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Abstract: 25 

Background and aims: Whilst several studies have shown that edaphic variability influences 26 

species composition in nutrient-poor tropical forests, the determinants of local species 27 

distributions and, in particular, how these change from younger to mature individuals in such 28 

forests are still under debate, and have been poorly explored in tropical heath forests that are 29 

among the least fertile tropical forest ecosystems.  30 

Methods: We investigated the influence of soil fertility and topography on a Bornean heath 31 

forest species composition, α-, β-diversity and tree size structure among size classes by 32 

recording all trees ≥ 1 cm DBH in 16 forest plots totalling 0.36 ha. 33 

Results: Tree species distributions generally followed gradients in available Al and soil depth; 34 

α- and β-diversity were linked to soil depth, and to some extent also to pH and the H:Al ratio.  35 

In contrast, forest structural attributes (basal area and stem density) were negatively correlated 36 

with both available and total P and a wider suite of soil nutrients, although trees ≥ 10 cm DBH 37 

were positively correlated with total P. 38 

Conclusion: Our study shows that heath forest species distribution, richness and structure is 39 

related to both edaphic and topographic characteristics and that soil acidity might have a strong 40 

influence in shaping these forests’ features. Among size classes, small trees are less influenced 41 

by soil and topography, whereas the sensitivity to these variables increases with tree size. We 42 

thus highlight that multiple edaphic factors influence different aspects of tropical forest 43 

structure, including different tree life stages, and species composition.  44 

Keywords: Al toxicity; Kabili-Sepilok Forest Reserve; kerangas; nutrient limitation; species 45 

diversity; spodosol; white sand forest. 46 

  47 
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INTRODUCTION: 48 

Tropical forests have the highest tree species diversity in the world (Gentry 1988; Ghazoul and 49 

Sheil 2010; Whitmore 1990)  but we still strive to understand how such diversity is created and 50 

maintained. Several theories have been proposed to address this question such as the Janzen–51 

Connell hypothesis (Janzen 1970, Connell 1971), neutral theory (Hubbell 2001) and 52 

environmental filtering (Baldeck et al. 2013). Although the drivers explained by different 53 

hypotheses might operate simultaneously and might have divergent controlling factors among 54 

sites, environmental factors influence tree species distribution and community composition in 55 

a considerable number of studies (Wright 2002, Legendre et al. 2005). In particular, climatic 56 

factors are important at continental scales (ter Steege et al. 2006, Zhang et al. 2016), whereas 57 

at smaller scales, topography and soil chemistry (Clark et al. 1998, Phillips et al. 2003) have a 58 

greater influence on species distributions (Condit et al. 2013, Jucker et al. 2018). 59 

Most broad-scale studies of tree distribution only consider trees with a stem diameter at breast 60 

height (1.3 m; DBH) greater than 5 cm or 10 cm (e.g. Slik et al. 2015), so younger trees with 61 

smaller DBH (i.e. saplings) are often overlooked. In Borneo, for example, Paoli et al. (2006) 62 

and Sukri et al. (2012) reported small DBH trees to be distributed irrespectively of soil nutrient 63 

concentrations, whereas the distributions of larger DBH individuals were significantly 64 

influenced by edaphic variables. This implies that through tree ontogeny, individuals become 65 

more susceptible to the selective pressure of soil fertility so only the species adapted to 66 

particular soil conditions survive and grow (Russo et al. 2005). It is noteworthy that many 67 

experimental studies of forest nutrient limitation focus on seedlings and saplings grown in pots 68 

with different nutrient additions (e.g. Brearley et al. 2007, Nilus et al. 2011). If selective in situ 69 

response to soil fertility differ among size classes, then conclusions from pot bioassays must 70 

be taken with caution. It is thus paramount to consider trees from smaller size classes when 71 

conducting in situ studies of soil influences on species distribution and forest structure.  72 
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Heath forests occur throughout the tropics on nutrient-poor sandy soil (podzols), with 73 

vegetation physiognomy characterised by a generally stunted appearance, sclerophyllous 74 

leaves and short, untapered stems (Richards 1936, Janzen 1974, Peace & Macdonald 1981, 75 

Turner 1994, Becker et al. 1999, Proctor 1999, Turner et al. 2000, Kenzo et al. 2014). These 76 

forests also have a high density of understorey trees,  low species diversity (Anderson 1981, 77 

Frasier et al. 2008),  and a high degree of endemism (Garcia 2016). Heath forest distributions 78 

and the characteristic features of their trees have been ascribed to low soil pH (Luizao et al. 79 

2007), deficient soil nitrogen (Luizao 1994, Proctor 1999, Proctor et al. 1983, Brearley et al. 80 

2011 ) or the interaction of these two factors (Luizao 1996). A number of studies (Brünig 1974, 81 

Newbery 1991, Newbery et al. 1986) classified several typologies of Bornean heath forests 82 

(known as kerangas locally) but few have linked heath forest species distribution to either soil 83 

chemical or topographic variables. Nonetheless, these valuable studies draw some notable 84 

conclusions. At Gunung Mulu (Sarawak, Malaysia), Newbery & Proctor (1984) focussed on 85 

differences in soil chemistry and found species distribution to be associated with differences in 86 

soil organic C and CEC, whilst Miyamoto et al. (2003) found the most abundant tree species 87 

to be weakly associated with humus depth in a Central Kalimantan (Indonesia) heath forest. 88 

Din et al. (2015), instead, ascribed variation in a Bruneian heath forest community to soil N 89 

concentration but highlighted that other topographic and edaphic variables, not considered in 90 

their study, might also have an effect on species distributions. 91 

In this study, we used sixteen small plots in heath forest situated in north-east Malaysian 92 

Borneo. All plots were in close proximity to one another (within an area c. 0.05 km2) to limit 93 

potential differences in bedrock and rainfall patterns and their influence on tree species 94 

distribution and forest structure. In particular, in this study we asked: (1) which soil chemical 95 

and topographic factors significantly influenced forest tree species composition and structure, 96 

and (2) how the influence of these factors varied among tree-size classes? 97 
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 98 

METHODS: 99 

Our experimental site is the Kabili-Sepilok Forest Reserve (KSFR), located in the 100 

Malaysian state of Sabah on the island of Borneo (5° 51' N, 117° 58' E) (Figures 1a & 1b in 101 

