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Abstract: Riparian and deltaic areas exhibit a high biodiversity and offer a number of ecosystem 12 

services but are often degraded by human activities. Dams, for example, alter the hydrologic and 13 

sediment regimes of rivers and can negatively affect riparian areas and deltas. In order to sustainably 14 

manage these ecosystems, it is, therefore, essential to assess and monitor the impacts of dams. To this 15 

end, site-assessments and in-situ measurements have commonly been used in the past, but these can 16 

be laborious, resource demanding and time consuming. Here, we investigated the impact of three 17 

dams on the riparian forest of the Nestos River Delta in Greece by employing multi-temporal satellite 18 

data. We assessed the evolution in the values of eight vegetation indices over 27 years, derived from 19 

14 dates of Landsat data. We also employed a modelling approach, using a machine learning Random 20 

Forests model, to investigate potential linkages between the observed changes in the indices and a 21 

host of climatic and topoedaphic parameters. Our results show that low density vegetation (0-25%) 22 

is more affected by the construction of the dams due to its proximity to anthropogenic influences and 23 

the effects of hydrologic regime alteration. In contrast, higher density vegetation cover (50-75%) 24 

appears to be largely unaffected, or even improving, due to its proximity to the river, while vegetation 25 

with intermediate coverage (25-49%) exhibits no clear trend in the Landsat-derived indices. The 26 

Random Forests model found that the most important parameters for the riparian vegetation (based 27 

on the Mean Decrease Gini and the Mean Decrease Accuracy) were the distance to the dams, the sea 28 
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and the river. Our results suggest that management plans of riparian and deltaic areas need to 29 

incorporate and take into consideration new innovative management practices and monitoring studies 30 

that employ multi-temporal satellite data archives. 31 

Keywords: remote sensing, vegetation alterations, Landsat images, anthropogenic impacts, riparian 32 

forest 33 

1. Introduction 34 

Riparian and deltaic areas are unique in that they are both semi-aquatic and ecotones: transition 35 

zones between terrestrial and aquatic ecosystems (Naiman et al., 2005). Both ecosystems are 36 

disturbance-driven, with frequent flood and drought cycles, a greater soil water availability and higher 37 

water table year around, which leads to the presence of tall and dense hydrophyllic vegetation and 38 

represent a nexus of high biodiversity and increased ecosystem services (Sabo et al., 2005; Zaimes et 39 

al., 2011a).  40 

Approximately 25% of the world’s population lives on deltaic coastlines and wetlands with this 41 

percentage expected to increase in the future (Syvitski et al., 2005), which means that anthropogenic 42 

activities will continue to alter them (Corbacho et al., 2003). The numerous threats they face, along 43 

with the many ecosystem services they offer, have led to their protection status by the Ramsar 44 

Convention (Ramsar, 2009) and the Natura 2000 Network (European Commission, 2007); their 45 

conservation or re-establishment, especially in human-modified environments, has become a 46 

worldwide priority (National Research Council, 2002).  47 

The riparian and deltaic ecosystems are created, structured, maintained or destroyed by stream 48 

water and the solutes and sediments (Naiman et al., 2005). Attempts to regulate the natural flow 49 

regimes have direct effects on this equilibrium and consequently on the stream, river, adjacent 50 

riparian areas and deltas. Dams regulate natural flow regimes and trap sediment, thus changing the 51 

historical channel dynamics, fluvial geomorphology and vegetation disturbances downstream (Dunne 52 

and Leopold, 1978; Simons and Li, 1980; Williams and Wolman, 1984; Chien, 1995; Brandt, 2000; 53 

Shields et al., 2000). In most cases, these changes have major consequences on riparian vegetation 54 

species, spatial and temporal structures and distributions (Williams and Wolman, 1984; Merritt and 55 

Cooper, 2000; Shafroth et al., 2002; Zahar et al., 2008). In the Mediterranean region, rivers have 56 

suffered a significant reduction in freshwater discharge with dam constructions one of the main 57 

reasons (Ludwig et al., 2009). Consequently, the significant changes in the riparian vegetation 58 

recorded in Mijares River, Spain and Avia, Homem and Lima Rivers in Portugal (Garófano-Gómez 59 
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et al., 2013; Aguiar et al., 2016) and the coastal erosion and delta degradation in the Po Delta in Italy 60 

and Nile Delta in Egypt (Simeoni and Corbau, 2009; Stanley and Clemente, 2017) are to be expected. 61 

The increases in extreme weather events due to climate change, particularly increased rainfall 62 

intensity and extended drought periods compared to past conditions, should lead to higher surface 63 

runoff and streamflows, higher sediment transport capacity and increased soil erosion (Giupponi and 64 

Shechter, 2003). These changes in the hydrologic regimes should also impacts the process and 65 

functionality of the riparian and deltaic ecosystems. In addition, the coastal areas where almost all 66 

major deltas are located, face the adverse consequences of climate change such as coastal erosion and 67 

sea-level rise that are expected to further degrade them (Blum et al., 2000; Nicholls et al., 2007).  68 

To evaluate and monitor the impacts of anthropogenic activities on vegetation condition, site-69 

assessments and in-situ measurements have traditionally been undertaken (Parkes et al., 2003; 70 

Gibbons and Freudenberger, 2006). These types of approaches can be laborious, resource demanding 71 

and time consuming, especially when examining large areas (Garófano-Gómez et al., 2011). 72 

Moreover, traditional approaches relying on field measurements are limited by topographic and 73 

climatic conditions, as well as accessibility to remote areas. The technological advancements in the 74 

field of Earth Observation (EO), has contributed to the widespread use of satellite remote sensing 75 

approaches in the monitoring of the Earth’s surface (Coppin et al., 2004; Rozenstein and Karnieli, 76 

2011) including mapping and monitoring indicators of vegetation condition (Lausch et al. 2017; 77 

