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Piston-modal wave resonance between a ship section and a bottom mounted terminal is studied by employing a numeri-
cal wave flume based on OpenFOAM R© package. A systematic investigation on the piston-modal behavior is performed
to characterize the influence of fluid viscosity and flow rotation. Around the resonant frequency, the fluid viscosity and
flow rotation not only dissipate the wave amplitude in the narrow gap, but also increase the wave amplitude in the
upstream of the box. The dynamic mechanism behind the phenomenon is found to be the interaction between the
energy dissipation induced by the fluid vortical flow and energy transformation associated with free surface motion.
The increased incident wave amplitude can cause the normalized wave amplitudes and wave forces to deviate more
from the potential flow results; while the variation of reflection coefficient is dependent on box-wall geometries. All of
these phenomena imply more significant effect of fluid viscosity and flow rotation with the increase of incident wave
amplitude, but the energy dissipation is not the only factor in piston-modal resonance.

In this work, we evaluated wave resonance in the narrow
gap formed by a ship section in front of a wall. The focus
of this study is to examine the interaction between the en-
ergy dissipation induced by the fluid vortical flow and en-
ergy transformation associated with free surface motion,
by which some dynamic mechanisms of gap resonance can
be revealed.

I. INTRODUCTION

In the last two decades, the topic of resonant fluid motion
within a vertical gap between multiple bodies in close prox-
imity has been receiving increasing attentions. Being exposed
to incident wave actions, the fluid inside the narrow gap may
perform considerable free surface oscillations and lead to ex-
tremely large wave forces on the vessels. This is a key techni-
cal challenge for the safety of a Liquefied Natural Gas (LNG)
carrier or shuttle oil tanker alongside a Floating Liquefied Nat-
ural Gas (FLNG) or in front of an offshore terminal for load-
ing and offloading operations. Similar phenomena may also
happen in the fluid resonance within a moonpool or the ship
in front of a gravity wharf. Therefore, understanding the fun-
damental physics in the resonant fluid flows is important to
the marine operation and structure safety.

The appearance condition of the fluid resonance in the nar-
row gap can be estimated roughly according to the natural
frequency of fluid bulk involved in the oscillation. In this
sense, the resonant mode in the narrow gap can be consid-
ered as the eigenvalue of the corresponding boundary value
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problem, where the resonant frequency and associated free
surface shape are the eigenfrequency and eigenvector, respec-
tively. An analytical solution for the gap resonance prob-
lem was derived in Molin (2001), where the formulae for the
piston- and sloshing-modal shapes and the corresponding fre-
quencies were obtained via solving an eigenvalue equation.
Zhang and Bandyk (2013) proposed an eigenfunction match-
ing approach for solving the fluid resonance in a narrow gap
between two heaving rectangular boxes in a two-layer fluid
flow. Sun, Eatock Taylor, and Taylor (2015) simulated the lat-
eral piston- and longitudinal sloshing-modal resonant behav-
ior in the closely spaced vessels, in which the first and second-
order wave diffraction models were adopted in the frequency
domain. Ren, Wu, and Thomas (2016) and Li, Shi, and Wu
(2017) analyzed the wave excited motion of a body floating on
water confined and wide polynya between two semi-infinite
elastic ice sheets, respectively, where natural frequencies of
body motion and the subsequent resonances in both coupled
and uncoupled motions are investigated. Extensive compar-
isons demonstrated that the potential flow model is capable of
predicting the resonant frequency, unfortunately, the resonant
amplitude is also reported to be over-estimated compared to
the laboratory observations, such as in Saitoh, Miao, and Ishi-
da (2006); Faltinsen, Rognebakke, and Timokha (2007); Per-
ic and Swan (2015) and among others. Many approximations
were developed to hold the exaggerated resonant amplitude
back to a realistic level based on the introduction of artificial
damping in the potential flow model. Newman (2004) and
Chen (2004) applied the flexible lid condition and the dissipa-
tive term into the free surface condition in the narrow gap, re-
spectively. Liu and Li (2014) analysed a linear semi-analytical
solution for the gap resonance problem, where the dissipative
boundary conditions (Liu et al., 2008) were imposed on both
the free surface in the narrow gap and the fluid domain be-
low the barges. A time-domain potential flow solver was de-
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veloped by Ning et al. (2015, 2018), in which the artificial
viscous coefficient was imposed on the fully nonlinear free
surface condition in the narrow gap. Based on the calibration
of the artificial viscous coefficient by their laboratory tests,
numerical results can agree well with the experimental data.

