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Abstract: In this paper, we investigate the secure performance of multi-antenna decode-and-forward (DF) relaying networks where
the Nakagami-m fading channel is taken into account. In practice, the joint impact of residual transceiver hardware impairments
(HIs) and channel estimation errors (CEEs) on the outage probability and intercept probability is taken into account. Considering
Hls and CEEs, an optimal transmit antenna selection (OTAS) scheme is proposed to enhance the secure performance and then
a collaborative eavesdropping scheme is proposed. Additionally, we present main channel capacity and intercept capacity of
the multi-antenna DF relaying networks. More specifically, we derive exact closed-form expressions for the outage and intercept
probabilities. To obtain useful insights into implications of parameters on the secure performance, the asymptotic behaviors for the
outage probability are examined in the high signal-to-noise ratio (SNR) regime and the diversity orders are obtained and discussed.
Simulation results confirm the analytical derivations and demonstrate that: 1) As the power distribution coefficient increases,
OP decreases, while IP increases; 2) There exist error floors for the outage probability at high SNRs, which is determined by
CEEs; 3) The secure performance can be improved by increasing the number of source antennas and artificial noise quantization
coefficient, while as the number of eavesdropping increases, the security performance of the system is reduced; 4) There is a
trade-off between the outage probability and intercept probability.

1 Introduction

With the development of wireless communication networks
(WCNs), the applications of various smart devices have attracted
considerable attention, such as internet of things (IoT) [1], device-
to-device (D2D) communications [2], machine-to-machine (M2M)
communications [3], small cell networks (SCNs) [4] and wearable
devices [5]. Owing to the broadcast nature of wireless electromag-
netic waves, WCNs become vulnerable to the attack of eavesdrop-
pers, so it is very important to ensure the security of communication
systems. Conventional encryption mechanisms can solve this prob-
lem by using various encryption algorithms, which impose extra
burden for wireless networks [6]. Physical layer security (PLS),
which was initially proposed by Wyner [7], has been recognized as
a promising technique to provide trustworthy communication. The
dominant feature of PLS is to exploit the characteristic of wireless
channels to ensure reliable communication links.

Recently, the emerging requirement for secure communication
has led to a sizable volume of research on PLS techniques, which
focus on the study of the secure performance of WCNs over various
fading channels; see e. g., [6, 8-12]. In [8], the authors investigated
the secrecy outage performance of multiple-input multiple-output
(MIMO) systems over Rayleigh fading channels, where a transmit-
beamforming scheme was proposed to maximize the signal-to-noise
ratio (SNR) of the main receiver. Considering cooperative cognitive
radio networks, a new auxiliary scheme of wireless energy harvest-
ing cooperative jammer (EH-CJ) was proposed to maximize the
security rate of the secondary system under the condition of limited
transmission power [6]. To characterize the secure performance of
line-of-sight (LoS) propagation environments, the authors in [9] ana-
lyzed the secrecy capacity of artificial noise aided MIMO systems. In
[10], the PLS for the classic Wyner’s model over generalized Gamma
fading channels was studied by deriving closed-form expressions for

secrecy outage probability (SOP) and strictly positive secrecy capac-
ity (SPSC). Regarding the non-homogeneous fading environments,
the authors in [11] explored the secrecy performance of Wyner’s
model over a — i fading channels. With the help of moment match-
ing method, the authors in [12] derived approximate expressions for
the SOP and SPSC over x — u shadowed fading channels.

On a parallel avenue, cooperative relaying is another promising
technique to further improve the spectral efficiency and enhance the
coverage of wireless networks [13—15], and thus it attracts plenty of
researchers to investigate the security issues of cooperative networks
[16-23]. In [16], the authors analyzed the secrecy performance of
amplify-and-forward (AF) relay systems over generalized-K fading
channels, where three metrics for the SOP, average secrecy capacity
(ASC) and SPSC were analyzed. To improve the PLS against eaves-
dropping attacks, the optimal relay selection (ORS) scheme was
proposed for AF and decode-and-forward (DF) relay networks and
the intercept probability (IP) for the proposed scheme was derived
in closed-form [17]. From the perspective of energy harvesting, the
authors in [18] proposed a cooperative transmission scheme for the
AF and DF relay networks under the condition of an eavesdropper,
where the relays can harvest energy from radio-frequency (RF) sig-
nals of a source through power-splitting protocol. In the existing
research results, the researchers discussed the transmission power
under the optimal transmit antenna selection (OTAS) scheme, which
can be divided into the following types: 1) The authors of [19] put
forward the OTAS scheme for massive MIMO wiretap channels and
believed that the transmission power of each antenna is equal and all
the power is given to the selected antenna. 2) The authors proposed
the OTAS scheme at both the source and relay based on the non-
regenerative half-duplex MIMO relay channel, and considered the
power to be limited and set the scaling factor to ensure the signal
transmits at its expected power constraint [20]. 3) Some researchers
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Fig. 1: System model considered HIs and imperfect CSI estimation

studied the transmission power limitation and set the power distri-
bution coefficient to analyze the system performance [21]. Apart
from the above works, using stochastic geometry, the work in [22]
investigated the PLS of non-orthogonal multiple access (NOMA)
in large-scale networks, and the expressions for the SOP of single-
antenna and multiple-antenna systems were derived in closed-form.
For the cognitive radio based on cooperative systems, the secrecy
outage performance was studied over independent but not necessar-
ily identical distributed Nakagami-m fading channels by Lei et al.
[23, 24], and three representative relay selection schemes were pro-
posed, namely, ORS, suboptimal relay selection (SRS) and multiple
relays combining (MRC).

