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Abstract 

Postural control is used to maintain balance whilst standing in an upright position. 

With ageing, postural control following a perturbation, may decrease. This could lead 

to more falls, potentially causing injuries and hospital visits. The three main sensory 

systems contributing to balance are the visual system, vestibular system, and the 

somatosensory system. The aim of this study was to determine the changes in 

reaction to postural perturbation between Young, Middle Aged and Old adults (Aged 19-

34 years, 35-59 years and 60-76 years respectively). Participants provided written, 

informed consent and their weight (kg), height (cm) and age (years) was recorded. 

Using the Natus neurocom balance master, each participant participated in the sensory 

organisation test, the motor control test and the unilateral stance test, and their 

reaction to the perturbation was recorded. The main findings of the study indicated 

that young adults do not need visual input to maintain balance when the visual input 

is accurate, however when the visual input is disturbed, 

‘young’, ‘middle aged’ and ‘old adults’ experience reduced balance stability. It was 

also observed that ‘Young’ adults are the only age group in the study able to rely on 

the somatosensory system to maintain balance, whereas none of the age groups could 

use to vestibular system alone to maintain balance. 
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1. Introduction 

Maintaining upright posture is important for controlling balance to avoid falling, 

particularly in response to unexpected disturbances during usual human locomotion 

such as standing, walking and running. Postural control can be defined as the act of 

maintaining, achieving or restoring a state of balance during any posture or activity (Low 

et al., 2017). Postural control strategies may be either predictive or reactive and may 

involve either a fixed support or a change-in-support response (Pollock et al, 2000). 

Balance can be defined as the state of an object when the resultant force acting upon 

it is zero, with human balance being defined as ‘a multidimensional concept, 

referring to the ability of a person not to fall’ (Winter et al, 1995). Postural control and 

balance are often compromised in older age and are associated with their increased 

risk of falling. A fall is defined as an incident, which causes a person to, accidentally, 

rest on the ground or lower level, and is not the result of a major intrinsic event, such 

as a stroke, or overwhelming hazard (Currie, 2007). Falls can become frequent and 

result in injuries including head injuries and hip fractures. People aged 65 years and 

older have the highest risk of falling of any adults; around a third of people aged 65 

and over, and around 50% of people aged 80 and over, fall at least once a year. Falling 

is a cause of distress, pain, injury, loss of confidence, loss of independence and 

mortality (Public Health England, 2018). 

1.1 Falls 

 
The Public Health Outcomes Framework (PHOF) reported that in 2013 to 2014, 

around 255,000 emergency hospital admissions in the UK were due to falls among 

patients aged 65 and over, with around 173,000 (68%) of these patients aged 80 and 

over. In 2013, falls were the ninth highest cause of disability-adjusted life years and 

the leading cause of injury (Public Health England, 2018), with unaddressed fall 

hazards in the home costing the NHS in England an estimated £435 million. The total 

cost of fractures caused by falls in the UK has been estimated at £4.4 billion, 

including £1.1 billion for social care following a fall, with hip fractures accounting for 

£2 billion of this total. Following a hip fracture, short and long-term outlooks for 

patients are poor with an increased one-year mortality of 18-33%, as well as having 

negative effects on daily activities such as shopping and walking. It was also found 
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that around 20% of hip fracture patients entered long-term care within a year of 

having the fracture (Public Health England, 2018). 
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Possible causes of the increased prevalence of falls amongst older adults compared to 

young adults include diminished sensory and cognitive performance or neuromuscular 

control. Sensory contributions include vestibular, visual and proprioceptive functions 

interpreted in the brain to effect perceptions and generate the motor command for 

the corrective responses. 

1.2 Sensory Systems 

 
Balance control can refer to sway when standing still or control during a perturbation. 

During standing, vision, proprioception and vestibular inputs provide information about 

the body’s positioning in the environment (Perterka, 2002). The input from each of 

these sensory systems and how they relate to the internal representation of the 

body’s orientation and equilibrium depends on how the central nervous system 

assigns weight to each sensory modality (Stevenson et al, 2007). Several studies have 

shown that the sensory receptors that monitor body orientation are less sensitive in 

older than younger adults (Goble et al, 2009; Gu et al, 1996). The reduced sensitivity 

has been linked to an increased incidence of falling and overreliance on visual 

feedback, which can disrupt postural control when visual inputs are diminished or 

unreliable (Horak,2006; Simoneau et al.,1999; Wade et al., 1995; Jeka et al, 2006). As 

well as reductions in sensory reliability, delays in the transmission of feedback from 

the lower limb can exceed several tens of milliseconds (Purves et al, 2001). These 

feedback delays can cause problems as the neural circuitry used for postural control 

relies on input to correct balance errors (Lockhart et al, 2007). Despite evidence that 

sensory delays increase during aging (Blaszczyk et al, 1993) it is unclear how these 

additional feedback delays effect standing balance. 

The ability to maintain balance deteriorates with increasing age, as sensory and 

motor controls required for postural stability decline with ageing. Preemptive and 

compensatory postural adjustments are both known to be effected in the elderly (Kanekar 

et al, 2014). The relation between balance control and independent mobility is 

important in the elderly where poor postural control is associated with significant mobility 

losses, physical inactivity and an increase in the fear of falling (Frank and Patla., 2003; 

Merom et al., 2012; Skelton and Beyer 2003). 
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Understanding which sensory system takes highest priority for balance control in young 

and if the sensory input-weighting changes through middle aged and old age will help 

to define the most effective countermeasures to prevent falls in old age. Postural Control 

is a complex interaction between the sensory and motor systems, which involves 

perceiving 

environmental stimuli, responding to alterations in the body’s orientation in 

the environment and maintaining the body’s centre of gravity within the base 

of support (Shaffer and Harrison, 2007). 

1.2.1 Visual System 

 
The visual pathway consists of cells and synapses that carry visual information from 

the environment to the brain for processing. It includes the retina, optic nerve, optic 

chiasm, optic tract, lateral geniculate nucleus (LGN), optic radiations and striate cortex. 

The first cell in the pathway is the photoreceptor, which is a special sensory cell. It 

converts light energy into a neuronal signal that is passed to the bipolar cell and the 

amacrine cell and then to the ganglion cell, which are all located in the retina. The 

axons of the ganglion cells exit the retina via the optic nerve, with the fibres from 

each eye crossing in the optic chiasm and terminating in the opposite side of the 

brain. The optic tract carries these fibres from the chiasm to the LGN, where the next 

synapse occurs. The fibres leave the LGN as the optic radiations that terminate in 

the visual cortex of the occipital lobe. From various points in this pathway, information 

about the visual environment is transferred to visual association areas (Remington, 

2012). 

