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Abstract: Due to the rapidly growing sensor-enabled connected world around us, with the
continuously decreasing size of sensors from smaller to tiny, energy efficiency in wireless sensor
networks has drawn ample consideration in both academia as well as in industries’ R&D.
The literature of energy efficiency in wireless sensor networks (WSNs) is focused on the three layers
of wireless communication, namely the physical, Medium Access Control (MAC) and network layers.
Physical layer-centric energy efficiency techniques have limited capabilities due to hardware designs
and size considerations. Network layer-centric energy efficiency approaches have been constrained,
in view of network dynamics and available network infrastructures. However, energy efficiency at
the MAC layer requires a traffic cooperative transmission control. In this context, this paper presents
a one-dimensional discrete-time Markov chain analytical model of the Timeout Medium Access
Control (T-MAC) protocol. Specifically, an analytical model is derived for T-MAC focusing on an
analysis of service delay, throughput, energy consumption and power efficiency under unsaturated
traffic conditions. The service delay model calculates the average service delay using the adaptive
sleep wakeup schedules. The component models include a queuing theory-based throughput analysis
model, a cycle probability-based analytical model for computing the probabilities of a successful
transmission, collision, and the idle state of a sensor, as well as an energy consumption model for
the sensor’s life cycle. A fair performance assessment of the proposed T-MAC analytical model
attests to the energy efficiency of the model when compared to that of state-of-the-art techniques,
in terms of better power saving, a higher throughput and a lower energy consumption under various
traffic loads.

Keywords: wireless sensor networks; S-MAC; T-MAC; discrete-time Markov chain;
energy optimization

1. Introduction

Wireless sensor networks (WSNs) have numerous real-life applications in various fields,
such as precision agriculture [1], patient healthcare [2], target tracking, homeland security,
environmental monitoring, surveillance [3], vehicular traffic management [4,5], and electric vehicle
charging recommendation [6,7]. WSNs’ role is significant in the emergence of the Internet of Things
(IoT) [8,9]. Sensor nodes are deployed in WSNs in large amounts in a geographical area. There are
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basically two different ways of deploying the sensor nodes: planned and random. For example, sensors
are deployed in a well-calculated style in an approachable area where humans can travel [10]. On the
other hand, an ad-hoc method approach is used in a hostile environment, as it is very difficult to deploy
the nodes there manually [11]. Typically, these sensor nodes are battery-run with constrained power
and are left unattended after being deployed in the hostile environment. Additionally, if the number of
nodes is higher, as is the case with typical IoT applications, changing the batteries on the nodes after
they run out of power is not feasible [12]. Furthermore, because of the low cost, changing the entire
network might be more viable than changing individual batteries. Hence, elongating the network
lifetime by optimizing the available energy in the sensor nodes seems comprehensible [13]. As such,
energy optimization in the sensor nodes to prolong the network lifetime has attracted massive research
interest [14].

The energy optimization on WSNs is typically done on the three layers of the wireless
communication architecture, which include the physical, MAC and network layers. In the physical
layer optimization, the optimization of modulation techniques or changes in antenna schemes is
performed [15]. Since this requires direct manipulation at the hardware level, energy optimization on
the physical layer is generally limited. Network layer optimization requires a consideration of the
network dynamics and the network infrastructure; therefore, any changes to the network dynamics can
have negative effects on the network [16]. In effect, parameter optimization at the MAC layer provides
an opportunity for energy optimization without the aforementioned shortcomings with the former two
layers. Many MAC protocols have been designed for WSNs in order to use the limited energy efficiently
by placing the sensor nodes in sleep mode [17]. Some of the existing MAC protocols that adopted this
technique are Sensor MAC (S-MAC) [18] and Timeout MAC (T-MAC) [19]. These reduce the energy
waste by introducing an active and sleep time into the time cycle of IEEE 802.11. T-MAC achieves
better energy saving than S-MAC by avoiding idle listening during the active time. The sensor goes
into sleep mode, as there is no event happening for a certain time of idle listening. The analytical model
presented in [20] to study the impact of the sleep mode for the S-MAC protocol is not suitable for the
T-MAC protocol because it allows a variable burst length of traffic in the active mode. To the best of
our knowledge, the performance analysis of the T-MAC protocol for energy efficiency, throughput and
delay has not yet been done in view of unsaturated traffic conditions or environments.

