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Abstract—Multi-Access Edge Computing (MEC) is an emerg-
ing technology that leverages computing, storage and network
resources deployed at the proximity of users to offload terminal
from computational- and delay-sensitive tasks. Various existing
facilities including mobile devices with idle resources, vehicles,
and MEC servers deployed at base stations or road side units,
could act as edges in the network. Since offloading tasks incurs
extra transmission energy consumption and transmission latency,
two key questions to be addressed in MEC deployments are: (i)
offload the workload to the edge or compute it in terminals?
(ii) which edge, among the available ones, should the task be
offloaded to? Hence, we propose a matching theory based task
assignment mechanism which takes into account the devices’
and MEC servers’ computation capabilities, wireless channel
conditions, and delay constraints. The main goal of our task
assignment mechanism is to reduce overall energy consumption,
while satisfying task owners’ heterogeneous delay requirements
and supporting good scalability. Simulations are conducted to
evaluate the efficiency of our proposed mechanism.

I. INTRODUCTION

The explosive growth of information and communication
technologies spurs an array of computation-intensive applica-
tions such as Augmented Reality (AR) or online gaming, and
allows new functionalities, like self-driving vehicles, with the
final aim of enriching our lives. However, despite the great ad-
vances that might be brought by these emerging applications,
several challenging research issues are still unsolved and need
to be addressed.

Computation-intensive applications generally require high
computing capacity for data processing, which cannot be easily
offered by mobile terminals (e.g., smart phones and wearable
devices) due to their limited resources. Cloud computing [1]
enables on-demand network access to a shared pool of con-
figurable computing resources, which can largely augment on-
device computing capacity. By 2021, it is predicted that 94%
of total workloads and compute instances will be processed
in the cloud, and that the annual IP traffic originated or
terminated at data centers will reach 20.6 Zettabytes (ZB)
[2]. However, the transmission of such huge volume of data
to cloud data centers will not only pose a heavy burden
on the capacity-constrained backhaul and backbone networks,
but also results in unpredictable transmission latency and
degraded Quality of Service (QoS) to end users. To this
end, Multi-Access Edge Computing (MEC) [3] is proposed

as a promising paradigm to address the latency issue by
switching from the conventional centralized cloud computing
architecture to a distributed one [4]. Various existing facilities
such as mobile devices with idle resources, vehicles and MEC
servers deployed at base stations or road side units, could act
as distributed edges. Offloading computation tasks to such
edges that are physically closer to the data sources could
significantly reduce transmission latency and hence improve
the QoS perceived by end users.

In this paper, we formulate the task assignment in MEC to
a one-to-many matching problem by taking into account the
devices’ and MEC servers’ computation capabilities, wireless
channel conditions, and delay constraints. The main goal of
our task assignment mechanism is to reduce overall energy
consumption, while satisfying task owners’ heterogeneous
delay requirements and supporting good scalability. By dis-
patching tasks to edges carefully, our proposed mechanism
can significant reduce the overall energy consumption, and
provides a good compromise between computation complexity
and energy consumption optimization.

The rest of this paper is organized as follows. In Section II,
we give a brief literature review. In Section III, we present our
problem formulation. In Section IV, we propose a matching-
theory based solution and analyze its stability. In Section V, we
conduct simulations to confirm the efficiency of our proposed
mechanism. Finally, in Section VI, we conclude our paper.

