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Alcohol Dehydrogenase Triggered Oxa-Michael Reaction for the 
Asymmetric Synthesis of Disubstituted Tetrahydropyrans and 
Tetrahydrofurans  
Harry Eastman,[a] James Ryan,*[a]  Beatriz Maciá,[b]  Vittorio Caprio[b] and Elaine O’Reilly*[a,c] 

 

Abstract: An alcohol dehydrogenase-mediated asymmetric reduction 
and subsequent intramolecular oxa-Michael reaction has been 
developed for the preparation of tetrahydropyrans (or oxanes) and 
tetrahydrofurans, in excellent conversion, yield and high enantiomeric 
and diastereomeric excess. To highlight the utility of the methodology,  
we report the synthesis of an analogue of the fungal antioxidant 
brocaketone A. Also described is the preparation of the (-)-(R,R)-
enantiomer of the natural product, (+)-(S,S)-(cis-6-
methyltetrahydropyran-2-yl)acetic acid.  

The intramolecular oxa-Michael reaction (IMOMR) is a direct 
and rapid approach for carbon-oxygen bond formation, which 
allows the construction of synthetically useful cyclic oxygen-
containing heterocycles.[1] In particular, the IMOMR is 
exploited as a key step in cascade strategies for the 
preparation of chiral tetrahydropyrans (THPs) and 
tetrahydrofurans (THFs), which are prevalent in natural 
products (Figure 1).[1d,2] The syntheses of these motifs often 
commence from the chiral pool, to provide the desired 
enantiomer of the nucleophilic alcohol, prior to the IMOMR. 
This chiral centre has also been installed via asymmetric 
catalysis but the scope of this chemistry is limited.[1c,1g, 2d]  
 

 
Figure 1. A selection of tetrahydropyran and tetrahydrofuran-containing 

natural products.  

A useful approach for the synthesis of THPs/THFs is 
represented in Scheme 1 and involves the chemo- and 
stereo-selective reduction of ketoenone 1, followed by a 
spontaneous IMOMR to afford oxa-Michael product 3. 
However, this strategy has a number of challenges 
(highlighted in blue), which would be difficult to overcome 
when using traditional reduction chemistry. 
 

Scheme 1. A retrosynthetic approach for the synthesis of THP/THF 

derivatives starting from ketoenone 1. 
 
 The growing toolbox of biocatalysts, which can mediate 
synthetically challenging reactions and complement 
traditional chemical synthesis, has inspired the concept of 
biocatalytic retrosynthesis.[3] Incorporating enzymes into 
retrosynthetic design strategies enables completely new 
disconnections, which would not be feasible using more 
traditional synthetic approaches. We have previously 
reported a transaminase-triggered intramolecular aza-
Michael reaction (IMAMR) for the synthesis of chiral 2,6-
disubstituted piperidines,[4] and envisaged that an analogous 
approach could be used for the chemo-enzymatic synthesis 
of THPs/THFs, by employing an alcohol dehydrogenase 
(ADH). These enzymes have been heavily exploited for the 
selective reduction of prochiral ketones to afford the 
corresponding chiral alcohol. This methodology has been 
used both in vitro and in vivo, often in combination with a 
suitable co-factor recycling system.[5] ADHs are also used for 
the selective oxidation of primary or secondary alcohols, with 
the latter typically resulting in a kinetic resolution.[6]  
  Herein, we report an expansion of our aza-Michael 
methodology to include the biocatalytic ADH 
reduction/IMOMR cascade on a panel of prochiral keto-
enone substrates. An (R)-selective ADH from Lactobacillus 
kefir (LK) DSM 20587 has been selected to showcase this 
methodology, due to its broad substrate specificity and high 
enantioselectivity in the synthesis of chiral alcohols, including 
dicarbonyl substrates.[7] 
Ketoenone substrates 1a-c and 1e-i (Table 1) were prepared 
via oxidative cleavage of 1-methylcyclopentene or 6-methyl-
5-hepten-2-one, followed by reaction with a suitable 
phosphorus ylid. Ketoenone 1d was prepared via an 
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alternative strategy, starting from carboxylic acid 5 (Scheme 
3). The biocatalytic reduction of dimethyl ketoenone 1a was 
initially examined, using LK-ADH in combination with a 
glucose dehydrogenase (GDH)/NADPH recycling system 
(Scheme 2).[7a] The unhindered methyl ketone and methyl 
enone make the regioselective reduction of 1a particularly 
challenging. We recently reported an analogous 
transaminase-triggered IMAMR on this substrate, where 
despite a lack of regioselectivity, the reversibility of the 
biotransformation allows isolation of the desired product via 
a dynamic ‘shuttling’ mechanism.[4] However, it is not 
possible to exploit the same reversibility during the ADH 
reaction, and therefore regioselective reduction of the ketone 
over the enone is essential. After one hour, 1a was 
quantitatively converted to undesired diol 4a, using LK-ADH. 
Close monitoring of the biotransformation over time revealed 
that the desired IMOM precursor 2a, along with a small 
quantity of THP 3a, is formed within approximately 8 minutes, 
in 82% conversion. This mixture can be fully converted to the 
desired cyclic product 3a by stirring in ethereal hydrogen 
chloride solution, to provide cis-3a, in 75% yield, as a 12:1 
ratio of cis/trans isomers.[1h] Further incubation of the 
biotransformation led to a second undesired ADH-mediated 
reduction taking place, affording diol 4a. This impressive 
selectivity means that the biotransformation can be 
controlled and the target precursor for the IMOM reaction 
prepared selectively.  
 