Antenna selection technology in MIMO systems is similar to
relay selection. In the case that multiple antennas are available at the
source node and the optimal antenna is selected from all antennas
for use under certain condition, the advantages of spatial diversity
or multiplexing of cooperative relay communication networks can
be brought into play and the implementation complexity of the relay
process can be reduced. In an actual communication system, due to
the broadcast characteristics of wireless communication, the wireless
network lacks a secure physical boundary, and wireless communica-
tion without physical connection is open to external eavesdroppers.
There are two ways for eavesdroppers to intercept information: 1)
non-collaborative eavesdroppers [25]; 2) collaborative eavesdrop-
ers [26]. However, because the synchronization and the internal
information exchange are not perfected, it is difficult for multiple
eavesdroppers to intercept the legally transmitted information at the
same time, thereby reducing the confidentiality of the cooperative
communication.

Clearly, the aforementioned research works are limited to
the assumption of hardware impairments (HIs). In practice, the
transceivers of wireless systems suffer from some types of hard-
ware imperfections, such as in-phase/quadrature-phase (I/Q) imbal-
ance, phase noise, high-power amplifier non-linearity etc. [27-30].
Althrough these impairments can usually be mitigated with the help
of some compensation algorithms, due to the inherent characteris-
tics of RF components, the HIs cannot be fully removed. There are
some residual hardware impairments (RHIs) because of imperfect
estimation and time variation [29]. It has been proved that the RHIs
can be modeled as additive noise with certain characteristics [31]. In
addition, inaccurate channel state information (CSI) is very likely to
be present due to the existence of channel estimation errors (CEEs)
[32-36]. Therefore, it is of high practical relevance to consider the
imperfect CSI for secure performance of cooperative relay networks.

Previous research works have provided a foundation for knowl-
edge of cooperative communication and PLS. Motivated by these
observations, we focus on the secure performance of multi-antenna
DF relay networks in terms of outage probability (OP) and IP, where
two practical deleterious factors are considered: i) RHIs; ii) CEEs.
Also, the general Nakagami-m fading channel has been considered
since it is widely used to represent fading characteristics of various
wireless propagation environments. By setting different parameters,
Nakagami-m fading channels can be reduced to Rayleigh (m = 1)
and Gaussian (m = 1/2). Moreover, the OTAS scheme is proposed

to maximize the SNR of the link between the source and relay. To
characterize the secure performance of the considered networks, the
exact closed-form expressions for the OP and IP of DF relaying net-
works in the presence of HIs and CEEs are derived. To obtain useful
insights, the asymptotic behaviors in the high SNR regime and the
diversity orders of OP are explored. The primary contributions of
this paper can be summarized as follows:

e We propose an OTAS scheme to maximize the SNR of the link
between the source and relay. Contrary to most existing works, the
effect of HIs and CEE:s is taken into account in this current study.
In addition, two representative CEE assumptions are considered: 1)
The estimated error is a fixed constant; 2) The estimated error is a
function of transmitted average SNR.

e Based on the proposed OTAS scheme and collaborative eaves-
dropping strategy, we investigate the reliability and security perfor-
mance of multi-antenna DF relay networks over Nakagami-m fading
channels. To characterize the performance, we derive the exact
closed-form expressions for the OP and IP of the considered com-
munication system. The results reveal that deploying more antennas
at the transmitter enhances the reliability whereas increasing the
number of antennas at interceptor degrades the security; on the
other hand, while increasing artificial noise quantization coefficient
reduces IP.

o To obtain more insights, the asymptotic performance for the OP
is explored with the consideration of eavesdropping. It is demon-
strated that the reliability suffers from HIs and CEEs, while HIs and
CEE:s are always beneficial for reducing IP. This means that HIs and
CEEs are useful to enhance security. Besides, there is error floor for
the OP under high SNR region in the presence of fixed CEEs, which
is irrelative to the transmitted power. It is also shown that there is a
trade-off between OP and IP.

The rest of this paper is introduced as follows. In Section 2, we
present the system model of the considered networks. In Section
3, after presenting the source antenna selection and collaborative
eavesdropper schemes, we investigate the security and reliability by
deriving the OP and IP of the considered networks. In Section 4, the
asymptotic behavior and diversity orders for the OP at high SNRs are
analyzed and discussed. Numerical results are presented to verify the
derived results in Section 5, and the impacts of number of antennas,
HIs and CEEs on the system performance can be obtained through
the provided numerical results. Finally, Section 6 summarized this
paper.

Notations: In this paper, the CN’ (u, a2> denotes the complex

Gaussian random variable with mean v and variance o2. The E {}
and Pr () denote the expected operator and probability, respectively.
Notation G (c, ) means the Gamma distribution. fx () and Fx ()
are the probability density function (PDF) and the cumulative distri-
bution function (CDF) of a random variable, respectively. The log (-)
is the logarithm. Finally, the |-| and (-)! denote absolute value and
factorial, respectively.

2 System Model and Statistical Characteristics

In this section, we present the system model and the statistical char-
acteristics of the fading channels used in the secure performance
analysis in Sections 3 and 4.

2.1  System Model

We consider a system model illustrated in Fig. 1. There is one
transmitter S (e.g., a base station), one relay R, one legitimate
destination D and one illegitimate eavesdropper E. We assume
that R and D are equipped with one antenna, while S has
K antennas {Si,S2,-+-,Sk, -+ ,SK} and F has N antennas
{E1,E2,--+ ,En,---,En}. In this study, DF protocol is consid-
ered. We also assume that there are no direct links between the
following nodes S — D and Sy — Ey due to shadow fading,
which is a widely used assumption in the literature [17, 18].