Supplementary information). Local bedrock consists of sandstone interbedded with occasional 102 

mudstone inclusions. The climate is equatorial with an annual precipitation of c. 3000 mm; 103 

only one month (April) receives less than 100 mm on average (Fox 1973, Nilus 2003).  104 

We installed sixteen 15 m x 15 m plots within the kerangas forest of the KSFR, all at 105 

least 30 m apart from one another (Figure 1c in Supplementary information) over podzol 106 

(USDA soil classification) soils. The plots were located on a gently sloping (c. 15 °), north-107 

facing hillside. Plot slope was determined as the mean value of four measurements of the angle 108 

from the top to the bottom of each plot using a hypsometer (Vertex IV, Haglöf, Långsele, 109 

Sweden). Plot elevation was determined with a GPS (Garmin Etrex 10, Garmin Ltd, Kansas 110 

City, KS, USA). Within all plots, trees and lianas ≥1 cm diameter at breast height (DBH; 111 

diameter measured at 1.3 m from the ground) were permanently tagged and their DBH recorded. 112 

Furthermore, we recorded the height of 25 randomly selected trees per plot spanning the tallest 113 

to the shortest tree with a hypsometer (Vertex IV, Haglöf, Långsele, Sweden) to relate the DBH 114 

to position in the canopy. Lianas were measured at 1.3 metres from their last rooting point. We 115 

then binned trees with DBH: ≥1-<2 cm, ≥2-<5 cm, ≥5-<10 cm and ≥10 cm (from now on 116 

referred as <2, 2-5, 5-10, and >10 cm DBH). Species identification was carried out by staff 117 

from Kabili-Sepilok Forest Research Centre Herbarium. 118 

SOIL SAMPLING AND SOIL CHEMICAL ANALYSIS- Within every plot, a single soil pit of 119 

approximately 30 cm x 30 cm was dug to compare soil depths across the plots. Each plot was 120 

divided into four subplots (7.5 m x 7. 5 m) and a soil sample from the top 5 cm was collected 121 
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in each subplot following removal of roots and coarse undecomposed leaves by digging a hole 122 

of approximately 10 cm x 10 cm using a knife; we collected 64 samples from the 16 plots in 123 

total. Each soil sample was split in two subsamples. The first subsample (approximately 2 g) 124 

was added to 30 ml of 1 M KCl and shaken for one hour in the field, allowed to equilibrate in 125 

a refrigerator for 18 hours, then filtered and analysed for NH4
+ and NO3

- on a segmented flow 126 

analyser (Astoria-Pacific A2, Clackamas, OR, USA). On the second subsample, we measured 127 

moisture content, pH, available and total nutrients, C and N as well as exchangeable acidity 128 

and Al. Soil moisture content was determined gravimetrically after drying 3 g of soil to a 129 

constant weight at 105ºC.  To measure pH, 5 g of fresh soil was shaken in 12.5 ml of distilled 130 

water overnight and pH recorded with a Corning 240 pH meter. We then oven dried at 50°C 131 

and ground the remaining soil for use in macro and micro-nutrient analysis. Samples (0.25 g) 132 

were microwave-digested (Mars Xpress 5, CEM Corporation, Matthews, NC, USA) for total 133 

Al and P analysis with a solution of 8 ml HNO3 and 2 ml deionised H2O. Extractable soil P, Fe 134 

and Mn were extracted with a Mehlich I solution (2 g of soil shaken with 20 ml of Mehlich I 135 

solution for 5 minutes on a reciprocating shaker at 120 oscillations per minute ;Wuenscher et 136 

al. 2015). For soil exchangeable Ca, Na, Mg and K, we added 2 g of soil to 20 ml of 1 M 137 

ammonium acetate and shook for two hours using a reciprocating shaker at 120 oscillations per 138 

minute (modified from Van Reeuwijk 2002). We determined exchangeable acidity (H+ and Al) 139 

through titration of a 1 M KCl extraction (5 g soil and 50 ml KCl shaken for one hour) with 140 

0.02 M NaOH and 0.01 % phenolphthalein (modified from Van Reeuwijk 2002).  We also 141 

measured exchangeable Al on the 1 M KCl extracts. Cation and metal concentrations were 142 

quantified using an iCAP Duo 6300 inductively coupled plasma optical emission spectrometer 143 

(Thermo Scientific, Waltham, MA, USA). Cation exchange capacity was calculated as sum of 144 

bases and exchangeable acidity. Total C and N concentrations were determined by combusting 145 

0.15 g of soil in a Leco TruSpec CN analyser (St Joseph, MI, USA). 146 
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STATISTICAL ANALYSIS- For the ordinations, we used the package vegan (Oksanen 147 

2015) in R 3.5.1 (R Development Core Team 2009). We visualised soil differences among 148 

plots by performing a redundancy analysis (RDA; significance checked with 999 permutations) 149 

of soil chemistry variables constrained by topography where all the variables were centred and 150 

scaled. We determined collinearity and selected the main variables that accounted for edaphic 151 

variation amongst plots for the canonical correspondence (CCA) analysis with a principal 152 

component analysis (PCA) following the approach of Abdi & Williams (2010). This consisted 153 

of selecting the variables that exceeded the expected average contribution to the two first 154 

principal components. Selected variables were then used as explanatory variables alongside 155 

topographical data for CCA ordination of our tree community dataset. 156 

We calculated α-diversity with the Shannon-Wiener (H’) index, whereas for β-diversity 157 

we calculated a matrix of total dissimilarity between plots with Jaccard dissimilarity index 158 

(function beta.pair() of the R package betapart; Baselga & Orme 2012). A preliminary 159 

exploration of community composition across our plots was carried out using a detrended 160 

correspondence analysis (DCA). We then identified associations of selected species to soil 161 

variables following Shenbrot et al. (1991) who considered the position of the species centroids 162 

with respect to the standard error of the CCA ordination main centroid. If a species’ centroid 163 

was located within the triplot main centroid’s standard deviation, the species was labelled as a 164 

“generalist”, whereas species that had a positive or negative position along an axis were 165 

considered a “specialist” (Table S3). The criterion to select species were a) their abundance 166 

among the plots using Shannon-Wiener diversity index and b) their score on the first two CCA 167 

axes. We centred and scaled the chemical, topographic variables as well as the absolute species 168 

abundances before the CCA, down-weighted the importance of rare species with the 169 