Scheme 2. Conversion of 1a to 2a after 8 minutes incubation with LK-

ADH, followed by IMOMR to give THP 3a. 1-hour incubation with LK-ADH 

afforded diol 4a. 

 
Substrates 1b-c were then used to further probe the scope 
of the methodology. As the enone substituent on these two 
substrates is relatively large compared to the methyl group 
in 1a, over reduction of the IMOM precursor to the 
corresponding diol was not expected to be an issue with this 
particular ADH, due to its preference for carbonyls with small 
substituents. Ketoenones 1b-c were converted to a mixture 
of 2b-c (major) and 3b-c (minor) after 20 minutes, in >99% 
conversion. Treatment with ethereal HCl catalysed the 
IMOMR and afforded 3b-c in 98% yield and high cis:trans 
ratio1h (Table 1, entries 2 and 3). It was envisaged that 
selective reduction of the methyl ketone in 1e, followed by  
IMOMR and hydrolysis would afford (-)-(R,R)-(cis-6-
methyltetrahydropyran-2-yl)acetic acid; the enantiomer of 
the natural product present in the glandular secretions of the 
civet cat,[8] whose synthesis has received considerable 
attention.[9] There have been a number of chemical routes 
reported for the preparation of 3e, including those exploiting 
an IMOMR,[9c,d] but many preparations rely on complex multi-
step synthesis and harsh reaction conditions. Reaction of 1e 
with LK-ADH afforded 2e after 1 hour in >99% ee,[10] with no 

cyclised product observed. Subsequent treatment of 2e with 
sodium hydride led to efficient IMOMR, initially affording a 
1:1 mixture of cis/trans isomers,[1h] which epimerised in 
solution over 48 hours to give a dr of 91:9. Purification on 
silica gel provided solely cis-3e (dr >99:1) in 48% yield 
(Table, 1 entry 5), which was hydrolysed in aqueous LiOH, 
affording the target (-)-(R,R)-(cis-6-methyltetrahydropyran-
2-yl)acetic acid (compound I-3 in supporting information).  
The corresponding tetrahydrofuran derivatives were also 
accessible using this approach. Substrates 1g-i were 
transformed in high conversion (87->99%) to THFs 3g-i in 
good yields (54-99%, Table 1, entries 7-9), but as 
expected,[2] epimerisation of these compounds was not 
achievable in either the acidic or basic conditions employed 
for the THPs 1a-e. Unlike the analogous THP derivative 1a 
that was synthesised using this approach, attempts to control 
the reduction and isolate the mono-reduced IMOM precursor 
2f were unsuccessful and only the corresponding diol and 
starting material were observed after the biotransformation 
with LK-ADH. 
 