There are two important issues of concern in application-
s of the potential flow model with artificial damping method.
One is that the value of artificial damping has to be calibrated
according to the experimental data, leading to that the numer-
ical work is effective only after the laboratory observations.
The other is the actual mechanical essence behind the reso-
nant phenomenon in fact still cannot be simulated correctly. It
has been reported in Lu et al. (2011a) and Lu et al. (2011b)
that different artificial damping values have to be adopted for
the wave response in the narrow gap and wave forces on the
boxes, separately, even for the same structures under the same
waves. This is the inherent drawback of the modified poten-
tial flow model. It is speculated that the artificial damping
should be closely relevant to the fluid viscosity and energy
dissipation neglected by the potential flow model. A variety
of investigations were carried out for understanding the fun-
damental physics of vortical flow and eddy motion in the reso-
nant response, which can give us a deep insight into the mech-
anism of piston-modal resonance. Lu et al. (2010) examined
the gap resonance problem by using a finite element based
Navier-Stokes solver with CLEAR-VOF method (Computa-
tional Lagrangian-Eulerian Advection Remap VOF Method).
Kristiansen and Faltinsen (2010) studied the ship motion near
a bottom-mounted terminal under the wave action according
to an inviscid vortex tracking method. Numerical results indi-
cated that majority of energy dissipation occurs in the vicinity
of gap entrance. The experimental and numerical investiga-
tion by Fredriksen, Kristiansen, and Faltinsen (2014) suggest-
ed that the large-amplitude piston-type free surface oscillation
in the moonpool is significantly dependent on the moonpool
edge profiles and heaving amplitudes. Similar physical phe-
nomena can also be found in Moradi, Zhou, and Cheng (2015)
for the gap resonance problem, where the significant effect of
gap inlet configurations (i.e. sharp and curved corners) on the
resonant wave frequencies and amplitudes can be observed.
Feng et al. (2017) investigated a three-dimensional gap reso-
nance between two side-by-side barges, where a close exam-
ination of flow velocity and vorticity in the gap region was
conducted for revealing the damping mechanism at the pis-
ton mode. All these works confirm that the energy dissipation
induced by flow separation and vortex motion, especially in
the vicinity of the gap bottom, has the significant effect on the
wave responses in the narrow gap.

Besides the energy dissipation, other hydrodynamic behav-
ior due to the large-amplitude free surface response has also
been paid more attention, recently. Feng and Bai (2015) inves-
tigated the influence of free surface nonlinearity on the three-
dimensional wave resonance between two side-by-side barges
by using a fully nonlinear potential flow model. Harmonic
analysis illustrated that the resonant frequency slightly shifts
to higher values as incident wave steepness increases, equiva-
lent to a stiff spring in a nonlinear mass-spring system. An ex-
periment of the resonant fluid response between two identical

fixed rectangular boxes was conducted by Zhao et al. (2017).
The higher-order harmonic components were separated and
the nonlinear wave-wave and wave-structure interactions were
investigated under the NewWave-type transient wave group-
s. Zhao, Hu, and Chen (2017) considered the hydrodynamic
behavior between side-by-side barges but with connections.
Huang et al. (2018) studied the response of passive telescopic
gangway between monohull flotel and FPSO (Floating Pro-
duction Storage and Offloading) in non-parallel side-by-side
configurations. Laboratory observations showed that the reso-
nant fluid motion can lead to more complex dynamic response
properties, including the impact of multi-body hydrodynamic
interaction and the transient snap loading response of hawsers,
and so on. Bonfiglio and Brizzolara (2018) described the near
field flow characteristics around a catamaran cross section at
the resonant condition. The free surface nonlinearity due to
high oscillation amplitudes and resonant free surface motion-
s was addressed, including the energetic vortex shedding and
steep wave action. The wave resonance in the narrow gap be-
tween two non-identical side-by-side boxes were investigated
by Jiang, Bai, and Tang (2018); Jiang et al. (2019). Numerical
simulations suggested that the energy transformation due to
the large-amplitude free surface response also plays an impor-
tant role during the process of resonant oscillations, in addi-
tion to the energy dissipation in the narrow gap. However, the
interaction between the energy dissipation and energy trans-
formation is still lack of comprehensive investigation, which
is expected to improve the understanding of related phenome-
na involved in the gap resonance problem.