A new discrete-time Markov chain analytical model is developed that appropriately determines
the performance of the T-MAC protocol under unsaturated traffic conditions for sensor-enabled
wireless network environments. The proposed analytical model utilizes the Markov chain analysis,
considering the back-off procedure of the T-MAC protocol. The novelty of the method is emphasized
by the co-operative use of the discrete-time Markov chain with the T-MAC protocol. The paper is
summarized below:

• We derive an analytical model for T-MAC, applying a discrete-time Markov chain focussing
on throughput, energy consumption, power efficiency and service energy under unsaturated
traffic conditions.

• A node behaviour model is presented with a transmission probability, which reviews the back-off

mechanism in the T-MAC protocol using the Markov chain. Moreover, the probabilities of
a successful transmission, collision, and idle state of a node are computed in a cycle probability
model, which is also illustrated.

• A system model, based on the M/M/1/∞ queuing model, is presented to analyse the throughput
under unsaturated traffic conditions, and a service delay model is illustrated to calculate the
average service delay using the adaptive sleep wakeup schedules.

• A comparative performance analysis is done with the aid of a simulation to assess the energy
efficiency of the suggested model, as compared to the state-of-the-art S-MAC and X-MAC based
techniques, in view of various metrics.
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The rest of this paper is organized as follows: Section 2 critically analyses the existing associated
literatures on the MAC-based WSN energy optimization. The details of the proposed discrete-time
Markov chain analytical model of the T-MAC protocol are presented in Section 3. The analytical and
experimental results, with the comparative performance evaluation, are discussed in Section 4, which is
later followed by the conclusions in Section 5.

2. Related Works

2.1. MAC Orientated Green Communication

In recent years, the focus has been on developing energy efficient MAC protocols for WSNs.
The sleep and wake-up time cycle has been incorporated in the IEEE 802.11-distributed coordination
function to conserve the energy of a sensor node. Various protocols are proposed in wireless sensor
networks, like S-MAC, T-MAC, X-MAC and IEE 802.15, which are variants of IEEE 802.11, to conserve
the energy at the MAC layer. In the past, there have been some analytical models that are proposed
for the analysis of the performance of these MAC protocols on the basis of sleeping nodes. In [20],
a mathematical model has been proposed for the S-MAC protocol to evaluate the throughput, delay and
energy consumption under unsaturated traffic conditions. The authors considered the various factors
together, including the active and sleep time cycle, the back off method, and the different traffic
patterns for the S-MAC protocol. The modelling of the states of a node is done using a discrete time
Markov chain, and the M/G/1/∞ queueing theory has been applied to compute the service delay,
throughput, and energy consumption under unsaturated traffic conditions. A Markov queuing model
has been proposed for the S-MAC and X-MAC protocols to calculate the throughput, delay, and energy
consumption of both the synchronized duty-cycled S-MAC protocol and the asynchronous duty-cycled
X-MAC protocol in [21]. The synchronous and asynchronous duty-cycled nodes queueing behaviour is
studied using the Markov queueing model, as suggested by some authors. The performance evaluation
of the synchronized duty-cycled S-MAC and asynchronous duty-cycled X-MAC protocols is calculated
for the stationary probabilities of the packet transmission.

In [22], the authors evaluated the performance of the IEEE802.15.4 protocol, which takes
retransmission and acknowledgements under unsaturated traffic conditions as parameters using
a Markov chain model. In this analytical model, the network performance has been measured in
terms of the frame delivery ratio, average power consumption of a node, channel throughput and
frame discard ratio. The authors in [23] modelled the IEEE 802.15.4 MAC layer as a non-persistence
carrier sense multiple access with a back off to compute the throughput and energy efficiency of
the contention access period, and they proved that switching the radio into sleep mode between
transmissions conserves the energy of the MAC layer. In [24], the performance of the IEEE 802.15.4
MAC protocol was dispensed within the terms of energy and throughput, in view of the right channel
conditions under saturated and unsaturated traffic conditions. In [25], the authors estimated the delay
and energy consumption of the IEEE 802.15.4 MAC layer, showing that the overall performance of the
proposed model depends on the collision probability. In [26], an energy model is proposed to compute
the power consumption, using the time-slotted channel hoping scheme that is the core of the IEEE
802.15.4e-2012 amendment of the IEEE 802.15.4-2011 standard.