II. RELATED WORK

As one of the most promising technologies for improving
computing experience of end users, MEC has attracted con-
siderable attentions from both industry and academia since its
inception. From the industry side, in 2013, IBM and Nokia
Siemens Networks announced the very first MEC platform
named Radio Applications Cloud Server (RACS), which could
run applications directly within a mobile base station. But
the real momentum was achieved in 2014, when an Industry
Specification Group (ISG) focusing on MEC was started in
ETSI to create consensus within the ecosystem on a first set
of MEC specifications, and since then several companies have
proposed semi-proprietary solutions. Arm’s Mbed Edge, offers
a transparent distributed application execution environment to
enable processing of rules and data on gateways, thus enabling
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a wide range of IoT devices to be monitored and controlled
remotely via gateways. Microsoft’s Azure IoT Edge further
integrates machine learning and artificial intelligence (AI) at
gateways, which allows deploying advanced analytics, event
processing, and image recognition services without accessing
the cloud. Intel has been since the beginning of the ETSI
MEC ISG work one of the key contributors and is very
active in delivering cutting edge solutions for network edge
virtualization, offering the first kit of its kind to provide a
Network Function Virtualization (NFV) platform targeted for
MEC application and services.

Many research efforts have focused on MEC as well. In
[5], it is pointed out that providing virtualized resources and
localized services to the edge of mobile networks can better
cater to the versatility of requirements for end users. In [6],
several MEC based use-cases are presented, including video
analytics, smart home, smart city and collaborative edge. In,
[7], the benefits of integrating MEC into the 5G ecosystem are
demonstrated and the key technical challenges are discussed,
e.g., in terms of resource management and mobility support.
In [8], a MEC based solution is proposed to solve the fact
that cloud resources can be utilized to process the medical
sensor data while the unstable and high-latency links between
the cloud and medical smart devices impedes the development
of medical cyber-physical systems (MCPSs). In [9], MEC
is deployed in vehicular ad hoc networks (VANETs), thus
proposing an advanced framework for VANETs that integrates
the flexibility, scalability, and programmability of Software
Defined Networking (SDN) [10] and the low latency, mobility
support, and location awareness enabled by MEC. In [11],
MEC is merged with other 5G related concepts, like millimeter
waves and NFV, so to stress their potentiality to create new
business models for the whole communication ecosystem. In
[12], authors focus on addressing the link breakage issues due
to user mobility in MEC architectures. In [13], the concept
of Fog of Everything (FoE) is introduced, which exploits
the advantages of both the edge computing and Internet of
Everything (IoE).

Another thread of research has been focusing on reducing
energy consumption [14], [15], [16] in MEC architectures. In
[17], authors propose an energy-efficient computation offload-
ing mechanism, which jointly optimizes task offloading and
radio resource allocation so as to achieve minimum energy
consumption under delay constraints. In [18], the tradeoff
between power consumption and transmission delay in the fog-
cloud computing system is investigated. A workload allocation
problem is formulated by taking into account the power
consumption and service delay constraints, and an approxi-
mate approach based optimal workload allocation policy is
proposed. In [19], authors present a Markov decision process
approach for optimally scheduling stochastic tasks, so to
achieve the objective of power-limited delay minimization. In
[20], authors assume that task owners use orthogonal channels
for input data transmission, and a canonical matching game
is formulated to study the formation of a mutual beneficial
relationship between tasks and edge nodes. Finally, in [21], au-

thors formulate the task scheduling and task image placement
in a fog computing supported software-defined embedded
system (FC-SDES) as a mixed-integer nonlinear programming
problem, and propose a computation-efficient algorithm to find
the optimal solution.

Our work is different from the mentioned approaches, as
we concentrate on the task assignment in a MEC based
architecture and propose a distributed and context-aware task
offloading mechanism to reduce the overall energy consump-
tion, while satisfying the tasks’ delay constraints. In particular,
all of the considerable operations are made based on end users’
local information.

III. PROBLEM FORMULATION

In this paper, mobile devices are classified into two cate-
gories: mobile devices with excessive computational capabil-
ities, and those with limited computational capabilities. Note
that all mobile devices may generate tasks but only those
with excessive computational capabilities and MEC servers
can accept offloaded tasks. For the sake of readability, mobile
devices with excessive computational capabilities and MEC
servers are collectively termed as edge nodes (ENs).