“downweight()” function in R package vegan (Oksanen 2015) and visualised the results using 170 

a CCA triplot. The significance of edaphic and topographic variables was obtained with a 171 
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permutational ANOVA (999 permutations; Oksanen 2015) by terms that also report a pseudo 172 

F test (i.e. the ratio of constrained and unconstrained total inertia, each divided by their 173 

respective degrees of freedom). We performed a non- parametric Spearman correlation to 174 

determine correlations among α-diversity, stem density and basal area with the same chemical 175 

and topographical variables used in the CCA, whereas we performed a Mantel test (9999 176 

permutations) to assess whether β-diversity correlated with soil or topographic variables 177 

selected with PCA. We used a Mantel test because β-diversity is presented as a dissimilarity 178 

matrix. The CCA, Spearman correlations and Mantel test were performed with all trees 179 

combined and then re-run with the four tree size classes  (<2, 2-5, 5-10 and >10 cm DBH).  180 

 181 

RESULTS: 182 

The forest plots were characterized by a typical short-statured heath forest with a canopy height 183 

of approximately 28 m. In total, we tagged 3336 living individuals ≥ 1cm DBH. The 184 

understorey was dense with a mean of 0.73 trees 1-5 cm DBH per m2 and 0.19 trees ≥ 5 cm 185 

DBH per m2; lianas were scarce (a mean across 16 plots of 217 individuals per ha). Trees < 2 186 

cm DBH had a mean height of 2.9 m (± 0.9 SD), trees 2-5 cm DBH had a mean height of 5.9 187 

m (± 1.7), trees 5-10 cm DBH had a mean height of 11.4 m (± 2.8) and trees > 10 cm DBH had 188 

a mean height of 21.0 m (± 5.3). Throughout our plots, there was a mean of 199.7 (± 30.1) 189 

stems plot-1 whereas basal area had a mean of 36.3 (±10.9) m2 ha-1. Relative basal area and stem 190 

density for the 20 most abundant species is shown in Table 1. 191 

TREE DIVERSITY - In total we identified 2398 trees and shrubs to species level and 784 192 

trees to genus, 12 to family with 142 not identified. We found 124 species within 48 families 193 

of which Myrtaceae (19 %) and Rubiaceae (14%) were most abundant. Myrtaceae had the 194 

greatest basal area (31 %), followed by Dipterocarpaceae (19 %), Clusiaceae (11 %), 195 
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Euphorbiaceae (10 %) and Sapotaceae (5 %). Alpha diversity (H’) throughout the plots had a 196 

mean of 3.48 (±0.23 SD). The DCA (Figure S2, Supplementary information) revealed three 197 

main plot groupings that reflected plot position on the hillslope, with strong floristic similarity 198 

between plot I, J and L near the ridge crest, A, F, G, H, K and M in the middle of the hill and 199 

B, C, D, E, N, O and P at the base (Figure S1c, Supplementary information).  200 

TOPOGRAPHY, SOIL CHEMISTRY AND PCA GRADIENT - The plots lay on a gently sloping 201 

hill with an elevation spanning 50 m between the highest and the lowest plot.  Plots at the top 202 

of the slope had deeper (i.e. > 90 cm in plot I) podzolised soil than lower elevation plots (i.e. 203 

24 cm in plot D). Generally, all plots were acidic (pH < 4) with a high concentration of total 204 

Al (mean 247 ± 28 SD µg g-1) and a very low CEC (mean 3.75 ± 0.3 cmolc kg-1), due largely 205 

to the high exchangeable acidity. Soil C:N ratio was high (mean 22.9 ± 0.7). Low soil N was 206 

reflected by low ammonium (mean 8.5 ± 1.1 µg g-1) and nitrate (mean 0.59 ± 0.1 µg g-1) 207 

concentrations (Table S1). The RDA first axis was characterised by a plot slope gradient 208 

(loading on the first axis: 0.99, p<0.05) showing that flatter plots to have less acidic pH, and  209 

lower exchangeable acidity and CEC. The second RDA axis was characterised by plot 210 

elevation (loading on the second axis: 0.99, p<0.01) and, to a lesser extent, by soil depth 211 

(loading on the second axis: 0.83, p<0.05) showing that higher elevation plots had deeper soil 212 

with high available aluminium, low H:Al ratio and total as well as available P (Figure 1). The 213 

PCA found seven variables exhibited collinearity (total Al, exchangeable acidity and available 214 

Fe, Na, K, Mg and Ca) so these were removed along with variables with non-significant 215 

loadings. The PCA first and second axes explained 40.8 % and 28.8 % of the variability in soil 216 

properties, respectively. The first axis was related to CEC, total and available P, pH and NH4
+ 217 

whereas the second axis was linked to the H:Al ratio, available Al and Mn and the C:N ratio. 218 

The variables that exceeded the expected average contribution to the two first principal 219 

components were CEC, total P, available Al and P, H:Al ratio and pH (Table S2, 220 
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Supplementary information); these were retained for the CCA, Spearman and Mantel analyses 221 

along with topographic variables (elevation, slope) and soil depth. 222 

SPECIES DISTRIBUTION RELATED TO ENVIRONMENTAL VARIABLES - From the CCA, we 223 

can see that species followed the first two axes of the ordination in agreement with topography 224 

and soil chemistry (Figure 2). Among the different tree DBH classes, soil chemistry and 225 

topography together explained between 68 % and 76 % of the floristic variation. In particular, 226 

soil depth and available Al were important for most size classes of trees but were less important 227 

for trees > 10 cm DBH (X2 = 0.24, p < 0.1, and X2 = 0.25, p > 0.1, for available Al and soil 228 

depth, respectively). Floristic variation in trees 5 - 10 cm DBH was influenced by CEC (X2 = 229 

0.21, p < 0.05) and total soil P (X2 = 0.23, p < 0.05; Table 2). From the CCA ordination, we 230 

therefore identified two soil gradients along which species appear to be distributed. The first 231 

was the H:Al ratio-soil depth gradient and the second was the CEC-pH gradient (Figure 2). 232 

Although the CCA triplot’s first axis was mainly driven by the H:Al ratio and soil depth 233 

gradients, available Al achieved high loadings on both the first (0.44; Table 2) and second axes 234 

(0.44) stressing the importance that Al retains in influencing species distributions. 235 

SPECIES EDAPHIC ASSOCIATIONS AND SOIL GRADIENTS - From the CCA analyses, 51 236 

species retained both high importance for among-plot diversity and high scores on the first two 237 

ordination axes. Of these species, 19 were associated with a low H:Al ratio and deep soil, 238 

whereas no species was associated with shallow soil and a high H:Al ratio (CCA first axis, 239 

