
Please cite the Published Version

Eleyan, Amna and Scott, Thomas (2019) CoAP based IoT data transfer from a Raspberry Pi
to Cloud. In: International Symposium on Networks, Computers and Communications (ISNCC
2019), 18 June 2019 - 20 June 2019, Istanbul, Turkey.

DOI: https://doi.org/10.1109/ISNCC.2019.8909150

Publisher: IEEE

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/622825/

Usage rights: In Copyright

Additional Information: © 2019 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-2025-3027
https://doi.org/10.1109/ISNCC.2019.8909150
https://e-space.mmu.ac.uk/622825/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


CoAP based IoT data transfer from a Raspberry Pi
to Cloud

Thomas Lee Scott
School of Computing, Mathematics & Digital Technology

Manchester Metropolitan University
Manchester, United Kingdom

tomscott292@gmail.com

Amna Eleyan
School of Computing, Mathematics & Digital Technology

Manchester Metropolitan University
Manchester, United Kingdom

A.Eleyan@mmu.ac.uk

With 48% of the UK market considering their smartphone
as the most important device for Internet access [4], allowing
users to use their handheld devices to view and manage their
data has become increasingly necessary. Cloud platforms that
allow access from any device go a long way to solving this
problem. Storing sensor data in the cloud allows for easy
access to users from any device as well as allowing for scalable
storage.

As these devices are limited in computing power, it is
important that the devices communicate efficiently. This paper
explores the use of CoAP as a protocol to transmit sensor data
from a small, low powered device (RPi) to send sensor data
to the cloud.

In this system, a sensor will be attached to the RPi; the
RPi will be responsible for taking the data from the sensor
and then using the CoAP protocol to transmit this data to the
cloud platform.

A. Motivation

With the increasing adoption of IoT systems and technology
in day to day life, it becomes increasingly important for the
devices to be able to operate at peak efficiency. As there are
numerous technologies and standards that allow different IoT
devices to communicate, this paper investigates the use of
CoAP in order to determine: 1) how CoAP transfers data from
an IoT device to another CoAP node. 2) how a RPi can be
used as a flexible platform to provide sensor data. 3) how this
data can be sent to a cloud platform.

B. Related Work and Contribution

Rode et al. [5] carries out a similar investigation, using a
RPi device as an IoT node connected to sensors. The RPi
collects the data from the sensors and then transmits the data
to a HTTP server. The HTTP server acts as a stand in for a
cloud platform and recieves the sensor data and displays it to
the user. Rode et al. [5] propose using the MQTT protocol
to transmit the sensor data from the RPi to the HTTP server.
MQTT is a popular IoT protocol developed to specialise in
the transfer of data from Wireless Sensor Networks (WSNs)
[6]. MQTT works on a publish/subscribe model where the
RPi acts a publisher, publishing the sensor data to the broker
and the HTTP server acts as a subscriber. The MQTT broker

Abstract—This paper describes the development of an Internet 
of Things (IoT) monitoring system using ThingsBoard IoT 
platform. ThingsBoard is an open source software tool, which 
is used to collect, monitor and visualise streams of data received 
in real-time by sensor devices. The platform can be hosted in 
the cloud and provides Message Queuing Telemetry Transport 
(MQTT), The Constrained Application Protocol (CoAP) and 
HyperText Transfer Protocol (HTTP) protocols support. MQTT 
and HTTP protocols have mostly been used to develop various 
IoT systems. However, this paper investigates the use of the CoAP 
in transmitting sensor data to the cloud. It aims to explore how 
CoAP fits i nto t he I oT e cosystem a nd w hat a dvantages i t offers 
over other IoT protocols. A CoAP–based IoT architecture is 
proposed using a Raspberry Pi (RPi) and sensors acting as IoT 
endpoints. These endpoints will poll sensors (e.g. temperature and 
humidity) and using CoAP will send the latest data formatted 
as JavaScript Object Notation (JSON) to the ThingsBoard cloud 
endpoint at regular intervals. ThingsBoard can create real-time 
IoT Dashboards for sensors data visualization and share it with 
users.

Index Terms—Internet of Things, CoAP, M2M, constrained 
devices, Raspberry Pi board.

I. INTRODUCTION

The reduced cost of low powered small devices, such
as the RPi, has made it more accessible to create bespoke
systems. This combined with the increasing popularity of
home automation allows for these devices to be used in the
Internet of Things (IoT).

