivity and the

data after encryption, followed by using

fragmentation to break the association among

attributes.

To improve the management of data within the

cloud, researchers investigated the use of a

database to combine with fragmentation. For

instance, Alsirhani, et al. (2017), proposed a

combination of encryption algorithms and

distributed a database across different cloud

providers, based on the encryption security level.

Aggarwal, et al. (2005), explored different

techniques to decompose data and optimize queries

in a distributed database. Masala et al. (2018),

proposed an approach of storing fragmented data

with a MongoDB database. Furthermore, Santos et

al (2018) investigated the use of random pattern

fragmentation to chunk data and save on a NoSQL

database. El Mrabti, et al. (2017), investigated the

possibility of applying data fragmentation on

Android devices, to allow different policy

strategies for applications that need to access data

from the device.

This work will focus on the scenario where the

data is stored in a single cloud provider,

considering that this is the least recommended

approach, given all the data will be present in the

same location, where an attacker inside the cloud

could access. Moreover, users may find many

occurrences such as the cloud provider running out

of business, or having data backed up on the same

provider, as it will void the intended security

measures because the complete data will be

accessible through the backups.

Nevertheless, current work can be extended to

work with more data types, including but not

limited to general pictures and medical images, or

it can be used on less efficient devices such as

smartphones. Other different scenarios can also be

considered when applying these techniques. For

instance, the analysed techniques use multiple SSH

sessions to send the split files to the cloud provider.

Considering a scenario with different providers, a

connection can be opened with each provider and

the split files can be sent concurrently. It is

important to note that cloud providers have

different speeds and performance can be affected

by the presence of additional and uncontrolled

variables; these problems, however, go beyond the

scope of this paper. Nowadays, business and

companies tend to use the cloud to back up their

data. The methods can be applied on such backups

to protect them from unauthorized access within

the cloud. The data anonymization techniques

described earlier can also be used to add an extra

layer of security on the data.

3 Fragmentation Algorithms

Before explaining the pattern fragmentation

algorithms, the permutation approach must be

detailed. It was introduced by Bahrami & Singhal

(2015), where the authors proposed a light-weight

method for mobile clients to store data on one or

multiple clouds using a pseudo random

permutation based on chaos systems (Gharajedagh,

2011). This is less computationally expensive,

compared to operations such as secret key or

public-key encryptions, but provides a good

balance between security and efficiency, especially

for devices with limited resources such as mobile

phones. The author’s proposal is optimized for

JPEG images and, when compared to encryption

algorithms such as AES or JPEG encoders, it

proved more efficient than the counterparts, whilst

to an extent, protecting the user data privacy.

The algorithm reads binary files rather than

specific formats, and it is divided into two stages to

split a file and recombine it:

- Disassembling (fragmentation): the

original file is split into multiple chunks

and the chunks are inserted into binary

files, (split files), based on a pattern using

the chaos system (Bahrami & Singhal,

2015). A pattern can be defined as a key for

the user or can be randomly selected. Users

are also able to define different patterns to

provide a different strategy for the

distribution. The output is then stored into

the cloud.

- Assembly (Recovery): The split files are

recombined to reorganize the original file.

The scrambled files are downloaded from

the cloud and the chaos system random

arrays are reordered based on the pattern

that fragmented them initially.

In this implementation of the method, the user

is also able to configure the application to set the:

• Number of split files

242 B. Kusý et al.

• The size of the chunks

• The User account in the cloud to

upload/download the files.

3.1 Predefined Pattern Fragmentation

In the predefined pattern fragmentation (figure

1), the chunks are inserted in a split file with an odd

or even index. After splitting the original file, the

chunks are stored in the split file according to the

index they receive. As a result, only two split files

are created and the length of each chunk is

calculated. Using this method, the attacker will

need knowledge of the length of the chunk to

reconstruct the file.

Figure 1 Predefined Pattern Fragmentation method

(Fragmentation steps). After splitting the file, the chunks

receive an odd or even index. Based on the index given, the

chunks are then inserted on a split file.