Time is divided into multiple time slots. We assume that
most tasks can be completed within one slot, while large-size
tasks are divided into several sub-tasks so that they can also be
completed in one slot. The terminology “task” will be used to
refer to both the task which is going to be computed as a whole
in one slot and the divided sub-task in the rest of this paper.
Furthermore, the number of tasks is M and the set of tasks
is denoted by τ = {τi}Mi=1. On the other hand, the number of
ENs is N and the set of ENs is represented by ε = {εj}Nj=1.
ENs with high computational capability can divide its resource
into several virtual resource units (VRUs) equally such that
tasks can be computed in a parallel manner. The number of
VRUs at EN j is referred to as the quota of EN j, which
is denoted by qj . The computational capabilities of VRUs
at different ENs are assumed to be heterogeneous. We use
the CPU frequency fj (in Hz) to describe the computational
capability of each VRU at EN j.

A. One-to-Many Matching

A one-to-many matching between the task set and the EN
set is considered. Namely, one task can be assigned to at most
one EN, while one EN can accept multiple tasks. Formally,
the one-to-many matching function Φ is defined as:

Φ : {τ} × {ε} ↔ {τ} × {ε}
s.t. 1) Φ(τi) ∈ ε and |Φ(τi)| ∈ {0, 1}

2) Φ(εj) ⊂ τ and |Φ(εj)| ≤ qj
3) Φ(τi) = εj ⇔ Φ(εj) = τi

(1)

Condition 1) implies that each task could be assigned to at
most one EN for execution. Condition 2) implies that each EN
could accept at most its quota of tasks. Condition 3) implies
that if τi is matched to εj then εj is matched to τi as well.



Figure 1. System model for the uplink transmission in MEC architectures

The matching index xij is therefore defined as:

xij =

{
1 if Φ(τi) = εj

0 otherwise
, (2)

where xij = 1 implies that task i is matched to EN j, while
xij = 0 means that task i is not matched to EN j.

B. Delay Constraint

First, we consider the delay constraint which is one of major
concerns that need to be addressed in the task assignment
for MEC. In practise, different task owners have different
time sensitivities. The metric of delay tolerance is a measure
of task owner’s time sensitivity, and it is defined as the
time a computation request is made until the task should be
completed. Specifically, the delay tolerance of each task i is
denoted by Ltol

i .
Since offloading tasks incurs extra transmission energy

consumption and transmission latency, each task owner has to
carefully decide wether to compute its task locally or offload
it to neighbouring ENs. In case of task offloading, the overall
latency generally consists of three components: (i) transmis-
sion delay; (ii) queuing delay; and (iii) computation delay.
First, the transmission delay refers to the time of transferring
the input data or application context to a neighbouring EN
through a wireless connection, which highly depends on the
wireless channel state and the input data size. In case of
local computation, the transmission delay is 0. Second, the
queuing delay is the time a task waits in a queue until it
can be executed. In this article, we assume that each task
exclusively utilize the whole resources of an EN or VRU for
task execution. Therefore, queuing delay could be omitted.
Finally, the computation delay is defined as the time needed
to execute the task, which highly depends on both the EN’s
computation capability, and the size of task.

We focus on the uplink transmission analysis. As shown in
Fig.1, the channel gain from the owner of task i to EN j in
the t-th time slot is γij(t), ptra

i is the maximum transmission
power of the owner of task i, B is the system bandwidth,
N0 is the noise power spectral density at the receiver. The

received signal to interference plus noise ratio (SINR) at EN
j can therefore be expressed as:

Γij(t) =
ptra
i γij

N0 +
∑
k 6=i p

tra
k γkj

(3)

Then the achievable data rate of from the owner of task i
to EN j is given by:

Rij(t) = B log

(
1 +

ptra
i γij

N0 +
∑
k 6=i p

tra
k γkj

)
(4)

Formally, when task i is matched to EN j, the total energy
consumption is denoted by Lij as:

Lij = Ltraij + Lcomij (5)

where Lcomij , and Ltraij represent computational delay and
transmission delay, respectively.

