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Abstract 13 

The interaction of water wave with a bottom-mounted surface-piercing porous 14 

cylinder near a rigid vertical wall is investigated by an analytical model newly 15 

developed in the present work within the context of linear potential flow theory. The 16 

image principle is used to transfer the original problem in bounded water into the 17 

equivalent problem of wave interaction with two symmetrical porous cylinders in open 18 

seas in the presence of bi-directional incident waves. The velocity potential is 19 

analytically derived by means of the eigenfunction expansion along with the matching 20 

technique. Furthermore, a new alternative method for the evaluation of wave force is 21 

developed via the application of the Haskind-Hanaoka relation to a porous structure. In 22 

this method, an auxiliary radiation potential is introduced to replace the diffraction 23 

potential for the calculation of wave force. The auxiliary radiation potential used here 24 

is due to the oscillation of a porous cylinder in front of a wall. The image principle is 25 

used again to search the solution of the wave radiation problem in bounded water and 26 

the original radiation problem is then transferred to that due to two porous cylinders 27 

undergoing in-phase or out-of-phase motions in open seas. After the validation of the 28 
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developed model, detailed parametric study is carried out. The porosity of the cylinder, 29 

incident wave heading and spacing between the cylinder and the wall are systematically 30 

adjusted to investigate their effects on the wave force as well as the wave elevation. The 31 

extension of our model to the case of a cylinder array in front of a wall has also been 32 

performed, and the associated phenomenon has been explored. 33 
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1. Introduction 39 

As porous structures are effective at dissipating the unwanted wave energy and 40 

minimizing the environmental impact, they have been widely constructed for the 41 

purpose of shore protection. Currently, porous structures have constituted an important 42 

class of maritime structures and a good understanding of the hydrodynamic properties 43 

of porous structures has long been demanded. Various research works have been 44 

performed to investigate the interaction of water wave with porous structures. 45 

The use of a porous plate as a breakwater has been an attractive option. A porous 46 

horizontal plate submerged at a certain distance below the free surface could not only 47 

largely reduce the reflection coefficient and wave action but also make the transmission 48 

coefficient remain at a low level (Yu and Chwang, 1994). In addition, it allows water 49 

exchange above and below it, thus retains water quality and prevents seawater pollution 50 

(Cho and Kim, 2013). Besides the horizontal porous plate, a vertical plate with suitable 51 

porosity has also been gradually used as a breakwater. The application of a vertical 52 

porous plate can weaken the unexpected surface fluctuation inside the harbor, which is 53 

important for the safe maneuvering of vessels (Li et al., 2006). So far, many researchers 54 

have assessed the functional performance of a horizontal or vertical porous plate as a 55 

breakwater, such as Neves et al. (2000), Cho and Kim (2008), Kee (2009), Evans (2011), 56 

Liu et al. (2011) and Zhao et al. (2017). 57 
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At the same time, the use of a perforated caisson as a breakwater has also been a very 58 

attractive option. Compared with impermeable structures, structures with perforated 59 

parts are normally considered to be easier to construct and more economical. In addition, 60 

the use of perforated structures can avoid local scour as well as the increase in wave 61 

agitation due to the considerable wave reflection (Sankarbabu et al., 2008). Jarlan-type 62 

breakwater consisting of a perforated front wall and an impermeable rear wall (Jarlan, 63 

1961) has been the earliest perforated caisson breakwater. Since then much effort has 64 

been made by researchers in quantifying the functional performance of the perforated 65 

caisson type breakwater and other innovative configurations have been reported, such 66 

as the concentric porous cylinder system (Wang and Ren, 1994; Song and Tao, 2007; 67 

Ning et al., 2017; Liu et al., 2018), perforated caisson with inner plates (Yip and Chang, 68 

2000; Liu et al., 2007b) and arrays of porous columns with rectangular or cylindrical 69 

sections (Williams and Li, 2000; Teng et al., 2004b; Liu et al. 2007a; Sankarbabu et al., 70 

2008; Chen et al., 2011). 71 

As mentioned above, a porous cylinder or cylinder array can be a promising solution 72 

of a breakwater. Many studies on the behavior of a porous cylinder or cylinder array in 73 

waves have been conducted. Wang and Ren (1994) analytically investigated the wave 74 

interaction with a two-cylinder system consisting of an exterior porous cylinder with 75 

thin thickness and an inner concentric impermeable cylinder. Darwiche et al. (1994) 76 

also conducted research work related to a concentric porous cylinder system, in which 77 

the exterior cylinder is porous near the free surface but becomes impermeable in the 78 

lower part. Williams and Li (1998) extended the analysis in Darwiche et al. (1994) to 79 

the case in which the inner cylinder is mounted on a storage tank. Williams and Li (2000) 80 

dealt with the problem of the wave interaction with multiple porous cylinders based on 81 

the eigenfunction expansion method proposed by Linton and Evans (1990). Zhong and 82 

Wang (2006) developed a theoretical model to study the interaction of solitary waves 83 

with a concentric porous cylinder system. Chen et al. (2011) used the null-field integral 84 

formulation to study the near trapping phenomenon by an array of porous cylinders and 85 

assessed the porous effects and the disorder of the layout on the near trapping 86 
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phenomenon. Mandal et al. (2013) applied the Fourier-Bessel series expansion method 87 

in conjunction with the least square approximation to investigate the wave interaction 88 

with an exterior porous and flexible thin cylinder protecting an inner impermeable 89 

cylinder. Liu et al. (2018) presented an analytical method for deriving the velocity 90 

potential for waves traveling through a concentric porous cylinder system with arbitrary 91 

smooth section. 92 

The hydrodynamics of porous structures in open seas have been widely studied. In 93 

the meantime, porous structures, situated at a finite distance from a rigid wall, have also 94 

been gradually built in various projects, such as ship navigation or as an artificial 95 

breeding or nursing ground for sea animals (Koley, et al., 2015). However, the study on 96 

porous structures in front of a rigid wall is very rare, and the problem is still not well 97 

understood. The vertical cylinder is widely used in the maritime engineering. Especially, 98 

the porous cylinder can be adopted as a breakwater in the harbour area to ensure the 99 

natural water circulation for the mitigation of environmental pollutions. Therefore, an 100 

analytical solution is developed in this study to explore the phenomenon of water wave 101 

interaction with a bottom-mounted surface-piercing porous cylinder near a rigid vertical 102 

wall. The wall is assumed to be fully reflective infinite vertical and can be used to 103 

approximate a wharf (Teng et al., 2004a; Zheng and Zhang, 2015). In this new method, 104 

the image principle is used to transfer the original problem in bounded water into the 105 

equivalent problem of wave interaction with two porous cylinders in open seas in the 106 

presence of bi-directional incident waves. The eigenfunction expansion method along 107 

with the matching technique is used to derive the velocity potential. In the equivalent 108 

problem in open seas, the relationship between the Fourier coefficients related to the 109 

real and image cylinders has been established, based on which it can demonstrate that 110 

the no-flow condition is satisfied on the vertical wall. Furthermore, a new alternative 111 

method is developed to evaluate the wave force using the Haskind-Hanaoka relation. 112 

The Haskind-Hanaoka relation was originally established for impermeable bodies (Mei, 113 

2005), and extended to the case of a porous structure by Zhao et al. (2011). In this 114 

method, the wave fore is evaluated based on the introduction of an auxiliary radiation 115 
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potential and the explicit solution of the diffraction potential is not required. The image 116 

principle is used again to solve the wave radiation problem due to the oscillation of a 117 

porous cylinder in front of a wall. In the equivalent radiation problem in open seas, the 118 

no-flow condition on the vertical wall has also been discussed. By comparing the wave 119 

force obtained by these two approaches, the validity of the present model is examined. 120 

