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Abbreviations 

Abbreviations Description 
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NFT Neurofibrillary tangles 

APP Aβ precursor protein 
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TBI Traumatic brain injury 

GWAS Genetic wide association studies 

GxE Gene environment interaction 
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Abstract 

 

Introduction: Alzheimer’s disease (AD) is a neurodegenerative condition that is 

becoming a global crisis with no current cure. Neuroinflammation is widely 

thought to play a role in the pathogenesis of this disorder. Peripheral levels of the 

cytokine interleukin 6 (IL-6), that has both pro- and anti-inflammatory properties 

have been linked to dementia and age-related cognitive decline. Polymorphisms 

in the IL-6 gene have also been associated with neurodegenerative diseases. 

However, it remains to be determined how IL-6 levels are regulated in AD within 

brains and how this relates to neuropathology. 

Aim: The aim of this project was to investigate if and how the IL-6 gene is 

regulated in the brain during cognitive decline and AD and its relationship to 

neuropathological markers of AD. 

Methods: This study investigated IL-6 within brains from the University of 

Manchester Age and Cognitive performance research Cohort (ACPRC) and the 

Dyne – Steele study, that have been longitudinally followed over a 20-year period 

for cognition and characterised in neuropathology stages. Genotyping for the 

single nucleotide polymorphism (SNP) rs1800795 in the IL-6 locus was performed 

using KASP and IL-6 gene expression was measured by RT-PCR and normalised 

using two housekeeping genes (βactin and GAPDH). ELISA was used to determine 

IL-6 protein levels in brains and bisulphite pyrosequencing was used to quantify 

methylation levels of CpG sites at the IL-6 promoter. Finally, immunofluorescence 

was used to compare control and early AD prefrontal cortex brain samples to 

enable investigation of the distribution of IL-6 and an important regulator, NFkB. 

Results: Between genotypes, no significant difference was observed in age of 

death, whole brain weight, post mortem delays and neuropathology stages. IL-6 

protein levels were analysed at the different neuropathology stages (BRAAK, THAL 

and CERAD) with no significance determined between each of the stages in the 

neuropathological hallmarks. Levels of IL-6 protein and IL-6 mRNA expression 

were analysed between the different genotypes with no significant differences. IL-

6 gene expression and IL-6 total protein levels showed no correlations, even when 

further stratified by genotype. Immunofluorescence determined that IL-6 is 
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present in the prefrontal cortex of both control and early AD samples and NFkB is 

activated. Distribution of DNA methylation at 4 CpG sites in the IL-6 promoter 

were determined. CpG site 2 depends on the rs1800795 SNP, which is only 

present in the G allele carriers. Interestingly, in the G allele carriers, levels of 

methylation at CpG sites 3 and 4 were significantly lower and higher, respectively. 

Levels of DNA methylation between control and AD groups were not significantly 

different at each of the CpG sites and did not correlate with protein levels. Levels 

of IL-6 mRNA and DNA methylation stratified by genotype revealed no correlation. 

Discussion: This study is the first to investigate IL-6 in AD brains and mechanisms 

underlying its epigenetic and genetic regulation. IL-6 protein levels and mRNA 

levels are found not to be impacted by the genotype and in disease state. 

Interestingly, DNA methylation was shown to be altered in the brains by the 

presence of a SNP, suggesting gene-environment interactions however, this was 

not influenced by disease state. In summary, the research has shown that IL-6 is 

present in control and AD brains and that the SNP has an impact on methylation 

levels between genotype at different CpG sites. However direct linear correlations 

between methylation, protein and expression levels did not exist. IL-6 is an 

important mediator of inflammation and further work is needed to understand 

how this factor is involved in neuroinflammation and regulated in the 

pathogenesis of AD. 
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1.0 Introduction 

 

1.1 Epidemiology of Dementia 

Dementia has many forms and the most prevalent form of the disease is 

Alzheimer’s disease (AD) corresponding close to 60% of cases (Rizzi et al., 2014). 

The analysis of AD brains at post-mortem has led to evidence suggesting the 

involvement of inflammation in the pathology (Zheng et al., 2016). AD is a 

neurodegenerative condition, which is progressive over time and results in 

cognitive decline. Molecular features of AD are beta-amyloid plaques (Aβ) and 

neurofibrillary tangles (NFT) composed of tau proteins (Jones et al., 2017). There 

is currently a global crisis surrounding dementia as currently over 40 million 

people suffer with the disease worldwide (Zheng et al., 2016) and that is set to 

triple by the year 2050 to 115 million people as life expectancy increases (Liu and 

Chan, 2014). Women have a higher chance of developing dementia compared to 

men (Alzheimers, 2015). 

 

1.2 Clinical symptoms of MCI and AD 

Mild cognitive impairment is categorised based on thinking skills and memory 

impairment. An example could be that a person starts to forget important 

information such as appointments or recent events as well as lacking the ability to 

make sound decisions (Langa and Levine, 2014). Signs and symptoms of AD can 

vary depending on the person affected. During the early stages of AD, it is 

possible for the person to be independent and carry on with day-to-day life. Over 

time during this stage, it may become noticeable that a person is struggling more 

to find the correct words or even struggling to remember information they have 

just read. Eventually, the condition will develop into the moderate AD stage. Once 

the disease has progressed to this stage, a greater level of care is needed due to 

the patient becoming less independent in day-to-day life. This stage is usually the 

longest stage and can last several years. Symptoms become more heightened and 

more notable. Such symptoms can include forgetfulness and becoming 

increasingly withdrawn from society, family and friends. The last stage of AD is 

reached when individuals lose the ability to respond to their environment. 



14 

 

Conversation abilities and controlling movements will become progressively more 

difficult. As memory and cognitive skills continue to decline, changes in 

personality may take place. During the last stages of the disease, special care 24 

hours a day will be needed. There will be difficulty with physical abilities such as 

being able to sit or even walk. Due to the deterioration on the individual and their 

body, they become increasingly open to developing infections such as pneumonia 

which can be life threatening. Eventually death will occur, as there is no cure for 

the illness (Alzheimers, 2015). 

1.3 Diagnosis of dementia with specific relation to AD 

Diagnosis of AD is not definitive until death and a postmortem is completed. 

During autopsy, the brain may be examined for amyloid plaques and tau proteins 

which are the classic hallmarks of AD (Kumar and Clark, 2017). However, if some 

form of dementia is suspected a doctor can carry out a number of tests to aid in 

trying to diagnose the condition (Neugroschl and Wang, 2011). Recently there 

have been developments in clinical diagnostic techniques for AD. Blood tests are 

carried out which would include looking at full blood count, B12, thyroid function, 

urea, liver function test and glucose levels. Brain imaging can be used for the 

investigation of AD. Magnetic resonance imaging (MRI) is a useful imaging tool to 

look at patterns of regional brain atrophy (Kumar and Clark, 2017). More recently, 

positron emission tomography (PET) is used to indicate characteristic changes in 

AD brains. Imaging has a key role in the diagnosis of AD, as the brain cannot be 

assessed until death to perform histopathology for confirmation of AD. 

Furthermore, imaging is a tool that could have significance in diagnosing AD 

through diagnostic markers (Johnson et al., 2012). Clinicians often use the mini 

mental state examination (MMSE) to aid in diagnosing AD and to monitor the 

progression and severity. This test consists of a scoring system with the score 

being out of 30. Individuals who score 27 or over are considered as normal. A 

MMSE score of 20-26 can indicate mild AD in patients. A score between 10 and 20 

suggests moderate AD and below 10 would be considered as having severe AD 

(Kukull et al., 1994). This tool is helping to diagnose AD, however a level of 

professional judgement is needed as the results can be affected by the cultural 
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background or level of education of the patient. The neuropathological diagnosis 

of AD involves looking at 3 different neuropathological staging and they are THAL, 

CERAD and BRAAK. Description of the 3 different staging can be seen below in 

table 1  

Table 1 - Description of neuropathological staging and brain regions affected 

THAL  

Staging 

(Serrano-
Pozo et al., 
2011) 

Assess amyloid 

deposition 

 

Stage 1 Amyloid deposits found in the isocortical region 

Stage 2 Amyloid deposits present in the hippocampal, 

entorinal cortex, insular and cingulated cortices 

Stage 3 Amyloid deposits present in the thalamus, 

hypothalamus, white matter and basal forebrain 

cholinergic nuclei 

Stage 4 Amyloid deposits present in the brainstem 

structures. e.g. substantia nigra, reticular 

formation of the medulla oblongata 

Stage 5 Amyloid deposits present in the pons and the 

molecular layer of the cerebellum 

BRAAK 

Staging 

(Braak et 

al., 2006) 

(Murayama 
and Saito, 
2004) 

Assess 

neurofibrillary 

tangles 

 

Stage I-II Classified when neurofibrillary tangles are 

confined in the transentorhinal region and 

entorhinal region  

Stage III-IV Classified when the NFT are involved in 

the limbicregions. An example of this is in the 

hippocampus. (Murayama and Saito, 2004) 

Stage V-VI Significant neocortical involvement, isocortical 

involvement and substantia nigra. (Murayama 

and Saito, 2004) 

CREAD 

Stages 

(Fillenbaum 

et al., 2008) 

(Murayama 
and Saito, 
2004) 

Assess neuritic 

plaques 

 

0 - None No histological evidence of AD. 

1 - Sparse Sparse formation of neuritic plaques. Uncertain 

evidence of AD 

2 - 

Moderate 

Moderate formation of neuritic. Suggested 

diagnosis of AD 

3 - 

Frequent 

Frequent formation of neuritic. Indicate 

diagnosis of AD 

 

https://en.wikipedia.org/wiki/Neurofibrillary_tangle
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1.4 Risk factors associated with dementia (specifically AD) 

There are numerus risk factors that are linked with AD, including lifestyle, vascular 

and genetic factors (Bekris et al., 2010). The chance of developing dementia varies 

from person to person. Age is one of the main risk factors for developing 

dementia. According to Alzheimer’s society website, 6 out of a 100 people aged 

75-79 will have dementia. This increases with age and 30 out of a 100 people 

aged 90-94 will suffer from dementia (Alzheimer society, 2018). Making certain 

changes to the lifestyle can increase or decrease the chances of developing 

dementia. Maintaining a lifestyle that is healthy could potentially help protect 

against developing dementia such as regular exercise and mental stimulation 

(Alzheimers, 2015). Obesity affects many different organ systems and this 

disease is very damaging. Obesity is associated with higher risk of developing 

mild cognitive impairment (MCI) and late-life dementia and AD (Nguyen et al., 

2014). Recently a number of studies have linked traumatic brain injury (TBI) as a 

risk factor in developing AD. Results have shown that after TBI, microglia can 

remain activated months to several years. This is significant as after the injury this 

function is necessary for phagocytic clearance of debris. The constant cerebral 

inflammation that occur from this process could intern directly or indirectly cause 

AD (Donat et al., 2017). There is also a genetic risk that can be associated with 

dementia which is caused by autosomal dominant mutations. There are a 

number of genes that can be affected, and these include Aβ precursor protein 

(APP), presenilin 1 (PSEN1) and 2 (PSEN2), which are linked to AD. There are 3 

different alleles associated with ApoE gene which include ε2, ε3 and ε4 of which 

ε4 is seen to increase AD risk in familial and sporadic cases (Liu et al., 2013). It is 

important to note that just because there is an inheritance of the ε4 allele it does 

not guarantee the development of AD. In the brain, the APOE protein binds to Aβ 

strongly and is present in the plaques found in AD (Jungsu et al., 2009). Genetic 

factors have been seen to play an important role in AD. Genetic variants in the 

genome have been analysed through genetic wide association studies (GWAS). A 

common strategy to assess genetic variants in the genome is through GWAS to 

observe single nucleotide polymorphism (SNP) arrays to assess the association 

with AD. Single nucleotide polymorphism of interest during this project is 
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rs1800795, which resides at -147 base pair upstream from the IL-6 (Zhang et al., 

2015). 