On the one hand, the transmission delay is given by:

Ltraij =


Si

B log

(
1+

ptra
i
γij

N0+
∑
k 6=i p

tra
k
γkj

) if i 6= j

0 otherwise
(6)

where Si denotes the input data size of task i.
On the other hand, the computational delay is given by:

Lcomij =
Ci
fj

(7)

where Ci represents the number of required CPU cycles for
executing task i successfully.

Intuitively, for computation-intensive tasks, computing de-
lay is responsible for a large portion of the overall delay.
Hence, computation-intensive tasks tends to find an EN with
high computing capability to meet their latency constraints,
while other kinds of task may prefer to be computed locally to
save the extra transmission delay incurred by task offloading.

C. Energy Consumption

Energy consumption is another major concern that need to
be addressed in task assignment. The total energy consumption
for executing task i on EN j is denoted by Pij as:

Pij = P tra
ij + P com

ij (8)

where P tra
ij and P com

ij represent the transmission energy con-
sumption of task owner i and the computation energy con-
sumption of EN j, respectively.

On the one hand, the transmission energy consumption of
task owner i is given as:

P tra
ij =


Sip

tra
i

B log

(
1+

ptra
i
γij

N0+
∑
k 6=i p

tra
k
γkj

) if i 6= j

0 otherwise
(9)

The transmission energy consumption is 0 in case of the local
computation mode.

On the other hand, the computation energy consumption of
EN j is given as:

P com
ij =

Cip
com
j

fj
(10)



where fj (in Hz) is the CPU frequency of node j, and pcom
j

(in Joule per second) represents its energy consumption level.

D. Utility Functions and Optimization Problem

In matching theory, utility is used to evaluate the gain of
a agent achieved by a certain matching. We first define the
utility of task i, if it is computed on EN j as:

uij =

{
ri − P tra

ij − λCi i 6= j

ri − P com
ij otherwise

(11)

where ri is the owner’s reservation price (i.e., satisfaction) if
task i could be finished within the designated delay tolerance;
λ is the unit price per CPU cycle that the owner of task i pays
for the computation service offered by other EN. Note that the
overall payment λCi is proportional to the size of the task.

The utility of EN j achieved by completing task i is given
as:

vij =

{
λCi − P com

ij i 6= j

0 otherwise
(12)

Resource-limited devices seek to offload their computations
to nearby MEC servers while taking into account devices’
and servers’ computation capabilities, co-channel interference,
and reliability constraints. The fundamental problem under
consideration is cast as a network-wide utility maximization
problem for task assignment, subject to delay requirements.
By summing up the utility of all tasks and ENs over discreet
xij , we have:

N∑
i=1

N∑
j=1

(uij + vij)xij =

N∑
i=1

N∑
j=1

(
ri − P tra

ij − P com
ij

)
xij

(13)

The utility maximization problem is transformed to an
energy consumption optimization problem, while satisfying
task owners’ heterogeneous delay requirements. Our delay-
constrained energy consumption optimization problem is
therefore defined as:

max
{xij}

M∑
i=1

N∑
j=1

(
ri − P tra

ij − P com
ij

)
xij

s.t. 1)
N∑
j=1

xij ≤ 1,∀i ∈ {1, ...,M}

2)
N∑
i=1

xij ≤ qj ,∀j ∈ {1, ..., N}

3) xijLij ≤ Ltol
i ,∀i ∈ {1, ...,M}

4) uijxij ≥ 0,∀i ∈ {1, ...,M}
5) vijxij ≥ 0,∀i ∈ {1, ...,M}
6) Γij ≥ xijΓ0,∀i ∈ {1, ..., N}
7) xij ∈ {0, 1},∀i ∈ {1, ...,M} and ∀j ∈ {1, ..., N}

(14)

Condition 1) guarantees that each task will be assigned to
at most one EN; Condition 2) guarantees that each EN can

accept at most its quota of tasks; Condition 3) guarantees that
each task will be completed on time; Condition 4) an 5) imply
that the utility of each task and EN should not be negative.
Condition 6) implies that the SINR should be higher than a
threshold value (i.e., Γ0) to guarantee a successful transmission
(reliable transmission constraint); Condition 7) implies that a
task could be either matched or unmatched.