With the developed model, numerical analysis concerning a porous cylinder in front of 121 

a wall is performed in detail to investigate the effects of porosity, incident wave heading 122 

and distance between the cylinder and the wall on the hydrodynamic properties of the 123 

porous cylinder. The extension of our model to the case of a cylinder array has also 124 

been performed in this study. Numerical results related to an array of porous cylinders 125 

in front of a wall are also presented. 126 

Following the introduction, the mathematical description of the problem is presented 127 

in Section 2. The analytical solution of the velocity potential is introduced in Section 3, 128 

which is followed by the calculation of wave force and wave elevation based on the 129 

obtained velocity potential. The alternative method for the calculation of wave force is 130 

discussed in detail in Section 5. Section 6 shows convergence test and validation of the 131 

analytical model, while the parametric study is carried out thereafter in Section 7, with 132 

conclusions drawn in Section 8. 133 

 134 

2. Mathematical model 135 

Consider a bottom-mounted, surface-piercing, thin-walled porous cylinder of radius 136 

a situated near a vertical wall (see Fig. 1). The incident wave of amplitude A and angular 137 

frequency ω propagates in the water of constant depth d. The minimum distance 138 

between the cylinder and the wall is e. As the vertical wall is assumed to be infinite 139 

long and fully reflective, the hydrodynamic problem can then be transformed into an 140 

equivalent problem of two symmetrical cylinders in the unbounded fluid domain (Teng 141 

et al., 2004a), as shown in Fig. 2 where the left cylinder is the real cylinder, while the 142 

right cylinder is the image cylinder. A global Cartesian coordinate system (Oxyz) is 143 

adopted with an origin located at the middle of the two cylinders on the still free surface. 144 
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The z-axis directs vertically upwards. The centers of the real and image cylinders are 145 

located at (−R, 0, 0) and (R, 0, 0), respectively, on the still free surface. Two polar 146 

coordinates Ojrjθjzj (j = 1, 2) are defined with their origins locating at (−R, 0, 0) and (R, 147 

0, 0) respectively in the global coordinate system. The zj-axis is defined positive 148 

upwards. In this system, the two symmetrical cylinders are subjected to two incident 149 

wave trains of amplitude A and angular frequency ω propagating in the direction β and 150 

π – β, respectively, relative to the positive Ox axis. 151 

It is assumed that the fluid is inviscid and incompressible with a constant density ρ, 152 

and that the fluid motion is irrotational. Then, the fluid velocity can be described by the 153 

gradient of the velocity potential   satisfying Laplace’s equation 154 

  2 ,  0.x t    (1) 155 

By considering linear harmonic incident wave, the time factor can be separated out and 156 

the velocity potential is then expressed as 157 

    ,  Re ,  ,  ,x
i tt r z e         (2) 158 

where Re[] denotes the real part of a complex expression; ω represents the wave angular 159 

frequency; 1i   . 160 

 161 

Fig. 1 Definition sketch for a porous cylinder near a vertical wall: (a) side view and (b) plane 162 

view 163 
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 164 

Fig. 2 Definition sketch for two symmetrical cylinders in open seas: (a) side view and (b) plane 165 

view 166 

 167 

As shown in Fig. 2(a), the unbounded fluid domain is divided into 3 sub-domains: 168 

one single exterior region,   , and two interior regions, 
1

   and 
2

  . The interior 169 

regions are those inside the real and image cylinders respectively and defined by 0 ≤ rj 170 

≤ aj, j = 1, 2. 
1a  and 

2a  are the radii of the real and image cylinders, respectively, 171 

and in this study 
1 2a a a  . The velocity potential in the exterior region is denoted 172 

by   , while that in the interior region is denoted by j


 (j =1, 2). Besides Laplace’s 173 

equation, the velocity potential is also required to satisfy appropriate boundary 174 

conditions on the free surface and the impermeable sea bed, namely 175 

 
2 2

, , on 0, 1,  2;
j

j z j
z g z g

  
 


 


   

 
 (3) 176 

 0, 0, on , 1,  2,
j

z d j
z z


 

    
 

 (4) 177 

where g is the acceleration due to gravity. 178 

To model the flow separation through porous materials, a quadratic law, relating the 179 

pressure drops to the traversing velocity, has been proposed in some studies, such as 180 

Molin (2011), An and Faltinsen (2013). The numerical predictions of hydrodynamic 181 
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coefficients, added mass and damping, based on the application of quadratic pressure 182 

drops are in good agreement with the experimental results for porous stabilizer, plate 183 

or disk undergoing forced motions (Molin and Legras, 1990; Molin et al., 2007; An and 184 

Faltinsen, 2013; Molin and Remy, 2013). On the other hand, a linear relation between 185 

the pressure drop and the cross-flow velocity has also been developed by researchers, 186 

such as Chwang (1983) by making use of the Darcy’s law and Yu (1995) by applying 187 

the convection-neglected and porous-effect-modelled Euler equation. The linear law 188 

has been applied in many studies to model the wave interaction with structures 189 

consisting of porous cylinders, and the numerical predictions of wave force and wave 190 

runup agree well with the experimental measurements (Sankarbabu, 2007; 191 

Vijayalakshmi et al., 2007; Zhao et al., 2010; Zhao et al., 2012). A bottom-mounted 192 

porous cylinder located in bounded water is concerned in this study, the assumption that 193 

the normal fluid velocity passing through a thin porous wall is linearly proportional to 194 

the pressure difference across the thickness of the wall is therefore adopted. Then, 195 

according to Chwang (1983) and Yu (1995), the boundary condition on the porous wall 196 

can be expressed as follows 197 

  0 0 , on = , 1,  2,
j

j ji G r a j
r r


  


 


   

 
 (5) 198 

where 
0  is the wave number satisfying the dispersion relation 2

0 0tanhg d   ; 199 

0G  is the complex linearized porous effect parameter. The real and imagery parts of 200 

0G  represent the resistance and inertial effects of the porous wall and are relevant to 201 

the energy dissipation and phase change respectively (Li et al., 2006). The experimental 202 

studies of Li et al. (2002, 2006) suggested that the real part of 
0G   dominates the 203 

imaginary part. Therefore, it is assumed that the imaginary part of 
0G  is zero in this 204 

study. It is obvious that, when 0G  approaches 0, the cylinder wall tends to be solid; 205 

while, when 0G  approaches infinity, the cylinder becomes entirely transparent. It is 206 

also noted that the continuity of the normal fluid velocity between interior and exterior 207 

subdomains is mathematically fulfilled by Eq. (5). 208 

 209 
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3. Analytical solution of velocity potential 210 

The presence of the stationary body in the fluid results in diffraction of the incident 211 

wave. The velocity potential in the exterior region,   , can then be decomposed into 212 

the incident and diffraction potentials respectively, i.e., 213 

 ,I D      (6) 214 

in which, I  represents the incident potential; 
D  represents the diffraction potential 215 

in the exterior region. In addition to the boundary conditions in Eqs. (3), (4) and (5), 216 

the diffraction potential is also required to satisfy the Sommerfeld radiation condition 217 

at a large radial distance from the structure 218 

 0lim 0.D
D

r
r i

r


 



 
  

 
 (7) 219 

Considering two undisturbed incident waves propagating with the directions β and π 220 

–β, respectively, in the constant water depth d, 
I  can be written as: 221 

    0 0 0sin cos cos

0 0 ,
i y i x i x

I

iAg
Z z e e e

      



    (8) 222 

in which,  0 0Z z  is an orthonormal function given at the interval [−d, 0] and defined 223 

by 224 

  
 0

0 0

0

cosh
.

cosh

z d
Z z

d







  (9) 225 

In the jth local polar coordinate system, I  can be rewritten as 226 

      0 0 0,  ,  ,jimj

I j j j m m j j

m

r z J r Z z e


   




   (10) 227 

in which 228 

 
 

.
imj im m

m j j

iAg
I e I e i

    



      
 

 (11) 229 

In Eq. (11), jI 
 and jI  

 are the phase correction factors associated with the jth 230 

cylinder and defined by 231 

    0 0cos sin cos sin
; ,j j j ji x y i x y

j jI e I e
            (12) 232 

in which,  ,  ,  0j jx y  is the center of the jth cylinder on the free surface in the global 233 

coordinate system. Following Linton and Evans (1990), the diffraction potential, 
D , 234 
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is expressed as a summation of waves emanating from different cylinders 235 

    
2

0 0 0

1

.j

N
imj j

D m m m j j

j m

A C H r Z z e


  
 

 

   (13) 236 

In Eq. (13), N represents the total number of cylinders in the imaginary system and it is 237 

two times the number of cylinders in the original problem in bounded water, Nb. 238 

Considering the situation shown in Figs. 1 and 2, Nb and N are equal to 1 and 2 239 

respectively; j

mA  are the unknown coefficients; the factor j

mC  is introduced to 240 

simplify the expression of wave force that will be obtained later and defined by 241 

 
 
 