2.2. Routing Orientated Green Communication

An approach for green computing has been proposed in [27] using Huffman coding-based ant
colony optimization for a randomly distributed wireless sensor network. In particular, ant colony
optimization is used to explore multiple paths, and Huffman coding is used to select the best path in
view of the impact of two parameters on the energy consumption; namely, the path length and residual
energy of each node. Green computing is performed in [28] by equalizing the energy consumption
of all the sensors in the networks. A distributed forward search space was introduced to reduce the
unnecessary transmission. Furthermore, four parameters, residual energy, node degree, distance and
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angle, have been used to construct the next forwarder selection function to select the next hop to
route the packets. In [29], an energy balanced model was proposed to realize an equal distribution
of energy consumption among all of the sensors in the network. New methods are proposed for
the sensors to adjust the transmission range, adaptive sensing and density control to achieve a fair
equalization of the energy consumption. Additionally, algorithms are presented for the annulus
formation, connectivity ensured routing and coverage preserved scheduling, for the realization of
a proposed energy balanced model. In [30], a new approach for green computing was presented, as
a lifetime maximization based on balanced tree node switching. Two methods of shifting the nodes to
achieve the balance tree of the node in the network, in terms of energy, were proposed. The author
in [31] proposed a fault tolerance optimization method to minimize any end-to-end communication
delay and fault tolerance in the wireless sensor network. An adaptive non-dominated sorting based
genetic algorithm was used to solve the optimization problem. An analytical model of the T-MAC
protocol was proposed in [32]. The authors in this paper estimated the length of the active and sleep
time of a cycle time assuming that the occurrence of events follows the Poisson distribution. In this
model, the energy consumption has been evaluated in terms of transmitting and receiving packets
during the active time of a node. However, this model could not consider the back off mechanism.
Furthermore, this analytical model could not calculate the service delay, throughput and power
efficiency. Therefore, an analytical model that considers the back off mechanism, delay, throughput,
and power efficiency under unsaturated traffic conditions needs to be developed.

3. Analytical Model of T-MAC Protocol

Here, we present a one-dimensional discrete time Markov queueing model of T-MAC for
duty-cycled nodes with a variable cycle length. We consider the service delay, throughput,
energy consumption and power efficiency for a node, according to the following assumptions:
(a) a large number of arrivals of packets at each node are independent and discrete; therefore, the arrival
of packets follows the Poisson distribution, (b) A large number of data packets is buffered by each node,
(c) the packet retransmission is not endorsed here, (d) the channel is considered perfect (no fading),
and (e) the deployment of sensor nodes follows the geometric distribution.

3.1. Node Behaviour Model

In this analytical model, a single hop WSN is considered, with n number of identical sensor nodes.
The change of the node’s back off (BO) period is represented using the stochastic process. As per the
T-MAC protocol, the back off timer is cancelled by the node if it fails to seize the channel in a cycle
time, after which it will set a new BO timer for the next cycle. Hence, the stochastic process can be
demonstrated with the discrete time Markov chain, as shown in Figure 1.
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Consider that the proposed Markov chain has a finite number of states that are equal to the size W
of the contention window. These states are numbered 0, 1, 2, 3 . . . , W−1, representing the status of the
nodes. The parameters are considered in the model, as shown in Table 1. The random back off timer
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is less than or equal to the current time slot. The transmission begins as soon as the back off period
reaches zero. The back off period is chosen randomly in the range of [0, W−1] for each transmission.
All of the sensor nodes sense the medium with an equal probability 1/W to capture the channel. If the
channel is found to be idle, then a node contains the particular time slot which is equal to the current
back off timer. The node continuously senses, with a probability (1−p), until the back off duration
becomes zero, and it also ensures that no one is transmitting on the channel, after which it starts
transmitting with probability 1. After the completion of the packet transmission, the node receives an
acknowledgment (ACK) packet and then goes for back off duration with probability p. In the event
that the channel seems busy, the node goes to back off duration with probability p. Again, the same
process is repeated to capture the channel. The steady state equations of the discrete-time Markov
chain are expressed as:

Π0 = (1/W) ΠBO + (1− p)Π1 (1)

Π1 = (1/W) ΠBO + (1− p)Π2. (2)

Table 1. Notations.