The optimization problem shown in Eq.(14) is in the stan-
dard form of binary linear programming problem (BLP) with a
bundle of constraints, which is proven to be NP-complete [22].
Furthermore, given the utility functions shown in Eq.(11) and
Eq.(12), when multiple task owners in the proximity use the
same sub-channel for input data transmission, the inter-user
interference increases and the achievable data rate decreases.
As a key consequence, the order of preferences for a task
may change. In other words, the utility of an agent (task or
EN) depends on the other agents’ choice, which are called
externalities in matching theory. If the externalities are not well
managed, an agent may have to keep changing its preference
order responsive to the changes in other task-EN associations,
and a stable result could never be expected.

IV. SWAP-MATCHING BASED ALGORITHM

Since the optimization problem shown in Eq.(14) is NP-
complete, and the utility of each agent is strongly affected by
the externalities, we hence propose a heuristic swap matching
[23] based algorithm to solve the optimization problem. The
purpose of the proposed algorithm is to obtain a practical and
stable solution to the optimization problem in a distributive
fashion. More specifically, all decision makings could be made
locally by each task and EN.

A. Swap Matching
Definition 1. Given a matching η and two task-EN pairs
(τi, εm), (τj , εn) ∈ η, a swap matching is defined as ηmnij =
{η\(τi, εm), (τj , εn)} ∪ {(τj , εm), (τi, εn)}, such that

uin ≥ uim and ujm ≥ ujn
vin ≥ vjn and vjm ≥ vim

(15)

Formally, ηmnij � η implies that ηmnij is a swap matching of
η.

Definition 2. A matching function η is called two-side ex-
change stable if there is no agent that has incentive to swap
from its current association.

Given the definitions, a matching η with a pair (τi, εm) ∈ η
is considered to be two-side exchange stable if there does not
exist any pair (τj , εn) ∈ η , for which task i prefers EN n
over EN m, or any EN m which prefers task j over i. Such
two-side exchange stability is achieved by guaranteeing that
swaps occur if and only if the swaps are beneficial for all of
the agents involved. In particular, a swap matching ηmij can
only occur, if this causes no decline of the utility for any of
the agents in {τi, τj , εm, εn}, without decreasing the utilities
of the other agents (both tasks and ENs) that are not involved
in the swap. When the stability is achieved, swap matching
will no longer occur in the result.



B. Algorithm

A detailed specification of the proposed concept is shown
in Algorithm 1, which consists of an initialization stage, and
an iterative swap matching stage.

In the initialization step, each agent firstly exchanges in-
formation (e.g., input data size, required CPU cycles, and
computing capacity) with the agents in its proximity. In
particular, the set of indexes of ENs to which the input data
of task i could be successfully transmitted is denoted by:

φε
i = {j′|p

tra
i γij′(t)

N0
≥ xij′Γ} (16)

Secondly, each task is initially matched to a randomly selected
EN as long as all conditions in Eq.(14) can be satisfied.
Finally, the owner of each task i ranks EN j ∈ φε

i in order
of preference. The preference is set up based on the utility
function that qualifies the QoS achieved by a certain task-EN
matching shown in Eq.(11).

In each iteration, the owner of each task i firstly proposes
to its most preferred EN in φε

i except for its current partner:
εm. If ηmnij � η and all conditions in Eq.(14) are satisfied,
then the swap operation will be approved. Otherwise the swap
operation will be rejected. The algorithm proceeds iteratively
and terminates when there is no task that has incentive to swap
from its current association.