0

0

,
m jj

m

m j

J a
C

H a









 (14) 242 

where,  mH x  stands for the first kind of Hankel functions of order m. 243 

In Eq. (13), the waves emanating from the two cylinders are expressed in their 244 

respective local polar coordinate systems. To facilitate the application of the body-245 

surface boundary condition, it is necessary to express all terms in Eq. (13) in the same 246 

local coordinate system. This can be accomplished by using Graf’s addition theorem 247 

for Bessel functions (Abramowitz and Stegun, 1972) 248 

        
0 0 0 .kj jk jk

i n m imin

n k m n kj m j

m

H r e H R J r e e
    


 





   (15) 249 

In Eq. (15), 
kjR , equal to 2R, represents the distance between the centers of the two 250 

cylinders; 
jk   is the angle between the x-axis and the vector from the center of 251 

cylinder j to that of cylinder k. Eq. (15) is valid for 
j kjr R  and this is obviously true 252 

on the wall surface of the cylinders. The velocity potential in the exterior region,   , 253 

can then be expressed in the jth local polar coordinate system as 254 

         
2

, 

0 0 , 0 0 0

1 

,  ,  ,j

N
imj j j k k j k

j j j m m j m m m j n n m n m j j

m k n
k j

r z J r A C H r A C J r Z z e


     
  



  


 
     
 
  

    255 

(16) 256 

in which, 257 

     , 

, 0 1 .kj jkm i n mj k

m n n m kjH R e
 




    (17) 258 

According to Williams and Li (2000), the velocity potential in the jth interior region, 259 



 11 

j
  can be expressed as 260 

      0 0 0,  ,  ,jimj

j j j j m m j j

m

r z B J r Z z e


   






   (18) 261 

in which, j

mB  are the unknown coefficients. The remaining task is to determine the 262 

unknown coefficients in Eqs. (16) and (18). By applying Eq. (5) and utilizing the 263 

orthogonal properties of sinmθ, cosmθ and the vertical eigenfunctions, the following 264 

relationships between j

mA  and j

mB  can be yielded for j = 1, 2 265 

 
2

, 

, 

1

;
N

j j k k j k j

m m n n m n m

k n
k j

A A C B
 

 


       (19a) 266 

 
 
 

 
 

2
0 0 , 

0 0 , 

1, 0 0

.
N

m j m jj j j j k k j k

m m m m n n m n

k k j nm j m j

J a H a
B iG iG A C A C

J a J a

 

 

 

  

   
        

      
   (19b) 267 

By combining above equations and making use of the Wronskian relations for Bessel 268 

functions, an infinite system of equations can be obtained. In order to find a solution to 269 

the unknown coefficients j

mA  and j

mB , the system has to be truncated and only 2M + 270 

1 Fourier modes are considered for j = 1, 2 in the present study, i.e. 271 

 
   

2
, 0
, 

10 0 0

2 1
1 ;

N M
j k k j k j

m n n m n m

k n Mj m j m j
k j

G
A A C

a J a H a  

 

 


 
     

   
   (20a) 272 

 
   

0

0 0 0

2
.

j
j m

m

j m j m j

G A
B

a J a H a  
 

 
 (20b) 273 

Therefore, two sets of linear equations of equivalent numbers of unknowns can be 274 

established. The linear algebraic equation system can then be solved by means of the 275 

standard matrix techniques. With the obtained coefficients, the velocity potential in 276 

each region can be determined. The no-flow condition on the vertical wall in the 277 

equivalent problem in open seas is discussed in the Appendix. In the imaginary system 278 

in open seas, due to the symmetry of the system, relationships between the Fourier 279 

coefficients related to the real and image cylinders, 1

mA  and 2

mA , have been established 280 

in the Appendix (see Eq. (A6)). Based on the relationships between 1

mA  and 2

mA , the 281 

no-flow condition on the vertical wall can be demonstrated. 282 

 283 
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4. Calculation of wave force and wave elevation 284 

Once the solution of velocity potential is obtained, some other physical quantities of 285 

interest (e.g., wave elevation, pressure distribution, etc.) may immediately be found. 286 

The wave force and moment can be obtained by the integral of pressure difference 287 

between two sides of the body surface. Then, the amplitudes of the horizontal wave 288 

forces on the real cylinder, xf  and 
yf , are given by 289 

  
1 1

0 2

1

1 1 1 1

10

cos
.

sin

x

r a
y d

f
i a dz d

f

 
   



 




   
     

  
   (21) 290 

Meanwhile, the amplitudes of the wave moments on the real cylinder, xm  and ym , 291 

can be determined according to 292 

  
1 1

0 2

1

1 1 1 1 1

10

sin
.

cos

x

r a
y d

m
i a z dz d

m

 
   



 




   
    

  
   (22) 293 

For the calculation of xm  and ym , the rotation center is located at the center of the 294 

real cylinder on the still free surface. 295 

Following Linton and Evans (1990) and Williams and Li (2000), the expression of 296 

the velocity potential on the outer wall surface of the real cylinder is simplified by 297 

taking Eq. (20a) into Eq. (16) and making use of the Wronskian relationships for the 298 

Bessel functions, which is given by 299 

  
 

 

 
  1

1
0 1

1 1 1 0 0 0 1

0 1 0 1 0 1

2
,  ,  .imnm

m m n

J aA
a z G i Z z e

a H a J a


  

  






 
   

  
  (23) 300 

Then, evaluation of the integral in Eq. (21) gives: 301 

 
 

1 10
1 12

1 0 1 0

1 2 tanh
.

x

y

f d
A A

f i H a

 

 


      
      

       
 (24) 302 

Similarly, Eq. (22) can be rewritten as: 303 

 
 

1 10
1 13

1 0 1 0 0

2 1 cosh
.

1 cosh

x

y

m i d
A A

m H a d

 

  


      
      

       
 (25) 304 

The wave elevation,  , can be given in terms of the velocity potential. Around the 305 

real cylinder,   can be efficiently evaluated based on the following expressions 306 
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    0 0 0

2
sin cos cos

0

1

, in ;j

N
imi y i x i x j j

m m m j

j m

i
Ae e e A C H r e

g

      
 

 
 

 

      (26a) 307 

   11

0 1 1, in .im

m m

m

i
B J r e

g


 






   (26b) 308 

In Eq. (26a), the first part on the right-hand side results from the incident wave 309 

travelling to the vertical wall without the cylinder, while the remaining parts are due to 310 

the wave emanating from the real and image cylinders respectively. 311 

 312 

5. Alternative method for the calculation of wave force 313 

According to Eqs. (24) and (25), it is noted that the wave moment can be expressed 314 

in terms of wave force. Therefore, discussion is only made on the wave force in this 315 

work. A new alternative method for the calculation of wave force is developed in this 316 

section. The method is based on the application of Green's second identity with the use 317 

of an auxiliary radiation potential and does not require the explicit solution of 318 

diffraction potential. For the evaluation of the auxiliary radiation potential, the porous 319 

cylinder in front of the wall is no longer fixed and allowed to move in specific directions. 320 

The radiation potential due to the harmonic oscillation in the x- and y-directions (surge 321 

and sway motions) are needed in the calculation of xf  and 
yf , respectively. 322 

Based on the image principle, the wave radiation problem discussed here can be 323 

transformed to the equivalent one due to the motions of two symmetrical cylinders in 324 

unbounded fluid domain. The two cylinders undergo out-of-phase surge motions or in-325 

phase sway motions. Hereinafter,    represents the auxiliary radiation potential in the 326 

exterior region. Meanwhile, 
j   represents that inside the real (j = 1) and image (j = 327 

2) cylinders. The auxiliary radiation potential is governed by the Laplace’s equation 328 

and satisfies the homogeneous boundary conditions on the free surface and seabed as 329 

in Eqs. (3) and (4). In addition, they also have to satisfy the Somerfield condition at the 330 

far field. On the porous wall surface of the cylinder, the following conditions have to 331 

be satisfied (see, Zhao et al., 2011) 332 



 14 

    0 0 , on .
j

j j j j ju i G r a
r r


   


 


    

 
 (27) 333 

When the cylinders undergo out-of-phase surge motions,  j ju   is defined by 334 

  
cos , 1;

cos , 2.

j

j j

j

j
u

j







 

 
 (28) 335 

When undergoing in-phase sway motions,  j ju   is given by 336 

   sin , 1,  2.j j ju j    (29) 337 

Following Teng et al. (2004a), the approach of separation of variables is applied in 338 

each region and yields the velocity potential expressed by the orthogonal series 339 

        
2

, 0 0 0 0 , 

1 1

ˆ ˆ ;j

N
imj j

m m j j m l m l j l l j

j m l

A H r Z z A K r Z z e


    
  