Afferent and Efferent motion perception is involved in the development of the visual 

system. Afferent motion perception involves awareness of objects in the environment 

whereas efferent motion is the control of the eyes, body or head (Kapoula & Thuan, 

2006). 

1.2.2 Vestibular System 

 
The vestibular system is the apparatus of the inner ear involved in balance. It is 

made up of two structures of the bony labyrinth, the vestibule and the semi-circular 

canals, and the structures of the membranous labyrinth contained within them. The 
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Vestibular system is thought to be a leading contributor to maintaining balance and 

having spatial orientation with the purpose of coordinating movement. The vestibular 

input works alongside the visual and somatosensory system to maintain postural control 

(Merla and Spaulding, 1997). The 
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importance of an accurate sensory perception of the environment is most apparent 

when there is not an input from the vestibular system or the input is not appropriate. 

Without accurate vestibular input there are also significant debilitating balance deficits 

and an range of symptoms including dizziness, instability, vertigo, nausea, paleness, 

diaphoresis, general malaise, and even emesis. Depending on the severity, these 

symptoms can often lead to physical, mental, and even social isolation (Hear, 2015). 

1.2.3 Somatosensory System 

 
The somatosensory system is involved in the conscious perception of touch, pressure, 

pain, temperature, position, movement, and vibration. The somatosensory system 

comprises of three neurons; primary, secondary and tertiary. It relays sensations 

detected in the periphery and conveys them via pathways through the spinal cord, 

brainstem, and thalamic relay nuclei to the sensory cortex in the parietal lobe 

(Gleveckas-Martens et al,. 2013). 

 

1.3 Ageing and Balance 

Ageing effects all levels of neural processing, including intracortical inhibition and cortical 

excitability, which suggests a decline in somatosensory processing with ageing (Lens et 

al, 2012). This could be detrimental to balance as during quiet standing, the 

somatosensory system is most important for keeping upright, stable body position. 

When the reliable proprioceptive information from feet and ankles is altered, which can be 

caused by standing on uneven and moving surfaces, the somatosensory system 

becomes less reliable at assisting with balance causing individuals to more heavily 

rely on visual, vestibular and motor systems to maintain stability (Colledge et al. 

1994, Lord and Menz. 

2000, Choy et al. 2003). Although it is known that the somatosensory system, visual 

system and vestibular system are all vital to maintain balance, it remains unclear how the 

sensory inputs change with ageing, if there is a rebalancing of sensory system control 

balance, or what happens during situations where some sensory inputs are 

disturbed. To determine this, we used the Neurocom balance master, using the 

Sensory Organisation Test, The Motor Control Test and the Unilateral Stance Test. 
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This study could be vital in the development of new strategies to prevent the high 

incidence of falls among the elderly, as more targeted strategies could be focused on 

improving either the somatosensory, visual or vestibular system. 



8 

 

 

 

 

1.4 Measurements 

 
1.4.1 Sensory Organisation Test 

 
The Sensory Organisation Test (SOT) objectively identifies any abnormalities in the three 

sensory systems, which contribute to postural control: the somatosensory, visual and 

vestibular system. During the SOT, inconsistent information delivered to the eyes, feet and 

joints is controlled through sway of the support surface and visual surround. Sensory 

conflict situations, which stress the adaptive responses of the central nervous system, are 

created by controlling the use of sensory information from the three different systems 

through sway referencing and/or eyes open/closed conditions. 

Accurate organisation of sensory information is critical to maintain balance in everyday life. 

When individuals have an inability to organise somatosensory information appropriately, 

they may be unable to maintain stability in environments where visual cues are 

diminished (e.g. darkness), the surfaces are unstable (e.g. sand and gravel), or where 

conflicting visual stimuli are present (e.g. in a busy shopping centre, in cars and on boats). 

An Inability to appropriately organise sensory information can lead to, or be intensified 

by, impairments in Centre of Gravity (COG) alignment and/or selection of movement 

strategies. 

1.4.2 Motor Control Test 

 
The Motor Control test is used to quantify an individual’s ability to quickly recover 

following an unexpected external disturbance. This is test involves sequences of small, 

medium and large platform translations in forwards and backwards directions to elicit 

automatic postural responses. A delay in automatic motor response suggests limited 

functional outcome. 

1.4.3 Unilateral Stance Test 

 
The Unilateral stance test quantifies the ability to maintain postural stability whilst 

standing on one leg, with eyes open and with eyes closed. It enhances the 

observational testing of single leg stance performance by providing an objective measure 

of patient sway velocity for four different task conditions. The Unilateral stance test is highly 

sensitive, but not specific as there are a large number of independent factors which can 

impact performance. 
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1.5 Hypothesis Aim and Objectives 

 
It was hypothesised that ‘Old’ would have reduced balance, reduced visual strategy, 

use more hip strategy, have a slower reaction time, and have more difficulty when 

trying to maintain balance on one leg. 

AIM: To determine the changes in reaction to postural perturbation between Young, 

Middle Aged and Old adults. 

Objectives 

 
1. Conduct a “sensory organisation test” to assess the vestibular, visual and 

proprioceptive contributions to posture during standing and after perturbation in 

adults ranging in age from 18-80 years using the Neurocom Balance Master. 

2. Conduct a “Motor Control Test” to assess the ability of the automatic motor 

system to quickly recover following an unexpected external disturbance in adults 

ranging in age from 18 to 80 years using the Neurocom Balance Master. 

3. Conduct a ‘Unilateral Stance Test’ to assess the ability to maintain postural 

stability whilst standing on one leg, with eyes open and eyes closed in adults ranging in 

age from 18- 80 years using the Neurocom Balance Master. 
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2. Methods 
 

The study was a cross sectional study including laboratory assessment. 

2.1 Participants, Consent and Ethical Approval 
 

The study was approved by the University Research Ethics Committee of the Manchester 

Metropolitan University and conducted in accordance with the Declaration of Helsinki 

(2013). Sixty-two untrained men and eighteen untrained women aged nineteen to seventy-

six years participated in the study and provided informed written consent. All 

participants were healthy with no cardiovascular or neuromuscular conditions, and no 

diagnosed balance disorders, and able to give informed consent. Participants with 

visual impairments were eligible for the study and were allowed to wear their usual 

glasses but no further assessment was made. 

 Participants recruited from the study were both ‘Manchester Metropolitan University’ 

staff and the general public, who were both recruited using word of mouth.  

The participants had to come into the lab on just one occasion for around two hours. 