Newell et al., 2006; Sheffield, 2006; Wallace et al., 2006). The increase is due to the more readily 78 

available satellite data (Belward and Skøien, 2014) that can facilitate the growing demand for multi-79 

spectral and multi-temporal information over a wide range of spatial and temporal scales and data 80 

types (e.g. Hansen et al., 2013; Zeng et al., 2008; Bellone et al., 2009; Zhu and Woodcock, 2013).  81 

With the Landsat program running for more than four decades now, medium spatial resolution 82 

satellite images have been widely used for monitoring land cover and associated changes (Hansen 83 

and Loveland, 2012). These data have several advantages with the most prominent being the opening 84 

of the Landsat archive in 2008, offering readily available data at no cost and making it the most cost-85 

effective option for studies that span decades and cover large extents (Wulder et al., 2012). The use 86 

of remote sensing for assessing ecological properties of vegetation has been reviewed 87 

comprehensively (Nagendra, 2001; Kerr and Ostrovsky, 2003; Turner et al., 2003; Gillespie et al., 88 

2008; Asner and Martin, 2009; Ustin and Gamon, 2010; Schimel et al., 2013). Commonly, vegetation 89 

indices are used as proxies in the analysis of temporal trends in vegetation condition (Kerr and 90 

Ostrovsky, 2003; Pettorelli et al. 2005; Higginbottom and Symeonakis, 2014). Vegetation indices 91 
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have been also used for riparian areas (Alphan, 2013; Carle and Sasser 2016; Wilson et al., 2016; 92 

Yang et al., 2018) and could be important tools for their sustainable management. 93 

Prediction models can be used to explore the correlation between changes in vegetation 94 

condition and other environmental variables. Random Forests (Breiman, 2001) is a modelling 95 

framework that has been used, in combination with several environmental and climatic variables, for 96 

coastal and riparian vegetation studies to assess candidate bioindicators for ecological quality (Cortes 97 

et al., 2013), to assess and quantify riparian quality (Fernández et al., 2014) and species dynamics 98 

(Harper et al. 2011), to classify riparian vegetation (Chignell et al. 2017; Hayes et al., 2014; Nguyen 99 

et al. 2019; Tulbure et al. 2016; Woodward et al. 2018), to determine the wetland plant indices of 100 

biological integrity (Jones et al., 2016), and to assess the condition of freshwater wetlands (Miller et 101 

al., 2016).  102 

The riparian vegetation of deltaic areas is the result of fluvio-deltaic and marine sedimentation 103 

processes (Trincardi et al., 2005), and therefore, climatic, sedimentary and tectonic processes 104 

(Overeem, 2005), along with natural and human-driven changes (Syvitski and Saito, 2007), are 105 

important for their formation conservation and functionality. Within this context, this study aims to 106 

investigate the impact of the dam constructions on riparian and deltaic vegetation along the Nestos 107 

Delta in Greece. It is hypothesized that since riparian and deltaic areas are dynamic, disturbance-108 

driven ecosystems (e.g. affected by floods and droughts), any change from regulating or altering the 109 

natural flow and sediment regime would have a direct effect on the riparian and deltaic vegetation 110 

dynamics. A multi-temporal analysis is undertaken with data of eight Landsat-derived vegetation 111 

indices that span 27 years in order to capture the evolution of the spectral indices before and after the 112 

construction of the dams. The effect of the dams construction on the vegetation is also assessed with 113 

a modelling exercise (Random Forests) that was carried out to explore any associations between the 114 

changes observed in the vegetation indices and a suite of climatic and spatial variables. Models are 115 

tools that abstractly replicate complex interactions and nonlinear relationships, which are prevalent 116 

in heterogenous ecosystems, such as riparian.  These tools are able to characterize parts of the 117 

complexity and delineate the factors of differing importance.  118 

2. Material and methods 119 

2.1 Study site 120 

The riparian forest of the Nestos Delta (Figure 1) was one of the biggest in the Mediterranean 121 

(Sylaios and Kamidis, 2018). In the last century it has experienced significant Land-use Land-Change 122 

(LULC) transitions (Mallinis et al., 2011; Zaimes et al., 2011b). In the 1920s, it covered about 12,000 123 
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ha and was reduced to 7,000 ha in the 1940s, while today it covers only 800 ha. The forested area 124 

was gradually converted to farmland after the 1930s while the river channels were straightened, and 125 

dykes were constructed. In the 1970s, a significant policy change occurred, and legislation was passed 126 

to protect the Delta and so its degradation was halted. Despite its significantly reduced area, the 127 

Nestos Delta still hosts one of the most unique and highly ecologically significant riparian forests in 128 

the Mediterranean region (Sylaios and Kamidis, 2018). It hosts four natural riparian forest habitat 129 

types, as described in Annex I of Directive 92/43/EEC: a) a residual alluvial forest (Alnionglutinoso-130 

incanae); b) a mixed oak-elm-ash forest of great rivers; c) Salix alba and Populus alba gallery, and 131 

d) a thermo-Mediterranean riparian gallery (Nerio-Tamariceteae) and south-west Iberian Peninsula 132 

riparian gallery (Securinegiontinctoriae). The complexity and rare vegetation of the riparian forests 133 

provides an excellent habitat for rare aquatic birds to breed and for migrating species to rest. The 134 

Delta hosts 307 different bird species (34 of which are endangered based on the IUCN Red book), as 135 

well as many species of mammals, reptiles and insects (Mallinis et al., 2011). This is why the Nestos 136 

Delta is protected at the national, EU and international level1.  137 

While the entire Delta is in Greece the Nestos/Mesta River is transboundary. Specifically, the river’s 138 

length is 234 km (130 km in Greece) as it starts in the Rila Mountain of Bulgaria and ends in the 139 

Aegean Sea on Greece (Ganoulis et al., 2008; Samaras and Koutitas, 2008). An international treaty 140 

on the water use between Greece and Bulgaria in 1995 has entitled Greece with 29% of Nestos waters 141 