 

1.5 Neuroinflammation in the brain and in relation to AD 

When damage occurs to the human body for example physical injury then 

inflammation is the response (Weiss, 2008). This inflammatory response is the 

body’s way of controlling and maintaining its homeostasis (Kunnumakkara et al., 

2018). There are two types of inflammatory responses and they are acute and 

chronic inflammation. Acute inflammation usually occurs when the healing 

process begins and starts to repair the damaged tissues. Whereas chronic 

inflammation, persists in trying to repair tissue but also damages tissues at the 

same time (Weiss, 2008). Risk factors that are associated with chronic 

inflammation include age, obesity, diet, smoking, sleep and stress. Features of 

chronic inflammation include vasodilation of the blood vessels, blood flow 

increases and neutrophils move towards the affected area. The continued 

inflammation presence in the human body can lead to various diseases. Examples 

can include cancer, arthritis, diabetes and neurological disease. This is through the 

dysregulation of signalling pathways such as NFκB. This is of importance as 

targeting the signalling pathways potentially has the effect to eradicate many 

diseases. There are numerus transcription factors that have been discovered to be 

linked to inflammation. Some examples of cytokines that are involved include 

tumor necrosis factor alpha (TNF-α) and interleukins (IL) such as IL-1 and 6. NFκB 

is an important transcription factor as it is seen to be the key mediator in 

inflammation. (Kunnumakkara et al., 2018). Neuroinflammation over the past 10 

years has developed into a concept that is accepted. However, it is still not 

presently clear what mechanisms are involved. Neuroinflammation has a role in 

neurodegenerative diseases (Calsolaro and Edison, 2016).The pathophysiology of 

neuroinflammation is extremely complex and many different brain cells can drive 

the activation (Bronzuoli et al., 2016). Neuroinflammation is when there is 

activation of microglia, astrocytes, macrophages and lymphocytes that result in 

the release of inflammatory mediators such as cytokines and chemokines (Lee et 

al., 2010). 
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1.6 The role of IL-6 in relation to neuroinflammation, MCI and AD 

Interleukin 6 (IL- 6) was discovered 30 years ago (María Erta, 2012)and is a 

proinflammatory cytokine with multiple functions and has neuro-protective 

properties, but also has degenerative properties (Baune et al., 2012). The 

molecular weight of IL-6 is 20-30kD. The main source of IL-6 include cells in the 

immune system and adipocytes. NFkB moderates expression of IL-6 and the 

protein is upheld in the cytoplasm by the binding of inhibitory proteins (Maggio et 

al., 2006). IL-6 is shown to be key in chronic inflammation, and levels are elevated 

in inflammatory diseases (Gabay, 2006). When inflammation occurs which can be 

acute or chronic, IL-6 proteins are produced at the inflammation site. Microglia 

and astrocytes are stimulated by the accumulation of Aβ plaques and tau 

proteins, this leads to the increased production of inflammatory mediators like IL-

6 (María Erta, 2012). Many different types of cytokines are secreted by microglia 

and have been seen to have altered expression in AD patients. As well as several 

polymorphisms of pro-inflammatory genes are seen to be related to increased risk 

of AD (Solito and Sastre, 2012). In AD brains, IL-6 accumulates around amyloid 

plaques as well as other cytokines. This has led to studies looking at pro-

inflammatory and anti-inflammatory cytokine levels in cerebral spinal fluid (CSF) 

and blood serum in patients with AD and MCI (Zheng et al., 2016). Cojocaru et 

al.(2011) compared IL-6 levels between control and AD patients to determine the 

correlation of IL-6 levels in the disease pathology of AD. It was discovered that 

levels of IL-6 were significantly higher in AD patients when compared to the 

control group. Indicating an increase in production of IL-6 cytokine in AD patients. 

 

1.7 Epigenetic and DNA methylation 

Epigenetics is the changes in gene expression which don’t change DNA sequence 

itself. Epigenetic modifications can be altered through life-time and affected by 

the environment, e.g. in response to nutrients, stress, infections, and toxin 

exposure (Bayarsaihan, 2016). Epigenetic mechanisms include DNA methylation, 

changes in histone marking and microRNAs. DNA methylation is one of the most 

widely studied epigenetic markers. It involves the addition of methyl groups to 

cytosine residues, usually in a CG sequence, termed CpG. Such methylated CpGs 
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within promoter regions of genes generally have a repressing activity on gene 

expression either by blocking transcriptional activators from binding or recruiting 

repressive histone markers. Patterns of DNA methylation are regulated through 

the activity of DNA methyltransferases and demethylation enzymes (Moore et al., 

2013). Hypermethylation in the promoter region of genes can be associated with 

transcriptional silencing while hypomethylation induces gene expression (Yasmin 

et al., 2015). The brain contains some of the highest levels of DNA methylation 

compared to any other tissue. The epigenetic regulation of genes within the brain 

is important for neurodevelopment and brain function. Numerous studies have 

linked changes in the patterns of DNA methylation within the brain to 

neurological diseases. There is increasing evidence that neurons respond to 

environmental signals via changes in DNA methylation (Murgatroyd et al., 2009). 

Epigenetic mechanism mediates the development of chronic inflammation by 

modulating the expression of pro – inflammatory cytokines such as interleukin’s, 

TNFα and oncogenes of the transcription of NFκB. These molecules are produced 

by many different cells during chronic inflammation. This can lead to the 

development of some very serious conditions such as autoimmune disorders, 

cancers and neurodegenerative conditions (Shanmugam and Sethi, 2013). The 

inflammatory genes are regulated through DNA methylation, histone modification 

and transcription factors such as NFκB, FOXP3 and STAT (Bayarsaihan, 2016). DNA 

methylation levels have been indicated in other genes such as BDNF and OPRK1 

promoters in AD patients (Ji et al., 2017). The status of methylation is particularly 

analysed in the promoter regions of genes, which are linked to AD pathology 

(Chouliaras et al., 2010a). Promoter methylation is important in the epigenetic 

mechanism of the regulation of the expression of IL-6 (Coppieters and Dragunow, 

2011). Changes through environmental and functional genes could change 

hypermethylation and hypomethylation at sites which implicated gene expression 

(Levine et al., 2015). It is known that the epigenetic process of DNA methylation 

influences numerous genes that are involved in inflammation. In a recent study 

Nicolia et al. (2017) focused on late onset AD and neuroinflammation to analyse 

the possible association with epigenetic modification. Analysis was conducted on 

human brain tissues from the frontal cortex of healthy middle aged and late onset 
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AD at different BRAAK stages. In the control group mRNA IL-6 methylation is seen 

to decrease as DNA methylation increases. The opposite is noted at BRAAK stages 

I-II/A, mRNA IL-6 levels increase as DNA methylation decreases. Whereas at AD 

BRAAK grouping V-VI/C both IL-6 mRNA levels and DNA methylation decrease.  

This could be indicating that no relation is present with methylation levels and 

mRNA expression. Another observation presented was, in the 5-flanking region of 

the IL-6 gene high levels of methylation were observed in middle age cases with 

progressive hypomethylation at stages I-II/A and stages V-VI/C. This is important 

as hypomethylation is seen to be an epigenetic abnormality. For example 

hypomethylation is linked to increased inflammatory mediators which could be 

linked to neuroinflammation and AD. Concluding remarks from this paper is that 

there is a need to study whole methylation site in DNA promoters and flanking 

regions, this is to show that expression of cytokines genes is linked with 

differential DNA methylation in brains from late onset AD patients. 

 

1.8 Regulatory polymorphisms in IL-6 

In excess of 3.1 million SNPs are found in the genome of humans if not more. 

Mental health and its association with polymorphisms has been investigated but 

there are recently inconsistences between research. Many polymorphisms have 

the potential to be regulatory. These can be positioned in promoter regions 

upstream, downstream and in introns. In recent years, the significant 

development in sequencing has allowed human genome analyses to become 

cheap and fast. The understanding of the human genome is ever changing and 

evolving (Paul, 2011). One particular single nucleotide polymorphism is rs1800795 

which is found in the promoter region of the IL-6 gene (Dragašević et al., 2014). 

The IL-6 gene is found on the short arm of chromosome 7 (7p21) (Baune et al., 

2012) and IL-6 is made of 212 amino acids (Tanaka et al., 2014). This SNP is linked 

to transcription rates and is linked to various diseases such as diabetes and AD. 

The IL-6 gene promoter includes numerous regulatory sites to enable the control 

of gene expression (Popko et al., 2010), such as NFκB, C/EBP, CREB and AP1 as 

well as numerous other transcriptional factors regulate IL-6 mRNA expression 

(Wongchana and Palaga, 2012). The C allele in the polymorphism has been seen 
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to have lower IL-6 gene expression and IL-6 plasma levels (Capurso et al., 2004). 

Licastro et al. (2003) reported that in the IL-6 promoter region the rs1800795 (-

174) allele was over represented in AD compared to the control group and seen 

to increase the risk of AD. IL-6 polymorphism rs1800795 is located in the 

promoter region residing at -174 base pair upstream. This polymorphism can 

affect the transcription of the gene and could alter cytokine production (Liu et al., 

2017), suggesting it has an effect upon IL-6 gene expression and protein levels. 

The rs1800795 (G) allele has been studied in a number of different conditions and 

has been found to have higher levels of IL-6. The rs1800795 (C) allele has also 

been studied in many different conditions and has been associated with lower 

levels of IL-6 (SNPedia). Noss et al (2015) found an association between the 

rs1800795 minor allele (C) and the association between increased IL-6 

productions in fibroblasts. On the other hand, in human monocytes and HeLa cell 

no association was found between increased IL-6 production and the rs1800795 

polymorphism. 
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2.0 Aims and Objectives 

 

2.1 Aims 

 

To determine epigenetic mechanisms by which the IL-6 gene is regulated in the 

brain in neuroinflammation, cognitive decline and AD. 

 

2.2 Objectives 

 

The molecular mechanisms underlying IL-6 regulation in the brain were 

addressed. A collection of brains assessed longitudinally for cognitive decline 

(prefrontal cortex, n=67) was measured for protein levels of IL-6 using enzyme-

linked immunosorbent assay (ELISA) to test relationship of IL-6 levels in cognitive 

decline and AD. 

 

Levels of DNA methylation at the IL-6 promoter were determined, using bisulfite 

pyrosequencing. Gene expression of IL-6 were measured by RT-PCR and 

genotyping using Kompetitive allele-specific PCR. Finally, the role of genetics and 

gene-environment interactions in the regulation of IL-6, a polymorphism in the 

gene was correlated with IL-6 brain expression and DNA methylation. This allowed 

the determination of whether interactive effects of gene-epigenetic factors could 

work at the IL-6 gene. 
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3.0 Methodology 

 

3.1 Reagents and supplies 

All reagents, kits, chemicals and other laboratory equipment used in this project 

can be found in Appendix 10.1. 

 

3.2 Study population 

This project investigated n=67 prefrontal cortex samples acquired from the 

Manchester Brain Bank (with full ethical approval for all experiments described in 

section 3). The individual brain samples were from a larger cohort called The 

University of Manchester Age and Cognitive performance Research Cohort 

(ACPRC). The pre frontal cortex samples were stored in the -80⁰C freezer. As seen 

below in table 2, some of the sample data is missing, which is indicated by the 

sample size. 

Table 2 - Table of characteristics from participants for prefrontal cortex analysis.  

 

 

 

 

 

 

A n=43. B n=60. All data presented as mean (standard deviation), unless stated 

otherwise. 