After determination of height (cm) and body mass (kg) the participants were subjected 

to three balance tests on the ‘Natus NeuroCom SMART Balance Master’ (Natus medical 

incorporated, Pleasanton, USA): a sensory organisation test (SOT), motor control test 

(MCT) and a   unilateral stance (US) test. For all tests, participants were barefoot and 

wore a harness attached to the Balance Master to prevent any injuries caused by falling 

when losing balance during any of the tests. 
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Figure 1. Photo showing Natus Neurocom SMART Balance Master 

 
2.2 Sensory Organisation Test 

 
2.2.1 SOT Protocol 

 
To perform the SOT tests, participants were subjected to 6 different sensory conditions 

(Fig. 2). Each condition comprised of up to three trials lasting 20 seconds each. In condition 

1, the participants stood quietly with their eyes open, while in condition 2 participants 

stood with eyes closed. These two conditions establish whether sway increases when 

visual cues are removed and how effectively the participants uses somatosensory input. In 

condition 3, the participant stands with their eyes open whilst the visual surround is sway-

referenced, making visual cues inaccurate. In Condition 4, the support surface becomes 

sway-referenced, making somatosensory cues inaccurate. Condition 5 is performed 

with eyes closed and a sway referenced support surface, to determine how the 

participant uses vestibular cues when visual cues are removed and somatosensory 

cues are inaccurate. In condition 6, both the 
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support surface and the visual surround are sway referenced, to identify if the 

participant relies on visual cues even when they are inaccurate. 

Participant scores are evaluated after each trial. Trials are interrupted if the participant 

appears to require any assistance. For instance, if a participant falls or takes a step, the 

space bar was pressed to mark this interruption. 

 

 

Figure 2. Diagram from ‘Neurocom International. Inc’ showing the six conditions of the 

sensory organisation test. 

Note: Condition 1: Open eyes, fixed support surface, fixed visual surround; Condition 2: Closed 

eyes, fixed support surface; Condition 3: Open eyes, fixed support surface, sway-referenced 

visual surround; Condition 4: Open eyes, sway-referenced support surface, fixed visual 

surround; Condition 5: Closed eyes, sway-referenced support surface; Condition 6: Open eyes, 

sway-referenced support surface, sway-referenced visual surround. 

2.2.2 SOT Comprehensive Report 

 
The Balance master produces a comprehensive report with equilibrium score, sensory 

analysis, strategy analysis and centre of gravity (COG) Alignment. The Equilibrium Score, an 
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overall indicator of balance quantifies the COG sway or postural stability during the trials of 

each of the six sensory conditions. The overall pattern of scores on the six conditions is used 

to determine if there has been effective use of individual sensory inputs. It is computed 

according to equation 1. 

 

 
Equation 1 12.50 represents the maximum normal postural sway in the anterior posterior 

direction and θ represents the calculated maximum anterior-posterior COG displacement. A 

score of 100 signifies perfect stability whereas a score of 0 indicates a loss of balance. 

For the sensory analysis, ratios are used with the individual equilibrium scores to identify 

impairments of the individual sensory systems (Table 2). 

 

Ratio Comparison Functional Application 

Somatosensory (SOM) Condition 1 / Condition 2 Ability to use input from 

somatosensory system to 

maintain balance 

Visual (VIS) Condition 4 / Condition 1 Ability to use input from the 

visual system to maintain 

balance 

Vestibular (VEST) Condition 5 / Condition 1 Ability to use input from 

vestibular system to 

maintain balance 

Preference (PREF) Condition 3 + 6 / Condition 2 + 5 The degree to which the 

participant relies on visual 

information to maintain 

balance, even when the 

information is incorrect 

Table 1. Showing how the sensory analysis is calculated and the purpose of it. 
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2.2.3 Strategy Analysis 

 
The Strategy Analysis quantifies the relative amount of movement about the ankles, known 

as ‘Ankle Strategy’, and about the hips, known as ‘Hip Strategy’, used by the subject 

to maintain balance during each trial. Normally, individuals primarily use an ankle strategy 

when the surface is stable, and begin to use a ‘hip strategy’ as they become less stable. A 

score near 100 indicates a full ankle strategy, whereas a score near 0 indicated a full 

hip strategy. 

 
 

2.2.4 Centre of Gravity (COG) Alignment 

 
The COG Alignment reflected the subject’s COG position relative to the centre of the base 

of support at the beginning of each SOT trial. Individuals with no balance impairment would 

be able to maintain their COG near the centre of the support base. 

2.3 Motor Control Test (MCT) 

 
The Second test was the motor control test, which assesses the ability of the automatic 

motor system to quickly recover following an unexpected external disturbance. Each 

participant completed six conditions for the MCT, consisting of three forwards and three 

backwards translations, which were graded in magnitude (small, medium, and large (figure 

3). The size of the translations are scaled to the participant’s height. At the start of each 

condition, the feet where correctly positioned on the support surface. The trials were 

performed in a standardised order: backwards translations first, then forwards 

translations. If the participants lost their balance, the trial was interrupted and the fall 

was marked. 

A full MCT took around 10 min to complete for each participant. The software 

computed the following parameters: weight symmetry, latency and amplitude scaling 

(Table rather than Table 3). 
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 SMALL 

TRANSLATION 

MEDIUM 

TRANSLATION 

LARGE 

TRANSLATION 

BACKWARDS 

TRANSLATION 

CONDITION 1 CONDITION 2 CONDITION 3 

FORWARDS 

TRANSLATION 

CONDITON 4 CONDITION 5 CONDITION 6 

 

 

Table 2: Table showing the characteristics of each condition (1-6) for the motor control test. 

NOTE: The small translations represent a threshold stimulus whilst the large translations require the participant 

to produce a maximal response. The medium translations are in between the two ends of the spectrum. Each 

condition is performed three times, with a random, computer generated, delay of 1.5 to 2.5 s in between each 

condition. The horizontal displacement of the support surface during each translation is scaled according to the 

height of the participant. Three parameters are calculated: Weight Symmetry, which provides information 

relative to distribution of weight on each leg; Amplitude Scaling, which quantifies the strength (efficacy) of 

responses for both legs and for the three translation sizes; and Latency, which quantifies the time between the 

stimulus (force plate translation) and the patient’s active force responses in each leg. 

2.4 Unilateral Stance Test 

 
The Third test was the Unilateral Stance Test (US). The US quantifies the ability to maintain 

postural stability whilst standing on one leg, with eyes open and with eyes closed. The US 

test enhances the observational testing of single leg stance performance by providing an 

objective measure of patient sway velocity for four different task conditions. The US 

test is highly sensitive, but not specific as there are a large number of independent 

factors which can impact performance, including: lower limb strength; weight bearing 

control; sensory balance control; movement strategies and prior practice with the task. 