  

  
   

  
    (30a) 340 

        , 0 0 0 0 , 

1

ˆ ˆ , 1,  2,jimj j

j m m j j m l m l j l l j

m l

B J r Z z B I r Z z e j


    
 



 

 
   

 
   (30b) 341 

in which, , 
ˆ j

m lA  and , 
ˆ j

m lB  (l ≥ 0) are the unknown coefficients;  mK x  and  mI x  342 

stand for the first and second kind of modified Hankel functions of order m respectively; 343 

l  (l ≥ 1) are the positive real roots of 2 tanl lg d    ;  l l jZ z  for l ≥ 1 are 344 

defined by 345 

  
 cos

.
cos

l j

l l j

l

z d
Z z

d







  (31) 346 

Those expressions in Eq. (30) are developed to satisfy the Laplace’s equation and all 347 

the boundary conditions except that satisfied on the porous wall surface of the cylinder. 348 

The application of the Graf’s addition theorem for Bessel functions yields 349 

        
.kj jk jk

i n m imin

n l k m n l kj m l j

m

K r e K R I r e e
    


 





   
(32) 350 

Eq. (32) is valid in the vicinity of the jth cylinder, ie, 
j kjr R . By substituting Eqs. (15) 351 

and (32) into Eq. (30a) and replacing m by −m,     can be expressed in the jth 352 

coordinate system as follows 353 
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       

     

2
, 

, 0 0 , 0 , 0 0 0

1

2
, 

, , , , 

1 1

ˆ ˆ,  ,  

ˆ ˆ ,

j

j

N
imj k j k

j j j m m j n m n m j j

m k n
k j

imj k j k

m l m l j n l m n l m l j l l j

m l k n
k j

r z A H r A J r Z z e

A K r A I r Z z e





    

  

  


  


  

   


 
   
 
  

 
   
 
  

  

  

 (33) 354 

in which 355 

    , 

, , , 1.kj jki n mj k

m n l n m l kjK R e l
 




    (34) 356 

The unknown coefficients in Eq. (33) can be determined by imposing the boundary 357 

condition satisfied on the body surface. By utilizing the orthogonal property of sinmθ, 358 

cosmθ and the vertical eigenfunctions, the following relationships between ˆ j

mA   and 359 

ˆ j

mB  can be yielded 360 

  
 

 
2

, 0
, 0 0 , 0 , 0 , 0

10 0

2ˆ ˆ ;
N M

j k j k j

m m j n m n m j m

k n Mj m j
k j

G
A H a A J a s

a J a
 

 

 

 


 
     

  
   (35a) 361 

 
     

, 00
, 0 , 0

0 0 0 0

2 ˆ ˆ ,

j

mj j

m m

j m j m j m j

sG
A B

a J a J a J a   
  

  
 (35b) 362 

and 363 

  
   

 
2

, 0 0
, , , , , 2

1

ˆ ˆ ,
N M

j k j k j

m l m l j n l m n l m l j m l

k n Ml j m l j
k j

i G
A K a A I a s

a I a


 

 

 

 


 
     

  

   (36a) 364 

 
       

, 0 0
, , 2

ˆ ˆ .

j

m lj j

m l m l

m l jl j m l j m l j

si G
A B

I aa I a I a



  
  

 
 (36b) 365 

When the cylinders undergo out-of-phase surge motions, , 

j

m ls  is given by 366 

 , 

, 1, 1;

, 1, 2;

0, 1, 1,  2,

l

j

m l l

m j

s m j

m j

   


    
   

 (37) 367 

in which 368 

 
 

 

0

0 0 0

sinh 2
, 0;

2 sinh 2

sin 2
, 1.

2 sin 2

l

l

l l l

d
l

d d

d
l

d d



  



  


 

  
 
 

 (38) 369 
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When undergoing in-phase sway motions, , 

j

m ls  is given by 370 

 , 

, 1, 1,  2;

, 1, 1,  2;

0, 1, 1,  2.

l

j

m l l

i m j

s i m j

m j

   


    
   

 (39) 371 

The unknown coefficients can thereby be solved from these complex equations. With 372 

those coefficients being available, the radiation potential at any position in the fluid 373 

domain can be determined. For the wave radiation problem due to the motions of two 374 

symmetrical cylinders in open seas, relationships between the Fourier coefficients 375 

related to the real and image cylinders, 
1

, m lA  and 
2

, m lA , have been established in the 376 

Appendix (see Eqs. (A12) and (A15)). Discussion on the no-flow condition at the 377 

vertical wall in the equivalent radiation problem in open seas has also been made in the 378 

Appendix. 379 

We next return to the problem of wave diffraction by a porous cylinder situated near 380 

a vertical wall, as depicted in Fig. 1. As shown in Fig. 1(a), the bounded fluid domain 381 

is further divided into the subdomains inside and outside the real cylinder, which are 382 

denoted by 
1

  and 
1

  respectively. In 
1

 , the application of the Green’s second 383 

identify to the diffraction potential, 
D
 , and the auxiliary radiation potential,   , leads 384 

to 385 

 

1, 1, 1, 1, 

0.

b d f w

D
D

S S S S S

ds
n n

 
 

   


 
 

   

  
  

  
  (40) 386 

In Eq. (40), 1, bS 
 is the outer wall surface of the real cylinder; 1, dS

 and 1, fS 
 387 

represent the seabed and free surface in 
1

 ; 
wS  represents the infinite vertical wall; 388 

1, S 

  is a semi cylindrical surface at far field and defined by −d ≤ z ≤ 0, π/2 ≤ θ < 3π/2 389 

and r → +∞; n is the unit vector normal to the surface pointing out of the fluid domain. 390 

As 
D
  and    both satisfy the Sommerfeld condition at far field, the integral over 391 

1, S 

  oscillates towards zero as the radius of 1, S 

  goes to infinity. In addition, as the 392 

infinite vertical wall is fully reflective, it is obviously that the integral over 
wS  is zero. 393 

Then imposing the seabed and free surface boundary conditions on 
D
  and    gives 394 
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1, 

0.

b

D
D

S

ds
r r

 
 



 
   

  
  

  (41) 395 

In 
1

 , the application of the Green’s second identify to 1


 and 1 
 leads to 396 

 

1, 1, 1, 

1 1
1 1 0,

b d fS S S

ds
n n

 
 

  

 
 

 

  
  

  
  (42) 397 

in which, 1, bS 
 is the inner wall surface of the real cylinder; 1, dS

 and 1, fS 
 represent 398 

the seabed and free surface in 
1

 . Eq. (42) is also true when replacing 1


 with I . 399 

That is 400 

 

1, 1, 1, 

1
1 0.

b d f

I
I

S S S

ds
n n

 
 

  




 

  
  

  
  (43) 401 

After introducing the seabed and free surface boundary conditions satisfied by 
1  , 402 

1
  and I , Eqs. (42) and (43) can be reduced to 403 

 

1, 

1 1
1 1 0,

bS

ds
r r

 
 



 
   

  
  

  (44) 404 

and 405 

 

1, 

1
1 0.

b

I
I

S

ds
r r

 
 




  

  
  

  (45) 406 

By combining Eqs. (41), (44) and (45) and making use of Eqs. (5) and (27), we can 407 

obtain 408 

      
1 1

1 1

0 2 0 2

1 1 1 1 1 1 1 1 1 1

0 0

.I

r a
r ad d

u a dz d a dz d
r

 


         


 


   

     (46) 409 

After some arrangements, the difference between the auxiliary radiation potential 410 

across the porous wall can be expressed as 411 

 
 

 
 

  1

1 1

1 1

, 0 , 

1 0 0 1 1

10 1 0 1 1 1

ˆ ˆ2
.

m m l im

l l
r a

m lm l m l

iA A
Z z Z z e

a J a a I a

   
   

 
 


 

  
    

   
   (47) 412 

To distinguish the radiation potentials related to different motions, hereinafter the 413 

symbols , , 
ˆ j

x m lA  and , , 
ˆ j

y m lA  are used to represent the coefficients associated with the 414 

out-of-phase surge motions and the in-phase sway motions respectively. By substituting 415 

Eqs. (10) and (47) into Eq. (46) and utilizing the orthogonal property of sinmθ, cosmθ 416 
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and the vertical eigenfunctions, we can obtain that 417 

    
1

, , 0 1

0 0 1

, , 0

ˆ
4 1 ,

ˆ

mx x m

m

y m y m

f A
N d

f A
 




 

    
     

    
  (48) 418 

in which  0 0N d  represents the inner products of  0 0 1Z z  and is given by 419 

   0 0
0 0 2

0 0

2 sinh 2
.