(Mylopoulos et al., 2004). The main river and many of the tributaries of the Nestos River are used for 142 

hydroelectricity, irrigation and eco-tourism. The Nestos Basin is mostly mountainous, while its 143 

alluvial plain represents 18.2% of the total basin area and is cultivated by arable crops and includes 144 

the Nestos Delta. The main crops grown are soft wheat (Triticum aestivum), durum wheat (Triticum 145 

durum), sugar beet (Beta vulgaris), cotton (Gossypium herbaceum), rice (Oryza sativa), barley 146 

(Hordeum vulgare), maize (Zea mays), asparagus (Asparagus officinalis), alfalfa (Medicago sativa) 147 

and tobacco (Nicotiana spp). The Delta also has some of the most productive fish farms in Greece. 148 

The largest urban area is the city of Chrisoupoli with approximately 8,000 people (Papachristou et 149 

al., 2000). During periods of high streamflow, the channel width in the plain areas can reach up to 20 150 

m, while the sandy bed of the river changes constantly. Finally, the minimum flow arriving to the 151 

Delta was established legally at 6 m3/s. 152 

                                                           
1 The Delta is protected as: a) “Nestos Delta and adjacent lagoons” - Wetland of International Importance (Ramsar Convention); b) “Nestos Delta, 

Keramoti lagoons and island Thasopoula” - Special Protection Area (GR 1150001, Natura 2000 Network); c) “Nestos Delta, Keramoti Lagoons - 

surrounding region and coastal area” -  Special Areas for Conservation (GR 1150010, Natura 2000 Network), d) Nestos Forest “Kotza Orman” - Wildlife 
Refuge, and e) Nestos Delta wetlands, Lake Vistonida with lagoonal and lacustrine features, Lake Ismarida and the wider region - National Park with 

Regional zone (JMD 44549/2008, Official Gazette 497/A/ 17-10-2008). 
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Of major importance for the functionality of the Delta, are two major hydropower dams, and a 153 

minor irrigation dam, located 30 km upstream from its mouth. The Platanovryssi hydropower dam 154 

that has been operating since 1997 has a height of 95 m and its reservoir capacity is 57,000,000 m3. 155 

Upstream is the Thissavros dam that has been operating since 1999, has a height of 172 m and a 156 

reservoir capacity of 705,000,000 m3. Finally, the Toxotes dam serves the irrigation network of the 157 

region and consists of two channels which distribute water to the east (11 m3/s) and west (9 m3/s) 158 

sections of the plain (Kamidis, 2011) (Figure 1). 159 

 160 

Figure 1: Location of the study area, a) within Greece, b) the Nestos river and location of the three dams and 161 

c) the sampling locations. 162 

 163 
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2.2 Data processing 164 

The sequence of methodologies followed are depicted in detail in Figure 2.  165 

 166 

Figure 2: Flowchart of the methodological steps followed throughout the study. 167 
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2.2.1 Evolution of vegetation indices  168 

A total of 14 Landsat images (SM Table 1) spanning 27 years from 1989 to 2016 were 169 

acquired for the time series analysis. The acquisition strategy was designed in a way that met certain 170 

quality standards, namely, to have no cloud cover during the summer months (June, July, August), to 171 

avoid, as much as possible, phenological variation, and to exclude imagery with the scan line 172 

corrector malfunctioning of Landsat 7 ETM+ after 2003. The criteria led us to end up with images 173 

from three different sensors of Landsat with a spatial resolution of 30m. 174 

Since our study involved spectral indices, the images needed to be corrected radiometrically 175 

and normalized atmospherically in order to avoid any discrepancies due to the multi-temporal and 176 

double-sensor type of analysis (Song et al. 2001). Following the approach implemented by Gounaridis 177 

et al. (2014), the first step was to convert the DN numbers into top-of-atmosphere reflectance using 178 

the dark-object subtraction method (Chavez, 1988). To obtain surface reflectance and achieve data 179 

normalization, we applied the 6S model originally introduced by Vermote et al. (1997). Topographic 180 

correction was not performed since the study area is a plain (elevation differences less than 20 m).  181 

Eight spectral indices were selected to represent a range of spectral responses of vegetation 182 

condition over the study period (Table 1). This included the two-band version of the enhanced 183 

Vegetation Index (EVI2), which is a broadly used index for vegetation monitoring. This two-band 184 

version does not take into account the reflectance in the blue band and, in general, is preferred when 185 

the data are atmospherically corrected (Jiang et al., 2007). Complementary to EVI2, we also include 186 

the Normalized Difference Vegetation Index (NDVI), the modified Normalized Difference Water 187 

Index (NDWI), the Green Atmospherically Resistant Index (GARI) and the Normalized Difference 188 

Burning Ratio (NDBR), which are often used for monitoring forest disturbance (Hermosilla et al., 189 

2015; Jarron et al., 2016). These indices take into account the shortwave infrared (SWIR) part of the 190 

wavelength, which is sensitive to moisture conditions that are important for the riparian vegetation. 191 

Similar to the modified NDWI, is the Land Surface Water Index (LSWI), which involves a band 192 

combination based on the SWIR part of the wavelength and appears to be useful in extracting the 193 

vegetation water status in the canopies (Chandrasekar et al. 2010). In addition, we included the 194 

Vegetation Condition Index (VCI), which is derived from an equation involving the minimum and 195 

maximum values of the NDVI. This index is often used to reflect relative changes in the moisture 196 

condition of vegetation and the values correspond to vegetation health and levels of stress (Pei et al., 197 

2018). Finally, we also included the Perpendicular Vegetation Index (PVI), which is mainly used for 198 

the assessment of surface vegetation parameters, such as chlorophyll content, reducing the 199 
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disturbance of the soil background when extracting vegetation signals from multispectral bands 200 