Notation Description Notation Description

n Number of sensor nodes ESL Sleeping energy
W Contention window size PSL Probability of sleeping
p Probability TCOL Collision time

Π(.) State probability TID Idle time
k Positive integer TSL Sleep time

PTR Probability of transmission TST Successful transmission time
PST Probability of successful transmission T1 Missing transmission time

PCOL Probability of collision T2
Time taken by the node for not capturing

the channel
PID Probability of idle T3 Time taken due to the back off procedure
τ Time slot T4 Transmission time

EST
Energy consumption in successful

transmission TCL Duration of a cycle

EID Idle energy TA Threshold
ECOL Collision energy E Whole network energy
Tsam Sampling time in µs S Throughput

Ts Average transmission time Rsam Sampling rate in µs

Similarly, for the kth state, the balance equation is given by Equation (3):

Πk = (1 / W) ΠBO + (1− p)Πk+1 (3)

ΠBO = p ΠACK + pΠ0 + p Π1 + . . .+ pΠW−1 (4)

ΠACK = Π0 (5)

ΠACK + ΠBO +
W−1∑
k=0

Πk = 1, (6)

where k takes the positive integer value from 0 to W−1, and Π(.) represents the state probability.
Upon solving the above equations, we have:

Π0 = (1/W)ΠBO + (1− p)[(1/W)ΠBO + (1− p)Π2]

= (2− p)(1/W)ΠBO + (1− p)2 Π2

= (2− p)(1/W)ΠBO + + (1− p)2(1/W) ΠBO + . . . (1− p)k Πk

=
(

1
W

)
ΠBO[(2− p) + (1− p)2 + . . .+ (1− p)k−1] + (1− p)k Πk

=
(

1
W

)
ΠBO[1 + (1− p) + (1− p)2 + . . . (1− p)k−1] + (1− p)k Πk

=
(

1
W

)
ΠBO + [

1−(1−p)k−1

p ] + (1− p)k Πk =

(7)
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Πk = [Π0 − (
1
W

)ΠBO{
1− (1− p)k−1

p
}]

1

(1− p)k

Πk(1− p)k = Π0 − (
1
W

)ΠBO{
1− (1− p)k−1

p
}.

To normalize, we solve Equations (6) and (7), which is to say we put the value of ΠBO from
Equation (6) into Equation (7), and we get:

Πk(1− p)k = Π0 −
(

1
W

)
{1−

W−1∑
k=0

Πk}{
1−(1−p)k−1

p }

Πk(1− p)k = Π0{1 +
(

1
W

)
{

1−(1−p)k−1

p } −

(
1

W

)
{1

W−1∑
k=0

Πk}{
1−(1−p)k−1

p }

Π0 =
Π(state k)+( 1

W )
{
1−

∑W−1
k=0 Πk

}{ 1−(1−p)k−1

p

}
1+

{
1−(1−p)k−1

Wp

}

=

1
W+( 1

W )
{
1−

∑W−1
k=0 (

1
W )

}{ 1−(1−p)W−1−1

p

}
1+

{
1−(1−p)W−1−1

Wp

}

=

1
W+( 1

W )
{
1−( 1

W )
∑W−1

k=0 (1)
}{ 1−(1−p)W−2

p

}
1+

{
1−(1−p)W−2

Wp

}

=

1
W+( 1

W )
{
1−( 1

W )(W−1)
}{ 1−(1−p)W−2

p

}
1+

{
1−(1−p)W−2

Wp

} =
p+( 1

W )
{

1−(1−p)W−2

p

}
1+

{
1−(1−p)W−2

Wp

} .

The transmission probability is given by:

Π0 =
p +

(
1

W

){
1− (1− p)W−2

}
1 + p− (1− p)W−2

, (8)

where p represents the probability that among the remaining n−1 sensor nodes, at least one will
transmit in a time slot given by p = 1− (1−Π0)

n−1.

3.2. Cycle Probability Model

A cycle can be characterized by the event that happens within the cycle. The events are an idle
cycle, a successful transmission cycle, and an unsuccessful transmission cycle/collision cycle. When the
sensors have no packet to transmit, it is termed an idle cycle. On the other hand, when one of the
sensors, having a packet which requires transmission, attains the channel and transmits the packet
successfully, it is called a successful transmission cycle; furthermore, when more than one sensor selects
the same back off period and causes an RTS collision, it is termed a collision cycle. We assume that
PTR is the probability of at least one transmission of n active sensor nodes in a time slot, PST is the
probability that a transmission is successful, PCOL is the collision probability, PID is the idle probability
and PSL is the sleeping probability; these are given as:

PTR = 1− (1−Π0)
n (9)

PST =
n Π0(1−Π0)

n−1

PTR
(10)
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PCOL = (1−Π0)
n

n∑
k=0

(
n
k

)
(PTR)

k(1− PTR)
n−k (11)

PID =
Π0

PST
(12)

PSL = (1− PTR)(1− PID) (13)

3.3. Throughput Analysis

The throughput S is defined as the total time to the time when the channel was used for
transmitting the payload bits successfully. The time for the collision, sleeping time, time for the
successful transmission and idle time are four fractions of the time when a slot of some random time is
chosen. Thus, the throughput expression S is given by:

S =
PtrPSTE[P]

(1− PTRPST − PCOL) + PTRPSTTST + PCOLTCOL + PSLTSL + PIDTID
, (14)

where E[P] is represented by the average packet payload size. The times TCOL, TID, TSL and TST are the
times for the collision, idle, sleep and successful transmissions for the busy channel, respectively.

3.4. Service Delay Analysis

The service delay is a significant measurement in low-rate traffic. The time from the arrival of the
packet to the reception of the packet is termed the service delay or packet service time. We show all time
consumption in terms of the back off period, which has the following components: (1) T1, represented as
the time taken due to missing the transmission opportunity as a result of sleeping; (2) T2, represented as
the time taken by the node for not capturing the channel and for not being able to successfully transmit
during the cycle; (3) T3, represented as the time taken due to the back off procedure for the successful
transmission in a cycle; and (4) T4 is the time required for a represented transmission. It is assumed
that the duration of a cycle is denoted by TCL, the time slot by τ; furthermore, the minimum idle time
(threshold) to change the states of the sensor from active to sleep is denoted by TA. Following this,
the sleep time of a node can be represented as:

TSL = TCL − (TTR + TA). (15)

Let us define G(z) as a probability generating function (PGF) of the packet service time:

G(z) =
W−1∑
i=0

PTR Zi +

TST∑
i=0

PST Zi +

TID∑
i=0

PID Zi +

TSL∑
i=0

PSL Zi (16)

dG(z)
dz

=
W−1∑
i=0

PTR i Zi−1 +

TST∑
i=0

PSTi Zi−1 +

TID∑
i=0

PIDi Zi−1 +

TSL∑
i=0

PSL i Zi−1 (17)

Therefore, the average service delay is given as:

E (G) =
dG(z)

dz

∣∣∣∣
Z=1

= 1
2 [PTR W(W − 1)+ (18)

PST TST(TST + 1) + PID TID(TID + 1) + PSLTSL (TSL + 1)]

3.5. Energy Consumption and Power Efficiency

The whole network energy consumption during a cycle is given as:

E = ESTPST + EIDPID + ECOL PCOL + ESLPSL (19)
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On substituting the values of PST, PID, PCOL and PSL from Equations (10), (11), (12) and (13) in
(19), the energy consumption E for the whole network can be determined. EST, EID, ECOL and ESL are
the energy consumption in a successful transmission cycle, in the idle state, in collision, and in the
sleep state, respectively. The throughput attained per unit of energy consumed is termed as power
efficiency and is represented as:

Power e f f iciency =
Throughput

Total energy consumption
=

S
E

(20)

4. Experimental Results and Analysis

The analytical results obtained for the proposed analytical model of T-MAC are presented
and compared with those of the analytical model of the S-MAC and X-MAC protocols.
Furthermore, the analytical results of T-MAC have been validated by conducting the simulation
for the T-MAC protocol. The nodes are randomly deployed in the network field, which has an area of
200 × 200 m2. The number of sensors deployed for this simulation is 50. The radio range of the sensor
is assumed to be 50 m. The data packet size is taken to be 512 bits. The packet arrival rate follows the
Poison process. The results provide an analysis for the probabilities of a successful transmission cycle,
energy consumption, idle cycle, average service delay, throughput, collision cycle, and power efficiency
for the different packet arrival ratesh. It is assumed that there are n = 4 sensors, contending for the
channel access, with a contention window size of W = 16. The energy consumed per unit of time for
a successful transmission, idle state, collision, and sleep state is assumed to be EST = 5 mJ, EID = 0.2 mJ,
ECOL = 7 mJ and ESL = 0.04 mJ, respectively. The time is divided into a number of slots of length
τ = 10 s. The cycle length is assumed to be Tcl = 30 µs. The sensor goes into sleep mode if no event
occurred for a certain time of idle listening that assumed to be TA = 1 µs. The average transmission
time of the sensors is assumed to be Ts = 5 µs. The signal sampling time and rate are assumed to be
Tsam = 5 µs and Rsam = 2 µs.