The communication process is divided into two time slots: 1)
S transmits its own signal to R; 2) R decodes and forwards the



received signals to D. To enhance the secure performance, the arti-
ficial noise signal is sent to D and E,. In practice, it is a great
challenge to obtain CSI at all nodes, and hence channel estima-
tion is often implemented [32-36]. The most common approach is
to estimate the channel by using training sequence. Utilizing lin-
ear minimum mean-square error (LMMSE), the real channel can be
written as [34]:

hxy =hxy +exy, (D
where XY € {S,R; RD; RE,},(1 <k < K,1<n<N), hyy
is the estimated channel of hxy, exy ~ CN (O,ngy) is the

CEE, where ngy is the variance of estimation. In this study, we
consider two representative channel estimation models: 1) The vari-
ance of CEE is a non-negative fixed constant; 2) The variance of
CEE is a function of transmit average SNR, which can be modeled
as ngy =Qxy/(1+4+dpxyQxy), where Qxy and pxy are the
variance of channel gain and transmit average SNR, respectively;
0 > 0 is the channel estimation quality parameter, which represents
the power consumption of training pilots to acquiring CSI [33].

1) The first time slot: In this phase, the signal 2 g, g is transmitted

to R, where E {\x Sk R|2} = 1. We considering RHIs and imperfect
CSI, the received signal at the R is expressed as:

YSLR :(ﬁskR+6sk R) (\/15sﬂfskR-H%s,s,c R) +nr,5,RTUs, R, (2)

where iLSk R is the fading channel between the selected transmit
antenna and R, and the OTSA criterion is provided in the next
section; x g, g is the effective signal of S;, — R and E|xSkR|2 =1
vg, R~ CN (O,U%k R) is the complex additive white Gaussian
noise (AWGN); Pg is the transmit power from S. Note that in prac-
tice, the transmitting power of the system is limited, Pg = uP, P
is the total power in the source, u is the power allocation factor on
the selected antenna and 1 — p is the power allocation factor on the
other antennas; 1; g, g and 7, 5, g are the distortion noises from
HIs at the transmitter and receiver, respectively.

2) The second time slot: At R, the received signal is decoded
and forwarded to D and Ey. To improve the secure performance,
the R transmits artificial noise signal to D and FE, at the same
time. In practice, D can not remove the artificial noise due to the
CEEs, and there are some residual interference received at D [37—
39]. Therefore, the received signals at D and Ey, can be expressed
as:

YRD= (HRD + eRDX/P;xRDFvéE Zinp +"7t,RD) +1r, RDHVURD 5
)]

YRE,= (hREn +€RE,1X\/153 apE, 2Py T, 0, RETL)‘H%, RE,VRE, ,

C))
where zpp and xpp are the signal sending to D and F, with
E|:ERD\2 = Elzgrp, |” = 1, respectively; ., T, are the
signal sending to D and E, with E|acJRD|2 = E|:rJREn\2 =
1, respectively; &1 € (0,1) and & € (0,1) are the quantization
coefficients of the artificial noise on D and FEj, respectively;
vrp ~ CN (07 U%{D) and vgpg, ~ CN (O7 U%En) are the com-
plex AWGN; Pp is the average transmit power at R, Py is the
power used to transmit the artificial noise and Pr = Pg = Py;
Nt,RD-> NMr,RD are distortion noises of the transmitter and receiver
for R — D transmission channel, respectively; n; rg,,» - RE,, are
distortion noises of the transmitter and receiver for R — E,, trans-
mission channel, respectively. As stated in [40], the distortion noises
are defined as

M xy~CON (0,57 xyPa) 3 ~CN (0,87, xy Pl ), (5)

the effective distortion noise can be seen as two independent jointly
Gaussian variable n; xy and 1, xvy / hxy that are multiplied with

the fading channel h xy . For a given channel realization hxy, the
aggregated distortion seen at the receiver has power

2 2(2 2
Ene, xv ne xv {|hXY77t,Xy+77r,XY| }:PngXY| (‘%,XY'*‘KT,XY)
T 2/ 9 2
=Pylhxy +exy| 5% xyv +kr xy) » (6)

we can observe that it only depends on the average signal power Py
and the instantaneous channel gain |hxy |2. We have the definition

that k xy = 4 /nf’XY + fiz’Xy. Thus, the received signals at R, D

and Fy, can be respectively rewritten as:

YS,R = (f?skR + eSkR) (\/ Pszs,r+ nskR) +US.R» @)

YRD = (iLRD +6RD) (\/ﬁ@@ﬁ/@@m +77RD) +vrD, 8)

YRE, = (HRE,.L + eREn) (\/@ zRrE A2 Py, ‘HIREn) +ugg,, 9)

where ng, r ~ CN (0, HstRPS)v nrp ~ CN (0, H%DPR) and

nrE, ~ CN (0, n% E, PR) are the aggregated distortion noises
from RHIs at S, — R, R — D and R — Ey, respectively; such

A 2 2 A 2 2
that, ks, p = /K¢ 5, g T K7 5, re RRD = (/K7 gpp T K7 pp and
A 2 2
KRE, =\/Kt{ RE, T 5r.RE,"

According to (7), (8) and (9), the effective signal-to-interference
plus noise ratios (SINRs) of the links S, — R, R — D and R —
Ey, are given as [34]:

2

o5, RS, R

VSR = —
PSR (O%skﬂ + ‘hSkR K%kR+O%SkR’%kR> +1

, (10)

PRD ERD‘Z
Ot PRD+ (51 Py / kot PRD)(‘ERD)2+O%RD) +1 ’
(11

YRD =

2

PRE, \hRE,

O, PRE,+ (&P 7/ Ok, +f<~21qEnPREn) (‘ERE

k]

TRE, = 2
+o%REn>+1
(12)

2 2
where pg, r = PS/USkR’ PRD = PR/URD and prp, =
2
PR/O’RE".