The IoT can be viewed as a large distributed network
consisting of highly dynamic devices [1]. Small low pow-
ered “smart” devices can connect and communicate with one
another. Some of these devices can contain or communicate
with sensors that record real-world data. This data can then be
transmitted to other devices allowing them to trigger actions.
In this way groups of smart devices can be used to improve
day to day situations such as automated houses (thermostats
and heating etc.), security and improved monitoring.

The Raspberry Pi [2] is a credit card sized computer
developed by the Raspberry Pi Foundation. The RPi’s ability
to act as a GNU/Linux server and the interfacing services
provided by its general purpose I/O pins make it a popular
choice of hardware for IoT applications [3].



is responsible for coordinating subscribers to the data and
subscribers will usually have to contact the broker explicitly
in order to subscribe [6]. This contrasts to the approach
taken in this proposal using CoAP, where each node in the
CoAP network acts as both a server and a client in a more
traditional HTTP model and nodes within the infrastructure
will communicate with one another directly.

Jassas et al. [7] use a RPi connected to sensors to measure
patients’ body temperature and transmit this data wirelessly
to the cloud. In that paper, the data was transmitted to an
Amazon Web Services (AWS) cloud computing platform.
There the data was stored, mined in order to make decisions,
and displayed to the user allowing the data to be updated and
reviewed. The data was transmitted from the RPi to the AWS
server using Secure Socket Layer (SSL). The development of
specialised protocols for constrained devices, such as CoAP
could allow these health monitoring RPis to save power, save
network bandwidth and potentially receive more readings to
process.

Lee et al. [8] propose a RPi combined with a DHT22 sensor
to measure the indoor temperature in real-time. This data was
transmitted using HTTP to a Representational State Transfer
(REST) Application programming interface (API), where the
temperature was stored in a database. These temperatures were
then used to inform an application replicating the actions of
an air conditioner. The use of a RESTful API in this paper
would allow the project to easily be adapted to using CoAP
to replace HTTP.

Most of the above related IoT architectures are deployed
using either MQTT or HTTP. However, this paper proposes a
CoAP–based IoT architecture, which uses CoAP to transmit
sensor data from RPi to ThingsBoard IoT cloud platform to
monitor and visualise sensor devices and share it with users.

II. BACKGROUND

A. Internet of Things

The Internet of Things (IoT) is an umbrella term used to
describe physical ‘smart’ devices equipped with telecommu-
nication interfaces, connected to one another via the Internet
[9]. Whereas the Internet traditionally connected computers,
the embedding of electronics into physical objects has allowed
the Internet to expand [1]. These devices can contain sensors
which will produce data and in some cases, these devices
can be controlled remotely. The combination of these devices
in a network, especially when the actions of one device are
informed by the data from another device, is the foundation of
IoT [10]. IoT systems can impact in many areas such as home
automation, where devices can work together to automate
heating and security aspects of the home [8], and medicine
where devices can be used as monitors to provide real-time
information about patient health [3].

Figure 1: Basic IoT Architecture.

Although IoT lacks a standardized architecture approved by
an authorized body [10], Figure 1 illustrates various common
components present within any given IoT architecture. The
sensor/actuator is the component that will receive data from
the real world or perform a physical action. This data is
then transmitted to a device which is responsible for the
sensor/actuator. The device may be responsible for multiple
sensors, as in Jassas et al. [7], which connected multiple e-
health sensors to a single RPi device. This device will then
communicate with a gateway. The gateway is responsible for
ensuring that the data is sent to the correct destination. Within
CoAP, the gateway would be a router ensuring messages are
sent to the correct endpoints. The cloud is the final destination
for the sensor data; here, the data will be stored and can be
processed for further analysis.

B. The Constrained Application Protocol

The Constrained Application Protocol (CoAP) is a transfer
protocol specialised for use with the web, constrained nodes
and constrained networks [11]. The protocol is designed
for Machine-to-Machine (M2M) applications and is ideally
suited for use within the IoT ecosystem. CoAPs features of
observable resources, multicasting, M2M discovery make it a
better fit for IoT applications than HTTP [12].

CoAP recognises that web services have become dependent
on REST architecture and works to implement a subset of
REST common with HTTP while optimising for M2M ap-
plications [11]. It achieves this by offering built-in discovery,
multicast support and asynchronous message exchanges [11].

CoAP uses a compact binary format with a fixed header
size of 4 bytes, exchanging messages over User Datagram
Protocol (UDP) or Datagram Transport Layer Security (DTLS)
to send messages securely. CoAP resources are addressable
by Uniform Resource Identifiers (URIs) and can be interacted
with through the same methods as HTTP: GET, PUT, POST
and DELETE.