Table S3). Furthermore, we identified another 18 species as generalists, but their association 240 

changed among the DBH classes considered. The only species that maintained a generalist 241 

species distribution among all DBH classes was Cotylolebium melanoxylon (Dipterocarpaceae). 242 

Garcinia gaudichaudii (Clusiaceae), Gaertnera junghuhniana (Rubiaceae), Dracaena elliptica 243 

(Asparagaceae), Syzygium cauditilimbum (Myrtaceae) and Syzygium sp. were generalists in at 244 

least two size classes (Table S3).  245 
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FOREST STRUCTURE, ALPHA- AND BETA- DIVERSITY - Soil heterogeneity clearly 246 

influence forest structure although the Spearman and Mantel tests, consistent with the CCA, 247 

showed different influences of soil and topographic variables among DBH classes (Tables 3 & 248 

4). In particular, stem density and basal area decreased with high soil P. Density of all trees, 249 

and particularly those <2 cm DBH (p<0.01) were negatively correlated with available Mn and 250 

density and basal area of trees 5-10 cm DBH was negatively correlated with CEC, available Al 251 

and pH in addition to slope and soil depth (all p < 0.05). 252 

A similar suite of elements also influenced α-diversity but correlations with soil 253 

chemistry and topography were mostly found in trees 5-10 cm DBH (CEC and pH: p <0.01; 254 

total P, slope and depth: p <0.05) whereas in trees > 10 cm DBH α-diversity correlated only 255 

with available Al and pH (p <0.05).  256 

The results of the Mantel test for β-diversity (Table 4) showed topography to be 257 

consistently significant among size classes, although at different degrees and with different 258 

variables. In particular, soil depth was most significant for trees 2-5 cm DBH (p <0.01) and 5-259 

10 cm DBH (p <0.001) along with plot elevation for trees 5-10 cm DBH (p <0.01). Soil 260 

chemistry was only correlated with β-diversity for trees 2-5 cm DBH (H:Al ratio at p <0.05) 261 

and 5-10 cm DBH (pH and H:Al ratio at p <0.05 and p <0.01).  262 

 263 

DISCUSSION: 264 

Nutrient-poor tropical forests support high tree species diversity but the relative 265 

influence of environmental factors on these forests’ floristic variability still needs further 266 

research. Our study site showed a typical heath forest floristic diversity, forest structure, and 267 

soil chemistry. We showed that soil acidity, topography and nutrient limitation act in concert 268 
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to shape species distribution, structure and diversity of the Kabili-Sepilok heath forest 269 

ecosystem. The influences of these topo-edaphic factors change among size classes. 270 

The heath forest in our study site had a basal area of trees > 5 cm DBH (34.4 m2 ha-1) 271 

and stem density of trees > 5 cm DBH (1997 stems ha-1), similar to other Bornean heath forests 272 

(e.g. Proctor et al. 1983; Davies & Becker 1991; Miyamoto et al. 2007). When compared to 273 

the adjacent lowland evergreen rain forest, stem density was approximately doubled (1002 274 

stems ha-1; Nilus 2003) whilst basal area was very similar (35 m2 ha-1; Nilus 2003). The most 275 

abundant families were rather different to other Bornean tropical heath forests. In comparison 276 

to the extensive study undertaken by Newbery (1991) in Brunei and Sarawak heath forests, our 277 

site lacked Myrsinaceae, Annonaceae and Chrysobalanaceae. This might be due to the limited 278 

area of our study (0.36 ha), requiring caution when comparing with results from other studies 279 

because such a small area might not be sufficient to exhaustively capture forest structure and 280 

biodiversity indices that are sample size dependent (Condit et al. 1996). 281 

The soil (podzol) underlying our plots had a greater concentration of available P and a 282 

lower concentration of Al compared with the heath forest plots (acrisol) of Nilus (2003) in the 283 

same KSFR, suggesting that the soils in our plots had likely gone through a longer or more 284 

intense podzolisation process. During podzolisation, the soil is weathered and clay is eluviated 285 

(Bravard & Righi 1989) so Al and Fe are deposited in deeper layers of the mineral soil 286 

(Andriesse 1975), which often forms an indurated hardpan (Andriesse 1968). Usually, in 287 

tropical soils, available P is bound to Fe and Al, but the low concentration of these cations in 288 

podzols increases P availability in the soil solution (as also seen by Medina & Cuevas 1989, 289 

Coomes 1997, Metali et al. 2015). 290 

INFLUENCE OF SOIL AND TOPOGRAPHY ON FLORISTIC DISTRIBUTION, DIVERSITY AND 291 

FOREST STRUCTURE - Our results show that topography and soil chemistry have a strong 292 
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influence on floristic distribution. Generally, it appears that, within our heath forest, the 293 

variation in species composition is driven by both edaphic and topographic variables, in 294 

particular available Al concentration and soil depth. On the other hand, soil nutrients (CEC and 295 

total P) along with soil pH play a major role only for tree (5 - 10 cm DBH) α- diversity, whereas 296 

an interaction of soil acidity, Al and topographic factors influences β-diversity. As Al is an 297 

important constituent of soil acidity, we argue that, in combination with its ratio with H+, is 298 

important in shaping heath forest species composition as hypothesised by Proctor (1999). It is 299 

noteworthy that available Al covaries with soil depth and elevation and is directly linked to a 300 

decrease in the H:Al ratio. In Brazilian cerrado ecosystems, a similar pattern of increasing Al 301 

with elevation was observed to underpin species composition (Guidão et al. 2002, Abreu et al. 302 

2012, Soares et al. 2015, Silva et al. 2016). Aluminium is abundant in clay-rich acidic soils and, 303 

together with H+, is toxic for plants. Along a soil gradient with different clay content (e.g. 304 

ultisol to podzol) Al is likely to create a species distribution gradient based on species’ Al 305 

tolerance (Kidd & Proctor, 2001). On the other hand, within our sandy podzol, the lack of Al-306 

rich clay means low soil Al concentrations (as seen in the plots at the base of the slope). In such 307 

cases, a beneficial role of soil Al would be to reduce H+ toxicity through its buffering action 308 

(Proctor 1999, Luizao 1996, Luizao et al. 2007). Hydrogen is more detrimental to plants than 309 