In the reconstruction stage (figure 2), the split

files are downloaded and opened in the same order

in which they were created, based on the length of

the chunks. The chunks from each split file are

stored in a dictionary data structure, where the data

is associated with a key. This key contains the

pattern list in which the objects are then organized

in their original position. The result of this

operation is then saved on the client device, which

constitutes the reconstructed file.

Figure 2 Predefined Pattern Fragmentation method

(Recovery steps). The split files are downloaded from the

cloud and the chunks are stored in memory as a dictionary

data structure. The file is then reconstructed with the keys

of the dictionary, which are the indexes assigned to the

chunks.

3.2 Random Pattern Fragmentation

In this method, a random function was

implemented based on the chaos theory presented

in Bahrami & Singhal (2015), i.e., a permutation of

a number of N elements, set by the user, is used to

calculate the pattern indexes. The original file is

divided into N chunks, similar to the other

methods, and is then inserted in split files, where

the length of each split file is equal to the length in

the associated pattern, as demonstrated in figure 3.

The highlight of this method is that an attacker will

not know the length of each chunk, nor the order in

which the chunks are distributed in each split file.

In the original method by Bahrami & Singhal

(2015) the use case used was based on images. The

header is stored alone on a separate file, with a

smaller size, compared to the other split files. It is

recommended that this header is not transmitted to

the cloud, to hinder attacker from using it to start

the reconstruction. In the proposed

implementation, padding bytes were added to the

header file to mask the length of the file before

uploading to the cloud, to hinder attackers from

using this file, as they would not understand which

is the header, as it is the same size as the other split

files.

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 243

Figure 3 Random Pattern Fragmentation method

(Fragmentation steps). The file is split into chunks and those

chunks are then inserted into a split file in a random order.

In cases where one chunk would have a smaller size than

the rest, padding was added to the end of the chunk to

create a symmetric size across all chunks.

During the reconstruction phase, the same

dictionary based reconstruction described in the

predefined pattern fragmentation is used, as shown

in Figure 4.

Figure 4 Random Pattern Fragmentation method (Recovery

steps). The process is similar to the predefined pattern, with

the only difference being that the indexes are in a random

order.

3.3 Simple AES Encryption

AES is the most common encryption algorithm

used nowadays (Prabhu & Paramesha, 2017). It is

defined as a symmetric encryption which uses the

same key for both encrypting and decrypting data.

Despite the same key being used, it provides a high

level of security when encrypting. The algorithm

supports block lengths of 128 bits and key sizes of

128,192 and 256 bits in the CBC version. For this

experiment, the original file is encoded with AES

256 before being sent to the cloud. Unlike the

previous methods, the file is not fragmented. This

method was considered in the experiment not only

to compare its performance with the other methods,

but also to investigate the performance and

suitability of a combination of a highly used

encryption algorithm and data fragmentation. The

same file is then downloaded and decoded as

represented in figure 5.

Figure 5 Simple encryption AES 256 (Encoding and

decoding steps). The whole original file is encrypted, and it

sent to the cloud as a unique file. Vice versa in the decoding

phase from the cloud only one single file produces the

original file.

3.4 Random Pattern Fragmentation

combined with AES 256

This proposed implementation combines the

use of random pattern fragmentation with AES for

encryption. It has been designed to provide a

higher level of security compared to the

counterparts, with the burden having encryption

(time and computationally expensive). The idea is

encrypting the original file with AES 256 CBC and

divide the cypher text into chunks. The chunks are

arranged using a random pattern before being

stored in split files. Each split file is finally sent to

the cloud, as shown in figure 6.

244 B. Kusý et al.

Figure 6 Random Pattern Fragmentation Encryption AES

256 (Fragmentation steps). The original file is encrypted

and subdivided in chunks. Each chunk is stored in one of

two split files through a random selection. Finally, the split

files are sent to the cloud.

When reconstructing the file, as shown in

Figure 7, the split files are downloaded and read in

sequence, until all the chunks are extracted. The

cypher text is recreated using the defined pattern,

similarly to the random pattern algorithm

explained previously. Finally, the cypher text is

decoded with the key and the reconstructed file is

stored in the client device.