With regard to reliability, CoAP offers four types of mes-
sages: Confirmable, Non-Confirmable, Acknowledgement and
Reset [13]. After a Confirmable request is sent to a CoAP
endpoint, the endpoint will respond with an Acknowledgement
message. This message can contain the requested data in a
‘piggybacked’ response. Otherwise, an empty Acknowledge-
ment message is sent and a Confirmable message will be sent
once the data is ready. The original requester will then respond
with an empty Acknowledgement message to confirm receipt
of the data [11].



III. DESIGNED COAP-BASED IOT ARCHITECTURE

Figure 2: CoAP-based IoT Architecture.

The system shall consist of four main elements: the sensor,
the RPi, a CoAP based gateway and the cloud platform,
as shown in Figure 2. The sensor will collect the data and
pass this to the RPi. The RPi will then be responsible for
manipulating the data into a suitable format for transmission
via CoAP. The implementation of CoAP will communicate
with the cloud platform. The cloud platform will store the
data, allowing access to users. The parts of the system are
explained below:

Figure 3: Wiring diagram for connecting the DHT22 sensor
to the RPi.

Sensors The DHT22/AM2302 digital relative temperature and
humidity sensor will be used to collect temperature and
humidity data from the environment. The DHT22 has
three pins: One for the 3.3–5.5V power, one for data
output and one pin for neutral. The RPi can connect to
the DHT22 using the RPi’s General Purpose Input Output
(GPIO) ports to provide power, a ground connection
and an output for the DHT22’s data. This connection is
shown in Figure 3. The DHT is capable of measuring
temperatures in the range of -40 to 80 degrees Celsius
and reporting a relative humidity of between 0 to 100%
to an accuracy of ±2%. A disadvantage of the DHT22
sensor is that it will only report new data once every two
seconds, leading to reading being up to two seconds old.

Device The Raspberry Pi 3 Model B is a Linux-based mi-
crocomputer. It includes built-in WiFi, GPIO ports, a
1.2GHz Quad-Core processor, MicroSD card slot, mem-
ory, video/audio outputs, Ethernet port, and power source
[2]. It uses a MicroSD memory card as a boot drive
and runs a specialised GNU/Linux distribution named
Raspbian [14]. Although the RPi can be attached to a
monitor using the built-in HDMI port and controlled with
a USB mouse and keyboard, this study will connect to the
RPi using SSH. The RPi will run a Python script which
will collect the data from the DHT22 sensor and send it
to the CoAP endpoint in the cloud.

Gateway As this is a CoAP based architecture and as such
mirrors the workings of HTTP the gateway will be the
router of the local network. This will be responsible
for directing the CoAP messages to the CoAP endpoint
identified by the cloud platforms URI.

Cloud This study will make use of an open source cloud
platform, ThingsBoard [15]. ThingsBoard is an IoT plat-
form that allows the collection and visualisation of data
from IoT devices, a connection from IoT devices using
MQTT, CoAP or HTTP, the definition of rules to validate
incoming data among other features. The RPi will use the
URI provided by the ThingsBoard CoAP API to send
the sensor data to. Once ThingsBoard receives the sensor
data it will update a dashboard which will show the
temperature and humidity data provided by the sensor
over time, this dashboard is displayed in Figure 6.

The complete design of this system and how each compo-
nent will interact is illustrated in Figure 2.

The DHT22 sensor will connect to the RPi using the RPi’s
on board GPIO ports as shown in Figure 3. The AdaFruit
Python DHT library will be used in a Python script to get
the sensor data from the DHT22 sensor. The AdaFruit Python
DHT library is a library that provides methods to interact with
DHT sensors connected to the RPi’s GPIO pins. A CoAP
endpoint will need to be created on the RPi in order to send
the sensor data to the cloud. Using the CoAPthon Python
library the script will create a CoAP endpoint on the RPi. The
CoAPthon library is a Python implementation of the CoAP
protocol.

1: procedure Get sensor data
2: while running do
3: Get data from sensor;
4: if data is returned then
5: Format data into JSON object;
6: Create CoAP POST message;
7: Send CoAP message;
8: else
9: Wait interval time and continue;

10: end if
11: end while
12: end procedure

Figure 4: Get sensor data algorithm



This endpoint will act as an interface for the DHT22 sensor.
At intervals, the script will use the AdaFruit DHT library [16]
methods to retrieve the DHT22 sensor’s current temperature
and humidity readings. This data will then be formatted into
JSON in order to be transmitted. Then using the CoAPthon
[17], [18] library a CoAP message will be created with the
sensors JSON data as the payload. This loop will then repeat
while the RPi is active, this process is formalised in Figure 4.
This message will then be sent over UDP to a CoAP URI
hosted by the cloud platform as illustrated in Figure 5.