4 cosh

d d
N d

d

 


 


  (49) 420 

From Eq. (48), it can be noted that the evanescent modes of the auxiliary radiation 421 

potential make no contribute to wave force. Eq. (48) relates the wave force on the 422 

cylinder near a vertical wall to the propagation modes of radiation waves due to the 423 

motion of the cylinder. Now an alternative model for the evaluation of wave force is 424 

developed. 425 

 426 

6. Convergence test and validation 427 

In the previous sections, two different analytical models have been developed for the 428 

evaluation of wave force on a porous cylinder located in front of a vertical wall. 429 

Hereinafter, the factor ρga2A is used to nondimensionalize the wave force. From Eqs. 430 

(24) and (48), it is clearly observed that the convergence of wave force from both the 431 

two models depends on the number of Fourier modes. In the numerical algorithm, 432 

totally 2M + 1 Fourier modes (from order −M to order M) have been considered. To 433 

check the convergence characteristics of the present solution with respect to the number 434 

of Fourier modes, calculations are performed for the case of d/a = 5, e/a = 1, β = π/4 435 

and |G0| = 1. Tables 1 and 2 list the dimensionless wave force based on the two models 436 

as a function of M for different wave frequencies. In these tables, the results referred as 437 

‘Direct’ and ‘Indirect’ are obtained according to Eqs. (24) and (48), respectively. By 438 

inspecting the results listed in Tables 1 and 2, the two models both possess good 439 

convergence characteristics. It can be concluded that the use of 21 Fourier modes (M = 440 

10) is sufficient to ensure 4 significant decimals of accuracy and M = 10 is adopted in 441 

all subsequent computations. Meanwhile, in order to confirm the validity of the present 442 

solution, a comparison between the results based on the two models is made. 443 
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Comparison confirms the good agreement. With the same value of M, the two models 444 

can give almost the same results. 445 

 446 

Table 1 Convergence test on the dimensionless wave force, |fx /(ρga2A)|, on a porous cylinder in 447 

front of a vertical wall with varying M (e/a = 1, β = π/4, |G0| = 1 and d/a = 5) 448 

κ0a = 

M = 

0.5 1.0 1.5 2.0 

Direct Indirect Direct Indirect Direct Indirect Direct Indirect 

2 

3 

5 

10 

20 

3.6076 

3.6081 

3.6081 

3.6081 

3.6081 

3.6076 

3.6081 

3.6081 

3.6081 

3.6081 

2.0693 

2.0730 

2.0730 

2.0730 

2.0730 

2.0693 

2.0730 

2.0730 

2.0730 

2.0730 

0.6360 

0.6296 

0.6297 

0.6297 

0.6297 

0.6360 

0.6296 

0.6297 

0.6297 

0.6297 

0.1286 

0.1284 

0.1268 

0.1268 

0.1268 

0.1286 

0.1284 

0.1268 

0.1268 

0.1268 

 449 

Table 2 Convergence test on the dimensionless wave force, |fy /(ρga2A)|, on a porous cylinder in 450 

front of a vertical wall with varying M (e/a = 1, β = π/4, |G0| = 1 and d/a = 5) 451 

κ0a = 

M = 

0.5 1.0 1.5 2.0 

Direct Indirect Direct Indirect Direct Indirect Direct Indirect 

2 

3 

5 

10 

20 

3.9726 

3.9719 

3.9719 

3.9719 

3.9719 

3.9726 

3.9719 

3.9719 

3.9719 

3.9719 

0.2908 

0.2906 

0.2906 

0.2906 

0.2906 

0.2908 

0.2906 

0.2906 

0.2906 

0.2906 

0.3994 

0.4015 

0.4015 

0.4015 

0.4015 

0.3994 

0.4015 

0.4015 

0.4015 

0.4015 

0.2655 

0.2624 

0.2624 

0.2624 

0.2624 

0.2655 

0.2624 

0.2624 

0.2624 

0.2624 

 452 

To provide a further check on the validity of the present solution, a comparison with 453 

the published results from Teng and Ning (2003), which were obtained based on the 454 

boundary element method, is made. The case that the incident wave acts on an 455 

impermeable vertical cylinder (|G0| = 0) in front of a vertical wall is concerned in the 456 

comparison. Fig. 3 illustrates the dimensionless wave force corresponding to e/a =1 and 457 

d/a = 1. As the two developed models give almost the same predictions, only those 458 

based on Eq. (24) are presented in Fig. 3. From the comparison shown in Fig. 3, it can 459 

be observed that a good agreement is achieved, which further confirms the validity of 460 

the present solution. 461 
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   462 

Fig. 3 Comparison of the dimensionless wave force on a vertical cylinder in front of a vertical wall 463 

(e/a = 1, |G0| = 0 and d/a = 1) 464 

 465 

7. Results and discussions 466 

With the validation of the present solution, a detailed parametric study concerning a 467 

porous cylinder in front of a wall is performed in which the effects of the porous 468 

parameter G0, the distance between the cylinder and the wall e and the incident wave 469 

heading β on the wave force, wave runup and wave elevation distribution around the 470 

cylinder are investigated. The extension of our model to the case of a cylinder array has 471 

also been performed. Numerical results related to an array of porous cylinders in front 472 

of a wall are also presented. In all the subsequent calculations, the water depth keeps 473 

constant at d/a = 5. 474 

 475 

7.1 Wave force a porous cylinder in front of a wall 476 

The effects of the distance between the cylinder and the wall e on the wave force 477 

acting on the cylinder are shown in Fig. 4. The dimensionless wave force is plotted 478 

versus the dimensionless wave number κ0a in the cases of varying values of e and a 479 

constant incident wave heading β = 0. In order to get a better understanding, the 480 

situation that a cylinder is placed in unbounded water is also considered and the results 481 

referred as ‘UW’ are corresponding to this situation. In addition, the results shown in 482 

Fig. 4 are corresponding to different porous effect parameters which are varied as |G0| 483 

= 0.0, 0.25, 0.5, 0.75 and 1.0. From Fig. 4, it is noted that the influence of G0 is very 484 
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evident and the wave force acting on a porous cylinder are obviously reduced, 485 

compared with those acting on an impermeable cylinder (|G0| = 0|). By comparing the 486 

results for different values of e, it is noted that the wave force experienced by a cylinder 487 

in front of a wall behaves an oscillation around that acting on a cylinder placed in 488 

unbounded water. The oscillation of the wave force with κ0a is found to depend on the 489 

distance between the cylinder and the wall. The larger the value of e is, the more 490 

frequently the wave force oscillates with κ0a. When a cylinder is placed in the 491 

unbounded water (see Fig. 4d), the behavior of the results with |G0| > 0 is different from 492 

that with |G0| = 0 and there exists an obvious zero-excitation frequency at which the 493 

structure endures no wave force. This is mainly due to the cancellation between the 494 

wave action on outer and inner wall surfaces of the porous cylinder. The obvious zero-495 

excitation frequency can also be observed when a porous cylinder is placed in the 496 

bounded water (see Figs. 4a, 4b and 4c). 497 

   498 

   499 

Fig. 4 Magnitude of the dimensionless wave force on a porous cylinder in front of a wall for different 500 

values of |G0| with β = 0 and d/a = 5 (a) e/a = 1 (b) e/a = 2 (c) e/a = 3 (d) UW 501 

 502 
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The influence of the wave heading β on the wave force is illustrated in Fig. 5 with e 503 

and |G0| fixed at 2a and 1, respectively. Meanwhile, the incident wave heading is varied 504 

as β/π = 1/16, 1/8, 3/16 and 1/4. Each curve in Fig. 5 is characterized by an obvious 505 

peak in the low frequency region. For the wave force components in the x- and y-506 

directions, this obvious peak is gradually amplified and reduced, respectively, as β 507 

increases, which is attributed to the changes in the projection area of wave action. 508 

Besides the obvious peak, small oscillations can be found in the high frequency region. 509 

The peak frequencies of these small oscillations move gradually to the high frequency 510 

region as β increases. 511 

   512 

Fig. 5 Magnitude of the dimensionless wave force on a porous cylinder in front of a wall for different 513 

values of β with e/a = 1, |G0| = 1 and d/a = 5 (a) | fx /(ρga2A)| (b) | fy /(ρga2A)| 514 