The main objective of this study is to promote a deep under-
standing on the influence of fluid viscosity and flow rotation
on the behavior of piston-modal wave resonance. According
to the above-mentioned research, we can observe that the pre-
vious work mainly focused on the study of two-box system.
No much light was thrown on the gap resonance formed by a
ship section in front of a vertical wall, which is also a typical
marine operation such as the alongside arrangement between
a LNG carrier and a bottom mounted terminal. As the box-
wall system can lead to a full reflection phenomenon under the
wave action, the stronger large-amplitude free surface oscilla-
tion and other more complex dynamic response are expect-
ed. The present study will shed light upon the physics of this
problem. Numerical results include the wave responses in the
narrow gap and in the upstream of the box, the horizontal and
vertical wave forces on the box, and the reflection coefficient
of the box-wall system. The interaction between the energy
dissipation and energy transformation is addressed by varying
incident amplitudes and box-wall geometries, especially when
the resonance happens. The near field flow pattern is also p-
resented aiming to characterize the vortex shedding and eddy
motion in the gap region, which is helpful for understanding
the dissipative mechanism in a realistic fluid. In summary,
numerical analysis of piston-modal wave resonance is carried
out under various influencing factors, by which the influence
of fluid viscosity and flow rotation can be revealed from the
perspective of energy dissipation and energy transformation.
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II. MATHEMATICAL FORMULATION

The viscous fluid flow model for incompressible two-phase
flows based on Navier-Stokes equations is adopted for numer-
ical simulations. In the Eulerian reference system, the govern-
ing equations for the mass and momentum conservations can
be given as,

∂ρ

∂ t
+

∂ρui

∂xi
= 0 (1a)

∂ρui

∂ t
+

∂ρuiu j

∂x j
= ρgi−

∂ p
∂xi

+µ
∂

∂x j

(
∂ui

∂x j
+

∂u j

∂xi

)
(1b)

where ui is the fluid velocity, p is the dynamic pressure, and
the Cartesian tensor notation is used here. ρ and µ are the
fluid density and fluid dynamic viscosity, respectively; and gi
is the gravitational acceleration.

The above equations are solved for both air and water si-
multaneously, and the fluid is tracked using the scalar field
ϕ which is 0 for air and 1 for water. Any intermediate val-
ue between 0 and 1 represents a mixture of air and water. In
the Volume of Fluid (VOF) method (Hirt and Nichols, 1981),
the distribution of the fraction indicator ϕ is modeled by an
advection equation,

∂ϕ

∂ t
+

∂ϕui

∂xi
+

∂ϕ(1−ϕ)uir

∂xi
= 0 (2)

where uir is the relative velocity of the phases. The last ter-
m on the left hand side of Eq. (2) is for compression, which
has been demonstrated to limit the smearing of the inter-
face(Afshar, 2010; Rusche, 2003). In numerical simulations,
the contour of VOF function with ϕ = 0.50 is used to rep-
resent the interface between the water and air phases. The
spatial variation of fluid density and dynamic viscosity can be
expressed through the weighting as follows,

ρ = ϕρW +(1−ϕ)ρA, (3a)

µ = ϕµW +(1−ϕ)µA, (3b)

where the subscripts W and A represent the Water phase and
Air phase, respectively.

The toolbox ’waves2Foam’ is utilized to generate the in-
cident wave and avoid the internal wave reflection, where a
relaxation zone is defined at the inlet boundary of the numer-
ical wave flume. The exponential relaxation function

αR(χR) = 1− exp(χ3.5
R )−1

exp(1)−1
χR ∈ [0,1] (4)

is applied within the relaxation zone,

ϑ = αRϑC +(1−αR)ϑT , (5)

where ϑ is either the velocity ui or volume fraction of water ϕ ,
and the subscripts C and T represent the Computed value and

Target value, respectively. The definition of αR is the same
as in Fuhrman, Madsen, and Bingham (2006), where αR in E-
q. (4) is only activate in the relaxation zone, and it is always
1 at the interface between the non-relaxed part of the com-
putational domain. Detailed information about the relaxation
technique can be found in Mayer et al. (1998), Engsig-Karup
(2006) and Jacobsen, Fuhrman, and Fredsøe (2012).