Figure 5: Diagram showing the communication between RPi
and the Cloud.

The cloud’s responsibility will be to receive the POST
requests from the RPi containing the JSON data, format it and
display it to the user, who will be accessing the cloud platform
via HTTP. Once the ThingsBoard platform has received the
request it should send an Acknowledgement message to the
CoAP endpoint, containing a 2.01 (Created) Response Code or
a 2.04 (Changed) Response Code and the URI of the created
/ updated resource [11].

IV. COAP-BASED IOT ARCHITECTURE IMPLEMENTATION

To implement the proposed architecture, first, the RPi was
loaded with a headless distribution of the Raspbian [14]
operating system. Raspbian is a specialised GNU/Linux dis-
tribution based on Debian, optimized for the RPi. It comes
with over 35,000 packages including the Python programming
language. Python will be used to create and run the script
that comprises the implementation of the client side system.
After setting up the RPi and connecting the DHT22 sensor
to the RPi’s GPIO pins as per Figure 3, a Python script was
constructed to collect the sensor data and, using CoAP, send
the data to the ThingsBoard [15] endpoint.

The CoAP client is created using the Python package,
CoAPthon [18]. This package contains a HelperClient
class that takes a CoAP path and port upon initialisation. An
object is created using the path to the ThingsBoard telemetry
endpoint and the default CoAP port of 5683. This CoAP client
object will be used to send the POST message containing the
data to the ThingsBoard cloud.

To retrieve the readings from the DHT22 sensor, first, the
Adafruit DHT22 library [16] was imported to the script. This
library contains a read_retry() method that will attempt
to read the temperature and humidity data from the DHT22
sensor and return values as floating point decimals; if no
reading is available it will try again up to a specified number
of retries, defaulting to fifteen. This default limit is specified
by the CoAPthon package. This method is shown in Listing 2.

1 {
2 'temperature': 22.6,
3 'humidity': 30.05
4 }

Listing 1: Sensor data formatted to JSON for message payload.

Listing 2: Method for getting data from a DHT22 sensor.

Once the sensor data is returned, the payload is constructed.
The payload consists of the temperature and humidity data
formatted into a JSON object, shown in Listing 1. This data
is converted using the built-in Python JSON library.

Listing 3: Method for sending formatted data to the cloud.

With the formatted payload, the CoAP message is sent
to the ThingsBoard endpoint; the responding message from
the ThingsBoard node is printed to the console. The Python
procedure that sends the data to the ThingsBoard endpoint
can be seen in Listing 3. Here, the script will wait a specified
amount of time and then will repeat the process from retrieving
the data. This process is shown in Figure 4.

Once the ThingsBoard cloud receives the data, the data
is processed through the ThingsBoard cloud’s rules engine.
For this study, no extra rules have been applied to the data
handling. The default handling of data sent to the telemetry
endpoint is to identify the device that is sending the data,
store the values and update any dashboards associated with that
device. The device is identified by the device access token sent
as part of the request. An image of the ThingsBoard dashboard
for this study is shown in Figure 6. These dashboards are
customisable and allow for the data to be shown in realtime
or show a selection of historical results. The dashboard in
Figure 6 has four display widgets: one showing the last
temperature reading, one showing all the latest temperature
readings for the previous hour, one showing the last humidity
reading and one showing all humidity readings in the last hour.

V. CONCLUSION AND FUTURE WORK

A CoAP–based IoT architecture is proposed using a Rasp-
berry Pi, temperature and humidity sensors and ThingsBoard
IoT platform to monitor and visualise sensors data. The
CoAP protocol is used to send the temperature and humidity
data formatted as JavaScript Object Notation (JSON) to the
ThingsBoard cloud endpoint at regular intervals. ThingsBoard



Figure 6: ThingsBoard dashboard created in implementation showing temperature and humidity data.

is deployed to monitor and visualise data by creating IoT
Dashboards and updating in real-time.

The RPi has been connected to a DHT22 temperature
and humidity sensor using the RPis GPIO pins. A Python
script running on the RPi uses an external library provided
by AdaFruit to poll the sensor at intervals and obtain the
current temperature and humidity. Using the CoAPthon li-
brary, a CoAP client is created and used to send a CoAP
POST message containing the sensor data to a ThingsBoard
telemetry endpoint. This data is then displayed to the user in
a dashboard.