 

 

 

 

 

Variable n=67 

Age of death 87.51 ± (6.07) 

Brain weight (g)A 1207.37± (137.37) 

Post-mortem delay 

(hours)B 

76.14 ± (43.68) 

Age at cognitive testing 62.85 ± (5.84) 

Females/Males (%) 46 (68.7) / 24 (31.3) 
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3.3 DNA extraction 

Frozen prefrontal cortex samples were subjected to DNA extraction using the 

isolate II genomic DNA kit (Bioline) with a few alterations through previous 

optimisation. Prefrontal cortex brain samples were placed on dry ice during the 

cutting stage to stop thawing of the tissues. Brain tissues were weighed in the 

region of 35 mg, placed in individual eppendorf tubes, and labelled. In each of the 

tubes 250 μl of lysis buffer and 30 μl proteinase K solution was added and mashed 

until the samples could pass through the pipette tip. Samples were incubated 

overnight at 56 oC on a heat block with a shaking option set to 1200 rpm. After the 

incubation period, the samples were vortexed and 200 μl of lysis buffer G3 was 

loaded into each eppendorf, vortexed and incubated for a further 10 minutes at 

70oC.  In each tube 210 μl of ethanol (96-100%) was added and vortexed 

vigorously. Samples were then loaded into isolate II genomic DNA spin columns 

and centrifuged at 11000 x g for 1 minute. To each of the spin columns 500 μl of 

GW2 wash buffer was added and centrifuged at 11000 x g with flow through 

discarded. GW2 wash buffer is added for a second time (600 μl) to each spin 

column and centrifuged at 11000 x g discarding the flow through. Spin columns 

were centrifuged again and placed in new collection tubes to elute the DNA in 45 

μl of elution buffer G at 70OC with an incubation period of 1 minute at room 

temperature. Spin columns were centrifuged and extracted DNA was collected 

and purity measured using the Nanodrop 2000c. Purity levels for A260/280 were 

2.02 ± 0.08 and A230/260 purity level were 2.22 ± 0.16 indicating DNA purity 

levels were acceptable. 
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3.4 Bisulphite conversion 

The DNA extracted from the n=67 prefrontal cortex samples were diluted with 

water to achieve working mix of 20 μl. To the working mix, 35 μl of DNA protect 

buffer and 85 μl of bisulphite solution was added and vortex to achieve the 

reaction, indicated when the solution turned blue. The eppendorf’s were placed 

in the eppendorf mastercycler and programmed with the following temperatures, 

denaturation 95 o C - 5 minutes, incubation 60 o C - 10 minutes, denaturation 95 o 

C - 5 minutes and incubation 60 o C – 10 minutes and hold at 18 o C. When the PCR 

was completed, 310 μl of BL buffer was added, vortex and centrifuged briefly. A 

volume of 250 μl of ethanol was added to each eppendorf vortexed for 15 

seconds and centrifuged. New collection tubes were placed on each spin column 

and centrifuged for a further minute to clear any residue left. To each spin 

column, 500 μl of wash buffer was added and placed in the centrifuge for 1 

minute at 15000 – x g. Desulphonation reaction buffer was added to each column 

and incubate at room temperature for 15 minutes. After the incubation period 

the samples were centrifuged at 15000x g for 1 minute and flow through 

discarded. 500 μl of wash buffer was added to each of the columns and placed in 

the centrifuge and spun at 15000x g for 1 minute. The previous wash step was 

repeated for a further cycle and centrifuged at 15,000 x g for 1 minute to remove 

any residual. The spin columns were placed into a sterile 1.5ml micro centrifuge 

tube and 15 μl of elution buffer was added and incubated for 1 minute, and 

centrifuge at 15,000 for another minute. An additional 15 μl of elution buffer was 

added and centrifuged for 30 seconds at 15,000 x g with the flow through 

collected as the bisulphite converted DNA. 
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3.5 Designing of IL-6 primers 

The genomic browser (https://genome-euro.ucsc.edu/index.html) which is 

publicly available was used to search for the gene of interest (IL-6) with a specific 

region surrounding the SNP found in the promoter region at -174. The IL-6 

sequence was imported into the primer design software (Pyromark assay design). 

A graphic view of the assay was shown and with a number of different sets of 

forward, reverse and sequencing primers with scores out of 100. 

 

Table 3 - Primer information for two sets of IL-6 primers. 

 Primer set 1 Primer set 2 

Forward primer AGAAAAAAAGAAAGTAAAGGAA

GAGTG 

AAAAAGAAAGTAAAGGAAGAGTGG 

Biotin labelled 

Reverse primer CCTCAAACATCTCCAATCCTATAT

TTAT 

Biotin labelled 

CCTCAAACATCTCCAATCCTATATTTA 

 

Sequencing 

primer 

AAGGAAGAGTGGTTT AAACCTTATTAAAATTATACAATAT 

Sequencing to 

analysis 

TGTTTTTTAGYGTTAGTTTTAATG

AYGATTTAAGTTGTATTTTTTTTTT

TAGTTGTGTTTTGTTATGTTAAAG

GAYGTTA TATTGTATAA 

TTTTAATAAG GTTTTTAATT 

AGTTTTATTY GTTTTGGTTT 

TATTTTTATT TTTTAA 

AACRTCCTTT AACATAACAA 

AACACAACTA AAAAAAAAAA T 

 

 

 

 

 

 

 

 

https://genome-euro.ucsc.edu/index.html
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3.6 Polymerase chain reaction (PCR) 

Amplification of DNA through PCR using the eppendorf mastercycler. In a PCR 

cabinet, the master mix was prepared on ice as followed in table 4 to avoid 

contamination. The template DNA was added outside the PCR cabinet to also 

avoid DNA contamination of the cabinet. A period of optimisation was conducted 

and 2 μl of template DNA was determined to be the ideal amount to add to 

primer set 1 and 3 μl for primer set 2. 

 

Table 4 - Reagents and volumes for PCR master mix for 1x reaction with a final volume of 25 μl 

 

 

After a period of optimisation, the PCR conditions that were deemed suitable for 

the primers are initial denaturation at 95 o C for 1 minute, denaturation at 95 o C 

for 15s, annealing at 52.6 o C for 15s and extension 72 o C for 10s. Denaturation to 

extension was repeated for 49 cycles and was held at 4 o C. The PCR products 

were stored at -20 o C until samples were used for analysis. 

 

 

 

 

 

 

PCR reagents Final concentration - 1x reaction 

Forward primer 0.5 μl 

Reverse primer 0.5 μl 

MyTaqHS 12.5 μl 

Nuclease free H20 (NF-H20) 6.0 μl 

Coral dye 10 x 2.0 μl 

Template DNA 2.0 μl primer set 1 

3.0 μl primer set 2 
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3.7 Bisulphite pyrosequencing 

DNA extracted from the prefrontal cortex was bisulphite converted and prepared 

for pyrosequencing. During the set-up period, streptavidin beads were combined 

with the PCR product and other reagents as followed in the protocol to select out 

the biotin labeled product. The DNA was denatured to produce single stranded 

molecules for the sequencing. The heat block was set to 85 oC with the Q24 plate 

holder placed on top. The cartridge was cleaned with ddH2O and checked to 

ensure that all the channels were clear from blockage. On the workstation, the 

trays were filled with wash buffer, ddH20, 70% ethanol and denaturation solution. 

The pump was switched on and cleaned using ddH20 in the workstation. The 

sepharose performance beads (GE Healthcare bioscience) were inverted to mix 

the solution to avoid damage of the beads via vortexing. Sepharose beads, binding 

buffer and PCR grade water was added to an eppendorf and mix gently in the 

volume of 1/40/14 μL. A 96 well plate was cut up to make a 24 well plate and in 

each well 55 μL of master mix was pipetted and 25 μL of amplified PCR samples. 

The PCR plate was sealed with a PCR cover film and plate was placed on the 

shaker (TS-100 thermo-shaker BioSan) for 10 minutes at 1400 rpm. The sequence 

primer is diluted to 0.3 μM in an eppendorf and vortexed. In the PyroMark Q24 

sequencing plate, 25 μL of diluted sequencing primer was added to each well and 

placed on the workstation. The PCR plate was taken off the shaker and place onto 

the workstation with the lid removed carefully. The vacuum was turned on and 

the samples were processed in the following solution. IL-6 PCR samples for 15 

seconds, 70 % ethanol for 5 seconds, denaturation buffer for 5 seconds and finally 

wash buffer for 10 seconds. The vacuum was then inverted 90o for 5 seconds to 

clear the tubes of any remaining liquid. The vacuum was switched off and placed 

in the Q24 plate and was shaken from side to side for 10 second to dislodge the 

beads. The Q24 plate was transferred onto the heat block (DB-2D, Dri-Block®, 

Techne) left for 2 minutes at 85o C. The PyroMark nucleotides were loaded into 

the PyroMark cartridge with volumes determined by the PyroMark Advanced 

software. Once the run was completed then analysis of methylation levels was 

determined using the PyroMark Q24 analysis feature. When looking at the results 

generated from pyrosequencing they are often presented as a pyrogram as seen 
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in figure 16. A pyrogram reports the signal intensity as shown on the y-axis when a 

base has been added on the x-axis.  

 

3.8 Gel electrophoresis 

An agarose gel of 2% was used in gel electrophoresis. To make the 2% agarose gel, 

1 g of agarose powder and 50 mls of 1X TBE (Tris, Boric acid and EDTA) buffer is 

heated at full power in a microwave for 1 minute, once cooled 2.5 μl Midori 

Green Advance DNA Stain (NIPPON Genetics Europe) was added (0.5 μl/10mls). 

The gel was poured into a cast and a comb placed to create the wells and allowed 

to set for around 20/30 minutes. Amplified samples were then prepared with 

loading dye with the following volumes. Total volume added to each well was 10 

μl so 10/5 = 2 μl of loading dye to 8 μl of PCR DNA sample. The gel was placed in 

the biorad tank with 1X TBE buffer and samples were loaded on to the gel. For 

sizing of the bands, a 50 bp ladder (Bioline) was ran alongside the DNA on the gel. 

The tank lid was placed on the tank and attached to the biorad power pack with 

the voltage set to 90 volts for 70 minutes. The gel was viewed using the licor 

imaging system and processed on image studio v2.0. 

 

3.9 Genotyping 

Kompetitive allele specific PCR assay (KASP) was performed to determine 

individual genotypes for rs1800795 polymorphism in n=67 prefrontal cortex brain 

samples. With the probe labelled to detect the alleles 1 and 2 which are labelled 

FAM and HEX. The sequence is detected through the changes in fluorescence. A 

96 well plate was set up for allelic discrimination with diluted DNA extracted from 

the prefrontal cortex and reaction master mix with three negative controls and 

three positive controls to aid in analysis. First port of call was to dilute the 

extracted DNA with an overall concentration of 5 ng/μL in 40 μl final volume with 

NF-H20 to dilute the DNA. The KASP master mix was created using 5 μl of KASP 

master mix solution (KASPTM, LGC), with 3 μl of NF-H20 and 0.14 μl of rs1800795 

primer. In the 96 well skirted plate 8 μl of the master mix and 2μl diluted DNA was 

allocated to each well taking care to insure template DNA is placed in the correct 
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well. The plate was covered with a slip and spun to clear any air bubbles that had 

formed. The AB step one plus real time thermocycler was set up with specific 

temperatures seen in table 5. The cycle program for this assay included a 

touchdown step. 

 

Table 5 - KASP assay thermal cycle conditions with touchdown 

 

Once the first run had been completed, it was decided that a recycle run was 

needed to migrate the points of interest further to the clusters. The recycle 

program steps are indicated in table 6 below. 

 

Table 6 - Recycling conditions for allele discrimination using KASP assay 

 

 

 

 

 

 

Once the recycle was completed then the samples were analysed on the 

Stratagene Mx3000P qPCR system (Agilent) using the Mypro analysis software. 

Data was exported into Excel and a scatter graph plotted was used to determine 

the migration and the genotypes of rs1800795 as seen in figure 4. 