Table 1. Conversion of 1a-i to 3a-i using LK-ADH and subsequent 

acid/base-catalysed IMOMR. 
  

Entry Substrate R n Conv. 
(%)b) 

Yield 
(%)c) 

d.r. 
(cis:trans)d) 

1 1a Me 1 82 75e) 12:1 
2 1b tBu 1 >99 >99 8:1 
3 1c Ph 1 >99 >99 10:1 
4 1d CH2Ar 1 91 80e) 11:1 
5   1e f) EtO 1 >99 48e) >99:1 
6 1f Me 0 nag) na na 
7 1g tBu 0 87 77e) 1:1 

  8h) 1h Ph 0 >99 >99 1:1 
9 1ii) EtO 0 >99 54e) 1:1 

[a] Reaction conditions: (i) LK-ADH (100 µL resuspended whole cells 

from a 100mg/mL wet cell resuspension), GDH (6U), substrate (50 

mM), glucose (250 mM), NADP+ (0.01 mM), Tris.HCl buffer (100 mM, 

pH 7.5, 1 mL), 30 °C, 200 rpm, 8 min for 1a, 60 min for 1b-i; (ii) 

HCl.Et2O (2 M), r.t., 1 h. [b] Conv. determined by NMR after cyclisation. 

[c] Combined isolated yield of both diastereoisomers. [d] cis/trans ratio 

determined by NMR spectroscopy (after purification for 2a, 2d, 2e, 2g, 

2i). [e] Isolated yield after column chromatography. [f] oxa-Michael 

reaction carried out with NaH, r.t. 48 h. [g] Only the corresponding diol 

4f and starting material 1f were recovered. [h] 10% MeOH added as 

co-solvent during biotransformation. [i] oxa-Michael reaction carried 

out with tBuOK, r.t., 1 h. 

 
Having successfully demonstrated the feasibility and 
scope of the biocatalytic reduction/oxa-Michael reaction, 
the optimised conditions were applied in the chemo-
enzymatic asymmetric total synthesis of brocaketone A 
analogue 3d. This natural product was recently isolated 
from Penicillium brocae MA-192.[11] Precursor ketoenone 1d 
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was synthesised in 35% yield over three steps, starting 
from commercially available acid 5 (Scheme 3). An LK-
ADH-catalysed reduction followed by cyclisation afforded 
the brocaketone A derivative 3d (80% yield, 11:1 dr). 
Asymmetric reduction of the carbonyl in 3d would provide 
a formal synthesis of the biologically active natural 
product, cladosporin.[12] 

Scheme 3. Chemo-enzymatic asymmetric total synthesis of brocaketone A 
analogue. a) N,O-Dimethylhydroxylamine hydrochloride, 1,1′-
carbonyldiimidazole, CH2Cl2, r.t., 24 h. b) CH2=CH2MgBr, THF, 0 oC – r.t., 2 
h.  c) Hoveyda-Grubbs II, hept-6-en-2-one, CH2Cl2, 24 h. d) i) LK-ADH, GDH, 
glucose, Tris.HCl, 30 oC, 200 rpm., 1 h ii) HCl.Et2O (2 M), r.t., 1 h. 

 
In conclusion, we have developed a biocatalytic route for 
the asymmetric synthesis of tetrahydrofuran/pyran cyclic 
ethers, starting from easily accessible ketoenones. The 
strategy relies on an ADH-mediated asymmetric reduction 
of the ketoenone, followed by an intramolecular oxa-
Michael reaction.  This novel approach has enabled the 
asymmetric synthesis of the enantiomer of the natural 
product (+)-(S,S)-(cis-6-methyltetrahydropyran-2-yl)acetic 
acid as well as a derivative of recently reported 
brocaketone A, and represents an alternative 
chemoenzymatic approach for the stereoselective 
synthesis of cyclic ethers.  
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