Figure 7 Random Pattern Fragmentation Encryption AES

256 (Recovery steps). The original file is reconstructed

similar to the previous implementations and after

reconstructing the cypher text, it gets decoded by the key

and stored in the client device.

4 Experiment

This section sets the baseline of the conducted

experiments. A dataset of four files with different

extensions, .jpeg, .docx, .pdf, and .bmp

respectively, all with 100KB in size, was used

throughout the experiments. The files were

uploaded to the program, where the user would be

able to set parameters, such as the length of chunks

or the number of split files. For this experiment, we

used two split files with a chunk length of 1000

bytes. An AWS (Amazon, 2018) micro instance,

with the Ubuntu image, was used throughout this

experiment to upload and download the test files.

The connection between the instance and the client

machine was made via SSH. For each of the split

files created, an SSH connection was established

asynchronously to send the split file. However, this

experiment considers the performance of the

algorithm independently of external factors, such

as the network data rate. The overall time presented

includes the fragmentation process, the uploading

and downloading, with the reconstruction of the

file. The client device used was an Intel Core i7 -

6500U CPU 2.50 GHz, 8 GB of RAM on 64 Bit -

Windows 10.

It is important to note that in all the methods

described, the chunks are the same size. This is

achieved through adding a few bytes of padding

when needed. All the results are reported in a file

on the user machine.

5 Results

 As mentioned in earlier sections, the aim of this

paper is to compare the performance of different

fragmentation algorithms on a cloud server, to

analyse the pros and cons of each algorithm.

Before experimenting with the cloud, a local

analysis was performed with various chunk sizes,

to determine the size that would provide the best

performance. It can be seen in figure 8 that bigger

chunk sizes present better performance, compared

to smaller chunk sizes. This is due to the iterations

on the code that directly affect the performance, as

bigger chunks lead to less iterations in the loop.

Consequently, for the cloud experiment, the chunk

size chosen was 1000 bytes.

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 245

Figure 8 Local Performance analysis with various chunk

sizes

During the experiment, we only consider

sending all the files to a single instance on a single

provider, considering it to be the worst-case

scenario, however, this being the most common

scenario on the public cloud. For comparison

purposes, the time for the same file type to be

uploaded and downloaded from the cloud without

any techniques, was introduced.

We can see that the difference between the

predefined pattern fragmentation (figure 9) and the

random pattern fragmentation (Figure 10) can be

considered minimal across all the different file

types. The random pattern fragmentation proves to

be slightly slower than its counterpart, given that

the chunks are scrambled in a random order. When

compared to the files where no fragmentation was

applied, a slight delay is also seen on both graphs,

considering the time to apply the fragmentation

and the defragmentation. Nevertheless, such trade-

off is considered acceptable, considering that

applying the techniques will increase the protection

of the data.

Regarding the security, the algorithms work

with binary data rather than specific formats. This

increases the complexity of retrieving the files and

provides an additional security layer, as attackers

will not be able to discover the pattern in which the

chunks are organized.

Figure 9 Predefined Pattern fragmentation results with a

comparison of the same file without the technique applied

Figure 10 Random pattern fragmentation results with a

comparison of the same file without the technique applied

The use of AES encryption to protect data has

increased in recent years. It provides a high level

of protection on the data by using a key to encrypt

and decrypt data. Compared to other methods, AES

encryption utilizes many computing resources as

the process of encoding and decoding data is time

expensive. This can be visualized on Figure 11,

where, in some data types, the process takes longer

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Predefined

Pattern

Fragmentation

Random Pattern

Fragmentation

AES+RPF

T
im

e
 (

S
e

co
n

d
s)

Fragmentation Technique

Local performance analysis of

methods with different chunk

sizes

1000 bytes Chunks 750 bytes Chunks

500 bytes Chunks 10 bytes Chunks

0.0

1.0

2.0

3.0

4.0

5.0

BMP DOCX PDF JPEG Splitting

Header

BMP

T
im

e
 (

S
e

co
n

d
s)

File Type

PPF

No Fragmentation applied

Predefined Pattern Fragmentation

0.0

1.0

2.0

3.0

4.0

5.0

BMP DOCX PDF JPEG Splitting

Header

BMP

T
im

e
 (

S
e

co
n

d
s)

File Type

RPF

No Fragmentation applied

Random Pattern Fragmentation

246 B. Kusý et al.

than 2.5 seconds. As in the previous graphs, the

time to split the header for the .bmp file is higher

than the other counterparts. However, using the

encryption the process is more than 4 seconds,

which in computation terms is very high.