Al - experimental Al addition, for instance, enhanced growth of temperate (Kinraide 1993, 310 

Kidd & Proctor 2000) and tropical plants (Osaki et al., 1997) adapted to an extremely acidic 311 

Al-poor soil. In some acidic and sandy soils, it could be argued that plants accumulate Al in 312 

leaves to buffer H+ toxicity through their litterfall with Al accumulators composing more than 313 

30 % of the biomass in e.g. Brazilian cerrado (Goodland & Pollard 1973, Haridasan 1982, 314 

2008). In our plots, Gaertnera junghuhniana (Rubiaceae) the most common species with a 315 

generalist distribution, is an Al accumulator (i.e. has a leaf Al concentration higher than 1000 316 

µg g-1; Sellan 2019). This further supports the importance of soil acidity, and Al, as a driver of 317 
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species distribution in our study site. On the other hand, considering the emphasis given to low 318 

N availability in some studies as a theory to explain heath forest characters (e.g. see Vernimmen 319 

et al. 2013), N was too low to significantly explain differences among plots and thus was 320 

excluded from the analysis post PCA variable selection.  321 

Soil P (available and total) influenced species richness of our plots for trees 5 - 10 cm 322 

DBH and structure (i.e. basal area and stem density) of trees > 5 cm DBH. Surprisingly, plots 323 

with high soil P concentrations had lower basal area and stem density (although this was largely 324 

driven by smaller trees < 10 cm DBH). We would have expected the contrary as P is often 325 

considered to be limiting in lowland rain forest (Cleveland et al. 2011; LeBauer and Treseder 326 

2008), and evidence suggests that it might also be limiting in heath forest (Dent et al., 2006). 327 

High available P concentrations are found in plots with low exchangeable Al (as discussed 328 

above) where soil acidity is likely dominated by H+ rather than Al (Proctor 1999). So, the 329 

negative relationship among soil P and forest structure is possibly due to H+ toxicity rather than 330 

to soil P per se.  331 

Interestingly, soil depth is a strong selective force for the distribution of trees 5 - 10 cm 332 

DBH with species as Madhuca pallida (Sapotaceae), Shorea multiflora (Dipterocarpaceae) and 333 

Gluta oba (Anacardiaceae) associated with deeper soil. This result seems to agree with the 334 

hypothesis proposed by Newbery (1991), and supported by Grainger & Becker (2001), that 335 

heath forests are composed of two ecophysiological and structural guilds: one with dominant 336 

deep-rooted trees and one with small shallow-rooted trees. Alternatively, soil depth is possibly 337 

important because a deeper soil has a greater volume and thus holds more nutrients per area 338 

unit. 339 

DIFFERENT INFLUENCES OF EDAPHIC AND TOPOGRAPHIC VARIABLES AMONG SIZE CLASSES - The 340 

diverse influence of nutrients and topography on tree species distribution, plot α- and β-341 



Sellan, Thompson, Majalap & Brearley  Soil Influence on Tropical Heath Forest 

15 
 

diversity as well as community structure clearly changes among size classes. In particular, trees 342 

<5 cm DBH showed weak correlations among structure, floristic variation and diversity with 343 

edaphic and topographic variables when compared to individuals > 5 cm DBH. This differential 344 

effect among size classes was documented elsewhere in Asian forests (e.g. Paoli et al. 2008, 345 

Sukri et al. 2012, Xu et al. 2016, Yang et al. 2016) and we propose this dissimilarity to be the 346 

effect of light competition. Small understorey trees are primarily limited by light availability 347 

as they are growing below the forest canopy (Coomes & Allen 2007, Cai et al. 2008) and only 348 

secondarily from other resources. Despite heath forest’s low leaf area index (Vernimmen et al. 349 

2007) and high light availability at ground level (Richards 1936), leaves of understorey 350 

saplings (Cao 2000, Cao and Booth 2001) had adaptations to low light availability when 351 

compared to leaves of  the same species growing in brighter environments. Based on our results, 352 

indeed, the smallest size classes had a mean height of 2.9 m (< 2 cm DBH) and 5.7 m  (2-5 cm 353 

DBH), well below the canopy height of 28 m, whereas trees 5-10 cm DBH had a mean height 354 

of c. 11 m, which might be sufficient to free them from light limitation. In this case, nutrient 355 

availability would have a greater influence on the distribution of trees >5 cm DBH. The poor 356 

correlation of tree species distribution with topo-edaphic factors for trees > 10 cm DBH might 357 

be explained by the dynamic nature of soil chemistry. In both tropical (Bauters et al. 2017) and 358 

temperate (Mueller et al. 2012; Vesterdal et al. 2008) forest plantations, changes in topsoil 359 

nutrient content and acidity have been recorded after just a few decades. Tropical trees can be 360 

as old as 1000 years (Chambers et al. 1998; Kurokawa et al. 2003) and in heath forests trees, 361 

diameter growth is slow compared to lowland evergreen forest (Nilus 2003; Brearley et al. 362 

unpublished data). Although we have no information on tree age in our forest, it is likely that 363 

trees > 10 cm DBH developed in a soil with different nutrient characteristics from the ones we 364 

see today. Alternatively, the lack of correlation between trees > 10 cm DBH species distribution 365 

and topo-edaphic variables might be due to the random mortality of big trees in our plots. It is 366 
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also interesting to note that trees > 10 cm DBH show an opposite correlation of basal area with 367 

soil total P and of α-diversity with soil pH if compared to trees 5-10 cm DBH. This might 368 

highlight different strategies to overcome soil acidity and absorb nutrients between different 369 

tree life stages.  370 

 371 

SOIL-SPECIES ASSOCIATIONS - We acknowledge that our study plots are small but, 372 

comparing our results with existing literature, we found them to be consistent with other studies. 373 

For example, Baltzer et al. (2005) found Shorea multiflora to be a sandstone forest (humult 374 

ultisol) specialist in the same Kabili-Sepilok Forest Reserve. Our results thus agree with Baltzer 375 

et al. (2005) because sandstone soil is higher in Al than heath forest and we found S. multiflora 376 

to be more common in soil with low H:Al ratio, i.e. a soil with high available Al. The same is 377 

applicable to the results of Potts et al. (2002) who found Pimelodendron griffithianum 378 

(Euphorbiaceae) to be a generalist, Vatica micrantha (Dipterocarpaceae) and Mangifera sp. 379 