2.2 Statistical Characteristics

In this study, the generic Nakagami-m fading channel is adopted,
in which the channel amplitudes ’ﬁ Xy’ follows independent but
non-identically Nakagami-m distribution. Then the channel gain fol-

~ G (axy,Bxy), where
axy > 1and Bxy > 0 are the shape parameters and scale param-
eter, respectively. Thus, the PDF and the CDF of the channel gains
can be expressed as [40]:

lows Gamma distribution with ’iz Xy’

xaxy—le* ﬁ;y
W@ >0, (13)

f|f1xy|2 (z) =

axy—1 eiﬁ = l
Fﬁxy|2 (x)=1- ;) 0 <@) x>0 (14)




According to Shannon’s capacity formula, we can obtain the
instantaneous channel capacity as [39]:

1
Cxy = 5102;2 1 4+vxv), (15)

where vxy denotes the SINR from transmitter to receiver.

3  Performance Analyses of the Outage
Probability and Intercept Probability

In this section, we first propose an OTAS strategy to enhance the
security performance, then the reliability and security are investi-
gated by deriving the exact closed-form expressions for the OP and
IP.

3.1 OP Analysis

In the following, we investigate the reliability considered multi-
antenna cooperative networks in the presence of RHIs and CEEs in
terms of OP.

Outage Probability: For a target transmission rate Rg, the prob-
ability of outage event C's, g < Rg or outage event Crp < Rg
occurring on the two transmission processes of S — R and R —
D. With this in mind, the OP can be expressed as:

Pout = Pr{Cr < Rg}. (16)

The specific calculation and the meaning of the symbol are
described below.

Optimal Transmit Antenna Selection: In this subsection, an OTAS
strategy is proposed. Contrary to the existing works, RHIs at
transceivers and CEEs are taken into account. For OTAS, one of the
transmit antennas is selected according to the largest channel gain
between the antennas. Thus, the corresponding mathematical formal
can be expressed as:

hsgp = B {hSkR}- 17

Therefore, the PDF and CDF of the channel gain in the first time slot
can be expressed as:

Ke Psr

K1
__= asp—l —5o- j
fy @)= ——— 2 1= > ﬂ(ﬂi) ,2>0,
hsrl ™ s (agr — 1)! ' \Gsr

(18)
as 1 z K
r-l —5i— J
e Psr x
Fpog? @= 1= 2 S(a) | ezo o
J=

Based on (15), the instantaneous channel capacities of S — R
and R — D can be further re-expressed as:

’ 2

PSR

PSR ( esr T ‘hSR) ot O%SR ’%‘R)

1
CSRZE IOgQ 1+ 5 (20)

\

At 8 o)l )
e2))

1
CRD:§108§2 1+

where psgr = Ps/agR.

According to the criterion of DF protocol, the end-to-end channel
capacity is the minimum of channel capacities S — R and R — D.
Thus,

Cr =min (Csr,Crp) - (22)
Utilizing the above definition, the exact closed-form expressions

for the OP are provided over Nakagami-m fading channels with
RHIs and CEEs in the following theorem.

Theorem 1. For Nakagami-m fading channels, the exact analytical
expressions for the OP are given as
e Non-ideal condition (with HIs and CEEs)

1K « 1 2 1
ik (6r)] ol 5
0ut|: Z e SR TR) +1-— lgo ¢ “RD [%D)

, (23)
_ _& 7K 1 &
_ _aSile /:SR (ﬁi)j 1_(XRZD:1 . ?'RD (@)z)l
fry J! SR & ! Brp
2 1 2
where ¢ = 22fs _ 1, CIE= spsroegp (14nsn)te and O9 =

953(1*5“?‘;1%)
E{CffRD (pRD+§1PJ/0'12{D+R§%DPRD)+1

prp—c(&1P1 /0% h+K%pPRD)
that 1 — EK%R >0 and prp —¢ (£1PJ/012;3D + K%DpRD) >
0, otherwise the OP is zero.

e Ideal condition (ksr = krp = 0 and JESR = JERD =0)

. In this case, we assume

. asr—l ﬂ B
ra g )] g )

jzo& 15 -
- 1_ozs§‘jl(;;x's‘R (&)] _a%*1675'E (&)z
2% s P T BrD
_ _& ="
where ©3 = PSR’ 04 = prp—cé1Pr [0
Proof: See Appendix A. ”

3.2 IP Analysis

In this subsection, we analyze the secrecy performance of the con-
sidered multi-antenna and multi-eavesdropper cooperative networks
in the presence of RHIs and CEEs in terms of IP, which is defined as
the probability that the capacity of the main link (S, — R — Dp)
is less than that of the wiretap link.

Intercept Probability: In this case, the eavesdropper most likely
succeeds to intercept the legitimate information. In mathematics, IP
corresponds to the probability of zero secrecy rate event, which is
expressed as [26]:

Pyt =Pr{Crg > Rs}, (25)

the specific meaning of the symbol is as follows.