2.4.1 US Stance Protocol 

 
Each Participant conducted up to three trials for the four conditions of the US Test, 

standing on the right then left leg, with eyes open then closed (see Table 4). Each trial 

lasted for ten seconds. 
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 EYES OPEN EYES CLOSED 

LEFT LEG CONDITION 1 CONDITION 2 

RIGHT LEG CONDITION 3 CONDITION 4 

 

 

Table 3. Table showing the characteristics for conditions 1-4 of the unilateral stance test: left 

eyes open, left leg eyes closed, right leg eyes open, right leg eyes closed respectively. 

 
 

2.4.2 Unilateral Stance Comprehensive Report 

 
Following the US test, the COG Traces for each trial and Mean COG Sway velocity were 

calculated. 

2.4.3 Functional Implications 

 
When standing upright, individuals have significantly more sway whilst standing on one foot 

with closed eyes compared with eyes open. Participants may become unstable due to 

difficulty using visual or somatosensory information for balance control, and/or may have 

musculoskeletal problems that make it difficult to correct lost balance. Functional 

consequences are significant for performance or activates that require single leg balance 

(such as getting dressed, stairs/steps, or navigating narrow support surfaces such as ladders). 

 
 

2.5 Statistical Analysis 

The data was analysed using SPSS statistical software (IBM, USA, v24). All data was tested 

for normality of distribution using Kolmogorov-Smirnov test. 

A repeated-measures ANOVA was used with as within factor ‘condition’ and as between 

factors ‘sex’ and ‘group’. If a significant group effect was found a Bonferroni corrected post 

hoc test was performed to locate the differences. If a significant group * condition 

interaction was found a repeated measures anova was performed for each age group to 

assess differences in condition scores within an age group, and an anova for each condition 

was performed to assess whether the score of a condition differed between age groups. If 

data were not normally distributed, the Greenhouse Geiser result was taken. Three-way 



17 

 

 

 
 

interactions were ignored. Where a significant difference was identified, a Tukey Post hoc 

test was performed to determine which groups differed significantly. A univariate analysis of 

data was used to show the difference between ages. P<0.05 was accepted as a significant 

difference between groups. 
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3. Results 

 

Sixty-Two participants were recruited and allocated to the following age groups: 19-34 

years (Young; Y); 35-59 years (Middle aged; M) and 60-76 years (Older; O). Participant 

characteristics are shown in Table 1. The first trial for each condition was used for statistical 

analysis. There were no main effects of sex and no sex * group interactions for any of 

the measured variables. 

 
 
 

Group Age (years) Height (cm) Weight (Kg) BMI (Kg/m2) 

Young adult 

(n=27, 18-male) 

25.0 (3.7) 174 (9) 75.3 (8.4) 24.9 (1.7) 

Middle aged 

(n=23, 18-male) 

44.7 (6.12) 173 (7) 71.2 (4.5) 23.7 (0.9) 

Older adult 

(n=12, 5-male) 

67.4 (6.3)  

168 (12) 
69.4 (11.1) 24.2 (1.2) 

Table 4. Participant characteristics 

Data presented as mean (SD) 

 
3.1 Sensory Organisation Test (SOT) 

 
3.1.1 SOT Equilibrium 

 
For the SOT Equilibrium results, there was a significant condition * group interaction 

(P=0.013) indicating that the different groups responded differently to the increasing 

difficulty of the postural challenges working through the SOT tests. This was seen as a 

lower performance of O than Y and M. Repeated-measures anova showed that each age 

group (Y, M and O) had significant differences (within age group) across the 6 SOT trials 

(all P<0.0005) with the tendency for all to decrease performance with increasing difficulty. 

For Young, using a pairwise comparison, there was a significant difference in scores 

between conditions 1 and 3 (P=0.033), 1 and 4 (P=0.002), 1 and 5 (P=0.000), 1 and 6 

(P=0.000), 2 and 4 (P=0.020), 2 and 

5 (P=0.000), 2 and 6 (P=0.000), 3 and 5 (P=0.000), 3 and 6 (P=0.001), 4 and 5 (P=0.000) and 4 
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and 6 (P=0.005). For Middle Aged, using a pairwise comparison, there was a 

significant difference in scores between conditions 1 and 2 (P=0.010), 1 and 3 

(P=0.010), 1 and 4 

(P=0.000), 1 and 5 (P=0.000), 1 and 6 (P=0.000), 2 and 5 (P=0.000), 2 and 6 (P=0.000), 3 and 5 

(P=0.000), 3 and 6 (P=0.000), 4 and 5 (P=0.000) and 4 and 6 (P=0.000). For Old, using a 

pairwise comparison, there was a significant difference in scores between conditions 

1 and 2 (P=0.036), 1 and 4 (P=0.008), 1 and 5 (P=0.001), 1 and 6 (P=0.001), 2 and 5 

(P=0.001), 2 and 6 

(P=0.003),3 and 4 (P=0.037), 3 and 5 (P=0.001), 3 and 6 (P=0.003), 4 and 5 (P=0.002) and 4 

and 6 (P=0.008), all shown in figure 1A. Differences in performance between the age 

groups were assessed by Univariate Anova. This revealed a significant difference for 

condition 3 between Y and O (P=0.027), and for Condition 5 between Y and O (P=0.028) 

and MA and O (P=0.021), shown in figure 3A. 

3.1.2. SOT Strategy 
 

All results for SOT strategy are shown in Figure 1b. There was no significant 

condition*group effect (P=0.132). Repeated measures ANOVA was performed to 

assess differences in condition scores within an age group and was significant for Y, M 

and O (P=0.000), showing that strategy changed with increasing difficulty of the SOT level. 

For Young, using a pairwise comparison, there was a significant difference in scores 

between conditions 1 and 3  (P=0.028), 1 and 4 (P=0.000), 1 and 5 (P=0.000), 1 and 6 

(P=0.000),2 and 3 (P=0.032), 2 and 4 

(P=0.000), 2 and 5 (P=0.000), 2 and 6 (P=0.000),3 and 4 (P=0.000), 3 and 5 (P=0.000), 3 and 6 

(P=0.000), 4 and 5 (P=0.000) and 4 and 6 (P=0.001). For Middle Aged, using a 

pairwise comparison, there was a significant difference in scores between conditions 

1 and 4 (P=0.000), 1 and 5 (P=0.000), 1 and 6 (P=0.000), 2 and 3 (P=0.043), 2 and 4 

(P=0.000), 2 and 5 

(P=0.000), 2 and 6 (P=0.000), 3 and 4 (P=0.000), 3 and 5 (P=0.000), 3 and 6 (P=0.000), 4 and 5 

(P=0.000) and 4 and 6 (P=0.000). For Old, using a pairwise comparison, there was a 

significant difference in scores between conditions 1 and 4 (P=0.000), 1 and 5 

(P=0.000), 1 and 6 

(P=0.000), 2 and 4 (P=0.000), 2 and 5 (P=0.000), 2 and 6 (P=0.000),3 and 4 (P=0.000), 3 and 5 