Another approach analysed was the

combination of the encryption algorithm with the

most secure fragmentation algorithm, which is the

random pattern fragmentation algorithm to explore

how consuming would be to explore the most

secure algorithms and provide the highest level

available level of security. As it can be seen in

Figure 12, this approach is the most time

consuming compared to all the others. However,

this trade-off allows for the highest level of

security on the data, as the chunks are not only

scrambled, but also encrypted with a key, making

it therefore very difficult to access the data. It is

also important to note that this approach would not

be suitable in environments where the data needs

constant access, as it would consume high amounts

of computing resources and time.

Table 1 provides the main properties of each

approach summarized. It is notable that the

predefined and random pattern fragmentations are

good solutions to the data privacy problem, when

considering devices with limited resources, such as

mobile phones. Where resources allow, combining

the random pattern fragmentation with the AES

encryption would significantly increase the

security of the data, with the performance trade-

off.
Table 1 Summary of the properties of each algorithm. It

ranks the security, performance and suitability of each

method, from low to high.

Method Sec. Perform. Suit.

PPF Low High
Mobile

Big Data

RPF Med High
Mobile

Big Data

AES High Low
High Security

Environments

AES + RPF High Low
High Security

Environments

Figure 11 AES encryption results with a comparison of the

same file without the technique applied

Figure 12 AES Encryption with Random Pattern

Fragmentation Results with a comparison of the same file

without the technique applied

When comparing the average across the

fragmentation algorithms (figure 13), the

difference is minimal, meaning that they consume

similar resources, apart from the algorithms where

encryption is involved, which take on average

more than 2.5 seconds. Encryption algorithms also

have the highest standard deviation, as there are

more processes involved, which includes external

factors outside the scope of this experiment.

Furthermore, splitting the header and sending to

the provider, proves to add a high level of

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

BMP DOCX PDF JPEG Splitting

Header

BMP

T
im

e
 (

S
e

co
n

d
s)

File Type

AES

Plaintext AES Encryption

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

BMP DOCX PDF JPEG Spliting

Header

BMP

T
im

e
 (

S
e

co
n

d
s)

File Type

AES + RPF

Plaintext AES + RPF

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 247

complexity, as it is the operation that takes more

time to complete across all algorithms. Whilst

storing this header locally can be considered

interesting, it would provide practical issues

regarding the management of this header, in

scenarios where multiple files are considered,

increasing the processing time further.

Figure 13 Mean comparison of all methods. The standard

deviation of each method is also illustrated on each bar.

6 Conclusion

The aim of this paper is to provide an in-depth

performance comparison for a number of methods

to secure data in a cloud environment and to ensure

the privacy of users from outside attackers, in

particular those with access to the cloud provider.

An analysis of time taken to perform each

algorithm was performed, while considering

different possibilities of securing (based on pattern

fragmentations, encryption or both). It was

determined that for devices with lower

computational abilities, securing the data using

pattern fragmentation provides a good level of

security without consuming much of the resources.

On the other hand, utilizing encryption is

recommended on high resource devices, where the

extra time would be handled by the higher

resources available. On environments of big data,

where the privacy and the performance are both

priorities, although encryption would favour

protection, its resource consumption would affect

the overall performance, but utilizing

fragmentation to secure the data would be the

plausible approach. Some limitations identified

with these methods include the continuous access

to the data or a multi-user environment, where the

techniques are constantly applied probably

affecting therefore the performance. Furthermore,

the proposed methods do not take into account the

management of the data. Therefore, it is advised to

store the output of the program into a database,

where the data can be managed more easily.

Possible future developments would include

combining the described techniques with a

database to provide a higher level of management

of the data, especially in big data environments.