(Richardson and Wiegand, 1987).  201 

The evolution of the eight vegetation indices over the study period were captured at 573 202 

random samples dispersed across the riparian forest of the Delta. We opted to split the initial sampling 203 

locations into three intervals according to the percentage of tree coverage (Figure 1). The three 204 

intervals were chosen based on the Global Forest Change Product (Hansen et al., 2013). Therefore, 205 

we allocated 299 random samples to areas with tree coverage between 0% and 24%, 150 random 206 

samples to areas with tree coverage between 25% and 49% and 124 samples to areas with tree 207 

coverage between 50% and 75% (which is the maximum tree coverage found in the area). The values 208 

of the eight vegetation indices for each of the 14 dates (SM Table 1) were sampled on the location of 209 

every training point.  210 

Table 1. The eight Landsat-based vegetation indices used in this study 211 

Abbreviation Index name Formula Range Reference 

EVI 2 
2 band Enhanced 

Vegetation 
Index (EVI) 

EVI2 = 2.5 * (NIR - RED) / (NIR + 2.4 
* RED + 1.0) 

-1 to 1 Jiang et al. 2007 

GARI 

Green 
Atmospherically 

Resistant 
vegetation Index 

GARI = (NIR - (GREEN - (BLUE - 
RED))) / (NIR + (GREEN - (BLUE - 

RED))) 
-1 to 1 Gitelson et al. 1996 

LSWI 
Land Surface 
Water Index  

LSWI = (NNIR - SWIR) / (NIR + 
SWIR) 

-1 to 1 Chandrasekar et al. 2010 

NDBR 
Normalized 

Difference Burning 
Ratio 

NDBR = (NIR - SWIR) / (NIR + SWIR) -1 to 1 Key et al. 2002 

NDVI 
Normalized 
Difference 

Vegetation Index 
MDVI = (NIR - RED) / (NIR + RED) -1 to 1 Tucker, 1979 

NDWI 
Normalized 

Difference Water 
Index  

NDWI = (GREEN - NIR) / (GREEN + 
NIR) 

-1 to 1 Gao, 1996 

PVI 
Perpendicular 

Vegetation Index 
PVI = (NIR – α RED – b)/(1 + α²) 

where NIR = α RED + b  
>0 Richardson and Wiegand, 1977 

VCI 
Vegetation 

Condition Index 
(NDVI - NDVImin) / (NDVImax - 

NDVImin) 
0-100 Liu and Kogan, 1996 

2.2.2 Modelling of vegetation change 212 

We explored any associations between the changes observed in the vegetation indices in the 27-year 213 

study period and a number of external variables. To do so, we processed a suite of 26 climatic and 214 

other distance-based spatial parameters (Table 2) that could potentially have an effect on the spatial 215 

configuration of changes in the values of the vegetation indices.  216 

 217 
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Table 2. List of data used as predictors in the Random Forest modelling (1 Global Land Survey Digital Elevation 218 
Model http://glcf.umd.edu/data/glsdem/ ; 2 Gounaridis et al. (2016), Journal of Maps, 12, 1055-1062; 3 219 
http://worldclim.org/version2 Fick, S.E., Hijmans, R.J. (2017). International Journal of Climatology, 37, 4302-220 
4315)  221 

Acronym Variable Discription Source 
Time 

interval 

Territorial variables 

dem Elevation Elevation in m GLSDEM1 (-) 
slope Slope Slope in degrees ˮ (-) 

dist_crops Distance from croplands Euclidean distance from croplands in m 
Gounaridis et 

al. 20162 
2010 

dist_sea Distance from sea Euclidean distance from the shoreline in m (-) (-) 

dist_river Distance from river 
Euclidean distance from the Nestos river in 

m 
(-) (-) 

dist_dams Distance from dams 
Euclidean distance from Thisavros and 

Platanovrissi dams in m 
(-) (-) 

dist_resid 
Distance from 

residential areas 
Euclidean distance from residential areas in 

m 
Gounaridis et 

al. 2016 
2010 

Climatic variables 

bioclim 01 
 Annual Mean 
Temperature  Annual Mean Temperature 1970 - 2000 

WorldClim3 1970-2000 

bioclim 02  Mean Diurnal Range  (Mean of monthly (max temp - min temp)) ˮ ˮ 
bioclim 03  Isothermality  (bioclim 02 / bioclim 07)(*100) ˮ ˮ 

bioclim 04 
 Temperature 

Seasonality  
(standard deviation *100) ˮ 

ˮ 

bioclim 05 
 Max Temperature of 

Warmest Month  Max Temperature of Warmest Month 
ˮ 

ˮ 

bioclim 06 
 Min Temperature of 

Coldest Month  Min Temperature of Coldest Month 
ˮ 

ˮ 

bioclim 07 
 Temperature Annual 

Range 
 (bioclim 05 - bioclim 06) ˮ 

ˮ 

bioclim 08 
 Mean Temperature of 

Wettest Quarter 
 Mean Temperature of Wettest period of 

three months 
ˮ 

ˮ 

bioclim 09 
 Mean Temperature of 

Driest Quarter 
 Mean Temperature of Driest period of 

three months 
ˮ 

ˮ 

bioclim 10 
 Mean Temperature of 

Warmest Quarter 
 Mean Temperature of Warmest period of 

three months 
ˮ 

ˮ 

bioclim 11 
 Mean Temperature of 

Coldest Quarter 
 Mean Temperature of Coldest period of 

three months 
ˮ 

ˮ 

bioclim 12  Annual Precipitation  Annual Precipitation ˮ ˮ 

bioclim 13 
 Precipitation of Wettest 

Month  Precipitation of Wettest Month 
ˮ 

ˮ 

bioclim 14 
 Precipitation of Driest 

Month  Precipitation of Driest Month 
ˮ 

ˮ 

bioclim 15 
 Precipitation 
Seasonality  

(Coefficient of Variation) ˮ 
ˮ 

bioclim 16 
 Precipitation of Wettest 

Quarter 
 Precipitation of Wettest period of three 

months 
ˮ 

ˮ 

bioclim 17 
 Precipitation of Driest 

Quarter 
 Precipitation of Driest period of three 

months 
ˮ 

ˮ 

bioclim 18 
 Precipitation of 

Warmest Quarter 
 Precipitation of Warmest period of three 

months 
ˮ 

ˮ 

bioclim 19 
 Precipitation of Coldest 

Quarter 
 Precipitation of Coldest period of three 

months 
ˮ ˮ 

Two parameters related with the relief were considered: elevation and slope that were based 222 