The governing equations (1a)-(1b) and the advection trans-
port equation (2) are solved based on the Finite Volume
Method (FVM) integrated in the OpenFOAM R© package. The
velocity and pressure are decoupled by the PISO (Pressure
Implicit with Splitting of Operators) algorithm (Issa, 1986).
The Courant-Friedrichs-Lewy (CFL) condition is adopted to
determine the time increment automatically, where the largest
allowed Courant Number is set to Cr = 0.2. The numerical
computations always start from the still state, which mean-
s the zero velocity and hydrostatic pressure are specified as
the initial conditions. At the inlet boundary, the vector is de-
fined as that of a sinusoidal incident wave and the gradient of
pressure is set to zero. The no-slip boundary condition is im-
posed at the solid wall including the body surface, seabed and
vertical wall. At the upper boundary of the numerical wave
flume, the Dirichlet and Neumann types of boundary condi-
tions are prescribed to the pressure and velocity respectively.
In this study, the interface tension between the air and wa-
ter phases is neglected since the dynamic effects from the air
phase are very small. For the details of numerical implements
in OpenFOAM R©, the readers may refer to Jasak (1996) and
Rusche (2003).

Finally, it should be mentioned that the classical linear po-
tential flow model is also adopted in this study for the purpose
of comparison, for which the theoretical formulation is omit-
ted here, as it is well known in many textbooks (Newman,
1977; Mei, 1989; Faltinsen, 1993).

III. NUMERICAL SETUP

Fig. 1 shows the definition sketch of the coordinate system,
which is defined in such a way that the origin is located at the
still water level, and x-axis is in the wave propagation direc-
tion and y-axis is in the upward direction. The ship section
is considered as a simple rectangular shape cross-section in
the present study, defined as Box with the breadth B and the
draft D in the finite water depth h. In present work, only the
fixed box in front of a wall is considered. A narrow gap with
the breadth Bg is formed by the box and the wall, where the
extremely large amplitude of fluid resonance can be observed
as the incident wave frequency is close to the natural frequen-
cy of the confined fluid bulk. The box breadth B = 0.50 m
and water depth h = 0.50 m are adopted in all the cases, and
the corresponding values for other parameters are designed to
conduct the intended investigation. In numerical simulations,
three gap breadths Bg = 0.050 m, 0.070 m, 0.090 m and three
box drafts D = 0.153 m, 0.252 m, 0.350 m, together with four
incident wave amplitudes Ai = 0.004 m, 0.008 m, 0.012 m,
0.016 m are selected, so totally 27 cases are considered. The
detailed comparison and analysis among the numerical results
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are helpful to examine the hydrodynamic behavior of piston-
modal resonance, including the wave amplitudes Ag and Au
in the narrow gap and in the upstream of the box, the hori-
zontal and vertical wave forces Fh and Fv, and the reflection
coefficient Kr.

In the present study the height of the numerical wave flume
is fixed at 0.8 m, and the length is changing in accordance
with the incident wave length L for different simulations. A
relaxation zone is arranged on the left side of the wave flume,
which is around 3.0 - 5.0 L long; and the total length of the
wave flume is around 10 - 15 L long. Four wave gauges, G1 -
G4, are equipped to record the free surface elevation, as shown
in Fig. 1. G1 is located in the middle of the gap for recording
the wave response in the narrow gap; while G4 is situated in
the upstream of the box, which is 0.005 m from the vertical
wall of the box. G2 and G3 are located 1.5 L from the left side
of the box for separating the incident and reflected waves, in
which the distance between them is kept at 0.25 L.

IV. NUMERICAL VALIDATION AND MODEL TEST

In order to check the dependence of the simulation result-
s on the mesh density, numerical simulations are carried out
by using four different meshes for three configurations (see
Tab. I), these are, D = 0.252 m with Bg = 0.050 m, 0.070 m,
0.090 m, respectively. As shown in Fig. 2, non-uniform mesh-
es are adopted to discretise the computational domain for sav-
ing computational cost. The square fine meshes with high res-
olution are adopted around the box, especially in the vicinity
of the narrow gap, to accurately capture the large-amplitude
free surface oscillation and to account for the boundary lay-
er effect. The rectangular meshes with intermediate resolu-
tion are adopted in the other computational domain, includ-
ing the relaxation zone of generating the incident wave and
the path of wave propagation. The largest aspect ratio is 1/2
(height/length) in the present numerical simulations. Typical
mesh partitions in the vicinity of the box-wall system are de-
picted in Fig. 2, which corresponds to Mesh 1 in Tab. I.