Protocol stage Temperature Duration Cycles 

Step 1 - Hot start Taq 

activation 

94 o C 15 

minutes 

1 

Step 2 

Touchdown 

94 o C 20 s 10 

68 o C - 0.6 o C decrease to 

achieve final of 62 o C 

60 s 

Step 3 - Amplification 94 o C 20 s 26 

62 o C 60 s 

Step 4 - Read 30 o C 60 s 1 

Temperatures Duration Number of cycles 

94 o C 20 seconds 3 cycles 

57 o C 60 seconds 

30 o C 60 seconds 1 cycle 
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3.10 Enzyme – Linked immunosorbent assay (ELISA) 

The brain tissues were lysed with RIPA buffer (Sigma – Aldrich) which contained 

protease inhibitors cocktail (Sigma – Aldrich) to extract the protein. Protein 

concentration of IL-6 was determined using the Abcam high sensitivity human IL-6 

ELISA kit. The pre-frontal cortex samples had different total protein 

concentrations. After ELISA analysis, the results were normalised using BCA total 

protein results. The control and standards were prepared following a serial 

dilution in the protocol. In the 96 well plate the blanks, 1X Control solution and 

standards 2-6 were added in duplicate at 100 μl. IL-6 samples were placed in the 

appropriate wells at 100 μl and in duplicate when possible. 1X Biotinylated anti-IL-

6 was added to each well (50 μl), covered with PCR plate seals and incubated for 3 

hours at room temperature (18-25°C). The cover was removed after the 

incubation period and the liquid aspirated from each well. A volume of 300 μl of 1 

X wash buffer was added to each well and the liquid was aspirated. This wash step 

was repeated three more times. 1X Streptavidin-HRP solution was added at 100 μl 

into all wells, including the blanks and recovered with PCR plate seals and 

incubated at room temperature for 30 minutes. The wash step was repeated as 

above and then 100 μl of Chromogen TMB substrate solution was added into each 

well and incubate in the dark for 15 minutes at room temperature. Volume of 100 

μl of stop reagent was pipetted into each well and results were taken immediately 

after the stop reagent was added. The absorbance was read on the 

spectrophotometer using 450 nm as the primary wavelength and 620 nm as the 

reference wavelength. Three data points were excluded during this process as 

they fell outside the levels of the kit. 

 

 

 

 

 



32 

 

3.11 Real Time polymerase chain reaction (RT-PCR) 

Messenger RNA (mRNA) was converted into Complementary DNA (cDNA) using 

the Tetro cDNA synthesis kit (Bioline, UK) at 500ng of total RNA. This was then 

diluted 1:10 which equate to 2.5ng/μl cDNA. Primers were predesigned using the 

NCBI primer-BLAST software. The master mix consisted of 10 μl of 2x QuantiNova 

Syber green PCR master mix (quigen), 0.8 μl of forward primer, 0.8 μl of reverse 

primer (table 6 primers for RT-PCR), 6.4 μl RN – H20 and 2 μl template cDNA with 

a total volume of 20 μl. 

 

Table 7 - RT-PCR primer information. Forward and reverse primer gene of interest IL-6, 2 

housekeeping gene include β actin and GAPDH. 

 

Using a 96 well PCR plate, 18 μl of master mix was pipetted into each well. Then 2 

μl of cDNA was added with two negative controls and some samples were 

duplicated. The PCR plate was covered with a clear film and spun with a 

centrifuged to mix the solution and clear any air bubbles. The biorad RT-PCR 

machine was set up with the following thermal cycle condition. Denaturation 95 o 

C for 2 minutes, denaturation 95 o C for 5 seconds, annealing at 60 o C for 5 

seconds (read stage) and extension 72 o C for 10 seconds and this was repeated 

for 39 cycles. A melt curve analysis was added with the following setting 65 o C for 

5 seconds with increments of 0.5 o C with a plate read and 95 o C for 5 seconds. 

 

 

 

 Forward primer Reverse primer 

IL-6 Gene of interest 5′ - 

GGTACATCCTCGACGGCATCT- 3′ 

5′ - GTGCCTCTTTGCTGCTTTCAC- 

3′ 

β actin Housekeeping gene 5’- ATCCTCACCCTGAAGTACC - 3’ 5’ - ATAGCAACGTACATGGCTGG 

- 3’ 

GAPDH Housekeeping 

gene 

5’ CCGCATCTTCCTTTTGCGTCG – 

3’ 

5’ - TGGAATCGCCATGGGTGGA - 

3’ 
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Using this equation, results were normalised for IL-6 gene expression against 2 

housekeeping genes β actin and GAPDH. These particular genes are important as 

they act as the internal controls. Primer efficiency was assumed to be 100%. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  
(𝐸GOI)

∆𝐶𝑡 𝐺𝑂𝐼

𝐺𝑒𝑜𝑀𝑒𝑎𝑛[(𝐸REF)∆𝐶𝑡 𝑅𝐸𝐹]
 

GOI = Gene of interest, 

REF = Housekeeping genes, 

E= Efficiency (2 = 100%) 

 

3.12 Immunofluorescence 

Brain samples were taken from the -80 freezer and placed on dry ice to stop the 

brain samples from thawing. The samples were mounted onto cork using Neg-50 

blue, once dried the samples were mounted on to the cryostat (LEICA CM 3050). 

The settings for the cryostat included, chamber temperature -16 o C, chuck 

temperature -18 o C and the angle of the cutting blade set to 7 o. Sections of brain 

tissue were cut and placed on the charged side of the slide. Using a PAP pen a 

circle was drawn around the section as this creates a hydrophobic barrier. The 

brain tissue samples were re hydrated with PBST (1L PBS and 500 μl Tween 20) for 

5 minutes. For 30 minutes the slides were blocked in blocking solution which 

consisted of 4% goat serum and 9.6mls of PBS with 80 μl added per a slide. This is 

to block unspecific binding of the secondary antibody. Primary antibodies used 

include anti human IL-6 anti-mouse (1/50) and Anti-NF-kB p65 (phospho S 536) 

antibody (1/100) which were pipetted into blocking solution and 80 μl added to 

each slide and incubated in the dark at 4 o C overnight. Slides were rinsed in PBS 

for 5 minutes and the secondary antibodies prepared. Alexafluro IgG 568 goat anti 

mouse was used to detect IL-6 (red) and Alexafluro 488 goat anti-rabbit IgG was 

used to detect NFĸB (green) at 1/200 for 1 hour. The slides were washed in PBS 

for 5 minutes and mounted with vector shield (h-1200 with DAPI) and covered. 

Enamel paint was used to fix the coverslips in place before viewing on the Zeiss 

fluorescence microscope with a 10 x 63 oil magnification. 
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3.13 Statistical analysis 

The SPSS statistics software package (v25.0 for Windows; SPSS, Chicago, IL) was 

used for statistical analyses and GraphPad v7. Data was tested for normality using 

the Shapiro–Wilk test. Data which is determined as normally distributed was 

presented as mean ± standard deviation (SD) or median and 25th-75th percentiles 

if not normally distributed. Table of characteristic were presented and grouped 

between genotypes to indicate any significance. IL-6 protein levels and IL-6 

expression levels was analysed using a Mann-Whitney U test. A Kruskal Wallis test 

was used to analyse the significance of IL-6 protein levels between the 3 

neuropathological hallmarks (THAL, CERAD and BRAAK). Methylation percentage 

among CpG sites were analysed using an independent T-test. Correlations 

between protein, DNA methylation and gene expression of IL-6 was determined 

with Spearman’s correlation test. Significance threshold of P=<0.05. 
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4.0 Results 

 

4.1 Optimisation of PCR for amplification of IL-6 from bisulphite converted DNA 

A period of optimisation was employed to develop the most suitable parameters 

and conditions for the IL-6 primers. To find the optimal annealing temperature a 

gradient was performed using different temperatures. These were then viewed 

on a 2% agarose gel seen below in figure 1. 

 

 

PCR gradient for optimisation purposes for primer set 1 (see table 3) on bisulphite 

converted DNA extracted from the prefrontal cortex. This revealed that the bands 

had migrated to the correct region of 265 base pair (bp). Ideally the ladder would 

have migrated more to allow a clearer picture of the migration and high molecular 

smears were detected in several wells. Annealing temperature of 58o C was 

determined the best annealing temperature. 

 

Figure 1 - Gel electrophoresis viewing PCR gradient for optimisation of IL-6 primers using 
temperatures from 52.1oC- 58.3oC. Pooled DNA was amplified using a gradient of temperatures 
and run on a 2% agarose gel with a DNA ladder and a negative control. 
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Second gradient was performed to determine if 58o C was the best annealing 

temperature by employing another gradient to include temperatures greater than 

58o C s seen below in figure 2. This was to confirm that 58 oC is the best working 

condition for set 1 IL-6 forward and reverse primers. 

 

 

 

 

 

 

 

 

 

 

 

PCR gradient for optimisation purpose for primer set 1 on bisulphite converted 

DNA revealed the bands had migrated to the correct region of 265 base pair. 

However high molecular smears were present and the annealing temperature of 

58o C was confirmed to be the optimal annealing temperature. 

 

 

 

 

 

 

 

 

Figure 2 - Gel electrophoresis viewing PCR gradient for optimisation of IL-6 primers using 

temperatures from 55.1oC- 61.3oC. Pooled DNA was amplified using a gradient of temperatures 

and run on a 2% agarose gel with a DNA ladder and a negative control. 
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First set of primers were abandoned due to the constant presence of unspecific 

binding. A period of troubleshooting was employed to determine the cause of the 

problems with primer set one. The unspecific binding was not resolved by 

increasing the temperature and altering PCR conditions. The decision was taken 

to redesign the primers around the same region, as the previous primers would 

have caused problems with pyrosequencing analysis. Primer set 2 were designed 

with a base pair length of 261 and the biotin tag was labelled on the forward 

primer meaning that sequence is now read from right to left. Optimisation to 

achieve the optimal working conditions was employed and again, a gradient was 

used with results seen in figure 3. 

 

Extracted DNA was run on a PCR at different annealing temperatures and viewed 

on a 2% agarose gel to determine the best annealing temperature for set 2 IL-6 

primer forward and reverse. The optimal annealing temperature was determined 

to be 52.6 oC which produced the brightest and clearest band. Each negative 

control produced unspecific bands around 100 base pair. 

 

 

 

 

 

Figure 3 - Gel electrophoresis viewing PCR gradient for optimisation of IL-6 primers using 

temperatures from 51oC- 59.1oC. Pooled DNA was amplified using a gradient of temperatures 

and run on a 2% agarose gel with a DNA ladder and a negative control for each sample.  
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4.2 Genotyping of IL-6 polymorphism rs1800795 

Genotyping for the IL-6 SNP rs1800795 was preformed using Kompetitive allele-

specific PCR (KASP) to determine the genotypes of the SNP in the IL-6 promoter 

region. Figure 4 shows an allele discrimination plot with homozygotes GG, 

homozygote CC and heterozygote CG genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible to determine the allele frequency and input the results into the 

Hardy Weinberg Equation. Positive controls were used to help aid in determining 

the genotype and these samples were from the Myoage study, which had already 

been genotyped for the rs1800795 SNP. 

 

Allele frequency and Hardy Weinberg equation for genotyping data 

 CC genotype 24 samples 35.8% 

 CG genotype 38 samples 56.7% 

 GG genotype 5 samples 7.5% 
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Figure 4 - Allele discrimination of rs1800795 polymorphism. Black circles are 3 negative controls, red 
circles are homozygote GG genotypes, green circles are heterozygote CG, and pink circles are 
homozygote CC. Three clusters present represent the n=67 prefrontal. 
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Allele frequency 

 

 P = 86/134=0.358 

 Q= 48/134=0.642 

 

HWChi-squared test: Chi-square test for Hardy-Weinberg equilibrium (autosomal) 

p= 0.0559. Regarding the p = 0.056, this just fit within the Hardy Weinberg 

equilibrium. 
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4.3 Real time PCR of IL-6 gene expression analysis 

Detection of IL-6 expression levels was detected through RT-PCR and normalised 

against two housekeeping genes, which included β actin and GAPDH. The SYBR® 

Green reagent used during this experiment can bind to any double-stranded DNA 

product. Making it vital to check the melt curve for multiple peak formation as 

only one peak should be present. Multiple peaks would indicate that there could 

be primer dimer or nonspecific binding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5A, B and C shows melt peak analysis of β actin, IL-6 and GAPDH. All three 

RT-PCR products produce one peak in the melt peak analysis but there is slight 

wave in the peak shown if figure 5A, B and C. This could indicate primer dimer and 

unspecific binding. 

A 

B 

C 

D 

E 

F 

Figure 5 - Melt peak analysis of (5A) βactin, (5B) IL-6 and (5C) GAPDH gene transcripts 
detected by real-time PCR. cDNA samples were amplified using RT-PCR with gene of 
interest and two housekeeping primers. Melting peak analysis was performed to confirm 
the PCR products. Amplification analysis is shown in figure 5D-F and indicates at which 
cycle the amplification starts to take place. 
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Further analysis using an electrophoresis gel to determine if the samples have 

been amplified through RT-PCR and if the deviation is indeed primer dimer or 

unspecific binding. 