Collaborative Eavesdropper Scheme: Here, collaborative eaves-
dropping scheme is considered to eavesdrop the legitimate informa-
tion. Using the MRC method, the SINR of R — E'is:

N
E= Y VRE,- (26)
f

1) Non-independent identical distribution: substituting (26) into
(25), the following expression can be obtained as:

N

d.d.d
}Dirrllt1 "=Pr Z

=102, pRE; %Z s pREQ (

PRE,,

>ep

eRE-,)+l
27

obviously, it is difficult, if not impossible, to derive the expression
for the IP. To circumvent this problem, the asymptotic IP in the low




SNR regime is investigated. According to (27), the asymptotic IP

can be written as:
;) C8)
RE,, PRE,,

g 1
pplid g ° (Na ,
I'Nogg,) BrE, it g

int,asy —

2) Independent identical distribution: because it is difficult to
figure out the non-independent identical distribution in the MRC
case, we consider each SINR of R — E,, to be independently and
identically distributed under the collaborative eavesdropper scheme.
Note that in fact, SINRs for all eavesdroppers are different since
different eavesdroppers are, in general geographically separated. To
maintain mathematical tractability and obtain engineering insight,
we have adopted this simplified. Hence, the following can be
obtained [41]:

YRE = NYRE,, - (29)

According to (15), we can obtain the eavesdropping capacity from
R — E under the collaborative eavesdropping scheme as follows:

1
CrE = 5logy (1+ NvgrE,)- (30

Similarly, the following theorem explores the security perfor-
mance in term of IP over Nakagami-m fading channels with Hls
and CEEs.

Theorem 2. For Nakagami-m fading channels, the exact analytical
expressions for the IP are given as
e Non-ideal condition

OS5

ARE,—1 —5=2— l

'nit"d_ Z ﬂ( O5 ) 31)

int,i.i.d — | )
= I! BRrE,

2 2 2
80{06 (PR,E"JrEzPJ/GRE +KRE PRE,,,)*Fl}
where O5 = HEn - -

E =
)
PRE, —¢ (52 Py /U?iEn -‘r'ﬁaEn PRE, )

—1, p = & and in there, we should be ensure that ¢ <

PRE : .
= , otherwise the IP is one.
2Py /U%En +K??1§7n PRE,
o Ideal condition

22Rs

OLRE—l ©

— -6 1
id e PRrE e
Pit= Y, — ( 6), 32

= BrE

where Og = , e=2%Rs _q, ¢ =1 and

%
PRE, 7WE2PJ/U%3E”

2
(e
ensure the ¢ < MIZ;%

Proof: See Appendix B. [

From Theorem 1 and Theorem 2, we can observe that the OP
and IP are determined by the number of transmit antennas, fad-
ing parameters, RHIs and CEEs. Although the above results can be
expressed in closed-form, they do not provide useful insights into
the implication of system parameters on the reliability and security
performance. To this end, the asymptotic behaviors for the OP are
examined in the following section.

4  Asymptotic Analysis
To reveal useful insights, the following corollaries provide the

asymptotic analysis and the diversity order for the OP in the high
SNR region.

4.1  High SNRs Analysis

Corollary 1. At high SNRs (pxy — o0), the asymptotic expres-
sions of OP for the cooperative communication system are given
by

e Non-ideal condition

1) When the agxy

_ XY .
1+HpxyQxy "

Pl 1 I3y

out
K K
_ elasfs : & @lasfs "0 . (33
asg!Bgal app | BERP asr!Bgil app | BRRP

2) When the 02, . = a(a is a constant):

_ Srd 1K - [
Poo,ni2_|: 70(‘951 e Psr (-—)7)3:| I 170‘% 1 e PrRD (—)S)l:|
out : Fii SR, Il RD.
0 =0
o K o
|:1 Otsf:—l 67%% (@7)]:| 1 aRED:—l efﬁi)R% ®8>l:|
N U \Bsr, - I \Bro,
=0 =0
(34)

2 2
€csn (1+r3R)
l1—erZp

On — eot o (1+€1/24+k%p)

» I8 1—e€1/2—er%

should ensure 1 — ex%p > 0and 1 — £€1/2 — ex%p > 0.
o [deal condition

where O7 = and we

K
Poo,id:( ©3%SR ) + ©,4RD

out 13%SR 1BSRD
asr!Bgp P arp!BRrT (35)
[ _@s°sr ©,%RD
(QSRW;}%R) |:aRD!5;gD:|
Proof: See Appendix C. O

Remark 1. From Corollary 1, we can obtain the following
observations as: 1) For non-ideal conditions, when the O'EXY =
H_(;EIX%, the asymptotic outage performance changes with
the changes of the average transmit SNR; when the ngy =a,
the OP is a fixed constant when the transmit SNR grows very
large, which means that the outage performance cannot always be
improved by increasing the transmit power; 2) For ideal conditions,
the asymptotic OP also varies with the change of average transmit
SNR.

4.2  Diversity Order

To obtain more insights, the diversity order is explored, which is
defined as [42]
[ee)
d=— lim M7 (36)
p—o<  logp

where p is average transmit SNR and PSS, is asymptotic analytical

expression of OP.

Corollary 2. The diversity orders under non-ideal and ideal condi-
tions are given by

e Non-ideal condition

1) When the 02, = 155

dnil (PSR>PRD) :min(KOzSR,aRD)- (37)
2)When the o2, = a:
d"* (psgr, prp) = 0. %)

Proof: Based on the results of (33) and (34), we can have the fol-
lowing proof in the non-ideal case. For the channel estimation error



al = 0(red)
’ K= O.I(blue)
’ N:O.lS(blaCk) )

Outage Probability

4.0x10" .
= OP simulated

OP analytical
o IP simulated
-=--- IP analytical < 10

35x10°

18 0.19 020 021 0.22 023
1 1 1 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
14

Fig. 2: OP and IP versus p for different x (a =2,
{&1,&}=1{0.02,0.99}, SNR =5dB, 03 =0.05,N =2 and
K=2)
parameters are variables, the dominant terms of (33) are:
K
comil _ [ ©175E O RD
Pout — (W ORD * (39)

O‘RD!/BRD

Substituting (39) into (36), after some manipulations, we can obtain
(37).