7 References

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-

Molina, H., Kenthapadi, K., Motwani, R.,

Srivastava, U., Thomas, D. and Xu, Y. (2005).

Two Can Keep a Secret: A Distributed

Architecture for Secure Database Services. In:

CIDR. [online] Springer. Available at:

https://www.microsoft.com/en-us/research/wp-

content/uploads/2005/01/storage-cidr.pdf

[Accessed 29 Apr. 2018].

Alsirhani, A., Bodorik, P. and Sampali, S. (2017).

Improving Database Security in Cloud Computing

by Fragmentation of Data. In: 2017 International

Conference on Computer and Applications

(ICCA). Doha: IEEE, pp.43-49.

Al-Zobbi, M., Shahrestani, S. and Ruan, C.

(2016). Sensitivity-Based Anonymization of Big

Data. In: 41st Conference on Local Computer

Networks Workshops (LCN Workshops). [online]

Dubai: IEEE, pp.58-64. Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar

number=7856138&isnumber=7855949 [Accessed

29 Apr. 2018].

Amazon Web Services, Inc. (2018). Amazon Web

Services (AWS) - Cloud Computing Services.

[online] Available at: https://aws.amazon.com/

[Accessed 29 Apr. 2018].

Bahrami, M. and Singhal, M. (2015). A Light-

Weight Permutation Based Method for Data

Privacy in Mobile Cloud Computing. In: 2015 3rd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PPF RPF AES AES +

RPF

Mean

T
im

e
 (

S
e

co
n

d
s)

Fragmentation Method

Performance Comparison of all

Methods

248 B. Kusý et al.

IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering. [online]

San Francisco: IEEE, pp.189-198. Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar

number=7130886&isnumber=7130853 [Accessed

29 Apr. 2018].

Bahrami, M. and Singhal, M. (2015). The Role of

Cloud Computing Architecture in Big Data. In:

W. Pedrycz and C. SM, ed., Information

Granularity, Big Data, and Computational

Intelligence. Studies in Big Data, 8th ed. [online]

Springer, Cham. Available at:

https://link.springer.com/chapter/10.1007%2F978

-3-319-08254-7_13 [Accessed 29 Apr. 2018].

Bahrami, M. and Singhal, M. (2016). CloudPDB:

A light-weight data privacy schema for cloud-

based databases. In: 2016 International

Conference on Computing, Networking and

Communications (ICNC). [online] Kauai: IEEE,

pp.1-5. Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar

number=7440634&isnumber=7440540 [Accessed

29 Apr. 2018].

Barak, O., Cohen, G. and Toch, E. (2016).

Anonymizing mobility data using semantic

cloaking. Pervasive and Mobile Computing,

[online] 28, pp.102-112. Available at:

https://www.sciencedirect.com/science/article/pii/

S1574119215001972 [Accessed 29 Apr. 2018].

Canbay, Y. and Sağıroğlu, S. (2017). Big data

anonymization with spark. In: 2017 International

Conference on Computer Science and

Engineering (UBMK). [online] Antalya: IEEE,

pp.833-838. Available at:

https://ieeexplore.ieee.org/document/8093543/

[Accessed 29 Apr. 2018].

Chow, R., Golle, P., Jakobsson, M., Shi, E.,

Staddon, J., Masuoka, R. and Molina, J. (2009).

Controlling data in the cloud: outsourcing

computation without outsourcing control. In:

Proceedings of the 2009 ACM workshop on Cloud

computing security (CCSW '09). ACM, pp.58-90.

Ciriani, V., Vimercati, S., Foresti, S., Jajodia, S.,

Paraboschi, S. and Samarati, P. (2010).

Combining fragmentation and encryption to

protect privacy in data storage. ACM Transactions

on Information and System Security, [online]

13(3), pp.1-33. Available at:

https://dl.acm.org/citation.cfm?id=1805978

[Accessed 29 Apr. 2018].

Cloud Security Alliance (2010). Top Threats to

Cloud Computing. [online] Cloud Security

Alliance. Available at:

https://cloudsecurityalliance.org/topthreats/csathre

ats.v1.0.pdf [Accessed 29 Apr. 2018].