Further work can be done with the data once it has been
sent to the cloud. The ThingsBoard platform offers many
options regarding actions performed, based on data received
from the IoT devices. Setting up alerts when data falls outside
of expected ranges, and sending messages to other IoT devices,
as a result, would allow this study to be applied to other uses
such as smart home automation. It would also be of interest
to connect an actuator to the RPi and see how this could be
manipulated based on CoAP messages sent from the cloud.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac,
“Internet of things: Vision, applications and research
challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–
1516, Sep. 1, 2012.

[2] R. Pi, “Model B,” Raspberrypi. org. Saatavissa:
https://www. raspberrypi. org/products/raspberry-pi-3-
model-b/. Hakupiv, vol. 6, p. 3, 2018.

[3] R. Kumar and M. P. Rajasekaran, “An IoT based
patient monitoring system using raspberry Pi,” in 2016
International Conference on Computing Technologies
and Intelligent Data Engineering (ICCTIDE’16), Jan.
2016, pp. 1–4.

[4] Ofcom. (Aug. 1, 2018). The Communications Market
2018: Narrative report.

[5] S. D. Rode, S. Sagrolikar, and M. S. Kulkarni, “IOT
based Raspberry PI home Automation Using Cloud,”
vol. 3, no. 2, p. 5, 2017.

[6] U. Hunkeler, H. L. Truong, and A. Stanford-Clark,
“MQTT-S A publish/subscribe protocol for Wireless
Sensor Networks,” in 2008 3rd International Confer-
ence on Communication Systems Software and Mid-
dleware and Workshops (COMSWARE ’08), Jan. 2008,
pp. 791–798.

[7] M. S. Jassas, A. A. Qasem, and Q. H. Mahmoud,
“A smart system connecting e-health sensors and the
cloud,” in 2015 IEEE 28th Canadian Conference on
Electrical and Computer Engineering (CCECE), May
2015, pp. 712–716.

[8] C. Lee, S. Park, Y. Jung, Y. Lee, and M. Mathews, “In-
ternet of Things: Technology to Enable the Elderly,” in
2018 Second IEEE International Conference on Robotic
Computing (IRC), Jan. 2018, pp. 358–362.

[9] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi,
“Long-range communications in unlicensed bands: The
rising stars in the IoT and smart city scenarios,” IEEE
Wireless Communications, vol. 23, no. 5, pp. 60–67,
Oct. 2016.

[10] R. Minerva, A. Biru, and D. Rotondi, “Towards a
definition of the Internet of Things (IoT),” IEEE Internet
Initiative, vol. 1, pp. 1–86, 2015.



[11] Z. Shelby, K. Hartke, and C. Bormann, “The Con-
strained Application Protocol (CoAP),” RFC Editor,
RFC7252, Jun. 2014.

[12] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium:
Scalable cloud services for the Internet of Things with
CoAP,” in 2014 International Conference on the Inter-
net of Things (IOT), Oct. 2014, pp. 1–6.

[13] P. Bellavista and A. Zanni, “Towards better scalability
for IoT-cloud interactions via combined exploitation
of MQTT and CoAP,” in 2016 IEEE 2nd Interna-
tional Forum on Research and Technologies for Society
and Industry Leveraging a Better Tomorrow (RTSI),
Bologna, Italy: IEEE, Sep. 2016, pp. 1–6.

[14] Raspbian, Raspbian GNU/Linux 9.6 (stretch), ver-
sion 9.6, Raspbian, Nov. 2018. [Online]. Available:
https://www.raspbian.org (visited on 12/20/2018).

[15] ThingsBoard, Inc., ThingsBoard, version 2.2.0, Things-
Board, Inc., Nov. 29, 2018. [Online]. Available: https:
//thingsboard.io (visited on 12/20/2018).

[16] Adafruit, Adafruit Python DHT, version 1.4.0,
Adafruit, Nov. 7, 2018. [Online]. Available: https :
/ / github. com / adafruit / Adafruit Python DHT (visited
on 12/20/2018).

[17] G. Tanganelli, C. Vallati, and E. Mingozzi, “CoAPthon:
Easy development of CoAP-based IoT applications with
Python,” in 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), Dec. 2015, pp. 63–68.

[18] G. Tanganelli, CoAPthon3, version 1.0.1, Jan. 25, 2018.
[Online]. Available: https : / / github . com / Tanganelli /
CoAPthon3 (visited on 12/20/2018).