Then, substitute (34) into (36). Since (34) is a constant, the
diversity order is zero, and then (38) can be obtained. O

e Ideal condition
4 (psr,prp) = min (Kasg, @rp) - (40)

Proof: Based on the results of (33), we have the proof of ideal
conditions. Substituting (33) into (34) yields the result of (38).
For ideal conditions, the dominant terms of (35) are:

K
d egaSR 6405RD
G R

Now, substituting (41) into (36), with some manipulations, we can
obtain (40). O

5 Numerical Results

In this section, some numerical results are provided to verify the
validity of our analysis in Sections 3 and 4. In all our evalua-
tions, we assume that P = SNR — 101g (axy X Bxy), Py =
%’ axy = o, Kxy = R, ngy =0e,» /BXY = /8 =1, oxy = 1,
QXY = 1land RS = 0.5.

Fig. 2 illustrates the OP and IP versus power allocation coefficient
w for different distortion noise parameters (x = 0,0.1,0.15). The
other parameters are setto a = 2, {£1, &2} ={0.02,0.99} , SNR =
5dB, ag = 0.05, N =2 and K = 2. It can be seen that when the
power allocation coefficient rises gradually, the outage performance
increases, and IP increases with y increasing. And we can see that
the OP is proportional to distortion noise parameter, while IP is
inversely proportional to . This shows that RHIs has a destructive
effect on system performance.

Fig. 3 plots the OP and IP versus the average trans-
mit SNR for different quantization coefficients of the artifi-
cial noise {£1,&}=({0.02,0.99};{0.2,0.5}) under the ideal

UZ = 0,x = 0) and non-ideal conditions. The exact theoretical

curves for the OP and IP are plotted according to (23), (24) and
(31), (32). In this simulation, we set o = 2, p = 0.8,02 = 0.1,k =

10° A T T - —73 10
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Fig. 3: OP and IP versus SNR for different {£1,&2} (o =2, u =
0.8,02=0.1,k=0.15,N = 2and K = 2)
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Fig. 4: OP versus K for difference 0’2 and SNR (o =2, =
0.8, {¢1,£2} =1{0.06,0.95} and k = 0.1)

0.15, N = 2 and K = 2. Clearly, we can see from the simulation
results that the outage performance can be worse when £; increases.
Additionally, the OP of imperfect hardware is higher than the ideal
case due to the distortion and we can observe that increasing the
quantization coefficient &2 of artificial noise will reduce the IP, which
means that jammer source is an effective way to increase security.
Finally, there exists a trade-off between the reliability and security,
which implies that optimal performance exists.

Fig. 4 depicts the OP versus the number of the source node
antennas K for different CEEs. For this figure, we set o = 2, u =
0.8,{&1,&2} ={0.06,0.95} and x = 0.1. It can be observed that the
reliability improves fast as the number of antennas grows when the
number of antennas is less than 4. When this number becomes larger
than 4, the reliability increases slowly, which means that OTAS is
an effective way to improve reliability at a small number of anten-
nas. Additionally, we can also observe that the OP decreases with
the increases of SNR, while it increases with the increase of CEEs
parameters. Finally, it is shown that the high transmit power yields
larger OP gaps for arbitrary CEEs.

In Fig. 5, the IP is plotted versus the number of eavesdropper node
antennas for different average transmit SNR values and channel esti-
mation parameters. Here, we set other parameters as shown in Fig. 4.
The simulation explained that the eavesdropping ability of the sys-
tem was weakened with the rise of CEEs and the size of SNR was
inversely proportional to the IP. It is also illustrated that the IP in the
ideal channel is greater than that in the non-ideal case.

Fig. 6 shows the OP and IP versus transmit SNR in presence
of RHIs and CEEs. The parameter values are given as following:
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Fig. 6: Simulated OP and IP, analyze them versus SNR for differ-
entk (o =2, =0.8,{&1,&}={0.06,0.95}, K =2, N = 2and
o2 = 0.05)

a=2,u=0.8,{,8}={0.06,0.95}, K =2, N = 2 and o2 =
0.05. We clearly see that OP increases as RHIs grows in the mul-
tiple antenna conditions, while the IP decreases when the value
increases, which means RHIs not be good for IP. This figure also
shows that there exists error floor for the OP in the non-ideal case.
Similarly, there is an optimal transmit SNR value for this case to
obtain a trade-off between reliability and security.

Fig. 7 presents the OP and IP versus distortion noise parameter for
different power allocation efficients (1 = 0.8, 1). As in [28], we take
the range of transceiver distortion noise is € [0, 0.4]. In this sim-
ulation, we set« = 2, SNR = 5dB, {1,&} ={0.06,0.95}, K =
2, N = 2and 62 = 0.05. Fig. 7 shows that the outage performance
is broken as x increases, and the IP becomes worse as k increases,
which means that RHIs can improve the security performance. Sim-
ilarly, we can also observe that the ;o has a negative impact on the
OP and a positive effect on the IP.