For the purpose of illustration, the geometry of D = 0.252 m
with Bg = 0.050 m is adopted for the mesh resolution test. The
typical evolutions of the free surface oscillation η(t) in the
narrow gap measured at wave gauge G1 and the horizontal and
vertical wave forces on the box with various mesh resolutions
are depicted in Fig. 3, where the incident wave amplitude Ai =
0.012 m with the resonant frequency ω = 4.80 rad/s is adopted
as the incident wave condition. After a short transient period,
clear steady-state evolutions can be observed after t = 30 s,
indicating satisfactory performance of the relaxation zone in
generating and eliminating the incident and reflection waves,
respectively. Numerical simulations also suggest that very lit-
tle discrepancy between the steady-state results of Mesh 3 and
Mesh 4 can be observed, implying that the convergent solu-
tions can be produced by Mesh 3.

Furthermore, the features of free surface oscillation in the
narrow gap and wave forces on the box can also be observed
according to the steady-state evolutions. As shown in Fig. 3a,
numerical simulations suggest that the time signal of free sur-

face oscillation is quite symmetric, and looks like a sinusoidal
function. The time history of normalized free surface evo-
lutions during 100 - 300 seconds by Mesh 3 is adopted for
the Fourier analysis. Fig. 4a depicts that the dominating har-
monic of wave elevations is at the incident wave frequency ω ,
confirming the insignificant effect of free surface nonlinear-
ity on the large-amplitude piston-modal resonance. Similar
behavior can also be observed in Figs. 3b and 4b, indicat-
ing the influence of wave nonlinearity is also negligible for
horizontal wave forces on the box. In difference to free sur-
face oscillations and horizontal wave forces, the vertical wave
forces show the non-sinusoidal characteristics in Fig. 3c. The
wave frequency spectra of vertical wave forces involve four
frequencies in Fig. 4c, including the steady zero frequency ter-
m, the linear term, the 2nd-order double frequency term and
even the small third-order triple frequency term. The linear
component is the largest, but the other components are also
non-negligible in behavior of vertical wave forces. Referring
to the Bernoulli equation, the vertical wave forces should be
closely relevant to the square of flow velocity under the box
bottom, which is the main reason for the resultant nonlineari-
ty.

The normalized free surface amplitudes in the narrow gap
Ag/Ai at wave gauge G1 and the wave forces Fh and Fv on the
box around the resonant frequency with four different mesh
schemes are compared in Fig. 5. The resonant frequencies for
different geometries are obtained by the conventional poten-
tial flow model, which have been tabulated in Tab. I. Accord-
ing to the averaged values of the crest and trough between the
duration of 100 - 200 seconds, the amplitudes of free surface
oscillation, horizontal and vertical wave forces can be com-
puted, defined as Ag, Fh and Fv, respectively. The sensitivity
analysis by varying the time window from the duration of 100
- 200 to 200 - 300 seconds shows the negligible effect on the
amplitudes, indicating the steady states have been reached af-
ter t = 100 s. The comparisons in Fig. 5 show that the vari-
ation of mesh density has little effect on the amplitudes of
free surface and wave forces if the number of cells exceeds
3× 105. Again, Mesh 3 is able to produce convergent solu-
tions, and hence it is adopted as the baseline for the following
numerical investigations.

Numerical validations of wave amplitudes in the narrow
gap are performed against the available laboratory test result-
s in Tan et al. (2014) and the linear potential flow solutions.
The mean normalized wave amplitudes Ag/Ai at wave gauge
G1 are compared in Fig. 6, where the incident wave ampli-
tudes is set at Ai = 0.012 m and measured at wave gauges
G2 and G3. The numerical results at non-resonant conditions
agree better with experiments than those at the resonant con-
dition. Around the resonant frequency, the vorticity created
at the sharp edge is more likely to generate the turbulent mix-
ing. This might be the reason for the slight over-prediction
in the present viscous fluid flow model around the resonan-
t frequency. General speaking, the present numerical results
are in agreement with the experimental measurements, indi-
cating that the present numerical wave flume can work well
in predicting wave responses. Nevertheless, the linear poten-
tial flow model over-predicts the wave amplitude around the



Numerical investigation of piston-modal wave resonance in the narrow gap formed by a box in front of a wall 5

FIG. 1: Sketch of the definition of the numerical wave flume

TABLE I: Mesh information for convergent tests (Elements/Nodes)