 

Gel electrophoresis was used to determine that the RT-PCR analysis of IL-6, β actin 

and GAPDH had efficiently amplified and no primer dimer is present or unspecific. 

IL-6 primers were designed at 76 bp which is consistent to what was seen in the 

electrophoresis gel and β actin was design at 219 bp and GAPDH was designed at 

217 bp and this is seen in the gel electrophoresis in figure 6. 

 

 

 

 

 

 

 

 

 

Figure 6 - Gel electrophoresis viewing RT - PCR results for IL-6 – 76 bp, β actin - 219 bp and 
GAPDH – 217 bp. A few cDNA samples were run on a 2% agarose gel with a DNA ladder and a 
negative control for each gene.  
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4.4 Brain sample characteristics 

4.4.1 Table of characteristic of participants subgroup via genotype 

 

Supplementary information for n=67 prefrontal cortex samples which have been 

sub grouped by genotype of rs1800795 polymorphism. Genotype CG/GG have 

been grouped due to the small sample size for GG (n=5) and was continued to be 

grouped throughout the analysis. Some information is not present for all n=67 

prefrontal cortex samples and this is stated in the table below when different. 

Data presented as mean and standard deviation, unless stated otherwise 

a- n=23 CC genotype for BRAAK analysis 

b- Data presented as n(%) 

Table 8 - Table of characteristic of participants subgroup via genotype. Data given in mean ± 

standard deviation unless stated otherwise. Frequency for CC is n=24 and CG/GG is n=43 unless 

stated differently. 

 CC CG and GG p value 

Age at death 88.21 ±(4.72) 87.12 ± (6.73) P = 0.484 

Sex (Males/Females) 6/18 15/28  

Whole brain weight (g) 1220.29 ± 

(114.6) 

1201.14 ± 

(148.62) 

P = 0.674 

Post mortem, delay (Hours) 77.84± (45.20) 75.16± (43.37) P = 0.821 

THAL stage (amyloid deposition)b   P = 0.915 

None 6 (25 %) 11 (25.6%)  

1 3(12.5%) 8 (18.6%)  

2 2 (8.3%) 4 (9.3%)  

3 8 (33.3%) 9 (20.9%)  

4 3 (12.5%) 6 (14%)  

5 2 (8.3%) 5 (11.6%)  

CERAD score (neuritic plaques)b   P = 0.983 

None 7 (29.2%) 11 (25.6%)  

A (Sparse) 7(29.2%) 12 (27.9%)  

B (Moderate) 6 (25%) 12 (27.9%)  

C (frequent) 4 (16.7%) 8 (18.6 %)  

BRAAK stages(neurofibrillary tangles) 

ab 

  P = 0.424 

None 0 4 (9%)  

I – II 12 (52%) 17 (40)  

III – IV 8 (35 %) 17 (40 %)  

V – VI 3 (13 %) 5 (12%)  
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In the supplementary table 8, key information was analysed to determine if 

genotype has an effect. Age of death and brain weight are not significantly 

different upon genotype of rs1800795 polymorphism. Brain tissue determined to 

have the CC genotype (88.21 ± 4.72) had no significant difference in age of death 

(p=0.484) compared to those with CG/GG genotype. The whole brain weight at 

post-mortem was not significantly different (p=0.674) when compared to the 

different genotypes, CC (1220.29 ± 114.6). THAL, CERAD and BRAAK scores were 

determined to have no significance in scoring upon genotype. 
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4.4.2 IL-6 protein and AD pathology 

 

THAL, BRAAK and CERAD staging are an important classification system when 

determining AD neuropathology. These scores can be used to determine whether 

the person has AD or could be classified as a control. IL-6 protein levels were 

compared with various measures of AD neuropathology to determine if levels are 

altered at different stages among THAL, BRAAK and CERAD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some samples could not be classified into BRAAK staging and so these samples 

were omitted from the anaysis. Data was deemed to be not normally distributed 

which resulted in a Kruskal Wallis test being performed to look at potential 

significance in IL-6 protein levels between BRAAK staging which is scoring 

neurofibrillary tangle formation. The median and 25th-75th percentiles was 

reported in each BRAAK group for IL-6 protein levels seen in figure 7. No 

significance was found in IL-6 protein levels (P=0.504) among the different BRAAK 

staging. 

 

 

Figure 7 - Relationship of IL-6 protein levels in the different BRAAK stages. Box plot presented as 
median and 25th-75th percentiles with individual plots of each samples represented. IL-6 protein 
levels were not found to be significantly different between BRAAK staging (P=0.504) n=62.  
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Some samples could not be classified into Thal staging and so these samples were 

omitted from the anaysis. Thal staging data was determined to be not normally 

distributed. Kruskal Wallis test was performed to look at potential significance in 

IL-6 protein levels between THAL staging which is looking at amyloid plaque 

formation. The median and 25th-75th percentiles were reported in each THAL 

stage for IL-6 protein levels seen in figure 8. No significance was found in IL-6 

protein levels (P = 0.531) among the different THAL staging. 

 

 

 

 

 

Figure 8 - Relationship of IL-6 protein levels in the different THAL staging. Box plot 
presented as median and 25th-75th percentiles with individual plots of each samples 
represented. No significance (p = 0.531) indicated between Thal grouping and IL-6 
protein levels with a total sample size of n=63. 
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Some samples could not be classified into CERAD staging and so these samples 

were omitted from the anaysis. Data was determined to be not normally 

distributed and a Kruskal Wallis test was performed to look at potential 

significance in IL-6 protein levels between CERAD staging which is looking at 

Amyloid plaque formation. The median and 25th-75th percentiles were reported in 

each CERAD stage for IL-6 protein levels seen in figure 9. No significance was 

found in IL-6 protein levels (P = 0.718) among the different CERAD staging. 

 

 

 

 

 

 

Figure 9 - Relationship of IL-6 protein levels in the different CERAD stages. Box plot presented as 
median and 25th-75th percentiles with individual plots of each samples represented. No 
significance (P = 0.718) indicated between stages and IL-6 protein levels with a total sample 
size of n=63. 
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4.4.3 IL-6 single nucleotide polymorphism, protein levels and gene expression 

 

Levels of IL-6 total protein and relative IL-6 gene expression were compared 

between the two different genotypes of the rs1800795 polymorphism to 

determine if the levels are significantly altered upon which allele is carried. 

Indicating if particular allele alters protein and expression levels. 

 

Interleukin-6 total protein was tested for normal distribution using the Shaprio 

Wilk test. Results showed that the data is not normally distributed with a 

p=<0.000. A Mann-Whitney test was therefore performed to determine statistical 

significance. Interleukin-6 protein levels in carriers of C allele was 24.33 (20.35-

35.73) and this was not significantly higher ((309.000 (p value. 0.054)) than G 

allele carriers. There is no significance in IL-6 protein levels dependent upon 

genotype and this fits in with the latitude. 

Interleukin-6 gene expression was tested for normal distribution using the Shaprio 

Wilk test which showed a p=<0.000. A Mann-Whitney U test was preformed to 

determine any significance in expression levels depending on genotype. IL-6 gene 

expression in C allele carriers was 0.39 (0.18-2.51) and this was not significantly 

higher ((415.0 (p value .433)) than G allele carriers. 

 

Figure 10 - Gene expression of protein levels in prefrontal brain samples of CC and CG/GG 
genotype of the rs1800795 polymorphism. Box plot presented as median and 25th-75th 
percentiles with individual plots of each samples represented. A –IL-6 Protein levels in CC (n21) 
or CG/GG (n 42) genotype brain samples are not significantly different (p = 0.054) B – mRNA 
levels of IL-6 in CC (n23) and CG/GG (n 41) prefrontal cortex samples are not significantly 
different (p = 0.433).  
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A correlation determined between gene expression and IL-6 protein levels via 

genotype was employed to determine if correlation is altered. 

 

 

 

 

 

 

 

 

 

 

 

Spearman’s rho correlation was performed to determine if IL-6 protein levels have 

a correlation with IL-6 mRNA. No correlation between IL-6 mRNA expression and 

protein levels were observed in either genotype CC (n=20) p=0.980 or CG/GG 

(n=40) p=0.398. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Correlation of IL-6 gene expression and protein levels in the pre-frontal cortex determine by 
genotype. No significant correlation detected in CC (n=20) (p=0.980) and CG/GG (n=40) (p=0.398) of the 
rs1800795 polymorphism. 
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4.4.4 IL-6 gene expression and protein levels in the control vs early AD group 

 

Levels of IL-6 protein and relative IL-6 gene expression were compared and 

related to the control and early AD groups. Sample size was on the smaller side 

due to not every sample being determined between the control and early AD 

using the neuropathphysiology staging system. The comparison was determine if 

there is a higher expression of IL-6 in prefrontal cortex samples classed as having 

early AD. 

 

IL-6 protein levels were determined as not normally distributed and data present 

as median and 25th-75th percentiles. A Mann-Whitney test was performed to 

determine statistical significance. IL-6 total protein levels in the control group was 

23.79 (18.4 – 27.48) and this was not significantly higher (116 (p=0.905)). There is 

no significant relation between IL-6 protein levels when compared to the control 

and early AD group. 

IL-6 expression levels were determined as not normally distributed and data 

presented as median and 25th-75th percentiles. A Mann-Whitney test was 

performed to determine statistical significance. Relative IL-6 gene expression in 

the control group was 0.56 (0.21– 1.47) and this was not significantly higher 

118(p=0.968) than early AD group. There is no significance in IL-6 expression 

levels in the control and early AD groups. 

Figure 12 - Gene expression on protein levels in brain of the Control and early AD. Box plot 
presented as median and 25th-75th percentiles with individual plots of each samples 
represented. A – IL-6 Protein levels in control group (n=17) and early AD group (n=14) where 
not significant (p=0.905). B - IL-6 mRNA levels in control group (n=17) and early AD group 
(n=14) where not significant (p=0.968). Data presented as median(range) in a box and whisker 
blot with individual sample marker. 
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Further step was conducted to assess IL-6 protein levels and IL-6 mRNA 

expression levels in control and early AD groups, with further stratification into 

the two IL-6 genotypes. 

 

Table 9 - IL-6 protein and expression levels in the control and AD stratified by genotype to 
determine a significance. 

 Control P value AD P value 

IL-6 protein 

 

N=7 - CC P=0.626 N=5 - CC P=0.096 

N=10 - CG/GG N=9 - 

CG/GG 

IL-6 

expression 

 

N=7 - CC p=0.874 N=5 - CC P=0.828 

N=9 - CG/GG N=9 - 

CG/GG 

 

After further analysis of the data with the control and the early AD group being 

split by genotype, no significance was determined in IL-6 protein level and IL-6 

expression levels. Table 9 shows the analysis between the groups and the p values 

from the analysis which shows no significance.  
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4.4.5 Immunofluorescence staining 

Immunofluorescence staining was used to look at activation of IL-6 and NFκB in 

the prefrontal cortex in three control and three early AD samples. It is well known 

that during inflammation NFκB activates IL-6, which accumulates around the 

nucleus. Control and early AD samples were used to look at IL-6 accumulation and 

NFκB activation. Due to time constraints only six samples were selected for 

immunofluorescence staining. No neuronal marker was selected for staining 

leading to the cell type not being identifiable in the images. 

 

 

 

NFkB (green) A 

NFkB (green) E 

NFkB (green) I 

DAPI (Blue)   B 

DAPI (Blue) J 

DAPI (Blue) F 

IL-6 (Red)    C 

IL-6 (Red)    K 

IL-6 (Red) G 

Merge     D 

Merge            L 

Merge       H 

Figure 13 – Immunofluorescent staining results for AD human pre-frontal cortex sample stained for IL-6 
and NFκB. A-D sample 13 viewed at 10 x 63 oil magnification stained for IL-6 red, NFκB green and DAPI 
blue for nucleus. E-H sample 11 viewed at 10 x 63 oil magnification stained for IL-6 red, NFκB green and 
DAPI blue for nucleus. I-L sample 15 viewed at 10 x 63 oil magnification stained for IL-6 red, NFκB green 
and DAPI blue for nucleus. 
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Immunofluorescent staining was performed to determine IL-6 localisation in the 

prefrontal cortex of both early AD and control samples and activation of NF-κB. 