on the Global Land Survey Digital Elevation Model (GLSDEM). Apart from the distance to the three 223 

http://glcf.umd.edu/data/glsdem/
http://worldclim.org/version2
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dams, the distance to cropland and residential areas were also chosen as factors that might affect the 224 

vegetation health and condition. The distance to the river was included as a potential spatial 225 

determinant of the soil moisture availability to the riparian vegetation. Finally, the distance to the sea 226 

was also included in the model to capture the geomorphological changes as we get closer to the 227 

coastline. All distances were computed using the Euclidean distance function. For the climatic 228 

parameters, the latest version of the WorldClim database (Fick et al. 2017) was employed. WorldClim 229 

v.2 is a set of 19 gridded climate layers at the global level, with a spatial resolution of ~1 km2. The 230 

dataset includes a wide range of temperature and precipitation data reported annually and quarterly 231 

spanning three decades (Table 2).  232 

2.3 Model implementation  233 

We opted to use Random Forests (RF) (Breiman, 2001), which is a robust non-parametric, 234 

machine learning algorithm. RF has several advantages that make it suitable for our approach. First, 235 

RF can efficiently handle heterogenous inputs with different nature (categorical, continuous) and 236 

scaling and from multiple sources (Gounaridis and Koukoulas 2016; Gounaridis et al. 2018; Wang et 237 

al. 2018). Second, the algorithm randomly selects a part of the training samples as well as a part of 238 

predictor variables, resulting in a number of independent to each other and identically distributed, 239 

regression trees. The randomness on the one hand and the independency of the regression trees on 240 

the other, makes RF insensitive to overfitting, to collinearity issues as well as to outliers and noise 241 

(Chan and Paelinckx, 2008). Based on these two advantages of the RF, we were able to incorporate 242 

in the model several predictors that were deemed to have an effect on the changes in vegetation 243 

condition. Another important advantage of the RF model is that it offers meaningful metrics that 244 

reflect the importance of each predictor variable (Gounaridis et al., 2019). This set of metrics was 245 

critical in our case in order to reveal any possible association between the external factors and the 246 

changes in vegetation indices.   247 

The regression version of the Random Forests (RF) model (Breiman 2001) was implemented 248 

in R using the RandomForest package (Liaw and Wiener 2002). As a response variable, Δ was 249 

computed for each index, which is the difference between two subsequent dates. In our case, it was 250 

reasonable to compute Δ for each index between 1989 and 2016, in order to obtain the difference that 251 

occurred throughout the study period. These 26 territorial and climatic variables served as predictors 252 

to the RF models. To fine tune these models, five predictor variables (equal to the square root of the 253 

total number of predictor variables) were used for each tree split and 1000 trees for each run.  254 

To quantify the actual importance and contribution for each of the 26 predictor variables, the 255 

analysis included two metrics: a) the Mean Decrease Accuracy and b) the Mean Decrease Gini. The 256 
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Mean Decrease Accuracy is a measure of how much the accuracy decreases if a variable is excluded 257 

from the model. Therefore, this metric can be considered as a proxy for the importance of a variable. 258 

The Mean Decrease Gini is a measure of each variable’s contribution to the impurity of the resulting 259 

trees in the RF model: variables with a high value in Mean Decrease Gini contribute more to the 260 

model’s homogeneity (Gounaridis et al., 2019). 261 

3. Results  262 

3.1 Evolution of vegetation indices  263 

Our first step was to capture the evolution of the spectral indices before and after the 264 

construction of the dams. Eight complementary vegetation indices allowed for the comparison of 265 

vegetation trends during the 27-year period of the study. The fluctuations over the study period were 266 

captured at 573 random samples dispersed across the riparian forest of the Nestos Delta. Regarding 267 

the overall trend throughout the study period, it appears to be steady for the LSWI, NDWI and VCI, 268 

increasing for the PVI and NDVI and decreasing for the NDBR, EVI2 and GARI. 269 

These comparisons were also carried out separately for the three classes depicting varying 270 

densities of tree coverage: 0-24%, 25-49% and 50-75% (Figure 3, 4 and 5 respectively). Specifically, 271 

for the first class (Figure 3) we see an increasing trend from 1989 to 1999 and a decreasing trend from 272 

1999 to 2013 followed by an increase from 2013 to 2014 in all eight indices. The decreasing trend 273 

was more pronounced for the EVI2, NDVI and PVI. After 2014, the indices have different trends. 274 

Specifically from 2015 to 2016, the LSWI and NDBR decreased markedly while the NDWI only 275 

slightly. The other five indices decreased in 2015 but increased in 2016. The increase was more 276 

pronounced in 2016 for the GARI and VCI. However, the overall trend is a decrease for all eight 277 

indices, indicating slight degradation in the riparian vegetation of the delta. For the 25-49% class 278 

(Figure 4), the trends seem to differ more among them. Specifically, the EVI2, LSWI, NDVI and PVI 279 

showed a decreasing trend from 1989 to 1995 and only NDWI increased from 1989 to 2000. In 280 

general, most indices show an initial decreasing trend followed by a stabilizing or increasing trend in 281 

the later years. Only NDBR shows a general decreasing trend, especially in the last two years, while 282 

the NDWI has a stable trend after 2003 until the end of the study period. VI and PVI showed a 283 

decreasing trend from 1989 to 1995 and only NDWI increased from 1989 to 2000. In general, most 284 

indices show an initial decreasing trend followed by a stabilizing or increasing trend in the later years. 285 

Only NDBR shows a general decreasing trend, especially in the last two years, while the NDWI has 286 

a stable trend after 2003 until the end of the study period. 287 
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 288 