(P=0.000), 3 and 6 (P=0.000), 4 and 5 (P=0.001) and 4 and 6 (P=0.005), all shown in figure 1B. 
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Using a Univariate Anova to determine differences between ages showed no 

significant difference for any conditions, shown in figure 3B. 
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3.1.3 SOT Sensory Analysis 

 
Using a Univariate Anova showed a significant difference for Vestibular Function between 

MA and O (P=0.026), shown in figure 3C. Scores for somatosensory, visual and the 

preference of sensory input did not differ significantly between groups. 
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Figure 3 A) Equilibrium, B) Strategy, C) Sensory Analysis Score from the Sensory Organisation 

Test (SOT). Young (Y) :19-34 years; Middle Aged (MA): 35-59 years; Old (O) : 60-75 years. Data 

shown as Mean ± SEM . 1- differed from condition 1. 2- differed from condition 2. 3-differed 

from condition 3. 4- differed from condition 4. 5- differed from condition 5. 6- differed from 

condition 6. A- different to young. B- Different to middle aged. 
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3.2 Motor Control Test (MCT) 

 
3.2.1 MCT Weight Symmetry Results 

 
For the Motor Control test Weight Symmetry there was no significant condition*group 

interaction (P=0.575). Using a Univariate Anova, to assess differences between ages, 

there was a significant difference for each Condition. For ‘Small Backwards’ there was a 

significant difference between Y and MA (P = 0.034) and MA and O (P = 0.002). For 

‘Medium Backwards’ there was a significant difference between MA and O (P=0.003). For 

‘Large Backwards’ there was a significant difference between MA and O (P=0.012). For 

‘Small Forwards’, ‘Medium Forwards’ and ‘Large Forwards’ there was a significant 

difference between MA and O (P=0.000, P=0.006 and P=0.013 respectively). 

3.2.2 MCT Latency (ms) 

 
For the Motor Control test Latency there was a significant condition*group interaction 

(P<0.0005). Using repeated-measures Analysis of Variance (ANOVA) for each age group 

showed significant differences in condition score within their age group (P=0.006, P=0.000 

and P=0.018 for Y, Ma and O). For Young, using a pairwise comparison, there was a 

significant difference in scores between conditions 1 (SB) and 3 (LB) (P=0.007), 1 (SB) 

and 5 (MF) (P=0.001), 1 (SB) and 6 (LF) (P=0.001), 3 (LB) and 5 (MF) (P=0.004), 4 (SF) and 

5 (MF) (P=0.016) 

and 4 (SF) and 6 (LF) (P=0.021). For Middle Aged, using a pairwise comparison, there was 

a significant difference in scores between conditions 1 (SB) and 2 (MB) (P=0.001), 1 (SB) 

and 3 (LB) (P=0.001), 1 (SB) and 4 (SF) (P=0.005), 1 (SB) and 5 (MF) (P=0.001), and 1 (SB) 

and 6 (LF) 

(P=0.001). For Old, using a pairwise comparison, there was a significant difference in 

scores between conditions 1 (SB) and 3 (LB) (P=0.023), 1 (SB) and 5 (MF) (P=0.021), 1 

(SB) and 6 (LF) (P=0.018) and 4 (SF) and 6 (LF) (P=0.042). 

Using a Univariate Anova, to assess differences between ages, there was only a significant 

difference for Large Translations. For ‘Large Backwards’ there was a significant difference 

between Y and O (P=0.009) and for ‘Large Forwards’ there was a significant difference 

between Y and O (P = 0.042) and MA and O (P = 0.045). 
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3.2.3 MCT Amplitude Scaling 

 
For the Motor Control test amplitude scaling there was a significant condition*group 

interaction (P=0.000). Using repeated-measures ANOVA for each age group showed 

significant differences in condition score within their age group (P=0.000, P=0.000 and 

P=0.000 for Y, Ma and O). For Young, using a pairwise comparison, there was a significant 

difference in scores between conditions 1 (SB) and 2 (MB) (P=0.000), 1 (SB) and 3 

(LB) (P=0.000), 1 (SB) and 5 (MF) (P=0.000), 1 (SB) and 6 (LF) (P=0.000) 2 (MB) and 3 (LB) 

(P=0.000), 

2 (MB) and 4 (SF) (P=0.000), 2 (MB) and 6 (LF) (P=0.000), 3(LB) and 4(SF) (P=0.000), 3 (LB) and 

5 (MF) (P=0.000), 4 (SF) and 5 (MF) (P=0.000) , 4 (SF) and 6 (LF) (P=0.000) and 5(MF) and 6(L) 

(P=0.000). For Middle Aged, using a pairwise comparison, there was a significant 

difference in scores between conditions 1 (SB) and 2 (MB) (P=0.000), 1 (SB) and 3 (LB) 

(P=0.000), 1 (SB) and 5 (MF) (P=0.000), 1 (SB) and 6 (LF) (P=0.000), 2 (MB) and 4 (SF) 

(P=0.000), 2 (MB) and 6 

(LF) (P=0.003), 3(LB) and 4(SF) (P=0.000), 4 (SF) and 5 (MF) (P=0.000), 4 (SF) and 6 (LF) 

(P=0.000) and 5(MF) and 6(L) (P=0.029). For Old, using a pairwise comparison, there was 

a significant difference in scores between conditions 1 (SB) and 2 (MB) (P=0.000), 1 (SB) 

and 3 (LB) (P=0.000), 1 (SB) and 4(SF) (P=0.003), 1 (SB) and 5 (MF) (P=0.000), 1 (SB) 

and 6 (LF) 

(P=0.000) 2 (MB) and 3 (LB) (P=0.043), 2 (MB) and 4 (SF) (P=0.004), 2 (MB) and 5(MF) 

(P=0.039), 2 (MB) and 6 (LF) (P=0.000), 3(LB) and 4(SF) (P=0.000), 3 (LB) and 6 (LF) (P=0.008), 

4 (SF) and 5 (MF) (P=0.000), 4 (SF) and 6 (LF) (P=0.000) and 5(MF) and 6 (L) (P=0.002). 

 
Using a Univariate Anova, to assess differences between ages, there was only a significant 

difference for Small Translations. For ‘Small Backwards’ there was a s ignificant difference 

between MA and O (P=0.036) and for ‘Small Forwards’ there was a significant 

difference between Y and MA (P = 0.033). 

3.2.4 MCT Strength Symmetry 

 
For the MCT Strength Symmetry there was no significant condition*group effect (P=0.254). 