Dev, H., Sen, T., Basak, M. and Ali, M. (2012).

An Approach to Protect the Privacy of Cloud Data

from Data Mining Based Attacks. In: 2012 SC

Companion: High Performance Computing,

Networking Storage and Analysis. [online] Salt

Lake City: IEEE, pp.1106-1115. Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar

number=6495915&isnumber=6495777 [Accessed

29 Apr. 2018].

El Mrabti, A., Ammari, N., El kalam, A.,

Ouahman, A. and De Montfort, M. (2017).

Mobile app security by fragmentation "MASF."

In: Proceedings of the Second International

Conference on Internet of things and Cloud

Computing (ICC '17). New York: ACM, p.6.

Federal Information Processing Standards (2001).

Announcing the ADVANCED ENCRYPTION

STANDARD (AES).

Gharajedaghi, J. (2011). Systems thinking Systems

Thinking: Managing Chaos and Complexity: A

Platform for Designing Business Architecture.

Burlington, MA: Elsevier.

Ghinita, G., Karras, P., Kalnis, P. and Mamoulis,

N. (2007). Fast data anonymization with low

information loss. In: Proceedings of the 33rd

international conference on Very large data bases

(VLDB '07). Vienna: ACM, pp.758-766.

Gkoulalas-Divanis, A. and Loukides, G. (2011).

PCTA: privacy-constrained clustering-based

transaction data anonymization. In: Proceedings

of the 4th International Workshop on Privacy and

Anonymity in the Information Society. New York:

ACM.

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 249

Goswami, P. and Madan, S. (2017). Privacy

preserving data publishing and data

anonymization approaches: A review. In: 2017

International Conference on Computing,

Communication and Automation (ICCCA). IEEE,

pp.139-142.

Hababeh, I. (n.d.). A Novel Cloud Computing

Data Fragmentation Service Design for

Distributed Systems.

Hegarty, R. and Haggerty, J. (2015). Extrusion

detection of illegal files in cloud-based systems.

International Journal of Space-Based and

Situated Computing, 5(3), p.150.

Jang, S. (2017). A study of performance

enhancement in big data anonymization. In: 2017

4th International Conference on Computer

Applications and Information Processing

Technology (CAIPT). Kuta Bali: IEEE, pp.1-4.

Kapusta, K. and Memmi, G. (2015). Data

protection by means of fragmentation in

distributed storage systems. In: 2015 International

Conference on Protocol Engineering (ICPE) and

International Conference on New Technologies of

Distributed Systems (NTDS). Paris: IEEE, pp.1-8.

Kumar, P., Raj, P. and Jelciana, P. (2018).

Exploring Data Security Issues and Solutions in

Cloud Computing. Procedia Computer Science,

125, pp.691-697.

Masala, G., Ruiu, P. and Grosso, E. (2018).

Biometric Authentication and Data Security in

Cloud Computing. In: K. Daimi, ed., Computer

and Network Security Essentials. Springer,

Charm.

Memmi, G., Kapusta, K. and Qiu, H. (2018). Data

protection: Combining fragmentation, encryption,

and dispersion. In: 2015 International Conference

on Cyber Security of Smart Cities, Industrial

Control System and Communications (SSIC).

Shanghai: IEEE, pp.1-9.

Nayahi, J. and Kavitha, V. (2017). Privacy and

utility preserving data clustering for data

anonymization and distribution on Hadoop.

Future Generation Computer Systems, 74,

pp.393-408.

NIST (2011). The NIST Definition of Cloud

Computing. Gaithersburg: National Institute of

Standards and Technology.

Prabhu, M. and Paramesha, K. (2018). An

Approach for Efficient Utilization of Public Cloud

Storage and Securing Data. International

Research Journal of Engineering and Technology

(IRJET), 4(5), pp.841-844.

Santos, N. and Masala, G. (2018). Big Data

Security on Cloud Servers. In: 11th International

KES Conference on Intelligent Interactive

Multimedia: Systems & Services. Gold Coast:

Springer.