However, it is not possible to determine which cell type, as no glial cell marker 

was used to stain for glial cells such as microglia or astrocytes. This was a 

limitation of the antibodies available. Some degree of auto fluorescence was 

present in all sample, which is natural fluorescence rather than stained. IL-6 

antibody staining was strongly expressed in all samples. Indicating that IL-6 is 

expressed in early AD and control samples. Ideally, a negative control would have 

been used during the project however this was not the case. The negative control 

is important to determine the visualization from the antibody and molecule of 

interest. 

 

 

NFkB (green) A DAPI (Blue)   B IL-6 (Red)    C Merge     D 

NFkB (green)   E DAPI (Blue)   F IL-6 (Red)   G Merge  H 

NFkB (green)   I DAPI (Blue)   J IL-6 (Red) K Merge   L 

Figure 14 - Immunofluorescent staining of control human pre-frontal cortex sample stained for 
IL-6 and NFκB. A-D sample 25 viewed at 10 x 63 oil magnification stained for IL-6 red, NFκB green 
and DAPI blue for nucleus.  E-H sample 30 viewed at 10 x 63 oil magnification stained for IL-6 red, 
NFkB green and DAPI blue for nucleus. I-L sample 2 viewed at 10x63 oil magnification stained for IL-
6 red, NFkB green and DAPI blue for nucleus. 
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4.4.6 Pyrosequencing pyrogram results from human prefrontal cortex samples 

 

Figure 15 shows a schematic of the IL-6 gene and the sequence to analyse for 

pyrosequencing showing the variant in the polymorphism using primer set 2. 

 

 

In figure 15A the position of TATA, NFκB, NF-IL6, C/EBP and AP-1 was determined 

through reading the literature of another scientist researching in to the IL-6 

promoter region (Poplutz et al., 2014).  

 

 

 

 

 

 

 

Figure 15 – A – IL-6 gene promoter region schematic. B - Sequence for analysis highlighted with 
the forward reverse and sequence primer. A - Red beacon in the IL-6 promoter region schematic 
indicated 4 CpG sites. B- DNA sequence indicating forward, reverse, sequence primer and CpG 
site location in the sequence. Highlighted in yellow are the CpG sites for analysis. Highlighted in 
blue is the position of the rs1800795 polymorphism situated at -174 base pair. Depending on 
the genotype for this SNP a CpG site is added as seen in the sequence below showing the 
change at the CpG site. 

A 

B 
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Figure 16 shows two different sample results for DNA methylation depending on 

genotype. The pyrogram was analysed to ensure quality controls have passed and 

samples have been fully bisulphite converted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The control stage passed in both programs indicating that the samples have 

passed quality control and have been fully bisulphite converted. Figure 16A 

included 4 CpG sites for DNA methylation analysis. Due to the G allele, being 

present this generates an extra CpG site, which is rs1800795 SNP. This is indicated 

at the second CpG site on the pyrograph. The signal generated from the 

pyrograph on the Y-axis has generated high signal. CpG 1 has passed with a 

methylation percentage of 16 % whereas the other three CpG site have failed 

indicated with the methylation percentage being in red. Samples were repeated in 

duplicate to show if similarity is present upon re-testing of the samples at the 

failed sites. Figure 16B shows the results from sample 9 (CC) which does not have 

the extra site at CpG 2, as the C allele does not produce the extra CpG site. Good 

signal on the Y-axis is indicated and again the first CpG site is highlight in blue 

indicating a passed result of 17% methylation whereas the other two CpG sites 

are highlighted in red indicating a failed result. Samples were repeated in 

Figure 16 - Pyrograms looking at DNA methylation in IL-6 gene depending on genotype of 
rs1800795 polymorphism. A - Pyrogram for sample 46 (CG) variant with extra CpG site noted 
at the single nucleotide polymorphism site. B - pyrograph for sample 9(CC) with 3 CpG sites 
for anaysis noted extra CpG site is not present.   

A 

B 

CpG-1 CpG-2 CpG-3 CpG-4 
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duplicate to indicate if methylation is similar. Ideally, all the samples should have 

been repeated in duplicate but due to issues that arose with the sequencer it was 

not possible to gain all the samples in repeats. Some results only had 20 μl of DNA 

rather than 25 μl, however methylation percentage did not significantly change 

with the different DNA volumes. 

 

The mean methylation percentages for all samples for each CpG site were 

presented in a bar grpah to inidicated the percentage methylation at each site. 

 

The results presented in figure 17, conclude that CpG site 3 has the highest 

overall percentage methylation of all the samples compared to the other 3 of 

which CpG site 2 in only present in the G allele carriers. 

 

 

 

 

 

 
 

Figure 17 - Mean CpG methylation of IL-6 in all brain samples at the 4 individual CpG site. CpG 2 
methylation is only presented in samples that carry CG/GG genotype (n34) in the rs1800795 
polymorphism as the G allele creates an extra CpG site in these samples. In each column, an 
individual CpG site is represented and the mean ± Standard deviation is presented. 

18.42 ± 3.58 14.02 ± 4.39 33.74 ± 5.71 30.22 ± 9.47 
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4.4.7 Methylation of IL-6 promoter CpG sites 

 

IL-6 percentage methylation in the prefrontal cortex was compared to different 

genotypes CC and CG/GG. Genotype CG/GG produces an extra CpG site at site 2 

whereas CC does not, and this could possibly have an effect on methylation levels. 

 

 

 

 

 

 

 

 

 

 

 

Data was tested for normal distribution using the Shaprio Wilk test in which the 

data was determined to be normally distributed. Through the distribution 

analysis, an independent t-test was selected for analysis to determine if genotype 

affects the levels of methylation at each CpG site. CpG site 1 percentage 

methylation in CC genotype were not significantly different (p=0.773) from CG/GG 

genotype and amounted to 18.26 ± 3.56 and 18.54 ± 3.64 respectively. CpG site 3 

percentage methylation in CC genotype group were significantly different 

(p=0.004) from CG/GG genotype and amounted to 36.37 ± 5.34 and 32 ± 5.34 

respectively. CpG site 4 percentage methylation in CC genotype group were 

significantly different (p<0.000) from CG/GG genotype and amounted to 20.35 ± 

4.42 and 36.91 ± 5.03 respectively. 

Figure 18 - Methylation percentage at 4 CpG sites of CC (n 23) and CG/GG (n 34) genotype of the 
rs1800795 polymorphism, data present as mean ± standard deviation. CpG site 1 methylation 
not significantly different between genotypes (p=0.733). CpG site 2 (SNP) was only present in 
the G allele carriers. CpG site 3 methylations significantly different between genotypes 
p=0.004) CpG site 4 methylation significantly different in genotypes (p<0.000). 



57 

 

Methylation percentage for all CpG site were tested against the control and early 

AD groups to determine if there is significant difference in methylation. 

 

 

Data was determined to be normally distributed and an independent t – test was 

used to analyse if percentage methylation at the 4 CpG sites are different 

between the control group and early AD group. CpG site 1, percentage 

methylation 19.17 ± 4.25 in the control group was not significantly different 

(p=0.586) from the AD group. CpG site 2, percentage methylation 14.69 ± 4.54 in 

the control group was not significantly different (p=0.582) from the AD group. 

CpG site 3, percentage methylation 35 ± 5.75 in the control group was not 

significantly different (P=0.692) from the AD group. CpG site 4, Percentage 

methylation 30 ± 11.87 in the control group was not significantly different 

(p=0.986) from the AD group. 

 

 

 

Figure 19 – Mean methylation levels at all CpG 4 sites in control and AD groups were analysed and 
data presented as mean ± standard deviation. CpG site 1 methylation not significantly different 
between control and early AD (p=0.586). CpG site 2methylation not significantly different between 
the control group (p=0.582) and early AD. CpG site 3 methylations was not significantly different 
between the control group (p=0.692) and early AD. CpG site 4 methylation was not significantly 
different in the control group (p=0.986). 
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4.4.8 Interaction of IL-6 protein and gene expression vs DNA methylation dependent 

upon genotype 

 

A correlation between IL-6 protein levels to each CpG site was analysed and 

stratified into genotypes (CC n=20 and CG/GG n=34) to determine if an 

association or difference occurs depending on the genotype. CpG site 2 

methylation is not analysed, as this is only present in the G allele carriers. Looking 

at figure 20 no correlation was present and further analysis took place.  

 

 

A spearman correlation analysis was used to determine the possible relationship 

between IL-6 promoter methylation and protein levels. The data was grouped into 

genotypes to determine significance between CC and CG/GG genotype of 

rs1800795 polymorphism. 

Figure 20 – Correlation of IL-6 total protein and each CpG site methylation depending on the 
genotype. A– Correlation between levels of IL-6 protein and methylation at CpG site 1 depending 
upon genotype of rs1800795 polymorphism. B – Correlation between levels of IL-6 protein and 
methylation at CpG site 3 depending upon genotype of rs1800795 polymorphism. C– Correlation 
between levels of IL-6 protein and methylation at CpG site 4 depending upon genotype of 
rs1800795 polymorphism. 
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No correlation was observed in the CC (n=20) genotype and no significances 

between IL-6 protein levels with CpG site 1 (p=0.436), CpG site 3 (p=0.681) and 4 

(p=0.383) were determined. No association was found between IL-6 protein levels 

in CpG site 1 (p=0.505), 3 (p=0.545) and 4 (p=0.294) in the CG/GG genotype group 

n=34). This shows that methylation levels are not correlated with protein levels 

upon genotype. 

 

Further analysis was conducted, and a comparison was determined between each 

CpG site and IL-6 gene expression levels stratified into genotype to determine if 

methylation levels correspond to the levels of expression. 

 

Table 10 - Spearman’s correlation analysis on IL-6 proteins levels at each individual CpG compared 

between genotypes of the rs1800795 polymorphism. 

CC correlation 

coefficient 

p value CG/GG correlation 

coefficient 

p value 

Total protein IL-6 

compared to 

CpG 1 

-.249 P=0.436 Total protein IL-

6 compared to 

CpG 1 

.127 P=0.505 

Total protein IL-6 

compared to 

CpG 3 

-.133 P=0.681 Total protein IL-

6 compared to 

CpG 3 

.115 p=0.545 

Total protein IL-6 

compared to 

CpG 4 

-.277 P=0.383 Total protein IL-

6 compared to 

CpG 4 

.198 p=0.294 

CC correlation 

coefficient 

p value CG and GG correlation 

coefficient 

p value 

IL-6 expression 

compared to 

CpG 1 

.034 p=0.870 IL-6 expression 

compared to 

CpG 1 

.099 p=0.589 

IL-6 expression 

compared to 

CpG 3 

-.049 p=0.828 IL-6 expression 

compared to 

CpG 3 

.160 p=0.382 

IL-6 expression 

compared to 

CpG 4 

.030 p=0.894 IL-6 expression 

compared to 

CpG 4 

.146 p=0.425 

Table 11 - Spearman’s correlation analysis of IL-6 gene expression at each individual CpG site 

compared between the genotypes of the rs1800795 polymorphism. 
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No correlation between IL-6 gene expression with CpG site 1 (p = 0.870), 3 

(p=0.828) and 4 (p=0.894) were found in the CC genotype group n =20. No 

association was found between IL-6 gene expression levels in CpG site 1 

(p=0.589), 3 (p=0.382) and 4 (p=0.425) in the CG/GG genotype group n (34). This 

shows that IL-6 gene expression is not regulated by DNA methylation and not 

affected depending on genotype carried in the rs1800795 polymorphism. Overall 

the result suggests, that protein levels and gene expression levels for the IL-6 

gene are not correlated to methylation at each of the 3 CpG sites with CpG site 2 

missing as present only in G allele carriers. 
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4.4.9 Comparison of IL-6 protein levels in the brain in relation to DNA methylation at 

all CpG sites stratified into early AD and control. 