Fig. 3: Boxplots of the eight vegetation indices for the first percent tree cover interval (0-24%). 289 

 290 

Fig. 4: Fig.2: Boxplots of the eight vegetation indices for the second percent tree cover interval (25-49%). 291 

Regarding the 50-75% vegetation coverage class (Figure 5), the EVI2, GARI, NDVI, PVI and 292 

VCI had a rather unstable pattern (i.e. increase followed by a decrease in their values in every 293 

subsequent year) from 1989 till 2003. Following that, all five indices have an increasing trend: the 294 

EVI2 and GARI from 2003 to 2014, the NDVI from 2003 to 2013, and the PVI from 2003 to 2007. 295 

In the last years of the study, the pattern for four of the indices was again unstable: for the EVI2 and 296 
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GARI from 2014 to 2016, and for NDVI and PVI from 2013 to 2016. The remaining three indices 297 

(NDWI, NDBR and LSWI), followed their own, individual patterns during the entire period. 298 

 299 

Fig. 5: Boxplots of the eight vegetation indices for the third percent tree cover interval (50-75%). 300 

3.2 Modelling of vegetation change 301 

The modelling exercise was undertaken for the three different densities of tree coverage and 302 

the results were expressed with the Mean Decrease Accuracy and the Mean Decrease Gini. We 303 

focused on the top five descriptors based on the RF modelling results. For the Mean Decrease 304 

Accuracy of the 0-24% vegetation coverage (Figure 1-SM), the distance  from the dams and the 305 

distance from the sea variables were in the top five for all vegetation indices, indicating that these 306 

factors were the most influential for the models. The mean temperature of the coldest quarter (in the 307 

top five of five indices), the distance from the river (in the top five of four indices) and the 308 

precipitation seasonality (in the top five of four indices) were also important (Figure 1-SM). When 309 

looking at the Mean Decrease Gini, distance from the croplands, distance from the sea, distance from 310 

the river, distance from the dams and distance from the residential areas were in the top 5 for all 311 

indices. Out of these four, the most important was the distance from the sea (always ranked first) 312 

followed by distance from the dams (mostly ranked second). Finally, the precipitation seasonality 313 

was also important since it was ranked in the top five in six occasions (Figure 1 SM). 314 

For the 25-49% vegetation coverage, distance from the sea and distance from the dams were in 315 

the top five for all indices according to the Mean Decrease Accuracy (Figure 2 SM). The distance 316 
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from the sea was ranked first in most indices. The distance from the residential areas and the annual 317 

precipitation were in the top five for five of the indices. Finally, the distance from the river was also 318 

important since it was in the top five for four of the indices. In regard to the Mean Decrease Gini, 319 

distance from the sea, distance from the river, and distance from the dams were in the top five for 320 

five of the indices. The distance from the sea was ranked mostly first. The distance from the 321 

residential areas (in the top five of 7 indices) and the distance from the croplands (in the top five of 6 322 

indices) were also important descriptors. 323 

The distance from the sea, distance from the river and distance from the dams were in the top 324 

five for all indices for the Mean Decrease Accuracy for the vegetation coverage of 50-75% (Figure 3 325 

SM). The distance from the sea was ranked first in all indices and the distance from the dams was 326 

ranked second in most cases. Finally, the mean diurnal range (in the top five of 7 indices) and the 327 

isothermality (in the top five of 6 indices) were also important. In regard to the Mean Decrease Gini, 328 

distance from the croplands, distance from the sea, distance from the river, distance from the dams 329 

and distance from the residential areas were in the top five for all indices. Most important descriptor 330 

appears to be the distance from the river (ranked first in most cases), followed by the distance from 331 

the sea (ranked second in most cases). 332 

4. Discussion  333 

4.1 Effect of dams on riparian and deltaic vegetation 334 

The construction of dams on rivers can have major effects on riparian vegetation in deltas. The 335 

bio-geomorphological dynamics of these ecosystems, which are not completely understood, are the 336 

results of the interactions among river flows, sediment transport and the hydrophyllic vegetation 337 

(Gurnell and Petts, 2002; Naiman et al., 2005; Magdaleno and Fernández, 2011). Several field studies 338 

have shown how river regulation due to the artificial reservoirs of the dams can induce: a) vegetation 339 

shifts with corresponding channel narrowing or widening (Williams and Wolman, 1984; Friedman et 340 

al., 1996; Merritt and Cooper, 2000; Shafroth et al., 2002); b) declines in native species and the spread 341 

of exotic ones (Merritt and Cooper, 2000; Shafroth et al., 2002); c) decrease in the overall habitat 342 

heterogeneity (Naiman et al., 2005; Petts and Gurnell, 2005; New and Xie, 2008), and d) the 343 

establishment of vegetation on islands (Gurnell and Petts, 2002). The random fluctuation of water 344 

discharge that occurs in unregulated rivers (e.g. with no dams), leads to alternating periods of peak 345 

flooding and very low flows (droughts) in the riparian areas. During floods, riparian areas are 346 

submerged and vegetation takes advantage of the supply of nutrients, moisture and seeds (Naiman et 347 

al., 2005), but vegetation can also be damaged (Yanosky, 1982) by: a) burial (Hupp, 1988; Friedman 348 

and Auble, 1999), b) uprooting (Osterkamp and Costa, 1987), and c) anoxia (Kozlowski, 1984; 349 
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Naumburg et al., 2005). During droughts, vegetation grows and expands in new areas according to 350 

the soil moisture content and the phreatic water table depth, as long as disturbances (e.g. floods) do 351 

not occur (Liu and Ashton, 1995; Gurnell et al., 2001).  352 

The regulation of stream flow, due to the presence of a dam(s), eliminates extreme events in 353 

the hydrologic regimes that would have occurred otherwise. Specifically, discharges are significantly 354 

reduced during the flood peak and in the wet-to-dry transition periods (Guo et al. 2018). In contrast, 355 

discharges can slightly increase in the dry season (Guo et al. 2018), reducing drought occurrences. 356 