 515 

7.2 Wave runup along a porous cylinder in front of a wall 516 

Numerical studies on the wave elevation along the outer and inner wall surface of 517 

the porous cylinder, also known as wave runup, at three points called P1, P2 and P3, are 518 

performed in this subsection. The coordinates of the feature points P1, P2 and P3 in the 519 

xoy plane are (−e, 0), (−e−a, −a) and (−e−2a, 0), respectively. The definition of P1, P2 520 

and P3 can also be found in Fig. 1. Hereinafter, the incident wave amplitude A is used 521 

to nondimensionalize the wave runup. 522 

The variation of the wave runup at P1, P2 and P3 on the outer and inner wall surface 523 

of the cylinder is plotted versus κ0a in Figs. 6 and 7 with β = 0 and e/a = 1. In these 524 

calculations, the magnitude of the porous parameter is varied as |G0| = 0, 0.25, 0.5, 0.75 525 



 23 

and 1. The hydrodynamic pressure along the waterline is directly proportional to the 526 

wave elevation. As a result, it can be noted that the changing trend of the wave runup 527 

is similar to that of wave force, which behaves oscillation with κ0a. The effects of the 528 

porous parameter on the wave runup is obvious. On the outer wall surface, the peak 529 

value in general decreases with increasing |G0|, especially when |G0| < 0.5. Meanwhile, 530 

an increase in |G0| can cause an increase in the wave transmission through the porous 531 

wall. The changing trend and magnitude of the wave runup on the inner wall gradually 532 

coincide with that on the outer wall as |G0| increases. 533 

 534 

Fig. 6 Magnitude of the dimensionless wave runup on the outer wall surface of a porous cylinder in 535 

front of a wall with e/a = 1, β = 0 and d/a = 5 (a) P1 (b) P2 (c) P3 536 

 537 

 538 

Fig. 7 Magnitude of the dimensionless wave runup on the inner wall surface of a porous cylinder in 539 

front of a wall with e/a = 1, β = 0 and d/a = 5 (a) P1 (b) P2 (c) P3 540 

 541 

Figs. 8-9 show the wave runup at the three points corresponding to e/a = 1, 2, 3 and 542 

unbounded water condition with β and |G0| fixed at 0 and 1, respectively. The waves 543 

reflected from the wall can cause obvious disturbance on the wave field around the 544 

cylinder, leading to the intensive oscillation of the wave runup with increasing κ0a. 545 

Obvious amplification or reduction of the wave runup can be induced when the effects 546 

from the wall are considered. The wave runup with e/a = 1, 2 and 3 oscillates around 547 

that experienced by a cylinder in unbounded water. At P1, which is closest to the vertical 548 
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wall among the three locations, the wave runup oscillates less frequently with κ0a when 549 

compared with that at other locations. Meanwhile, such oscillation also depends on the 550 

distance between the cylinder and the wall. As e increases, the wave runup oscillates 551 

more frequently with κ0a. 552 

 553 

Fig. 8 Magnitude of the dimensionless wave runup on the outer wall surface of a porous cylinder in 554 

front of a wall for different values of e with β = 0, |G0| = 1 and d/a = 5 (a) P1 (b) P2 (c) P3 555 

 556 

 557 

Fig. 9 Magnitude of the dimensionless wave runup on the inner wall surface of a porous cylinder in 558 

front of a wall for different values of e with β = 0, |G0| = 1 and d/a = 5 (a) P1 (b) P2 (c) P3 559 

 560 

Figs. 10 and 11 present the wave runup for different cases of incident wave headings 561 

with e and |G0| fixed at 2a and 1, respectively. The effects of the incident wave heading 562 

β can then be investigated. As β gradually increases to π/2, the two incident waves in 563 

the imaginary system are gradually merged into one. In the meantime, the phase 564 

difference between the individual contribution from the two waves to the wave field 565 

gradually decreases. As a result, it is observed that the oscillation of the wave runup 566 

with κ0a becomes less intensive as β increases. 567 

 568 
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 569 

Fig. 10 Magnitude of the dimensionless wave runup on the outer wall surface of a porous cylinder 570 

in front of a wall for different values of β with e/a = 1, |G0| = 1 and d/a = 5 (a) P1 (b) P2 (c) P3 571 

 572 

 573 

Fig. 11 Magnitude of the dimensionless wave runup on the inner wall surface of a porous cylinder 574 

in front of a wall for different values of β with e/a = 1, |G0| = 1 and d/a = 5 (a) P1 (b) P2 (c) P3 575 

 576 

7.3 Wave elevation in the vicinity of a porous cylinder in front of a wall 577 

The dimensionless wave elevation in the vicinity of a porous cylinder in front of a 578 

wall under normal wave incidence (β = 0) is shown in Figs. 12 and 13 for κ0a = 0.74, 579 

0.61 and 0.52 corresponding to e/a = 1, 2 and 3, respectively. In addition, Figs. 12 and 580 

13 correspond to the cases of an impermeable cylinder (|G0| = 0) and a porous cylinder 581 

with |G0| = 1, respectively. From Fig. 12, alternative occurrence of peaks and troughs 582 

can be observed along the direction of wave propagation. Under the three combinations 583 

of κ0a and e/a, significant wave runup can be observed around the weather side of an 584 

impermeable cylinder (see Fig. 12). Meanwhile, such significant amplification in the 585 

wave runup can be obviously suppressed when making the cylinder porous (see Fig. 586 

13), demonstrating the dramatic effects of the porosity of the cylinder. 587 

To further emphasize the variation in the wave elevation, a section across the domain 588 

through the center of the cylinder (y = 0) is considered. The wave elevation along y = 0 589 

with β = 0 is given in Fig. 14 for the three combinations of κ0a and e/a as discussed in 590 

Figs. 12 and 13. In Fig. 14, the value of |G0| is varied between 0 and 1 with an interval 591 
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of 0.25. As the waves cannot enter through an impermeable cylinder and hence for the 592 

case of |G0| = 0 the wave elevation inside the cylinder is not given. It is evident from 593 

Fig. 14 that an increase in |G0| can lead to a decrease in the wave runup around both the 594 

weather side and lee side outside the cylinder. For the first combination of κ0a and e/a 595 

(see Fig. 14a), the wave elevation inside the cylinder in general increases as |G0| 596 

increases at each location along y = 0. Meanwhile, for other combinations (see Figs. 597 

14(b) and 14(c)), the wave runup around the weather side inside the cylinder has an 598 

increase trend with the increase of |G0|, whereas around the lee side inside the cylinder 599 

the effects of |G0| on the wave runup are not evident. 600 

 601 

Fig. 12 Magnitude of the dimensionless wave elevation in the vicinity of a porous cylinder in front 602 

of a wall with |G0| = 0, β = 0 and d/a = 5 (a) κ0a = 0.74, e/a = 1 (b) κ0a = 0.61, e/a = 2 (c) κ0a = 0.52, 603 

e/a = 3 604 

 605 

Fig. 13 Magnitude of the dimensionless wave elevation in the vicinity of a porous cylinder in front 606 

of a wall with |G0| = 1, β = 0 and d/a = 5 (a) κ0a = 0.74, e/a = 1 (b) κ0a = 0.61, e/a = 2 (c) κ0a = 0.52, 607 

e/a = 3 608 

 609 
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Fig. 14 Magnitude of the dimensionless free-surface elevation along y = 0 for different values of 610 

|G0| with β = 0 and d/a = 5 (a) κ0a = 0.74, e/a = 1 (b) κ0a = 0.61, e/a = 2 (c) κ0a = 0.52, e/a = 3 611 

 612 

The dimensionless wave elevation in the vicinity of the cylinder with β/π = 1/4 and 613 

|G0| = 1 is plotted in Fig. 15 for the three combinations of κ0a and e/a as discussed above. 614 

Fig. 15 is characterized by the alternative occurrence of peaks and troughs, which is 615 

similar to the observation in Figs. 12 and 13. Meanwhile, with β/π = 1/4, the wave field 616 

losses the character of symmetry. Furthermore, it is noted that an increase of β/π from 617 

0 to 1/4 can cause a shift in the location where the peaks and troughs occur. To further 618 

reveal the phase shift of the wave elevation with the increase of wave obliqueness, the 619 

free-surface elevation along y = 0 with |G0| = 1 is given in Fig. 16 for the three 620 

combinations of κ0a and e/a. In Fig. 16, the value of β/π is ranged from 1/16 to 1/4 with 621 

an interval of 1/16. It is observed that the peaks and troughs inside and outside the 622 

cylinder both obviously move to the upstream region as the wave obliqueness increases. 623 