 
Levels of IL-6 total protein were correlated to each CpG site to indicate if a 

relationship occurs and if there is any difference between the control and early 

AD group. This analysis is to indicate if levels of IL-6 protein fluctuate together 

with each CpG site in control and early AD samples to indicate any correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at the scatter plots, the distribution of samples in the control and early 

AD group showed no correlation was present. To further enhance analysis a 

correlation test was performed to confirm the finding in the scatter plot. 

 

 

 

Figure 21 –Correlation of IL-6 protein levels at each CpG site in control and early AD group. A– 
Correlation between levels of IL-6 protein and methylation at CpG site 1 in control and early AD 
group. B – Correlation between levels of IL-6 protein and methylation at CpG site 2 in control 
and early AD group. C – Correlation between levels of IL-6 protein and methylation at CpG site 3 
in control and early AD group. D– Correlation between levels of IL-6 protein and methylation at 
CpG site 4 in control and early AD group. 
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Table 12 - Spearman’s correlation of each CpG site methylation and IL-6 protein levels in control 

and AD groups 

Control Correlation 

coefficient 

P value Early AD Correlation 

coefficient 

P value 

IL-6 total 

protein 

compared to 

CpG 1 

-.253 p=0.363 IL-6 total 

protein 

compared 

to CpG 1 

-.268 p=0.400 

IL-6 total 

protein 

compared to 

CpG 2 

-.599 p=0.117 IL-6 total 

protein 

compared 

to CpG 2 

.273 p=0.554 

IL-6 total 

protein 

compared to 

CpG 3 

-.117 p=0.679 Il-6 total 

protein 

compared 

to CpG 3 

.011 p=0.974 

IL-6 total 

protein 

compared to 

CpG 4 

-.269 p=0.333 IL-6 total 

protein 

compared 

to CpG 4 

-228 p=0.476 

 

Looking at the results from the control group there was no correlation presented 

in the individual CpG sites and total protein IL-6 levels. In the early AD group, 

there was no correlation between IL-6 total protein levels and the individual CpG 

sites. It has to be noted that the sample size for these groups are small. As not all 

samples can be grouped into control or early AD using THAL, CERAD and BRAAK 

scores. 
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5.0 Discussion 

 

This project investigates the epigenetic regulation of IL-6 within the prefrontal 

cortex of AD and control brain samples to understand how the IL-6 gene is 

regulated during cognitive decline and AD. IL-6, a cytokine with both pro- and 

anti-inflammatory properties, is seen to have a role in a number of different 

neurological conditions in which neuroinflammation is a component, such as AD. 

We found that IL-6 protein levels and IL-6 mRNA levels were not impacted by 

genotype and disease state. Interestingly, DNA Methylation was seen to be 

altered in the presence of a SNP, suggesting GxE. However, this was not 

influenced by disease state. 

 

5.1 The impact of AD neuropathology and IL-6 protein expression 

This is the first study to investigate the levels of IL-6 within the brains of 

cognitively healthy and AD. Interleukin 6 protein levels in the control and AD 

samples were collectively analysed to determine if levels are altered at the 

different stages of AD neuropathology with IL-6 levels compared to BRAAK, THAL 

and CERAD staging 

This study found that protein levels were not significantly altered at the different 

staging classification among BRAAK (p = 0.504), CERAD (p = 0.718) and THAL (p = 

0.531). Overall, the results suggest that protein levels are not significantly altered 

at the different stages in AD neuropathology classification. This analysis indicates 

that IL-6 protein expression alone does not correlate with neuropathology. 

Indicating that other mechanisms could be at work or that IL-6 in other brain 

regions might have more of a role in AD. 

IL-6 is produced by a number of different cell types in the brain which include 

neurons, microglia and astrocytes (María Erta, 2012). As IL-6 is produced by many 

different cells this could have an impact as other brain regions may have higher IL-

6 levels compared to other areas such as the prefrontal cortex which as of yet is 

presently uncertain. Further analysis to determine possible brain region and cell-

specific variations in IL-6 regulation would be important. As stated above IL-6 is 
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produced by many different cell types and levels of IL-6 may vary in different brain 

regions. Such spatial temporal analysis, that may for example reflect particular cell 

densities of microglia, could shed more light on mechanisms in which IL-6 is 

controlled and how this might further regulate subsequent neuroinflammatory 

responses. As well as this, the production of inflammatory factors in the brain 

from these cells could occur due to the response to injury, inflammation, trauma 

and neuropathological hallmarks such as amyloid plaques (Harry and Kraft, 2008). 

This is important to note as during this study, these factors could not be 

controlled for and this potentially could have an effect. Analysis through blood 

and CSF have indicated that levels of IL-6 are having an effect on traumatic brain 

injury (Woodcock and Morganti-Kossmann, 2013). IL-6 is seen to be upregulated 

in neuroinflammation when infection and injury occurs in the central nervous 

system (María Erta, 2012). Levels of IL-6 in the CSF have been seen to be 

significantly increased compared to plasma levels in people who had suffered 

traumatic brain injury (Woodcock and Morganti-Kossmann, 2013). It must be 

noted that they are looking at plasma levels whereas this study looked at 

prefrontal cortex brain tissue. However brain levels of IL-6 may be similarly 

affected. In conclusion, other factors would have affected the levels of IL-6 and 

AD neuropathology. During the analysis of the prefrontal cortex it was not known 

if any had suffered from a TBI or infection which could have in turn affected levels 

of IL-6 in relation to neuropathology. 
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5.2 – The impact of -174 polymorphism, IL-6 protein, L-6 mRNA expression levels 

and difference between control and AD. 

 

In this study, the transcriptional role of the rs1800795 polymorphism in the 

regulation of protein expression and IL-6 mRNA in prefrontal cortex brains in 

relation to cognitive decline and AD pathology was investigated.  

 

Genotyping analysis was first performed to determine the genotype of the n=67 

samples. Using the Hardy Weinberg calculation for the SNP analysis, a p value of 

0.059 was obtained. The indicates that the genotype fits into the Hardy Weinberg 

equilibrium validates that the genotypes in this study are correct. However, a p 

value of 0.059 which suggests the power of the analysis is low and a greater 

sample size would be needed to increase statistical power for a SNP genotyping 

analysis. 

 

Interesting, there was a lack of correlation between IL-6 mRNA levels and IL-6 

protein levels. This suggests that many factors may affect the pathway from DNA 

to RNA to protein. Problems can arise in the translation of mRNA to protein 

leading to proliferation and death. This is a complex process that does not always 

lead to a direct correlation between protein and IL-6 gene expression levels. 

However, it appears that the SNP has no direct impact in IL-6 protein levels and IL-

6 gene expression levels in control and AD pre-frontal cortex samples collectively. 

 

IL-6 protein levels were analysed between genotypes of the rs1800795 

polymorphism (CC and CG/GG) to see if genotype affect IL-6 levels in the 

prefrontal cortex. The results indicated that IL-6 protein levels boarder on 

significance (p=0.054) when classed by genotype. This suggests levels of IL-6 in 

brain tissues may potentially be regulated by the IL-6 polymorphism rs1800795. 

Further analysis would be needed with a greater sample size to determine if the 

SNP indeed influences the protein levels in the brain on replicate studies to 

understand possible mechanism. Albani et al. (2009) found that there was a 

correlation between levels of IL-6 plasma and the rs1800795 genotype in aging. 
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They observed that there are higher circulating levels of IL-6 in the GG genotype 

compared to the CC genotype. It must be noted that this study was done using 

peripheral blood rather than human brain tissue. This suggests that protein levels 

could be dependent on tissue and sample type. Licastro et al. (2003) found that 

homozygous for the rs1800795 genotype CC had an elevated risk of developing 

AD. They found that allele variance of the IL-6 gene does influence brain and 

blood levels of the IL-6 cytokine in AD patients. Overall, there are still conflicting 

results and further analysis with a greater sample size would be beneficial, to 

drawing significant conclusions. Levels of IL-6 mRNA were compared to the 

rs1800795 polymorphism to determine if this particular SNP alters expression 

levels of IL-6 found in the prefrontal cortex. Statistical analysis of the results 

indicated that IL-6 expression levels were not significantly altered between the 

genotypes of the IL-6 polymorphism (p=0.433). This suggests that the G allele 

does not confer increased transcription in these brain samples of AD and control 

together. 

 

Levels of IL-6 protein were further analysed to determine if they are altered 

between the control group and AD group. The prefrontal cortex samples were 

classified using the BRAAK, THAL and CERAD staging. Statistical analysis of the 

results found no significance (p=0.905) between the control or early AD groups 

and the levels of IL-6 protein expressed in the brain tissue. This result suggests 

that IL-6 protein levels in the prefrontal cortex of the control and early AD groups 

are not affected by disease state. Further analysis was conducted on RNA 

expression levels between AD and Control which found no significance in 

expression levels between the two groups (p=0.097). Indicating that IL-6 

expression levels are no different in the control and AD groups. Further analysis 

was conducted by further stratifying the samples into the rs1800795 genotypes. 

No significance was found in the results. The results suggest that levels of IL-6 

protein are not altered between genotype and disease state. Studies have been 

relatively inconsistent when studying IL-6 polymorphism and interaction to AD 

risk. One report found that individuals with the CC genotype of rs1800795 have a 

significantly greater risk of developing Alzheimer’s disease (Chen et al., 2016), 
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whereas there have been several studies conducted by different countries (Italy, 

Japan and Spain) which have showed a progressive association of the IL-6 G allele 

in the AD (Mateo et al. 2006, Pola et al. 2002, Shibata et al. 2002). In contrast 

Depboylu et al. (2004) concluded that IL-6 (-174) polymorphism does not 

influence the risk of developing AD in their cohort of German participants. One 

limitation to the research is the quality of the mRNA in the post-mortem brains 

and these could potentially effect the analysis and the quality of the results.  

 

IL-6 was seen to be present in the immunofluorescent stained samples of both 

the control and early AD groups. However due to no neuronal marker being used 

it was impossible to determine which cells IL-6 accumulated around. The results 

suggest that IL-6 is present in both healthy controls and AD samples as well as 

NFkB was activated around the nucleus in both control and AD samples. However, 

these results cannot be analysed or considered due to sample size and brain 

tissues not being stained for a neural marker. It can be concluded that IL-6 does 

accumulate in the brain, however it was not possible to determine if levels were 

significantly different between the control and AD group. NFkB plays an important 

role in inflammation as this transcription factor can cause transcription to occur in 

proinflammatory gene for example IL-6 (Tak and Firestein, 2001). The above result 

is suggesting the possibility that inflammation indeed could be occurring in not 

only AD brains but control brains too.  
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5.3 IL-6 methylation levels 

Epigenetic regulation is an important factor in regulating neuroinflammatory 

systems and has been linked to the pathogenesis of neurodegenerative diseases. 

One type of epigenetic marker, DNA Methylation, is increasingly implicated in 

various diseases (Ryan et al., 2017) with strong links between neuroinflammation 

and epigenetics (Garden, 2013) as well as studies conducted on altering DNA 

methylation in AD. 

 

Methylation percentages were determined for each CpG site and compared 

between the rs1800795 (-174 SNP) polymorphisms to assess if the genotype 

alters IL-6 methylation levels. The IL-6 methylation levels were not deemed 

significant at CpG site 1 between the genotypes (p =0.733). However, CpG site 3 

and 4 were deemed significantly different between the two genotype groups 

(CpG 3 – p=0.004 and CpG 4 -p=<0.000). These results indicate that, within the G 

allele, methylation levels are increased in neighbouring CpG sites compared to the 

C allele. Indicating that the rs1800795 SNP has an effect upon methylation levels 

in the IL-6 promoter region among the control and early AD prefrontal cortex 

samples collectively. This is important as this suggests that genotype influences 

methylation which could in turn affect transcription of the IL-6 gene. It is still not 

clear how methylation at just one CpG site can affect the promoter region. One 

possible suggestion could be when one CpG site is contained within a 

transcriptional binding site it could in turn affect the binding. Studies have found 

that individuals with AD tend to have higher levels of DNA methylation compared 

to the cognitively normal (Yokoyama et al., 2017). With this in mind, the results 

would suggests that the C allele may have a protective element through 

decreasing methylation levels compared to the G allele present at the SNP, which 

shows an increased risk through increasing methylation levels. This, in turn, could 

increase the risk of developing AD. It has been suggested, in previous studies, DNA 

methylation differences at single CpG sites altered IL-6 expression in Rheumatoid 

arthritis patient monocytes. However, this association was not deemed to be 

linked to the rs1800795 genotype (Noss et al., 2015). Methylation levels were 

compared solely to the control and early AD groups and no significance was 
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found. This suggests that methylation levels alone are not altered in the control 

and early AD groups at each of the CpG sites.  