Using a Univariate ANOVA, to assess differences between ages, there was significant 

difference for ‘Large Forward’ between Y and MA (P=0.016). 
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Figure 4. A) Weight Symmetry, B) Latency (msec), C) Amplitude Scaling, D) Strength Symmetry 

from the Motor Control Test (MCT). Young (Y) :19-34 years; Middle Aged (MA): 35-59 years; 

Old (O) : 60-75 years. Data shown as Mean ± SEM. 1- differed from condition 1. 2- differed 

from condition 2. 3-differed from condition 3. 4- differed from condition 4. 5- differed from 

condition 5. 6- differed from condition 6. A- different to young. B- Different to middle aged. 
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3.3 Unilateral Stance (US) Test 

 
For the unilateral stance test condition 1 was ‘Eyes Open on the Left Leg’, condition 2 

was ‘Eyes Open on the right leg’, condition 3 was ‘Eyes Closed on the left leg’ and condition 

4 was ‘Eyes Closed on the right leg’. 

For the Unilateral Stance test there was a significant condition*group effect (P=0.003). 

Using a repeated measures ANOVA for each age group showed significant differences in 

condition score within their age group (P=0.000. P=0.000 and P=0.000 for Y, Ma and O, 

respectively). For Young, using a pairwise comparison, there was a significant difference 

between 1 and 3 (P=0.000), 1 and 4 (P=0.000), 2 and 3 (P=0.001) and 2 and 4 (P=0.001). 

For Middle Aged using a pairwise comparison there was significant difference between 1 

and 3 (P=0.001), 1 and 4 (P=0.000), 2 and 3 (P=0.000) and 2 and 4 (P=0.000). For Old 

using a pairwise comparison, there was significant difference between 1 and 3 

(P=0.001), 1 and 4 (P=0.000), 2 and 3 

(P=0.009) and 2 and 4 (P=0.002). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 Bar Chart showing mean, standard error, and significant P values for Unilateral Stance 

Test Sway results for the right leg. 
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4. Discussion 

The purpose of this study was to investigate the Postural Responses to Balance 

Perturbation in Young, Middle Aged and Older Adults, specifically somatosensory, visual, 

vestibular and motor system involvement. The main findings of the study indicated 

that young adults do not need visual input to maintain balance when the visual input 

is accurate, however when the visual input is disturbed, ‘young’, ‘middle aged’ and 

‘old adults’ experience reduced balance stability. 

As deficits in balance control have been speculated to come from impaired sensory 

feedback and integration (Dietz 1992; Horak et al. 1997) or motor impairments (Rougier 

2007), the ‘Sensory Organisation Test’ and the ‘Motor Control Test’ were used with 

all participants. 

4.1 Sensory Organisation Test 

The sensory organisation test (SOT) of Computerized Dynamic Posturography can 

objectively identify any abnormalities in the visual, vestibular and somatosensory 

systems by isolating various sensory contributions, by either removing or distorting the 

visual and/or somatosensory inputs to the postural control (Wrisley et al, 2007). 

4.2 Visual System 

Although balance is maintained through a combination of the visual, vestibular and 

somatosensory system inputs, it is widely accepted that vision is the primary sensory 

system used in balance (Poole, 1991, Merla and Spaulding 1997, Uchiyama and 

Demura, 2009). For example, human balancing during  upright stance is  more stable  

with eyes open than with eyes closed (Horak & Macpherson, 1996). 

In relation to the visual strategy, we hypothesised that ‘Old’ would have a reduced 

visual strategy compared to ‘Young’ and ‘Middle Aged’’ and that ‘Confused visual input 

will disturb balance at all ages’. 

The SOT equilibrium score is an overall indicator of balance scaled from 0 to 100 where 

100 indicated perfect balance. Effective spatial orientation, postural control and 

balance requires the integration of proprioceptive, vestibular and visual inputs, and a 

low 

https://www.sciencedirect.com/science/article/pii/S016794571500038X#b0115
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equilibrium score indicates a balance impairment caused by an inability to effectively use 

one or a combination of these senses. 

The results from the SOT equilibrium test suggest that the ‘Young’ do not rely on 

having a visual input to maintain balance, however when the visual input they receive is 

inaccurate, they struggle to maintain postural balance. This suggests that receiving 

inaccurate visual information is more detrimental on balance than not receiving any 

visual information in the ‘Young’. For Young, where there are inaccurate visual cues 

in addition to support surface disturbance, balance does reduce significantly, as 

suggested by the significant difference between condition 4 and condition 6. However, 

when either the young receive on balance conflict, visual or support, the balance 

deteriotion is similar suggesting that in young it does not matter what effects the 

balance. 

Results for ‘young’, ‘middle aged’ and ‘old’ show a significance difference between 

condition 1 and condition 4, suggesting that when visual input is confused there is a 

significant reduction in balance ability. From this, we can accept our hypothesis that 

‘Confused visual input will disturb balance at all ages’. 

For ‘Old’ there was no difference between conditions 1 and 3 suggesting that inaccurate 

visual cues had less of an effect on old compared to middle aged and young, leading 

us to accept our hypothesis that ‘Old have a reduced visual strategy’. 

The equilibrium scores show a significant difference between ‘Young’ and ‘Old’ for 

‘Condition 3’. This implies, that when visual cues are inaccurate, there is a greater effect 

on the balance of ‘old;’ compared to ‘young’. The significant difference between young 

and old and middle aged and old for condition 5 suggests that when there is no visual 

input and the support surface is unstable the balance for ‘old’ is much worse than for 

young and middle aged, contradicting our hypothesis that ‘old have a reduced visual 

strategy’. 

These results are contradictory as although there was no significant difference in 

balance when there was a disturbed visual surround for old compared to standing 

still, there was a significant difference between old and young when there was a 

disturbed visual surround. This could be explained as young have a better visual 
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strategy than old, so the disturbed visual surround did not negatively effect their 

balance, compared to the old. However, as the older adult already had a reduced 

balance when standing still, there was not a significant difference shown.  

 
 

4.3 Somatosensory System 

Balance in the elderly population is a major concern due to the often catastrophic 

and disabling consequences of fall-related injuries. Structural and functional declines 

of the somatosensory system occur with ageing and potentially contribute to postural 

instability in older adults. The somatosensory system processes information including 

pain, temperature, touch and proprioception. It is a complex system of sensory 

neurons and pathways that respond to changes at the surface or inside the body. The 

somatosensory system was tested when reliable proprioceptive information from the 

feet and ankles was altered by creating an unstable support surface. As there was no 

significant difference between results for the SOT equilibrium test between condition 1 

and condition 2 for ‘young’ it is assumed that the ‘young’ are able to use the 

somatosensory system to maintain balance, which may be why balance is maintained 

when there is not visual input. However other studies have suggested that the visual 

system is the predominant sensory system used by young adults to maintain optimal 

postural balance (Gaerlan et al, 2012), suggesting that the somatosensory system will 

only be relied on when there is no visual input. 