 624 

Fig. 15 Magnitude of the dimensionless wave elevation in the vicinity of a porous cylinder in front 625 

of a wall with |G0| = 1, β = π/4 and d/a = 5 (a) κ0a = 0.74, e/a = 1 (b) κ0a = 0.61, e/a = 2 (c) κ0a = 626 

0.52, e/a = 3 627 

 628 

Fig. 16 Magnitude of the dimensionless wave elevation in the vicinity of the cylinder with |G0| = 1, 629 

β = π/4 and d/a = 5 (a) κ0a = 0.74, e/a = 1 (b) κ0a = 0.61, e/a = 2 (c) κ0a = 0.52, e/a = 3 630 

 631 
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7.4 Wave interaction with an array of porous cylinders in front of a wall 632 

We consider the wave interaction with an array of porous cylinders in front of a wall. 633 

The cylinders in the array are numbered as j = 1, 2, …, C0, …, Nb. After updating the 634 

number of the cylinders in front of the wall, Nb, and the location and radius of each 635 

cylinder, this problem can be tackled following the solution procedure presented in 636 

Section 3. In addition, the method based on the introduction of auxiliary radiation 637 

potential can also be used to evaluate the wave force on a specific cylinder in the array, 638 

such as cylinder C0. In this method, the radiation potential due to the harmonic 639 

oscillation of cylinder C0 in specific directions is required. Based on the image principle, 640 

the wave radiation problem in bounded water can be transformed to the equivalent one 641 

in open seas. In the imaginary system in open seas, besides the array of Nb real cylinders, 642 

there is also an array of Nb image cylinders. The real and the image cylinders are 643 

symmetrical to the original vertical wall. The equivalent radiation problem in open seas 644 

is due to the motions of the cylinder C0 and its symmetrical cylinder. After obtaining 645 

the radiation potential, the application of the Green’s second identify to the diffraction 646 

potential and the auxiliary radiation potential in the region inside and outside the 647 

cylinder array, respectively, in the orginal bounded watre can give the alternative 648 

solution of wave force. The alternative solution relates the wave force on cylinder C0 649 

to the propagation modes of radiation waves outside the cylinder array due to the 650 

motion of cylinder C0. In this section, the cases of Nb = 2, 3 and 5 are concerned and 651 

the corresponding layout of the cylinder array is given in Fig. 17. As shown in Fig. 17, 652 

the cylinders, each having a radius a about its vertical axis, are equally spaced and lined 653 

up in a row parallel to the wall. The axes of adjacent cylinders are separated by a 654 

distance of 4a. When Nb = 2, the lower cylinder is numbered as C0 (see Fig. 17a). When 655 

Nb = 3 and 5, the middle cylinder in the array is numbered as C0 (see Figs. 17b and 17c). 656 

In addition, the normal wave incidence (β = 0) is primarily concerned in the following 657 

calculation. 658 



 29 

     659 

Fig. 17 Definition sketches for an array of porous cylinders in front of a wall (a) Nb = 2 (b) Nb = 3 660 

(c) Nb = 5 661 

 662 

Fig. 18 shows the wave force experienced by the cylinder C0 in the array of porous 663 

cylinders with |G0| = 0 and the distance between the cylinder and the wall varies as e/a 664 

= 1, 2 and 3. The results corresponding to a single cylinder (Nb = 1) and a cylinder array 665 

(Nb = 2, 3 and 5) are both shown in Fig. 18 for the purpose of comparison. From Fig. 666 

18, it is observed that the wave force on a cylinder in an array can follow a similar 667 

changing trend to that on a single cylinder. However, small oscillations riding on the 668 

results for Nb = 1 can be observed in the results for Nb = 2, 3 and 5, which is due to the 669 

interference effects between adjacent cylinders. Analogous results to those in Fig. 18 670 

but with |G0| = 1 are shown in Fig. 19. When |G0| > 0, the wave transmission through 671 

the porous wall of the cylinder can occur, which can weaken the interference effects 672 

between adjacent cylinders. As a result, when |G0| = 1, the results corresponding to 673 

different values of Nb are in better agreement. 674 

 675 

Fig. 18 Magnitude of the dimensionless wave force on the cylinder C0 in an array of porous cylinders 676 

with |G0| = 0, β = 0 and d/a = 5 (a) e/a = 1 (b) e/a = 2 (c) e/a = 3 677 

 678 
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 679 

Fig. 19 Magnitude of the dimensionless wave force on the cylinder C0 in an array of porous cylinders 680 

with |G0| = 1, β = 0 and d/a = 5 (a) e/a = 1 (b) e/a = 2 (c) e/a = 3 681 

 682 

Fig. 20 shows the variation of wave runup at P1, P2 and P3 on the outer wall surface 683 

of porous cylinder in the array with e/a = 1 and |G0| = 0. When Nb = 2, 3 and 5, the 684 

definition of P1, P2 and P3 can be found in Fig. 17. As shown in Fig. 20, the wave runup 685 

on a porous cylinder in an array oscillates more intensively with κ0a than that on a 686 

single cylinder. After placing a cylinder in an array, obvious reinforcement and 687 

diminishment of the wave runup can be induced, resulting from the constructive and 688 

destructive interferences between adjacent cylinders. Figs. 21 and 22 show the variation 689 

of wave runup at P1, P2 and P3 on the outer and inner wall surfaces of porous cylinder 690 

in the array with e/a = 1 and |G0| = 1. It is noted that the wave runups corresponding to 691 

different layouts of the cylinder array with |G0| = 1 are much closer to each other when 692 

compared with those with |G0| = 0, which suggests that the porous effects can obviously 693 

weaken the interference effects between adjacent cylinders. 694 

 695 

Fig. 20 Magnitude of the dimensionless wave runup on the outer wall surface of a porous cylinder 696 

in an array with e/a = 1, |G0| = 0, β = 0 and d/a = 5 (a) P1 (b) P2 (c) P3 697 

 698 
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 699 

Fig. 21 Magnitude of the dimensionless wave runup on the outer wall surface of a porous cylinder 700 

in an array with e/a = 1, |G0| = 1, β = 0 and d/a = 5 (a) P1 (b) P2 (c) P3 701 

 702 

 703 

Fig. 22 Magnitude of the dimensionless wave runup on the inner wall surface of a porous cylinder 704 

in an array with e/a = 1, |G0| = 1, β = 0 and d/a = 5 (a) P1 (b) P2 (c) P3 705 

 706 

The dimensionless wave elevation in the vicinity of an array of porous cylinders is 707 

shown in Fig. 23 with e/a = 1 and |G0| = 0 for κ0a =0.69, 0.64 and 0.84 corresponding 708 

to Nb = 2, 3 and 5, respectively. Analogous results to those in Fig. 23 but with |G0| = 1 709 

are shown in Fig. 24. In Fig. 23, significant peaks can be observed in the upstream 710 

region in front of the cylinder array. Meanwhile, the appearance of those large peaks is 711 

obviously suppressed after making the cylinders porous (see Fig. 24), which 712 

demonstrates the remarkable porous effect of the cylinders on the wave elevation 713 

distribution. 714 

 715 

Fig. 23 Magnitude of the dimensionless wave elevation in the vicinity of an array of porous cylinders 716 

in front of a wall with e/a = 1, |G0| = 0, β = 0 and d/a = 5 (a) κ0a = 0.69, Nb = 2 (b) κ0a = 0.64, Nb = 717 
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3 (c) κ0a = 0.84, Nb = 5 718 

 719 

 720 

Fig. 24 Magnitude of the dimensionless wave elevation in the vicinity of an array of porous cylinders 721 

in front of a wall with e/a = 1, |G0| = 1, β = 0 and d/a = 5 (a) κ0a = 0.69, Nb = 2 (b) κ0a = 0.64, Nb = 722 