(Anacardiaceae) to favour Al- rich humult ultisols and two Diospyros (Ebenaceae) species to 380 

be specialists in udult ultisols (more nutrient rich soil). The dispersion of species around the 381 

ordination centroid in our analysis revealed that more than half of the species considered in this 382 

analysis followed a soil gradient (i.e. 16 species out of 23, considering all size classes grouped 383 

together).  384 

The cumulative number of species following the soil depth- H:Al gradient through the 385 

split size classes (18 species) instead of the CEC-pH gradient (19 species) was very similar. 386 

However, the higher score of the first CCA axis gives us a further reasonable criterion to 387 

suggest a greater influence of the depth-H:Al gradient rather than the CEC-pH gradient on 388 

species distribution. A secondary result is that, among the heath forest generalist species, we 389 

found Gaertnera junghuhniana, which is an Al accumulator. This characteristic might allow 390 
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G. junghuhniana to succeed throughout our heath forest site because of its capacity of attenuate 391 

H+ toxicity through Al-rich leaf litterfall.  392 

 393 

Our study demonstrated that there are complex interactions among topography, nutrient 394 

limitation and soil acidity that influence different aspects of forest tree species distributions 395 

and forest structure in this Bornean heath forest. These variables showed a greater importance 396 

for trees 5- 10 cm DBH, confirming a recently developed hypothesis suggesting that 397 

environmental filtering is almost absent in the early stages of plant development and become 398 

cumulative with age (Jabot et al. 2008). Generally, we suggest soil acidity to be a factor of 399 

primary importance in shaping this heath forest’s floristic variation and structure. Given the 400 

high conservation value of this fragile forest type (Oktavia et al. 2015; Whitmore 1984) we 401 

underscore its susceptibility to changes in soil pH and encourage careful management and 402 

protection of heath forests.  403 
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FIGURE 1. Redundancy analysis (RDA) biplot with the main soil chemical variables 631 

(grey) constrained by plot topography (blue) in the heath forest of the Kabili-Sepilok Forest 632 

Reserve, Sabah, Malaysia. Colour of the name of plots reflects their grouping on the DCA 633 

ordination. 634 

 635 

  636 
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FIGURE 2. Canonical correspondence analysis (CCA) triplot with the tree species 637 

(represented as crosses) of all size classes in study plots (represented as letters) in the heath 638 

forest of the Kabili-Sepilok Forest Reserve, Sabah, Malaysia. The species whose names are 639 

written in full are the most abundant following the Shannon-Wiener diversity index and have 640 

a significant loading on the first two ordination axes. The red circle represents the standard 641 

deviation of the ordination centroid and the colour of the name of plot reflects their grouping 642 

on the DCA ordination. 643 

  644 
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Table 1 Stem density and basal area of the 20 most common species in heath forest plots in the Kabili-Sepilok 

Forest Reserve, Sabah, Malaysia. 

Species 
 % of total stem 

density 

% of total basal 

area 

Gaertnera junghuhniana 
(Rubiaceae) 

  12.74 1.48 

Diospyros fusiformis 
(Ebenaceae) 

  7.45 0.65 

Syzygium caudatilimbum 
(Myrtaceae) 

  6.07 1.25 

Pimelodendron griffithianum 
(Euphorbiaceae) 

  5.63 10.12 

Dracaena elliptica 
(Asparagaceae) 

  5.38 0.58 

Cotylelobium melanoxylon 
(Dipterocarpacae) 

  4.78 12.71 

Garcinia bancana 
(Clusiaceae) 

  3.35 6.84 

Cleistanthus gracilis 
(Phyllantaceae) 

  3.13 1.78 

Actinodaphne borneensis 
(Lauraceae) 

  3.00 0.97 

Tristaniopsis obovata 
(Myrtaceae) 

  2.75 19.22 

Chionanthus pluriflorus 
(Oleaceae) 

  2.63 0.77 

Ternstroemia aneura 
(Pentaphylacaceae) 

  2.53 0.89 

Shorea multiflora 
(Dipterocarpaceae) 

  2.44 3.21 

Myrsine sp. 
(Primulaceae) 

  1.85 0.39 

Calophyllum sp. 
(Clusiaceae) 

 1.75 1.37 

Palaquium rostratum 
(Sapotaceae) 

 1.19 3.26 

Eurycoma longifolia 
(Simaroubaceae) 

 1.00 0.17 

Anisophyllea disticha 
(Anisophylleaceae) 

 0.90 0.04 

Madhuca pallida 
(Sapotaceae) 

 0.84 2.45 

Hancea griffithiana 
(Euphorbiaceae) 

 0.66 0.09 

Cumulative total   67.7 65.1 
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TABLE 2. Scores of soil and topographic variables on the first CCA axes in four tree size classes heath forest plots in the Kabili-Sepilok Forest 

Reserve, Sabah, Malaysia. Significant values (‘***’ < 0.001, ‘**’ <0.01, ‘*’ < 0.05, ‘+’ < 0.1) are in bold.  

Size 

class 

(cm)  

 Available 
Mn 

CEC 
 

Available 
Al 

Total 
P 

Available 
P 

pH 
 

H:Al 
ratio  

Plot 
slope Soil depth 

Plot 
elevation 

 
Number of 

individuals 

All Axis1 score -0.24 0.07 0.44* -0.20 -0.31 -0.02 -0.54  -0.23+ 0.85* 0.67  3194 

 F-stat 0.99 1.08 2.19 1.43 1.27 0.85 1.07  1.68 2.51 0.89   
<2 Axis1 score 0.21 -0.01 -0.43* 0.25 0.34 -0.08 0.58  0.35 -0.83* -0.67  1413 

 F-stat 0.86 0.92 2.11 1.16 1.30 0.95 1.21  1.43 1.89 0.78   
2-5 Axis1 score -0.25 0.13 0.41+ -0.10 -0.22 -0.13 -0.52  -0.11 0.92* 0.67  1087 

 F-stat 0.90 1.11 1.50 1.08 1.06 0.89 0.92  1.39 2.36 0.90   
5-10 Axis1 score 0.09 -0.14* -0.35* 0.07* 0.15 0.06 0.41  0.19+ -0.86** -0.63+  353 

 F-stat 1.30 1.59 1.94 1.75 1.00 1.34 1.42  1.50 2.61 1.14   
>10 Axis1 score -0.30 0.09 0.53+ -0.19 -0.35 -0.08 -0.58  -0.06 0.83 0.64  341 

  F-stat 1.05 1.06 1.69 1.05 0.80 0.71 0.86  0.97 1.74 0.73   
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TABLE 3. Results of the Spearman correlation test among forest structure (i.e. basal area and stem density) and α-diversity (calculated with Shannon-Wiener diversity 

index) with edaphic and topographic variables in heath forest plots in the Kabili-Sepilok Forest Reserve, Sabah, Malaysia. Significant values (‘***’ < 0.001, ‘**’ <0.01, 

‘*’ < 0.05) are in bold. 