Several studies have looked at age-related changes effecting touch sensation and its 

impact on postural stability in the elderly. Peripheral sensation seems to be an 

important factor in maintenance of postural stability whilst standing still (Wickremaratchi 

et al, 2006). Others have highlighted the importance of somatosensory input and 

muscle strength in the maintenance of postural stability in the elderly (Corriveau et 

al, 2004). As the SOT equilibrium results suggest ‘Middle Aged’ and ‘Old’ are unable to 

rely on the somatosensory system to maintain balance, it implies that there is a 

deterioration of the somatosensory system between young and middle aged. 

Although there is thought to be a continued decline in the somatosensory system with 

ageing, the effect in balance does not significantly further decline from ‘Middle Aged’ to 

‘Old in our study. 

As it is suggested that middle aged and older adults are unable to rely on the 

somatosensory system to maintain balance, it could explain why there is an 
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increased incidence of falls with ageing. Multiple studies have indicated sensory 

receptors that monitor body orientation become less sensitive with ageing (Goble et al, 

2009) resulting in an increased incidence of falls (Horak, 2006) and an overreliance on 

visual feedback (Simoneau et al 1999) which can disrupt postural control when visual 

inputs are altered or unreliable (Jeka et al, 2010). 

4.4 Vestibular System 
 

The vestibular system, which provides a leading contribution to the sense of balance 

and spatial orientation for the purpose of coordinating movement with balance, is 

thought to be effected by ageing alongside the visual and the somatosensory systems. It 

is comprised of peripheral sensory end organs and a complex network of central 

neurons. The peripheral anatomy and physiology are responsible for sensing the 

degree and direction of  acceleration, as well as providing a sense of orientation of 

the head with respect to gravity. The central connections, including the vestibular 

nuclei, are responsible for processing the numerous sensory inputs. Although the 

impact of the vestibular system on balance is difficult to quantify, the damaging 

impact of ageing on the vestibular system is serious both medically and economically 

however the measurable impact from these anatomical changes remains indefinable. 

Tests of vestibular function are often unable quantify such anatomical deterioration, or 

they are insensitive to the associated physiologic decline and/or central 

compensatory mechanisms that accompany the vestibular age 

ing process (Zalewki, 2015). 

The equilibrium results imply that the young, middle aged and old cannot rely on the 

vestibular system to maintain balance, as there is a significant difference between 

condition 1 and condition 5, suggesting that this sensory system needs to be used in 

combination with the other sensory systems, but the contributions of the vestibular 

system are undoubtedly critical. This is particularly evident when functioning in 

vestibular-dependent environments where visual and somatosensory cues are 

compromised (Peterka, 2002). 

The significant difference between young and old and middle aged and old for condition 

5 suggests that when there is no visual input and the support surface is unstable the 

balance for ‘old’ is much worse than for young and middle aged. 
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The results from the sensory analysis, which reflect the sensory ratios 

computed from the average equilibrium, showed a significant difference in 

vestibular function between middle aged and old. This implies a significant 

reduction in ability to use the vestibular system to maintain balance in once in 

the ‘Old’ group. 

4.5 Ankle Strategy vs Hip Strategy 

The relative amount of movement about the ankles, known as ‘ankle strategy’ and 

about the hips, known as ‘hip strategy’, used by the participants to maintain balance 

during each trial was quantified using the strategy analysis from the ‘Sensory 

Organisation Test’. 

Normally, individuals would rely on ankle strategy when on a stable surface and transition 

to hip strategy as the surface became unstable. A score near 100 indicates a full ankle 

strategy, whereas a score near 0 indicates a full hip strategy. These strategies can be 

used separately or together in varying degrees to produce optimal and adaptable 

balance control, depending on the difficulty of the balance task (Hwang et al. 2009). 

 

The ankle strategy, which is designed to use its surrounding musculature to maintain 

an upright position, involves delayed activation of the ankle, thigh and trunk muscles 

radiating distally to proximally on the same dorsal or ventral aspect of the body. 

When the perturbation is larger than that the ankles can correct, the ankle strategy is 

no longer sufficient to prevent a fall, which often leads to a hip strategy being used. 

The hip strategy involves the delayed activation of the trunk and thigh muscles, 

radiating in a proximal-to- distal fashion. For example, in response to a posterior 

movement of the support surface the ankle strategy would result in activation of the 

ankle plantar-flexors, knee flexors and hip extensors, while the hip strategy would 

result in activation of the knee extensors and hip flexors. The hip joint can also move 

in all directions; therefore the hip is also a great joint to defend against falling 

because it can correct any medium to large perturbation in any direction. The last 

defence against a fall is the step strategy, which was marked as a fall on the balance 

master, and this occurs when the perturbation is so large that the hip strategy is not 

sufficient. 

The strategy analysis suggested that there was not a significant difference between 
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age groups with which strategy was used. This suggests ageing is not a factor effecting 

strategy. Therefore, we rejected the hypothesis that ‘Old would use a hip dominant 

strategy’ and accept the null hypothesis.  

Although this finding is contradictory to other findings that suggest that the elderly 

tend to use more of a hip strategy (Kanekar and Aruin, 2014), an ankle joint strategy 

is ordinarily used when there is a small amount of body sway on a solid base of 

support. It is the first postural adjustment strategy to be used and refers to primarily 

recovering upright standing balance through muscular contraction of the ankle joint 

(Choi and Kim, 2015). This suggests that although hip strategy can become 

dominant with age, the ankle strategy is the normal preferred strategy to prevent 

falls. 

For conditions 1, 2, and 3, nearly a complete ankle strategy was used whereas for 4, 5, 

and 6, a combination strategy was used. Although this was primarily ankle strategy, 

the involvement of hip strategy when the support surface was unstable suggests that 

when the body is moved outside of its normal parameters the body relies on a hip 

strategy to maintain an upright position. 

4.6 ‘MCT’ Latency (ms) 

Response latency is defined as the time in milliseconds between the onset of force 

plate translation and initiation of the active force response in a leg, to prevent a fall. 

There was a significant difference between condition scores, independent of age. 

Therefore, we assumed that the size and direction of force plate translation is 

directly linked to response time, and this reaction is not effected by age. 

 

However, the results showed a significant difference in response latency between ‘Young’ 

and ‘Old’ for all large translations. This implies that once the translations reach a 

specific size, the elderly have a significantly slower reaction time than the young, 

which suggests that with ageing response speed is slower. This can lead to falls, due 

to taking too long to correct balance. The significant difference between Young and 

Middle aged for large forwards translations, suggests that for forwards translations, 

the effect of ageing begins younger than for backwards, as it also effects the middle 

aged compared to young. A study carried out by Youn et el, divided a group of fallers 

by fall direction, with 45 out of 62 being forwards fallers (Youn et al, 2017). This 
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suggests that falling forwards is more common and may explain why there is a significant 

difference for forwards translations between young and middle aged. 