3 (c) κ0a = 0.84, Nb = 5 723 

 724 

8. Conclusion 725 

The interaction of water wave with a bottom-mounted surface-piercing porous 726 

cylinder, located at a finite distance from a rigid vertical wall, is studied in the 727 

framework of potential flow theory. To carry out the study, a new analytical model is 728 

developed, and by introducing an auxiliary radiation potential a new alternative method 729 

to calculate the wave force is also proposed. The main conclusions of this study are 730 

summarized as follows: 731 

(1) By undertaking a convergence test, the sensitivity of the present model to the 732 

number of Fourier modes is investigated. Two approaches have been developed in this 733 

study for the calculation of wave force. One approach is based on the explicit solution 734 

of velocity potential. The Haskind-Hanaoka relation, which has been extended to the 735 

case of a porous structure in Zhao et al. (2011), is applied in the other approach. It is 736 

noted that the two approaches both possess good convergence and the results based on 737 

them agree well with each other. In addition, for the case of an impermeable cylinder 738 

situated near a vertical wall, the present results agree well with those reported in 739 

previous studies. 740 

(2) In the two approaches developed for the calculation of wave force, the wave 741 

diffraction and radiation problems related to a pours cylinder in front of a wall have 742 
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been solved, respectively. The image principle is used to transfer the original diffraction 743 

or radiation problem in bounded water into the equivalent one in open seas. In the 744 

equivalent problem, simple relationships between the Fourier coefficients related to the 745 

real and image cylinders have been established, based on which the no-flow condition 746 

on the vertical wall is demonstrated. 747 

(3) The waves reflected from the vertical wall can obviously disturb the wave field 748 

near the cylinder, leading to that the wave force acting on a cylinder in front of a wall 749 

behaves oscillation around that experienced by a cylinder placed in unbounded water. 750 

The wave force can be remarkably amplified at specific frequencies due to the effects 751 

of the vertical wall. Meanwhile, such obviously amplified wave force can be apparently 752 

reduced on the porous cylinder. Regarding the porous effects, the wave force continues 753 

to decrease as the porosity increases. 754 

(4) The presence of the fully-reflective vertical wall can lead to obvious oscillation 755 

of the wave runup with respect to the wave frequency. The oscillation in the wave runup 756 

depends on the spacing between the cylinder and the wall. The larger the spacing is, the 757 

more frequently the wave runup oscillates with the wave frequency. It is found that the 758 

obvious amplification in the wave runup can be effectively suppressed on the porous 759 

cylinder. Meanwhile, an increase of the porous effect parameter can cause an increase 760 

of the wave transmission through the porous wall. Correspondingly, the changing trend 761 

and magnitude of the wave runup on the inner and outer wall surfaces of the cylinder 762 

gradually coincide with each other. It is also found that the wave obliqueness can 763 

obviously affect the wave elevation distribution around the cylinder. As the wave 764 

obliqueness increases, the locations where peaks and troughs occur obviously move to 765 

the upstream region. 766 

(5) The extension of our model to the case of a cylinder array in front of a wall has 767 

been performed. Under normal incidence, the wave interaction with an array of porous 768 

cylinders in front of a wall has been investigated. The porous cylinders in the array are 769 

aligned in a straight line and equally spaced. It is noted that the porous effects of the 770 

cylinder can obviously weaken the interference effects between adjacent cylinders. As 771 
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the porosity increases, the wave force and runup on a porous cylinder in an array near 772 

a wall can gradually coincide with those on a single porous cylinder near a wall. 773 

 774 

Appendix: No-flow condition at the wall in the imaginary system 775 

Here, it will be shown that the no-flow condition at the wall is satisfied in the 776 

imaginary system (see Fig. 2). 777 

In Fig. 2, the two symmetrical cylinders in open seas are under the action of two 778 

plane incident waves of amplitude A and frequency ω propagating in the directions β 779 

and π – β, respectively. In the exterior region 
 , the velocity potential    can be 780 

expressed as a sum of the incident and diffraction potentials. With the application of 781 

Eqs. (6), (8) and (13), it can be obtained that 782 
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In the framework of potential flow theory, the fluid velocity can be determined 784 

according to the gradient of velocity potential. It leads to 785 
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 (A2) 786 

in which, 
xu  is velocity component in the x-direction for a fluid particle in 

 . In Eq. 787 

(A2), the coefficients j

mA  can be determined by solving Eq. (20a). In Eqs. (A1) and 788 

(A2), j = 1, 2 are corresponding to the real and image cylinders respectively. As the 789 

centres of the real and image cylinders are located at (−R, 0, 0) and (R, 0, 0) on the 790 

mean free surface and the two symmetrical cylinders have the same radius, i.e., 791 

1 2a a a  , Eq. (20a) can be rewritten as 792 
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in which, the coefficients mp , , 

, 

j k

m nq  and , j k

mo  can be expressed as 794 
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 (A4c) 797 

With the application of Eq. (A4), it is noted that except the unknown coefficients, other 798 

coefficients involved in Eq. (A3) keep the same after replacing k, j, m and n by j, k, –m 799 

and –n. That is 800 
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Eqs. (A3) and (A5) suggest that the following relationship is held for j

mA  802 

 , ,  1,  2 and .j k

m mA A j k j k    (A6) 803 

At the wall (x = 0), the incident wave makes no contribution to 
xu . If a location 804 

along the wall, with the coordinate (0, ys, zs) in the global coordinate system, is 805 

concerned, 
xu  at this location can be expressed as 806 

  
 

 
     1 2 0

0 0 0 0 0

0

sin
cos ,simm s

x m m m s s m s s

m m s

J a
u A A H r imH r Z z e

H a r

 
    










  
     

 (A7) 807 

in which,  
1 2

2 2

s sr R y   and  1tans sy R   . By making use of Eq. (A6), it is 808 

clear that xu
 is zero along the wall. 809 

To further demonstrate that the no-flow condition is satisfied, the dimensionless 810 

wave elevation in the vicinity of the two symmetrical cylinders is shown in Fig. A1 811 

with |G0| = 0, e/a = 1, κ0a = 0.74. In Fig. A1, the incident wave heading varies from β 812 

= 0 and π/4. The wave elevation distribution shown in Fig. A1 is symmetric with respect 813 

to the y-axis, leading to that along the wall (x = 0) the velocity component in the x-814 

direction is zero. 815 

 816 
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Fig. A1 Magnitude of the dimensionless wave elevation in the vicinity of two symmetrical cylinders 817 

with |G0| = 0, e/a = 1, κ0a = 0.74 and d/a = 5 (a) β = 0 (b) β = π/4 818 

 819 

The wave radiation problem due to the motions of two symmetrical cylinders is then 820 

considered. This problem has been discussed in Section 5. In the wave radiation 821 

problem, the expression of the velocity potential in   has been given in Eq. (30a). 822 

Then, for a fluid particel in  , its velocity component in the x-direction is given by 823 
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 (A8) 824 

In Eq. (A8), the coefficients , 0

j

mA  and , 

j

m lA  (l ≥ 1) can be determined by solving 825 

Eqs. (35a) and (36a), respectively. When the two cylinders undergo out-of-phase surge 826 

motion, with the information of layout of the cylinders and their radii, Eqs. (35a) and 827 

(36a) can be rewritten as 828 

 , , 

, 0 , 0 , , 0
ˆ ˆ ˆ , ,  1,  2 and ;

M
j k j k j k

m m n m n m

n M

A p A q o j k j k




     (A9a) 829 

 , , 

, , , , , 
ˆ ˆˆ ˆ ˆ , ,  1,  2 and .

M
j k j k j k

m l m l n m n l m l

n M

A p A q o j k j k




     (A9b) 830 

In Eq. (A9a), the coefficient 
, 

, 0
ˆ j k

mo  is expressed as 831 
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With the application of Eqs. (A4a), (A4b) and A(10) and replacing k, j, m and n in Eq. 833 

(A9a) by j, k, –m and –n, it can be obtained that 834 
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Eqs. (A9b) and (A11) suggest that the following relationship is held for , 0
ˆ j

mA  836 
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In Eq. (A9b), the coefficients 
, 

ˆ
m lp , 

, 

, , 
ˆ j k

m n lq  and , 

, 
ˆ j k

m lo  are expressed as 838 
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With the application of Eq. (13) and replacing k, j, m and n in Eq. (A9b) by j, k, –m and 842 

–n, it can be obtained that 843 
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Eqs. (A9b) and (A14) suggest that the following relationship is held for , 
ˆ j

m lA  845 
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A location along the wall, with the coordinate (0, ys, zs) in the global coordinate 847 

system, is concerned again. ˆ
xu  at this location can be expressed as 848 
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(A16) 849 

After making use of Eqs. (A12) and (A15), it is clear that ˆ
xu  is zero along the wall. 850 

When the two cylinders undergo in-phase sway motion, the no-flow condition at the 851 

wall can still be satisfied and it can be proved in a similar way to that when undergoing 852 

out-of-phase surge motion 853 
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