V. NUMERICAL EVALUATION

Simulations are conducted to evaluate the performance of
the proposed scheme. We simulate a 50 m×50 m square area
with 10 ENs randomly deployed on the area. The input data
size and the number of required CPU cycles of each task are
randomly selected within the range of [400, 800] kB, and
[1, 5]×109, respectively. The delay tolerance of each task is
set to 5 sec. The transmission power (ptra

i ) and computing
energy consumption level (pcom

i ), are set to 36 dBm and 40
W, respectively. Moreover, the CPU frequency of each EN
is randomly selected within the range of [2, 4] GHz. Other
simulation settings can be found in TABLE I. We use a random
matching scheme, and a sequential optimal matching (SOM)
scheme for comparison.
• Random Matching: tasks and ENs are randomly paired

together as long as all conditions in Eq.(14) are satisfied.
• SOM: tasks are sequentially matched to their most pre-

ferred ENs as long as all conditions in Eq.(14) are
satisfied.

Figure 2 and 3 depict the overall energy consumption and
the overall delay with varying number of tasks. Compared
to the random matching and the SOM schemes, the overall
energy consumption of the proposed scheme is reduced by
16.04% and 15.21%; the overall delay of the proposed scheme
is reduced by 18.77% and 14.34%, respectively. This is not
surprising, because in our proposed scheme, each agent (task
or EN) ranks the agents in the opposite set based on a
utility function that captures the energy consumption, and our
matching algorithm in nature guarantees the overall energy
efficiency. Although the energy consumption and the delay

Algorithm 1 The proposed algorithm
1: Step 1: Initialization stage
2: The owner of each task i broadcasts its input data size Si,

the number of required CPU cycles Ci to its neighbouring
ENs. ENs that received the broadcast message replies with
their CPU frequency fj .

3: Each task is initially matched to a randomly selected EN,
as long as all conditions in Eq.(14) are satisfied.

4: Each task then calculates its utility, and constructs its
preference list according to Eq.(11).

5: Step 2: Swap matching stage
6: while φε

i = {j′|p
tra
i γij′ (t)

N0
≥ xij′Γ0} is not empty do

7: Given the current matching (τi, εm), each τi makes a
proposal to a neighbouring node (except for its current
partner εm) that ranks the first in its preference list: εn.

8: for each task j that is currently matched to εn do
9: if ηmnij � η and all conditions in Eq.(14) are

satisfied then
10: The swap operation is approved: ηmnij → η.
11: else
12: The swap operation is denied.
13: end if
14: end for
15: end while
16: Step 3: End
17: while there exist a task that can find its swap matching

do
18: Go to Step 2.
19: end while

Table I
SIMULATION SETTINGS

Simulation parameter Value
Number of ENs (N ) 10

Number of Tasks (M ) (0,50]
Input data size (Si) [400, 800] kB

Number of required CPU cycles (Ci) [1, 5]×109

Delay tolerance (Ltol
i ) 5 sec

Maximum transmission power (ptra
i ) 36 dBm

Energy consumption level (pcom
j ) 40 W

Quota (qj ) 1, 2, or 3
System bandwidth (B) 20 MHz

Channel power gain (γij ) −40d−4 (dB)
CPU frequency (fj ) [2, 4] GHz

Noise power spectral density (N0) -110 dB
Unit price per CPU cycle (λ) 1.5

SINR threshold value (Γ0) - 3 dB

constraint are also taken into account when pairing up ENs and
tasks in the SOM scheme, earlier paired task-ENs are likely
to starve the task-ENs with higher energy efficiency. The gap
between the proposed scheme and the SOM scheme exactly
shows the efficiency achieve by performing swap operations.
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Figure 2. Power consumption of the proposed scheme versus the random
matching and the SOM schemes.
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Figure 3. Overall latency of the proposed scheme versus the random matching
and the SOM schemes.

VI. CONCLUSIONS

In this paper, we propose a context-aware task assignment
scheme for MEC systems aiming at optimizing overall energy
consumption, while satisfying task owners’ heterogeneous de-
lay requirements. The task assignment problem is formulated
as a matching game with externalities, where tasks and ENs
set up preferences over one another so as to be matched to
their preferred partners. Then we propose a heuristic swap
matching based algorithm that solves the energy consumption
minimization problem in focus. Simulation results confirm that
our proposed scheme outperforms the random matching and
the SOM schemes in terms of reducing the overall energy
consumption and latency.