Figure 2 shows the comparison of the idle probability in a cycle with respect to the different packet
arrival rates for the T-MAC, S-MAC and X-MAC protocols. It is observed that for T-MAC, with the
increase of the packet arrival rate, the idle probability of a sensor increases very slowly; however,
for S-MAC, it decreases sharply. This is due to the fact that the idle listening time for the T-MAC
protocol is fixed, which is to say it avoids idle listening during the active time, and the sensor goes to
sleep mode if there is no event happening for a certain time of idle listening. In other words, due to the
lower idle listening time, the T-MAC protocol has a lower energy consumption when compared to the
S-MAC protocol. It is seen that the ideal probability of the sensor is lower than that of S-MAC and
X-MAC. For example, for the packet arrival rateh = 0.4, the idle probability PID is 0.05 for T-MAC,
whereas for X-MAC and S-MAC it is 0.09 and 0.5, respectively.
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Figure 2. The idle probability PID in a cycle versus the packet arrival rateh for the T-MAC, S-MAC and
X-MAC protocols.

Figure 3 shows the comparison of the collision probability PCOL, with respect to the packet arrival
rateh for the T-MAC, S-MAC and X-MAC protocols. It is perceived that, with the increase in the arrival
rate, the collision probability packet also increases for all of the protocols considered for comparison.
The collision probability of the T-MAC protocol is much less when compared to the S-MAC and
X-MAC protocols. For example, for the packet arrival rateh = 0.8, the collision probability for T-MAC
is 0.00025, whereas for S-MAC and X-MAC, it is 0.001 and 0.00075, respectively. This is due to the fact
that for a high packet arrival rate, the active time for T-MAC becomes longer than that of S-MAC and
X-MAC. T-MAC sends more data in a successful cycle time, whereas a higher number of successful
cycles for S-MAC is required to send the same amount of data. In other words, the number of trials to
reserve the medium for S-MAC and X-MAC is higher than for T-MAC.
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Figure 3. The collision probability PCOL in a cycle versus the packet arrival rate h for the T-MAC,
S-MAC and X-MAC protocols.

Figure 4 shows the comparison of the successful transmission probability PST, with respect to the
packet arrival rateh for the T-MAC, S-MAC and X-MAC protocols. The probability of a successful
transmission for both of the protocols is directly proportional to the packet arrival rate. The rate of
increments in the successful transmissions for T-MAC is higher than that of S-MAC and X-MAC.
For example, for the packet arrival rateh = 0.2, the successful transmission probability for T-MAC is
0.5, whereas for S-MAC and X-MAC it is 0.1 and 0.25, respectively. Similarly, for the packet arrival rate
h = 0.6, the successful transmission probability for T-MAC is 0.7, whereas for S-MAC and X-MAC it is
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0.23 and 0.48, respectively. This is due to the fact that T-MAC transmits a higher number of packets in
the active time than S-MAC does.
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Figure 4. The successful transmission probability, PST , in a cycle versus different packet arrival ratesh,
for the T-MAC, S-MAC and X-MAC protocols.

Figure 5 shows the comparison of the T-MAC, S-MAC and X-MAX protocols for the average
service delay with respect to different packet arrival rates h for the T-MAC, S-MAC and X-MAC
protocols. It is witnessed in the protocols that the average service delay of T-MAC increases slower
when compared with that of the S-MAC and X-MAX protocols for an increasing packet arrival rate
h. For example, for the packet arrival rate h = 0.2, the average service delay for T-MAC is 20 s,
whereas for S-MAC and X-MAC it is 30 and 125 s, respectively. Similarly, for the packet arrival rateh
= 0.6, the average service delay for T-MAC is 75 s, whereas for S-MAC and X-MAC it is 110 and 150 s,
respectively. This is due to the following reason: the increment in the packet arrival rate increases
the active time of a cycle for T-MAC, which ultimately increases the transmission of the packets.
Therefore, the average service delay is lower than for S-MAC and X-MAC.
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Figure 5. The average service delay with respect to the packet arrival rateh for the T-MAC, S-MAC and
X-MAC protocols.