D (m) Bg (m) ωg Mesh1 Mesh2 Mesh3 Mesh4
0.252 0.050 4.8 rad/s 79963/161820 232882/469330 343980/692378 471404/948064
0.252 0.070 4.5 rad/s 80317/162534 233914/471406 343868/692168 471411/948094
0.252 0.090 4.3 rad/s 82899/167752 243546/490782 358008/720588 490815/987070

FIG. 2: Typical computational meshes in the vicinity of the box-wall system for the configuration of Bg = 0.050 m and D =
0.252 m

resonant frequency, demonstrating the indispensable of vis-
cous fluid flow model. The amplitudes of the first three wave
harmonic components are also included in Fig. 6, which can
be obtained by using the bandpass filtering operation. Agree-
ment between the original and filtered wave amplitudes con-
firms that the first-order wave component dominates the free
surface oscillation in the narrow gap. The higher-order wave
components of free surface elevation are remarkably small-
er than the first-order component, implying the insignificant
effect of free surface nonlinearity.

The numerical results of reflection coefficients are also
validated according to the experimental results in Tan et al.
(2014). In this study, the reflection coefficient is defined as
Kr = Ar/Ai, in which Ai and Ar are the incident and reflect-
ed wave amplitudes measured at wave gauges G2 and G3,
respectively. In accordance with the wave amplitudes in the
narrow gap, Ai and Ar are also the averaged wave amplitudes
in the steady states between 100 - 200 seconds. As shown in
Fig. 7, the minimal peak values of the reflection coefficients
Kr can be observed by the present viscous numerical mod-
el, which is in good agreement with the observation in the
experiments. The corresponding frequencies of the minimal
peak values are equal to the resonant frequency of fluid oscil-
lation in the narrow gap, indicating that the significant energy
dissipation happens around the resonant condition. However,

the potential flow results cannot capture the energy dissipa-
tion due to the assumption of inviscid fluid and irrotational
flow, leading to the results of Kr = 1 at the scope of all the
frequencies. Finally, the variations of Kr against ω predicted
by the viscous numerical model are found to be in good agree-
ment with the experimental data, confirming that the present
numerical wave flume is capable of producing the acceptable
results of reflection coefficients. More interestingly, the re-
flection coefficients by the viscous fluid flow model seem to
be almost identical to the experimental results after the min-
imal value is reached (i.e. at the high-frequency range), but
there is a little discrepancy at the low-frequency range. The
low-frequency wave can generate more developed boundary
layer, which may require much finer mesh around the body
surface to capture accurately.

Validations for wave forces on the box are conducted a-
gainst the semi-analytical and Boundary Element Method re-
sults by Tan et al. (2014), where the artificial damping was
adopted for improving the accuracy of potential flow model.
Besides, the linear potential flow solutions without the arti-
ficial damping are also utilized for comparisons. As shown
in Fig. 8, the linear potential flow model over-predicts the
wave forces on the box, demonstrating the indispensable of
viscous fluid model. A little discrepancy between the results
of present viscous model and improved potential flow mod-
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(a)

(b)

(c)

FIG. 3: Mesh convergent tests for the evolutions of wave responses in the narrow gap and wave forces on the box in the wave at
resonant frequency with Ai = 0.012 m. (a) η(t)/Ai, (b) Fh(t)/ρghAi, (c) Fv(t)/ρghAi.

(a) (b) (c)

FIG. 4: Fourier analysis of wave responses in the narrow gap and wave forces on the box in the wave at resonant frequency
with Ai = 0.012 m. (a) Wave response, Ag, (b) Horizontal force, Fh, (c) Vertical force, Fv

el by Tan et al. (2014) can be observed. The reason is that
the values of artificial damping coefficients f and µ in Tan
et al. (2014) are calibrated by the experimental data accord-
ing to the free surface amplitude in the narrow gap. Generally
speaking, the present numerical results are in agreement with
both the improved semi-analytical and numerical solutions in
Tan et al. (2014), indicating the present model can work well
in predicating the wave forces on the box.