REFERENCES

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” 2011.

[2] Cisco, “Cisco global cloud index: Forecast and methodology, 2016-2021
white paper,” Feb. 2018.

[3] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in
2016 10th International Conference on Intelligent Systems and Control
(ISCO), Jan 2016, pp. 1–8.

[4] ETSI, “Mbile-edge computing-introductory technical white paper,” Sept.
2014.

[5] T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun, “Fog computing:
Focusing on mobile users at the edge,” CoRR, vol. abs/1502.01815,
2015. [Online]. Available: http://arxiv.org/abs/1502.01815

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[7] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenarios, and
challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54–61,
April 2017.

[8] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient re-
source management in fog computing supported medical cyber-physical
system,” IEEE Transactions on Emerging Topics in Computing, vol. 5,
no. 1, pp. 108–119, Jan 2017.

[9] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined
networking-based vehicular adhoc network with fog computing,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), May 2015, pp. 1202–1207.

[10] Z. Zhou, L. Tan, B. Gu, Y. Zhang, and J. Wu, “Bandwidth slicing in
software-defined 5g: A stackelberg game approach,” IEEE Vehicular
Technology Magazine, vol. 13, no. 2, pp. 102–109, June 2018.

[11] V. Frascolla, J. Englisch, and L. Chiaraviglio, “Millimeter-waves, mec,
and network softwarization as enablers of new 5g business oppor-
tunities,” in 2018 IEEE Wireless Communications and Networking
Conference (WCNC), Barcelona, Spain, Apr. 2018, pp. 16–19.

[12] E. Ahmed, A. Naveed, A. Gani, S. H. A. Hamid, M. Imran, and
M. Guizani, “Process state synchronization for mobility support in
mobile cloud computing,” in 2017 IEEE International Conference on
Communications (ICC), May 2017, pp. 1–6.

[13] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H.
Abawajy, “Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE Access, vol. 5,
pp. 9882–9910, 2017.

[14] Z. Zhou, K. Ota, M. Dong, and C. Xu, “Energy-efficient matching for
resource allocation in d2d enabled cellular networks,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 6, pp. 5256–5268, June 2017.

[15] Z. Zhou, J. Gong, Y. He, and Y. Zhang, “Software defined machine-to-
machine communication for smart energy management,” IEEE Commu-
nications Magazine, vol. 55, no. 10, pp. 52–60, October 2017.

[16] Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and
M. Guizani, “When mobile crowd sensing meets uav: Energy-efficient
task assignment and route planning,” IEEE Transactions on Communi-
cations, pp. 1–1, 2018.

[17] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge
computing in 5g heterogeneous networks,” IEEE Access, vol. 4, pp.
5896–5907, 2016.

[18] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, Dec 2016.

[19] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT), July 2016, pp.
1451–1455.

[20] B. Gu, Y. Chen, H. Liao, Z. Zhou, and D. Zhang, “A distributed and
context-aware task assignment mechanism for collaborative mobile edge
computing,” Sensors, vol. 18, no. 8, 2018.

[21] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task
scheduling and image placement in fog computing supported software-
defined embedded system,” IEEE Transactions on Computers, vol. 65,
no. 12, pp. 3702–3712, Dec 2016.

[22] R. M. Karp, Complexity of Computer Computations. Springer, Boston,
MA, 1972, ch. Reducibility among Combinatorial Problems, pp. 85–103.

[23] F. Pantisano, M. Bennis, W. Saad, S. Valentin, and M. Debbah,
“Matching with externalities for context-aware user-cell association in
small cell networks,” in 2013 IEEE Global Communications Conference
(GLOBECOM), Dec 2013, pp. 4483–4488.