Figure 6 shows the throughput with respect to the different packet arrival rates for the T-MAC,
S-MAC and X-MAC protocols. It is witnessed that before the node becomes saturated for the T-MAC,
S-MAC and X-MAC protocols, the overall throughput increments linearly with the packet arrival
rate up to 0.2. Thereafter, the throughputs for all of the protocols start decreasing with an increasing
packet arrival rate. The throughput of the T-MAC protocol is better than that of the S-MAC and
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X-MAC protocols. For example, for the packet arrival rate h = 0.2, the throughput for T-MAC is
0.25, whereas for S-MAC and X-MAC it is 0.04 and 0.12, respectively. Similarly, for the packet arrival
rate h = 0.6, the throughput for T-MAC is 0.2, whereas for S-MAC and X-MAC it is 0.09 and 0.12,
respectively. This is due to the fact that a higher packet arrival rate increases the active time of a cycle
for the T-MAC.
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Figure 6. The throughput versus packet arrival rateh for the T-MAC, S-MAC and X-MAC protocols.

Figure 7 demonstrates the correlation of the average energy consumption with respect to the packet
arrival rateh for the T-MAC, S-MAC and X-MAC protocols. From Figure 7, it is seen that a higher
traffic load has induced a larger energy consumption for all of the protocols. However, the T-MAC
protocol consumes less energy that S-MAC and X-MAC do. For example, for the packet arrival rate
h = 0.4, the average energy consumption for T-MAC is 100 mJ, whereas for S-MAC and X-MAC it
is 280 mJ and 190 mJ, respectively. Similarly, for the packet arrival rate h = 0.6, the average energy
consumption for T-MAC is 170 mJ, whereas for S-MAC and X-MAC it is 425 mJ and 300 mJ, respectively.
This is because the sensors in S-MAC sense the channel throughout the active duration in each idle
cycle, which consumes a lot of the protocol’s energy. In T-MAC, the idle listening varies with the
packet arrival rate. If the packet arrival rate is high, the sensor nodes remain alert in order to deal with
the packets.
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Figure 7. The average energy consumption versus packet arrival rate for the T-MAC, S-MAC and
X-MAC protocols.

Figure 8 shows the comparison of the power efficiency with respect to the packet arrival rateh
for the T-MAC, S-MAC and X-MAC protocols. It is observed in Figure 8 that the power efficiency for
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the T-MAC protocol is better than for the S-MAC and X-MAC protocols. The overall power efficiency
increases linearly with the packet arrival rate, up to 0.24. Thereafter, the power efficiencies for all of the
protocols start decreasing with an increasing packet arrival rate. The power efficiency of the T-MAC
protocol is better than that of the S-MAC and X-MAC protocols. For example, for the packet arrival
rateh = 0.2, the power efficiency for T-MAC is 0.3, whereas for S-MAC and X-MAC it is 0.06 and 0.2,
respectively. Similarly, for the packet arrival rateh = 0.6, the power efficiency for T-MAC is 0.17, and it
also equal to that of X-MAC. On the other hand, the power efficiency for S-MAC is 0.08. The power
efficiency for all of the three protocols converges to 0.05 for a packet arrival rate of 1. This is because
a higher number of packets arriving in the network increases the collisions and consumes more of the
nodes’ energy in order to reserve the channel. Hence, T-MAC saves more power in comparison to the
S-MAC and X-MAC protocols.Electronics 2019, 8, x FOR PEER REVIEW 12 of 14 
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5. Conclusions

An analytical model is proposed in this paper to analyse the performance of the T-MAC protocol
under unsaturated traffic conditions. The proposed analytical model is also validated by conducting
a simulation. Furthermore, a one-dimensional discrete time Markov queueing model has been presented
in this paper in order to represent the back-off process of duty-cycled sensor nodes. The probabilities of
a successful transmission, collision, and idle state of a sensor node are computed. The M/M/1/∞model
is proposed to analyse the throughput of the T-MAC protocol under unsaturated traffic conditions.
The energy consumption model has been presented, using the probabilities of a successful transmission,
collision, and idle state of a sensor node. The proposed analytical model is matched with the existing
analytical model of the S-MAC and X-MAC protocols. Our analysis shows that the proposed model of
T-MAC achieves a healthier throughput and saves more energy than the existing model of the S-MAC
and X-MAC protocols.
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