4.7 MCT Amplitude Scaling 

The amplitude scaling represents the strength of each leg following the translations. The 

significant difference between condition score for Y, MA and O suggests that the size and 

direction of translation effects the efficacy of response for all ages. 

For Old, there is a significant difference between forwards translations and 

backwards translations for small, medium and large translations, implying that the 

direction of the translation only effects the amplitude for a set size once participants are 

‘Old’. As scores are higher, reflecting more movement per second for forwards 

translations, it suggests that the elderly struggle to correct balance more when the 

translations are forwards. 

However, there was only a significant difference in amplitude scaling between age 

groups for small translations. This suggests that when translations are larger than small, 

age is not a contributing factor to how the participants react to it. 

4.8 MCT Strength Symmetry 

MCT strength symmetry represents the symmetry of balance response between each leg. 

For example, if one leg had a significantly larger response than the other did, this 

could decrease balance. In a study by Hamada et al, normal subjects demonstrated a 

high degree of symmetry of response strengths for both legs and both directions of 

translation. Because the neural pathways innervating each leg and mediating backward 

and forward movements 

 

were relatively independent, asymmetries of strength could occur in many combinations 

(Hamada et al, 2014). 

The lack of significant difference between conditions for all age groups suggested that the 

size and direction of translation does not effect strength symmetry. This could suggest 

that strength symmetry is not heavily involved in balance. However, a significant 

difference was identified for ‘Large Forwards’ translation between ‘Young’ and ‘Middle 

Aged’ suggesting that middle age have significantly less strength symmetry than 

Young. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/neural-pathway
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The conservation of muscle strength during ageing is vital. However, in healthy elderly 

people a reduction in muscle mass and muscle strength is usually observed (Lexell, 

1995). Lower extremity muscle weakness and power and balance impairment are 

major independent intrinsic contributors to falls and susceptibility to intervention. The 

association between postural stability and muscular strength of the lower limbs 

received little attention in the literature although the gradual loss of muscle strength 

results in functional impairment and in an increased risk of falling (Wolfson et al, 

1995). A consequence of reduced muscle strength would be a reduction in strength 

symmetry. 

 
 

4.9 MCT Weight Symmetry 

During the trial, when the participants’ feet are properly placed on the dual force 

plate, weight symmetry scores near 100 indicate that both legs are carrying equal 

weight. Values to the right or left of the normal limits indicate that there is a 

disproportionate amount of body weight being either carried by the right or left leg. 

For all conditions (size and direction of translation), there was a significant difference 

between ‘Old’ and ‘Middle Aged’. This suggests that once participants are ‘Old’, there 

is a significant reduction in weight symmetry. Although Gait and balance disorders are 

common in older adults and are a major cause of falls in this population (Salzman et 

al 2016), not many studies have looked into weight symmetry as a cause for balance 

loss in the older population. 



37 

 

 

 
 

4.10 Unilateral Stance Test 

The unilateral stance test quantifies the ability to maintain postural stability whilst 

standing on one leg, with eyes open and eyes closed. Reasons Causes of participants 

showing signs of being unstable include difficulty using visual or somatosensory 

information for balance control, and/or musculoskeletal problems that make it difficult 

to correct lost balance. 

There was a significant difference for ‘Young’, ‘Middle Aged’, and ‘Old’ between all 

conditions, suggesting that having eyes open/closed, and the leg being stood on 

effects balance. This also implies that balance stronger when stood on the dominant leg, 

as there is a significant difference between legs. 

For both the right and left leg there was significant difference between eyes open 

and eyes closed, this suggests that when stood on one leg, visual input is vital for 

maintaining balance, supporting the hypothesis that ‘Visual Input is crucial for 

maintaining balance at all ages’. As there is no significant difference between ages, it 

implies that age is not a factor effecting unilateral stance stability. 

4.11 Limitations 

 
Although a large sample of data was collected from 62 participants, there were 

only 12 participants in the ‘Old’ group. A larger sample size for this age group, 

with a more equal gender split would have been more representative of the 

general population. 

Participants with visual impairments were allowed to be included in the study, if 

they wore their normal corrective glasses. However, no further assessment was 

taken. This could have effected the results of the study. If a repeat of the study 

was conducted, it would be better to not allow participants with visual 

impairments in case this effected the results.  

4.12 Conclusion 
 

With increasing age, the balance function of older people will decline (Schmitz et al, 

2007), such as decreased nerve conduction velocity (Valerio et al, 2004e), increased 

central processing time (Finkel et al, 2007), decreased muscle strength (Perry et al, 

2007) and increased passive tissue stiffness (Devita et al, 2000). The deteriorated 
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balance function may increase the risk of falls in older adults (Melzer et al, 2004). 

Alongside ageing, there are other factors, which can effect the rate of balance 

decline including gender and education level (Fang et al 2015). Exercise, such as long 

term physical exercise (Seco et al 2013), can also effect the rate of balance decline, 

with older people who practised tai chi being more likely to maintain a stable posture 

while doing challenging balance tasks (Wong et al, 2001). 

 

Sleep deprivation can also effect balance performance, with subject who experienced 

one night of sleep deprivation demonstrating postural instability (Ma et al, 2009). 

The Hypothesis that ‘Visual input is crucial for maintaining balance for all ages’ was 

accepted, which suggests that the visual system is one of the most important for 

maintaining balance. We also discovered that ‘Young’ adults are the only age group in 

the study, which were able to rely on the somatosensory system to maintain balance, 

whereas none of the age groups could use to vestibular system alone to maintain 

balance. 

4.13 Implications for future research  

This research would be a good foundation to a training study, to investigate the 

effects of exercise on improving postural balance, with the aim to reduce the 

incidence of falls, particularly amongst the elderly.  

Loss of muscle mass and slowing of movements seem to be inevitable changes in 

old age. They are associated with poor balance and high falls risk. The most 

effective way to reduce falls risk is exercise which should provide a moderate or high 

challenge to balance and be undertaken for at least 2 hours per week on an ongoing 

basis. (Sherrington et al., 2011).  

This could include standardised assessments of leg strength and power, as well as 

more detailed measurements of postural control under steady conditions and 

responses to perturbation (using the Balance Master). Participants could then 

complete exercise training to improve physical function and balance amongst the 

elderly. Assessments could include detailed neuromuscular imaging (MRI and DXA) 

and motor unit recordings (surface and intramuscular EMG) during isometric 

contractions. They could also include a sensory organisation test using the Equitest 
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Balance Master to identify deficits to vestibular, visual and proprioceptive inputs 

(Palumbo et al., 2001).  
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