Finally, the first-order harmonic components of the hori-
zontal and vertical wave forces are also included in Fig. 8,
which are obtained by using the bandpass filtering approach
for the steady-state evolutions between 100 - 200 seconds.
Numerical simulations show the agreement between the total

horizontal wave force and its first harmonic; while the magni-
tudes of higher harmonic components are remarkably smaller
than that of the first harmonic. It again indicates the free sur-
face nonlinearity is insignificant in the horizontal wave force
for this case. As for the vertical wave force, the higher har-
monic components become slightly more important, which is
also reflected in the Fourier analysis in Fig. 4c. Generally s-
peaking, the first harmonic component is dominating in both
the horizontal and vertical wave forces on the box. This also
agrees with the results for wave resonance between two fixed
bodies in Gao et al. (2019).
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(a) (b) (c)

FIG. 5: Mesh convergent tests for the amplitudes of free surface oscillations in the narrow gap and wave forces on the box for
various geometries at Ai = 0.012 m. (a) Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D =

0.252 m.

(a) (b) (c)

FIG. 6: Comparisons of normalized wave amplitudes Ag/Ai in the narrow gap for various configurations at Ai = 0.012 m. (a)
Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.

(a) (b) (c)

FIG. 7: Comparisons of reflection coefficients Kr for various configurations at Ai = 0.012 m. (a) Bg = 0.050 m, D = 0.252 m,
(b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.

V. GENERAL DESCRIPTION OF PISTON-MODAL
RESONANCE

The validation study in the previous section shows that the
present viscous numerical model is able to reproduce well

the studied scenario of gap resonance in the box-wall sys-
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(a) (b) (c)

FIG. 8: Comparisons of the horizontal and vertical wave forces Fh and Fv on the box for various configurations at Ai = 0.012 m.
(a) Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m

tem. It is adopted to investigate the wave responses and wave
forces induced by the fluid resonance under wave actions. Our
main objective is to study the influence of fluid viscosity and
flow rotation on the behavior of piston-modal behavior. The
variations of wave amplitudes in the narrow gap and in the
upstream of the box Ag and Au, the horizontal and vertical
wave forces Fh and Fv, and the reflection coefficient Kr against
the incident wave frequency ω are investigated, including the
comparisons of the results between potential flow and viscous
fluid flow models. For the purpose of shortening the length,
only the geometry of D = 0.252 m under the incident wave
amplitude Ai = 0.012 m is considered. The scope of incident
wave frequency ω is from 0.1 to 8.0 rad/s in the linear po-
tential flow model; while the viscous fluid flow model mainly
focuses on the range of resonant conditions.

Numerical explanations begin with the free surface oscil-
lations in the vicinity of the box-wall system, that is, wave
amplitudes in the narrow gap and in the upstream of the box,
as shown in Fig. 9. Potential flow model can firstly mani-
fest a general impression for the variation of wave amplitude
with incident wave frequency. Around the resonant frequen-
cy, the free surface amplitude in the narrow gap (measured by
wave gauge G1 located in the middle of the gap, Ag/Ai) ap-
proaches to the maximal peak value; while the minimal peak
value can be observed in the upstream of the box (measured
by wave gauge G4 located at 0.005 m upstream of the box,
Au/Ai). This is the process of energy transformation of local
near-field wave-wave and wave-body interactions during the
piston-modal resonance in the box-wall system. When the in-
cident wave frequency is close to the resonant frequency, the
large-amplitude piston-type of fluid oscillation can be excited,
and the energy is required to support the resonant fluid motion
in the narrow gap. This energy comes from the incident wave,
leading to the decrease of wave amplitude in the upstream of
the box around the resonant frequency. On the other hand, the
large-amplitude fluid oscillation in the narrow gap can be tak-

en as a radiation source, which can result in the increase of
wave amplitude in the upstream of the box. Therefore, a lit-
tle discrepancy on the corresponding frequencies between the
maximal and minimal peak values in the wave amplitudes at
G1 and G4 can be observed in these figures. It is also the pro-
cess of local energy transformation, where the energy is from
inside to outside of the gap in the form of radiation.