In Fig. 8, we present the OP and IP versus the average trans-
mit SNR for different CEEs. For comparison, the case of perfect
CSI is taken into account (UZ = 0). In this simulation, we set
a=2,u=0.8,{,8%}={0.06,095},K =2,N =2 and k=
0.1. These results clearly show that the OP increases as ag increases,
and there exists an error floor under the cases of non-zero 03. This
observation verifies the conclusion of Remark 1 and Remark 2. It
can also be observed that the effect of CEEs on the IP is relatively
small, which means that the differences of IP among the three values

of 02 = 0 can be ignored in high and low SNR regions. Finally, we
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Fig. 7: OP and IP versus distortion noise parameter x for differ-
ent u ( =2, SNR = 5dB,{£1,£2} ={0.06,0.95}, K =2, N =
2 and o2 = 0.05)
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can also observe that the OP converges to zero as the average SNR
becomes large.
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In Fig. 9, we show the impact of CEEs for the two channel
estimation cases. For the first case, we set 03 = 0.05; for the sec-
ond case, we set o2 = /(14 6pQ), Q2 = 1,6 € {0.8,1}. In this
simulation, we set o =2, u = 0.9,{&1,&}=1{0.02,0.99}, K =
2, N = 2 and k = 0.1. From these results, we can observe that there
exits an error floor for the first case (fixed CEEs), which is deter-
mined by the level of estimation errors. For the second case (variable
CEEs), there is no error floor in the presence of RHIs and the slopes
of asymptotic OP are connected with the K, agp and a g p, the sim-
ulation verified the expressions of (37), (38) and (40). This figure
shows that the OP decreases and IP increases with increasing §.
Therefore, we can conclude that CEEs have a detrimental effect on
the OP. In addition, for the IP of this figure, we have the following
observations: 1) the gap of IP between perfect CSI and the second
case becomes smaller as the average transmit SNR increases; ii) at
low SNR, the IP for the second case less than the first one, vice versa;
iii) at high SNRs, the effect of CEEs on the IP is relatively small.

Fig. 10 presents the OP and the asymptotic results versus aver-
age transmit SNR for different fading parameters o and antenna
numbesr K. Note that in these results, we set p = 0.8 and
{&1, &2} =1{0.02,0.99}. In this simulation, we consider two kinds
of conditions: i) ideal (x = 0 and 03 = 0); ii) non-ideal (k = 0.1
and o2 = 0.1). We can see that the ideal system outage performance
is better than non-ideal. From these results, we can observe that there
exit error floors for the non-ideal conditions due to the fixed CEEs,
which is irrelevant to the transmit SNR. The asymptotic curves for
the OP are plotted according to (33), (34) and (35). For non-ideal
conditions: 1) when Ug is a variable, the slopes of asymptotic OP are
not zero, which verifies the analysis of (37) in Section 4; 2) when Ug
is a fixed constant, the slope of the asymptotic OP are zero, which
verifies the analysis of (38) in Section 4. For ideal conditions, the
slope of the asymptotic OP is a nonzero constant, which verifies the
analysis of (40) in Section 4.

Fig. 11 shows the exact and asymptotic OP as a function of the
transmit SNR for different values of «, Ug and K. It can be noticed
that: 1) when ¢ is a fixed value, the slope of the asymptotic OP in the
simulation does not change significantly after changing the number
of source node antennas; this is because 8 is 1; 2) when CEEs is
a variable, that is, when ¢ is greater than zero, it can be observed
that changing the value of d does not affect the slope of the curves
when other conditions are constant; 3) when other conditions are
met, when the « value becomes larger, the diversity orders of the
system become larger; 4) when CEEs is constant, the OP has an error
floor. These results further verified (37), (38) and (40) in Section 4.

6 Conclusion

In this paper, we have analyzed the effect of RHIs and CEEs on
the reliability and security of multi-antenna relay networks in terms

T T T
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Fig. 11: OP versus SNR for different o, K and o2
(1 =0.8,{¢1,£2}=1{0.02,0.99} and k = 0.1)

of OP and IP. The OTAS strategy and collaborative eavesdrop-
ping scheme have been proposed and it was found that the former
enhances the reliability and the latter reduces security of the net-
works. The exact analytical expressions for the OP and IP were
derived for the proposed strategy. Numerical results reveal that: 1)
the outage performance is weakened as the number of source node
antennas increases; 2) the eavesdrop performance is enhanced by the
number of source node antenna increases; 3) the OP is inversely pro-
portional to the power allocation coefficient and IP is proportional to
the power allocation coefficient; 4) OP increases with the increase of
quantization coefficients of the artificial noise, while IP decrease as
quantization coefficient increases; 5) we further understand that HIs
and CEEs have detrimental impact on system performance; 6) there
exists error floor for the OP due to the CEEs.
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9 Appendix A

The proof of theorem 1 is given in this section.

Proof: According to the relevant mathematical knowledge, we can
turn (22) into the following formula:

Pouy=1—Pr{min (Cgr,Crp) > Rg}
=Pr{Csr<Rs}+Pr{Crp<Rs}—Pr{Csp<Rs}Pr {Crp<Rs}

Il 12 Il I2

(A.1)

Then, set ¢ = 221%S — 1 in the following calculations of 1 and
I>.

Firstly, substitute (20) to (A.1), we can derive the formula follows:

.2
1 hSR‘ PSR
I1=Pr Elogg 14 5 <Rg
R (O%SR+‘hSR’ F‘%’R_FO%SR%R) +1
2 2
~ 2 EPSRUeSR <1+HSR> +e
= Pr{ |hsn| < k (A2)
psr (1—ergp)

[Sh

In what follows, I; will be addressed. According to (18), I; can
be calculated as:

~ 2
I =Pr {‘hSR‘ < @1} = FliLSR|2 (©1)

K

asp—1 — 2L j
e Psr [ O )
—|1 Y e . (A3)
JZ::‘) J! (ﬁSR

Secondly, substituting (21) to (A.1), we can get the following
formula:

PRD }ALRDF
I>o=Pr 3 <e
O2rp PRD (51 Pj/ %ty PRD)(’hRD‘ + O%RD) +1
—Pr ERD‘ o [O%RD (pRDJr&PJ/ -+ pRD) H} . (A4

PRD —€ (51 Pj/ %y +/€QRDPRD)

©;

in this case, I will be computed. Similarly, according to (14), I5 is
calculated as:

R 2
I :Pr{’hRD‘ <@2}= |iLRD|2 (©2)
app—1 —-92 1
e PRrRD @2 )
=1- — == . (A.5)
; 2 (BRD
Substituting (A.3) and (A.5) into (A.1), we can obtain the (23).