 

IL-6 protein levels were correlated to CpG site 1, 3 and 4 (CpG site 2 SNP was 

omitted as only present in the CG/GG genotype) to determine if IL-6 levels are 

correlated with IL-6 methylation levels depending on genotype present. No 

correlation was determined in the CC genotype and no significance between IL-6 

protein and methylation levels at each CpG site. The CG/GG was determined to 

have no correlation or significance between IL-6 protein and methylation levels at 

each CpG site. These results suggest that the SNP does not have a impact on the 

correlation between levels of IL-6 and methylation, suggesting that other factors 

could play a role in DNA methylation, e.g. various environmental factors 

underlying gene by environment (GxE). 

 

IL-6 gene expression levels were compared to each individual CpG site and split 

into genotype of the rs1800795 SNP. Results indicated no correlation in IL-6 

expression and methylation levels at each CpG site upon genotype. This suggests 

that the SNP, which produces an extra CpG site in the G allele carriers, does not 

have a role in altering IL-6 expression and methylation at each CpG site located in 

the IL-6 promoter region. Interestingly, although CpG DNA methylation is 

generally associated with low gene expression, Noss et al. (2015) found poor 

correlation between IL-6 expression and promoter CpG methylation. 

 

IL-6 protein levels and gene expression levels were correlated to methylation 

percentage at each of the CpG sites. Looking at the control group there was no 

correlation and no significance determined between total protein IL-6 levels and 

the individual CpG sites, which was noted in the early AD group too. Although a 

relatively low sample size this result suggests that DNA methylation does not 

impact on expression levels of IL-6 and the protein levels in the prefrontal cortex. 

This implies that other factors could influence DNA methylation and IL-6 levels 

may well be present in different tissue type. Decreased methylation is generally 

associated with transcriptional activation. Epigenetic mechanism has been shown 



70 

 

to have a role in the regulation of IL-6, allowing regulation independently of 

genetic sequence. For example, methylation is an important factor in the control 

of IL-6 and the production of this cytokine may lead to the production being 

altered as seen in Rheumatoid arthritis (Nile et al., 2008). Furthermore, a twin 

study looking at DNA methylation, one with AD and other cognitively normal 

found that levels of methylation were decreased in the prefrontal cortex of the 

AD sufferers (Mastroeni et al., 2011). In contrast to this a similar study using the 

same methods found that levels were increased in DNA methylation. An example 

of this would be a study found that in the middle gyrus levels of methylation had 

been significantly increased (Coppieters et al., 2014). 

 

In summary, IL-6 mRNA and IL-6 protein levels are not directly impacted by the 

rs1800795 polymorphism in the prefrontal cortex samples indicating that other 

factors could have an impact such chromatin modifications. Methylation levels at 

CpG sites 3 and 4 were significantly dependent upon genotype. However, 

when related to IL-6 protein and mRNA expression levels in the brain, no 

significance was found. This suggests that DNA methylation is not direly regulating 

brain IL-6 expression and protein levels depend on the genotypes. However, DNA 

methylation may play a role through gene environment interaction GxE. This is 

defined as when two different genotypes respond to environment variation in 

different ways. The environment interaction could include exposure to physical, 

chemical, biological factors and life events (Tanaka et al., 2014). This leads to the 

question as to whether such environment interactions could have a potential 

effect on the transcriptional and expression of IL-6 in this study in response to 

disease for example. Having different genotypes could influence the response to 

environmental variation however, this GxE concept still remains largely unclear 

(Fave et al., 2018).There have been a few studies relating GxE and AD. For 

example, a study was conducted on AD patients who carry the ApoE4 genotype. 

They were found to have greater cognitive decline when linked to increased levels 

of cholesterol compared to normal levels when grouped by the present or absents 

of the ApoE 4 genotype (Evans et al., 2004). Sporadic cases of AD can be linked to 
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GxE and, similarly environmental exposure during early stages of life has been 

seen to impact on complex psychiatric disorders (Chouliaras et al., 2010b)      

 

To summarise, the research has shown that IL-6 is present in control and AD 

brains and the SNP has an impact on methylation levels between genotype at 

different CpG sites however direct linear correlations between methylation, 

protein and expression levels did not exist within this study. 

6.0 Limitation 

In this particular study using prefrontal cortex samples from the University of 

Manchester Age and Cognitive performance Research Cohort (ACPRC) it was 

possible to research the epigenetic regulation of IL-6 in age-related cognitive 

decline and AD. This study is unique and novel as it included human brain tissue 

from a well characterised cohort as opposed to previous analysis focused on CSF 

and blood. However, some limitation exist due to the nature of the research and 

the tissue type being used, in this case the human brain. 

A correlation analysis was conducted on IL-6 expression levels and RIN values. RIN 

values were on the lower side (3.69 ± 1.38) indicating that the quality of the RNA 

is low which is often the case in post-mortem brains. Acceptable RIN values would 

be over 6. This in turn could affect the results when looking at gene expression. 

Ideally, better quality RNA would be needed to improve the validity of the results 

for RNA expression. 

 

The sample size in this study, looking at the effect IL-6 promoter region SNP, was 

not adequate with the Hardy Weinberg giving a p value of 0.054, suggesting that a 

greater sample size is needed for a more robust statistical analysis. When 

statistical analyses took place on IL-6 protein and expression levels in the control 

and AD groups stratified by genotype it has to be noted that sample size was 

further decreased. This was due to some samples not being classified into either 

being control or early AD. A greater sample size would be better for a more robust 

statistical analysis. 
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A limitation of immunofluorescence staining was the brain sample tissue obtained 

from the brain bank. When sectioning the tissue for IHC the tissues were not 

cutting smoothly. The temperature in the cryostat was altered +/- several degrees 

with the starting chamber temperature of -16 to try and improve the sectioning of 

the samples. It also appeared there was vacuolisation in the brain tissue. As the 

tissues have come from the brain bank the way the tissue has been frozen could 

have caused damage. Ideally if more analysis was conducted wax imbedded tissue 

would be more suitable as the whole brain is dipped in wax and there is less 

chance of damage. 

 

7.0 Further research 

This study has shown that IL-6 is indeed present in the brain and that the SNP has 

an impact in DNA methylation in the brain. However, linear correlations were not 

observed between methylation, protein and expression. Further research needs 

to be conducted on gene regulation in cognitive decline and Alzheimer disease 

using human brain samples. Targeted approaches such as mapping of methylation 

are important to allow investigation genetic-epigenetic-protein interactions. 

However, geneome wide analyses could be important to identify specific immune 

pathways that perhaps IL-6 might be part of. It is also unclear whether IL-6 might 

be a cause or consequence of the neuroinflammation in respect to both its pro 

and anti-inflammatory activities. Further investigation as to these roles and which 

cells are secreting this cytokine could allow researchers to better determine the 

pathways by which IL-6 is regulated. Data on activity of microglia, as a marker for 

neuroinflammation, could be useful to further link this correlates with IL-6 levels. 

Further research of the polymorphism would be needed with a greater sample 

size for polymorphism analysis. Though this cohort is well studied with 

longitudinal and neuropathological data, larger numbers are generally needed for 

a high-powered association study. A further Genome Wide Association Study 

(GWAS) analysis would further allow to investigate other SNPs at the IL-6 locus 

and perform haplotype mapping. GWAS data might also allow the development of 

polygeneic risk scores for neuroinflammation that IL-6 might form part off. 
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DNA methylation is an important epigenetic regulator and was measured at the 

IL-6 promoter. However, other regions of the IL-6 locus might also be important, 

such as enhancers of which IL-6 has several and more distal promoter regions or 

the coding region itself. Though targeted DNA methylation by bisulphite 

pyrosequencing is highly specific and sensitive, geneome wide approaches would 

allow more coverage of the locus. Another point is whether other epigenetic 

markers such as various chromatin markers might also have a role in the 

regulation of IL-6. Histone modification is seen in aging with a decrease in 

acetylation and increase in phosphorylation Comparing IL-6 expression, protein 

levels and DNA methylation levels to other parts of the brain, for example the 

hippocampus would allow comparison to assess to compare if levels are altered in 

different parts of the brain in relation to AD vs Control. 

8.0 Conclusion 

 
By using human brain samples from the prefrontal cortex, we were able to 

provide an insight into the regulation of the IL-6 gene during cognitive decline and 

AD. From this project it was determined that IL-6 does play a role in inflammation 

with specifics to neuroinflammation. However, it was not determined if the SNP 

(rs1800795) in the promoter region impacted the regulation of IL-6 cytokine and 

expression levels. 

 

This study found that DNA methylation at the IL-6 promoter did not directly 

associate with IL-6 expression levels within the brain of individuals with AD. 

However, the G/C SNP rs1800795 did impact DNA methylation levels. There was 

obviously no methylation at CpG Site 2 in the CC homozygotes in which this CpG 

site is no longer present. Methylation at CpG site 3 was significantly decreased in 

G allele carriers compared to CC homozygotes (p=0.004), whereas at CpG Site 4 

the G allele carriers showed significantly increased DNA methylation compared to 

CC homozygotes (p>0.000) (figure 18). 

 

This implies that other factors could have an impact such a gene by environment 

interaction. These results suggest that other factors could influence the 
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epigenetic regulation of IL-6 and in a multifactorial mechanism. Biological 

pathways and gene transcriptional activity can be changed through epigenetics. 

Factors that could potentially affect this include the environment such as toxins 

and hazardous exposure which could alter gene expression. Gene environment 

interaction is an influence that could affect epigenetic regulation through SNP 

interaction. 

 

Observations during this project indicated that IL-6 is indeed present in both 

control and early AD but multiple factors could be involved in the regulation of IL-

6 during cognitive decline and early AD. Further analysis would need to be 

conducted with a greater samples size when determining the SNP significance in 

relation to expression and protein levels and the impact on AD. 
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10.0 Appendix 

10.1 table of chemical, reagents and kits 

96 well plate Starline 

Q24 sequence plate Quigen 

0.2ml PCR tubes Starline 

Pipette tips 10ul,20ul,200ul,1000ul  

PCR plate cover slips  

Nuclease free water  

PCR grade water  

Isolate 2 genomic DNA extraction kit Bio line 

EpiTec fast Bisulphite kit Quigen 

ELISA anti human IL-6 Abcam 

Pyromark q24 regents Quigen 

Agarose powder  

Tris base  

EDTA  

Boric acid  

Syber green dye Quigen 

DNA ladder 100bp Bioline 

MyTaqHS Bioline 

Coral Dye 10x  

70% ethanol  

Denaturing buffer  

Washing buffer  

IL-6 forward primer Invergion 

IL-6 reverse primer Invergion 

IL-6 sequence primer Invergion 

RT PCR IL-6 Forward primer Invergion 

RT PCR IL-6 Reverse primer Invergion 

RT PCR B actin Forward primer Invergion 
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RT PCR B actin Reverse primer Invergion 

KASP master mix  

Rs1800795 primer  

IL-6 anti human anti mouse R&D 

Anti-NF-kB p65 (phospho S536) 

antibody 

Abcam (ab28856) 

Vector shield DAPI  

Alexfluro IgG 568 goat anti mouse red  

Alexfluro IgG 488 goat anti rabbit green  

StepOne plus  

Fluorescence microscope  

Biorad RT PCR machine Biorad 

Eppendorf master cycler  

Pyro mark sequencer Quigen 

Biorad power pack and tank Biorad 

  

 

 

 

 

 

 

 