The historical natural flows of the Nestos River, before the construction of the dams, ranged from 10 357 

m3/s during the summer months, to 1.000 m3/s during the flood peaks. After the construction of the 358 

dams, the downstream flow regime has changed and the suggested minimum environmental flow is 359 

6 m3/s (Sylaios and Kamidis, 2018). These changes have different spatial impacts on the riparian 360 

vegetation depending on its location in relation to the river channels. The samples selected in this 361 

study, depending on their percentage tree coverage, represent a spatial gradient with respect to their 362 

distance to the river channel. Typically, the samples with vegetation coverage of 50-75% were the 363 

closest to the main river channel, the samples with 25-48% an intermediate distance and the samples 364 

with 0-24% coverage the furthest from the main river channel. This spatial pattern determines the 365 

differences in the trends for the samples based on the eight indices. Specifically for the 0-24% 366 

vegetation coverage, we have an increasing trend from 1989 to 1999 for all indices. Both hydropower 367 

dams were fully functional in 1999 so, potentially, their impacts were not fully experienced before 368 

this period. After 1999, the riparian vegetation seems to be performing slightly worse, based on the 369 

indices. This is something that should be expected, since these areas are the furthest away and the 370 

alteration in the hydrologic regime (e.g. lack of floods) and the consequent increase of the water table 371 

depth, should affect them first. The riparian vegetation furthest away from the channel, may no longer 372 

be able to have access to ground water year round (a characteristic required for the health of the 373 

riparian vegetation), since the water table depth increases. The reduction of the groundwater level in 374 

riparian areas hinders water intake by vegetation, which is especially necessary during the summer 375 

season. This causes a decline in the reproduction of pioneers, followed by a successive dieback of 376 

mature individuals (Stromberg et al., 1996). In addition, this vegetation is also closest to the 377 

anthropogenic pressures that could also have led to the degradation of the vegetation (Naiman et al., 378 

2005; National Research Council, 2002; Zaimes and Emmanouloudis, 2012; Zaimes et al. 2011a).  379 

The trend is very different for the vegetation cover of 50-75%. Specifically, it appears that the 380 

vegetation trend is steady and might even be increasing. This might be due to the fact that, while the 381 

water depth might have increased, this particular class of riparian vegetation is close to the river 382 

channel and might, therefore, still have access to the water table year-round, i.e. it might not have 383 
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been negatively impacted by it. Moreover, with the stream flow being regulated by the dams, the 384 

number of floods and their magnitude has decreased, thus reducing this type of disturbance which 385 

can remove old vegetation and open new spaces for re-vegetation. The lack of peak floods can lead 386 

to the re-vegetation of the banks, islands and even of the river channel (Hupp, 1990; Hupp and 387 

Osterkamp, 1994; Friedman et al., 1998; Magilligan et al., 2003). The vegetation in this category is 388 

probably also getting older and denser, due to the lack of floods, as the trend in most indices indicates 389 

(i.e. increasing or steady).  390 

Finally, the samples with vegetation coverage 25-49% have no clear trends. This is attributed 391 

to the fact that these areas are experiencing all the impacts described previously (increased water table 392 

depth, no floods) to a varying degree, leading to impacts experienced in both the 0-24% and 50-75% 393 

and consequently exhibiting no clear trend. 394 

Overall, our results from the trends of the vegetation indices during the 27 years of the study 395 

period, support the idea that the current suggested environmental flows and water management plan 396 

for the Nestos Basin and Delta, need to be revised in order to be able maintain the high ecological 397 

standards of the Natura 2000 and Ramsar riparian sites, as suggested by other studies about the Delta 398 

(Koutrakis et al., 2018).  399 

4.2. Understanding changes in riparian vegetation caused by dams 400 

Looking at the variables that impact riparian vegetation, based on the Mean Decrease Accuracy 401 

the territorial variables seem to be more important than the climatic ones. This should be expected 402 

since riparian areas are ecosystems and not biomes (that are the result of climatic conditions) and 403 

called azonal because they can be in found in most climatic regions. Specifically, the most important 404 

ones are the distance to the dams and to the sea. The distance to the dams should be expected to be 405 

an important descriptor since, as mentioned previously, dams can have detrimental effects on riparian 406 

vegetation. Moving further downstream from the dams, the impacts are likely to be less significant. 407 

Concerning the distance to the sea, this is related to the fact that deltas are ecotones, transition zones 408 

between fluvial and maritime ecosystems. Therefore, moving away from the coastline, fluvio-409 

geomorphological processes and water composition changes are expected. In addition, the 410 

construction of dams leads to less water and sediment reaching the delta and, along with climate 411 

change impacts, that lead to sea water intrusion, sea level rise and the erosion and recession of deltas; 412 

all major threats to these ecotones that can cause serious problems to the riparian vegetation (Bergillos 413 

and Ortega-Sánchez 2017; Syvitski et al., 2009; Tessler et al., 2015; Wang et al. 2017). This is 414 

especially true for Mediterranean deltas (Jeftic et al., 1996; Bergillos and Ortega-Sánchez 2017), 415 

where dam construction has reduced the sediment supply by approximately 50% since the middle of 416 
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the 20th century (Poulos & Collins, 2002). This should be of concern to the authorities responsible 417 

for the management of the Nestos Delta and its riparian vegetation. The importance of the distance to 418 

the river as a descriptor is related to the increase in the water table depth (Naiman et al., 2005; National 419 

Research Council, 2002). The importance of the latter was also evident with the analysis of the 420 

vegetation indices, especially for the samples that were the furthest away from the channel with 421 

vegetation there not having access to ground water year round. For the intermediate samples (25-49% 422 

vegetation coverage), the presence of residential structures was also strongly correlated with 423 

vegetation. This land-use intensification in, and adjacent to, riparian areas with agricultural and/or 424 

urban areas in the Mediterranean region, has reduced habitat size and flora diversity (Corbacho et al., 425 