For ideal condition, gve can %et the expression of (24) by set
ksr =kgrp =0and 0g,, = 0cpp, =

10 Appendix B

The proof of theorem 2 is given in this section.

Proof: Collaborative eavesdropper scheme



1) Non-independent identical distribution
In the case of low SNR, (27) can be approximated as

N
. 2 c
Plrrlltl;gz_Pr{Z > PRE}7 B.1)

n=1 "

N . 2
in addition, the PDF of > ‘hREn ‘ can be easily obtained as [43]
n=1

NOLREn—167 BRmEn
fn o (x) = . (B.2)
Zl |h’REn |2 r (NaREn) BNO{RE

n=

Substituting (B.2) into (B.1), the (28) can be obtained.

2) Independent identical distribution

Similar to Appendix A, substituting (12) into (15) and put (30)
into (25), we can get the formula as follows:

el

L2 @{‘ngEn (ORE"+02 — pIEL)J%
=1-PrS || < o
pri, =2\ o2, + i, PRE,

O5

iLREn|2 (©5), (B.3)

Nprg,

ni -
int,i.i.d=FT

O%RE,L PRE, T (

=1-F

Substituting (14) into (B.3), we can obtain the (31).
For ideal condition, we can get the expression of (32) by set
KRrE, = 0and cr%REn =0.

11 Appendix C

The proof of Corollary 1 is given in this section.

Proof: A. Non-ideal condition

1) When o2, = Qxiy

In a similar methodology to [4] (13) can be extended to Taylor’s
form. When pxy — oo, Only the first summation of an infinite
series is the dominant term. Thus, (13) and (14) can be further
simplified respectively as:

poxy—1
h = Tlaxw) goxy T x>0, C.1
f|hxy\2 () F(Oéxy)ﬁgg(,y o(z),x (C.1)
rdXY
F\BXYF(I)NWH( x),x > 0. (C2)

According to (C.2), we can get the CDF of maximum channel
gain after being selected under high SNR as following:

asr K
» (2) ~ (f‘im) : (C3)

Foo,ni
asgr!Bek

|s|

By the definition of OP in Section 3, we can get the following
formulas:

QSR K
4£2L444,> R (CA)

asr!BgR"

Is = Fl(;o Ill| (91) = (

@204RD

arp'BRE

Iy = F> “‘I (©3) = (C.5)

[
Thus, we can derive the asymptotic expression of OP under high
SNRs as:

P =4 Iy — Iy

out
oese \ | gemn ocse \ ' eemo \ - (CO)
T\osr!B5r) T ann!BP \asr!Bel )\ ann!BERP

2)Wheno?,, =a(aisa constant)

According to (20), (21) and Py = QR, we can derived the chan-
nel capacity expressions of first slot and from R to D under high
SNRs (pxy — 00) as:

oo = %mg2 1+ , (@
Ogsn, + “2 'SR (‘hSR’ +O%SR>
C?DHI**IOgQ 1+ (C.8)

+ (@/24=%p) (’hRD‘ +2 )

According to the definition of OP in Section 3, we can get the
following:

P2 — py {mln ( c m, cy m) < RS} (C.9

out

and then, we can derive the following formula:

pooni2 _Pr{coo i RS} +Pr{c§;i < Rs}

out

Is Is
pr{cgpt < RspPr{Cypt < Rg}. (©10)

I5 IG

Similarly to the Appendix A, we can derive the expressions of I3
and I4 as:

1
Is=Prq —logy [ 1+ < Rg
2 02 2> (15 %0 2
eSR‘f"‘fSR ‘hSR‘ +0esr
2 e0te, (1+”SR)
—Pr ‘hSR‘ PR WL .11
175551{
07

then, substituting (19), we can derive the following expression of I3
as:

A 2
Is =Pr {‘hSR‘ < @7} = FliLSR|2 (e7)

K

()LSR—l — @7
e Psr [ Oy )
1= , (C.12)
Z::‘) J! (ﬁSR




Similarly, we can deduce that Ig is equal to the following formula:

Ig=Pr 3 <e
+ (51/ 2"_&2@) (’BRD‘ +O%RD)
) 0% (1+£1/2+I42RD)
=br ‘hRD’ 1—551/2—6.%%13 ' €13)

[CH)
substituting (14) into (C.13), we can derive the expression of /4 as:

N 2
Ig = Pr{‘hRD‘ < @8} = FliLRD|2 (@8)

arp—1

_ﬂ& o 1
— 1 _ e PRD Og
=l X S (5%5)

(C.14)

Substituting (C.12) and (C.14) into (C.9), we can get the expres-
sion of (34).

B. Ideal condition

Similar to what we did in case agxy =

Ty We can
derive the asymptotic expression of OP under hlgﬁ SNRs as:
Poi=F+k—Il (C.15)

©305R K ©,°RD { ©; 05" K ©,rD
7(@9]%%?}?’) " opp B \%R!ﬁgff) (aRD'ﬂaRD>'