Size classes 
(cm) 

Variable 
 

Available 
Mn 

CEC 
 

Available 
Al 

Total 
P 

Available 
P 

pH 
 

H:Al 
ratio  

Plot 
slope 

Soil 
depth 

Plot 
elevation 

All Basal area 0.30 0.15 -0.05 0.61* 0.37 -0.19 0.33  0.10 -0.18 -0.25 

 Stem density -0.70** -0.35 0.003 -0.54* -0.60* 0.08 -0.28  -0.17 -0.01 0.42 

 α-diversity -0.34 -0.20 0.01 0.01 -0.19 -0.02 0.08  -0.02 -0.40 -0.02 

<2 Basal area -0.57 -0.21 0.18 -0.38 -0.42 0.01 -0.37  -0.15 0.01 0.42 

 Stem density -0.64** -0.15 0.26 -0.37 -0.49 -0.06 -0.45  -0.08 0.14 0.46 

 α-diversity -0.31 -0.22 0.04 -0.06 -0.13 0.01 0.08  0.05 -0.38 -0.15 

2-5 Basal area -0.27 -0.19 -0.18 -0.25 -0.20 0.03 0.09  -0.11 -0.02 0.08 

 Stem density -0.33 -0.07 -0.12 -0.09 -0.14 -0.15 0.21  0.18 -0.15 0.01 

 α-diversity -0.36 -0.17 0.06 0.03 -0.06 0.03 0.06  0.10 -0.39 -0.08 

5-10 Basal area -0.50* -0.70** -0.49* -0.74*** -0.62** 0.53* -0.09  -0.51* -0.40 0.26 

 Stem density -0.45 -0.82*** -0.65** -0.73** -0.54* 0.69** 0.11  -0.51* -0.58* 0.10 

 α-diversity -0.47 -0.69** -0.37 -0.56* -0.46 0.66** 0.14  -0.54* -0.61* 0.09 

>10 Basal area 0.36 0.32 0.13 0.69** 0.45 -0.29 0.19  0.10 -0.05 -0.15 

 Stem density 0.10 0.19 -0.11 0.12 0.06 -0.09 0.05  -0.06 0.19 0.17 

 α-diversity 0.02 0.44 0.49* 0.28 -0.05 -0.54* -0.02  0.03 0.30 0.16 
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Table 4. Results of the Mantel test between β-diversity (calculated as total dissimilarity matrix with Jaccard index) and edaphic and topographic variables in the Kabili-

Sepilok Forest Reserve, Sabah, Malaysia. Significant values (‘***’ < 0.001, ‘**’ <0.01, ‘*’ < 0.05) are in bold. 

Size class 
(cm) 

Available 
Mn 

CEC 
 

Available 
Al 

Total 
P 

Available 
P 

pH 
 

H:Al 
ratio  

Plot 
slope 

Soil  
depth 

Plot 
elevation 

All -0.08  -0.27  0.03  -0.10  -0.06  -0.03  0.25   0.22  0.47  0.30* 

<2 -0.09  -0.23  0.01  -0.05  -0.04  -0.01  0.20    0.21  0.39* 0.29* 

2-5 -0.09  -0.17  0.10  -0.05  -0.09  0.09  0.34*  0.39* 0.48** 0.23  

5-10 -0.01 -0.03  0.14  -0.06  -0.09  0.25* 0.32**   0.27* 0.45*** 0.32** 

>10 -0.11  -0.12  0.06  -0.02  -0.07  -0.07  0.06   -0.09  0.38  0.35* 
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SUPPORTING INFORMATION: 

 

 

FIGURE S1. Location of the study site. A) The island of Borneo with the approximate 

position of the Kabili-Sepilok Forest Reserve (Sabah, Malaysia) highlighted in red. B) The 

Kabili-Sepilok Forest Reserve with the approximate location of the study plots highlighted 

and C) the study plot positions in the forest. Colour of the name of plots reflects their 

grouping on the DCA ordination. 
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FIGURE S2. Detrended correspondence analysis (DCA) using the absolute density of the 

126 species found in 16 heath forest plots in the Kabili-Sepilok Forest Reserve, Sabah, 

Malaysia. Colour of the name of plots reflects their grouping on the DCA ordination. 
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TABLE S1. Soil chemical and topographical characteristics of heath forest plots in the Kabili-Sepilok Forest Reserve, Sabah, Malaysia. Values 

of chemical variables are means of four measurements whereas topographic variables consist of only one measurement per plot (excepting 

slope).  

Plot pH Moisture  Exchangeable  H:Al  Total  Available 

 (H2O) Content  Acidity Aluminium  Ratio  Al P  P Mn Fe 

  (%)  cmolc kg-1    µg g-1 

A 3.89 5.37  1.51 0.18  7.7  178.7 40.8  10.7 2.4 20.2 

B 4.05 8.74  2.02 0.32  9.1  148.6 61.1  21.5 6.3 18.1 

C 3.75 5.79  2.42 0.55  3.5  216.8 42.5  10.7 0.9 33.1 

D 3.56 13.90  4.26 0.76  4.7  271.8 70.2  16.6 2.3 29.7 

E 3.68 6.67  2.10 0.37  5.2  153.0 36.7  8.2 0.9 17.8 

F 3.82 4.00  1.47 0.26  4.6  106.5 28.2  8.6 0.7 14.4 

G 3.63 9.40  2.77 0.42  3.4  287.9 59.3  15.4 4.2 42.8 

H 3.56 6.49  4.31 1.13  2.8  365.1 56.9  12.4 1.1 33.7 

I 3.80 6.11  2.18 0.68  2.2  402.5 42.8  10.7 1.1 44.6 

J 3.72 7.02  2.53 0.80  2.8  535.0 38.8  9.5 1.2 42.3 

K 3.68 5.80  2.36 0.63  2.9  260.4 57.6  15.4 1.0 22.5 

L 3.43 13.60  3.74 0.60  5.3  285.9 70.1  15.2 1.3 21.5 

M 3.74 4.62  2.50 0.40  5.2  173.7 54.2  19.8 2.7 18.2 

N 3.82 6.20  1.64 0.31  4.7  133.8 38.1  9.4 0.7 15.5 

O 3.64 7.04  2.28 0.39  4.9  209.0 65.6  18.1 3.0 22.7 

P 3.58 8.43  2.77 0.47  5.2  236.3 76.2  22.9 6.2 28.8 



Sellan, Thompson, Majalap & Brearley  Soil Influence on Tropical Heath Forest 

36 
 

 

 

 

Table 1. Continued. 