2003; Luther et al., 2008; Magdaleno and Fernández-Yuste 2013). Finally, some of the climatic 426 

factors were also found to be important, with some related to temperature (namely, temperature of 427 

the coldest quarter, diurnal range and isothermality) and others to precipitation (precipitation 428 

seasonality and annual precipitation). These climatic factors are known to impact the growth of the 429 

riparian vegetation (Naiman et al., 2005; National Research Council, 2002). 430 

Regarding the Mean Decrease Gini, the dominance of the territorial variables was even greater. 431 

Again, as anticipated, the distance to the sea and the distance to dams were identified as the most 432 

important parameters. The distance to the river and to residential areas were also found to be 433 

important. Finally, in agreement with other studies (Naiman et al., 2005; Schultz et al., 2009), the 434 

distance to crops was also identified as an important parameter. In Greece, especially in the lowland 435 

areas, agricultural activities are prevalent compared to other land-use practices and have led to the 436 

fragmentation of riparian forests and the degradation of deltas (Zaimes et al., 2011b). The only 437 

climatic factor that appears to be important is precipitation seasonality, which was expected to a 438 

certain extent, as it affects the vegetation growth. As previously mentioned, riparian areas can be 439 

found in all biomes, are azonal and are the result of primarily local conditions (adjacent to a water 440 

body). 441 

5. Conclusions 442 

Our results from the analysis of multi-temporal remotely sensed vegetation indices and a 443 

modelling exercise involving the evolution of these indices and other environmental and topographic 444 

parameters, corroborate the findings in other studies that both natural and human-induced changes 445 

influence the evolution of deltaic and riparian ecosystems (Syvitski and  Saito, 2007; Simeoni and 446 

Corbau, 2009; El Banna and Frihy, 2009; Sabatier et al.2009). With one third of the Mediterranean 447 

coastline having already been built and attracting numerous economic activities (Bergillos and 448 

Ortega-Sánchez 2017), the importance of these ecosystems in the sustainable development of the 449 

region is undeniable. These areas have been intensely exploited and settled by humans for millennia 450 
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(Masselink & Hughes, 2003), and therefore their protection, conservation and re-establishment 451 

should be a priority for addressing environmental sustainability and land degradation neutrality. 452 

Utilizing the vegetation indices and modelling exercise land and water managers can identify and 453 

monitor potential changes in the riparian vegetation and what the key factors are for their recovery. 454 

This can help mitigate the main anthropogenic pressures and along with the utilization of new 455 

innovative practices, such as ecosystem-based approaches at the watershed scale could lead to their 456 

sustainable and cost-effective management (Colls et al., 2009; Iakovoglou and Zaimes, 2017). For 457 

example, following ecosystem-based approaches the current environmental flows need to be changed 458 

and incorporate high flow (floods) and low flow (droughts) events every year based on the historical 459 

hydrologic flows of the Delta before the dam constructions. This will allow the riparian vegetation of 460 

the Delta to recover and remain healthy. 461 
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Supplementary Material 790 

Table SM1. Characteristics of the Landsat satellite images 791 

Date Satelite Sensor Path Row Resolution 

23/6/1989 Landsat 4 Thematic Mapper (TM) 182 32 30m 

11/7/1995 Landsat 5 Thematic Mapper (TM) 182 32 30m 

14/7/1999 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 32 30m 

17/8/2000 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 32 30m 

20/8/2001 Landsat 7 Enhanced Thematic Mapper + (ETM+) 182 32 30m 

18/8/2003 Landsat 5 Thematic Mapper (TM) 182 32 30m 

26/8/2006 Landsat 5 Thematic Mapper (TM) 182 32 30m 

29/8/2007 Landsat 5 Thematic Mapper (TM) 182 32 30m 

18/8/2009 Landsat 5 Thematic Mapper (TM) 182 32 30m 

24/8/2011 Landsat 5 Thematic Mapper (TM) 182 32 30m 

29/8/2013 Landsat 8 Operational Land Imager (OLI) 182 32 30m 

16/8/2014 Landsat 8 Operational Land Imager (OLI) 182 32 30m 

19/8/2015 Landsat 8 Operational Land Imager (OLI) 182 32 30m 

21/8/2016 Landsat 8 Operational Land Imager (OLI) 182 32 30m 
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 793 

Fig. SM1: Variables importance per vegetation index graph derived from RF modelling. First interval (Percent 794 

tree cover 0 – 24). %IncMSE: Mean Decrease Accuracy (%); IncNodePurity: Mean Decrease in Gini impurity 795 

index. 796 
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 797 

Fig. SM1: (continued) Variables importance per vegetation index graph derived from RF modelling. First 798 

interval (Percent tree cover 0 – 24). %IncMSE: Mean Decrease Accuracy (%); IncNodePurity: Mean Decrease 799 

in Gini impurity index. 800 
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 801 

Fig. SM2: Variables importance per vegetation index graph derived from RF modelling. Second interval 802 

(Percent tree cover 25 – 49). %IncMSE: Mean Decrease Accuracy (%); IncNodePurity: Mean Decrease in Gini 803 

impurity index. 804 
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 805 

Fig. SM2: (continued) Variables importance per vegetation index graph derived from RF modelling. Second 806 

interval (Percent tree cover 25 – 49). %IncMSE: Mean Decrease Accuracy (%); IncNodePurity: Mean Decrease 807 

in Gini impurity index. 808 
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 809 

Fig. SM3: Variables importance per vegetation index graph derived from RF modelling. Third interval (Percent 810 

tree cover 50 – 75). %IncMSE: Mean Decrease Accuracy (%); IncNodePurity: Mean Decrease in Gini impurity 811 

index. 812 
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813 
Fig. 3: (continued) Variables importance per vegetation index graph derived from RF modelling. Third interval 814 

(Percent tree cover 50 – 75). %IncMSE: Mean Decrease Accuracy (%); IncNodePurity: Mean Decrease in Gini 815 

impurity index. 816 

 