Plot Exchangeable       C:N  Plot Plot Soil 

 Ca K Mg Na  CEC  NH4
+ NO3

-  Ratio  ASL Slope Depth 

  cmolc kg-1  µg g-1    m % cm 

A 0.30 0.20 0.61 0.12  2.37  4.9 0.0  26.6  55 9.5 23 

B 0.13 0.07 0.11 0.03  3.59  4.2 0.0  26.3  49 12.3 19 

C 0.16 0.12 0.37 0.07  3.36  9.6 0.2  24.5  69 13.7 23 

D 0.14 0.19 0.44 0.08  6.03  11.7 1.1  25.2  53 14.6 24 

E 0.14 0.13 0.32 0.05  2.59  6.4 0.4  23.7  50 14.8 27 

F 0.16 0.10 0.21 0.04  2.00  6.2 0.6  17.7  73 13.3 29 

G 0.19 0.20 0.38 0.09  4.68  10.0 0.8  26.0  66 13.1 32 

H 0.21 0.17 0.82 0.23  5.67  5.4 0.5  19.5  64 14.1 39 

I 0.16 0.13 0.35 0.07  2.64  7.8 0.8  21.7  83 13.3 100 

J 0.13 0.20 0.33 0.12  3.11  7.6 0.2  16.7  74 12.8 49 

K 0.19 0.18 0.50 0.07  3.47  11.6 0.7  24.6  61 14.3 39 

L 0.17 0.37 0.75 0.09  6.00  9.8 0.0  21.9  64 14.8 48 

M 0.34 0.17 0.58 0.06  3.96  8.9 0.8  27.0  60 14.9 32 

N 0.12 0.12 0.23 0.05  2.25  1.6 0.3  21.7  51 14.1 21 

O 0.49 0.20 0.65 0.07  3.66  9.0 2.0  22.7  42 15.8 27 

P 0.51 0.20 0.78 0.07  4.62  20.8 1.1  21.5  48 15.4 33 
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TABLE S2. Contribution on principal component analysis (PCA) first and second axis of 

soil chemical parameters from heath forest plots in the Kabili-Sepilok Forest Reserve, Sabah, 

Malaysia. The variables that scored a contribution higher than the expected one for both 

dimensions are noted in bold. 

Variable 

Contribution 

to PC1 

Contribution 

to PC2 

Av.Al 6.89 15.41 

Av.Mn 6.79 14.90 

Av.P 12.75 7.88 

C:N 1.20 14.57 

CEC 17.36 2.38 

H:Al 0.11 24.56 

Moisture 11.58 0.58 

NH4 11.47 0.81 

NO3 0.84 9.26 

pH 11.54 7.39 

Tot.P 19.45 2.23 
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TABLE S3. Association of the 52 most important tree species with the first (H:Al ratio-soil 

depth) or second (CEC-pH) CCA axes ordination of heath forest plots in the Kabili-Sepilok 

Forest Reserve, Sabah, Malaysia. Columns are divided per size-class and axis considered. 

The species whose centroid was located within the triplot main centroid standard deviation 

have been called “generalists” (g in the table), whereas the species that had a positive or 

negative correlation with the indicated axis have been designated with a “+” or a “-“, 

respectively. If a cell is empty it means that the individuals from that species in that size class 

were not important in determining inter-plot variation.  

 

Species  All  <2 cm  2-5 cm  5-10 cm  >10 cm 

 

 Depth- 

H:Al 

CEC-

pH 

 Depth- 

H:Al 

CEC-

pH 

 Depth- 

H:Al 

CEC-

pH 

 Depth- 

H:Al 

CEC-

pH 

 Depth- 

H:Al 

CEC-

pH 

Anisophyllea disticha     +   +        
Barringtonia sp.  +              
Calophyllum sp.            -  g g 

Chionanthus pluriflorus               + 

Cleistanthus gracilis  +   +   +        
Cotylolebium melanoxylon  g g  g g  g g  g g  g g 

Dacryodes sp.   +   +          
Diospyros fusiformis     g g          
Diospyros sp.     +           
Dracaena elliptica  g g  g g  g g       
Elaeocarpus sp.     +           
Eurycoma longifolia           +     
Gaertnera junghuhniana  g g  g g  g g   -    
Garcinia bancana           g g    
Garcinia gaudichaudii           g g  g g 

Gluta oba  +         +     

Glochidion sp.   -             

Gnetum sp.     g g      +    
Gonystylus sp.        g g       
Hancea griffitihiana           +     
Horsfieldia sp.         +       
Ixonanthes reticulata     g g      +    
Ixora sp.   -             
Koompassia malaccensis         -       
Litsea cylindrocarpa  g g        g g    
Madhuca pallida  +   +      +    + 

Mangifera sp.  +         +   +  
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Memecylon sp.     +           
Mezzettia sp.     +           
Myristica sp.      +          
Myristica malaccensis        +        
Myrsine sp.   -   -         - 

Palaquium rostratum   +   +   +      + 

Parinari sp.   +             
Parishia insignis        +      +  
Pimeleodendron griffithianum              g g 

Psydrax sp.   -  +   +        
Rothmannia sp.  +   +           
Santiria sp.  g g      +       
Shorea falciferoides      -          
Shorea multiflora  +         +     
Stemonurus sp.            +    
Syzygium cauditilmbum  g g     g g  g g   + 

Syzygium sp.  g g     g g     g g 

Syzygium tawahense         +       
Ternstroemia aneura        g g       
Timonius flavescens      g g   -       
Tristaniopsis obovata      -        g g 

Urophylum arboreum  +              
Vatica micrantha        +   +     
Xanthophyllum flavescens           +     
Xylopia ferruginea   -         -    