The potential flow results can only express a general un-
derstanding on the behavior of wave responses; while the real
physical phenomena of wave responses around the resonant
condition should be simulated by the viscous fluid flow mod-
el. The essential assumption of the potential flow model is the
fluid inviscid and flow irrotational. According to the compar-
isons between the potential flow and viscous fluid flow results,
the influence of fluid viscosity and flow rotation on the behav-
ior of piston-modal resonance can be investigated. Numerical
results in Fig. 9 suggest that the resonant wave amplitude at
wave gauge G1 is over-predicted significantly by the poten-
tial flow model, indicating that the energy dissipation due to
the fluid viscosity and rotational motion can reduce the free
surface oscillation in the narrow gap around the resonant fre-
quency. Oppositely, the wave amplitude at wave gauge G4
around the resonant frequency is under-estimated by the po-
tential flow model, implying that the fluid viscosity and ro-
tational motion are able to increase the wave response in the
upstream of the box. Energy dissipation mainly occurs in the
vicinity of the gap, leading to the decrease of wave amplitude
in the narrow gap. Correspondingly, less wave energy is re-
quired to support the oscillation of resonant fluid, and more
wave energy can retain in the upstream of the box. This is the
reason for the increase of wave amplitude in the upstream of
the box, where the change of energy transformation associat-
ed with free surface motion is the essential mechanism behind
the phenomenon. Further comparison shows that the corre-
sponding frequencies between the maximal and minimal peak
values of the wave amplitudes at G1 and G4 by the viscous
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fluid flow model approach to the same with each other. The
decrease of radiation wave by the fluid oscillation in the nar-
row gap is the reason for this result, which is essentially due
to the energy dissipation.

According to the comparisons between two numerical mod-
els mentioned above, a three-phase variation of wave ampli-
tudes with incident wave frequency can be suggested, that is,
low frequency range, medium frequency range (around res-
onant frequency), and high frequency range. The potential
flow model is able to work well at the scopes of low and high
frequency ranges, indicating the fluid viscosity and flow ro-
tation is ignorable. However, the influence of fluid viscosity
and flow rotation cannot be neglected in the region of medi-
um frequencies, especially around the resonant frequency. On
one hand, the energy dissipation can result in the decrease of
resonant amplitude in the narrow gap, directly. On the other
hand, the change of energy transformation can lead to the in-
crease of wave amplitude in the upstream of the box, which
in fact is the influence of energy dissipation, indirectly. This
is a real physical phenomenon relating to the local near-field
wave-wave and wave-body interactions induced by the piston-
modal resonance. The dynamic mechanism behind it is the in-
teraction between the energy dissipation induced by the fluid
vortical flow and energy transformation associated with free
surface motion.

Fig. 10 depicts the comparisons of horizontal and vertical
wave forces on the box obtained by the potential flow and vis-
cous fluid flow models. It can be observed that the definition
of the three-phase variation for wave amplitude in the narrow
gap is also suitable for the wave forces on the box. The close
relationship between the free surface oscillation in the narrow
gap and the wave forces on the box can be adopted to explain
the similarity. The maximal horizontal wave forces can be ob-
served around a particular frequency, which is denoted as the
resonant frequency of wave forces, corresponding to the coun-
terpart of resonant frequency of free surface oscillation in the
narrow gap. According to the comparisons between Figs. 9
and 10, we can observe that the resonant frequency of Fh is
always larger than that of Ag in viscous fluid flow results. The
influence of wave response in the upstream of the box is the
main reason for this discrepancy. Distinct to the viscous flu-
id flow model, the exaggerated wave amplitude in the narrow
gap has the dominant effect on the horizontal wave force in
potential flow results, and consequently lead to that the max-
imal wave force always occurs at the resonant frequency of
fluid oscillation in the narrow gap. This is not the real physi-
cal behavior because the ignorance of fluid viscosity and flow
rotation under the potential flow assumption.

Variations of vertical wave force on the box with incident
wave frequency ω are also depicted in Fig. 10. The vertical
wave force on the box decreases gradually with ω in the re-
gion of low wave frequency. At the range of medium frequen-
cies, the vertical force Fv has a small increase, and then de-
creases rapidly with incident wave frequency. The noticeable
peak values at the resonant frequency in potential flow solu-
tions even disappear in viscous fluid flow results. It indicates
that the energy dissipation by vortical motion has dramatical
effect on the vertical wave force. The potential flow model

even fails to predict the variation trends of the vertical wave
force with incident wave frequency. A lowest vertical wave
force Fv locating at the frequency bound higher than the reso-
nant frequency can be observed in potential flow solutions. It
is a fictional response frequency by the potential flow model,
where the corresponding Fv is under-estimated.

Numerical investigations are also extended to the reflection
coefficient of box-wall system, as shown in Fig. 11. Due to
the total reflection phenomenon in the box-wall system under
the wave action, the reflection coefficient Kr in fact can ex-
press the process of energy dissipation. Potential flow model
predicts the results of Kr = 1 in all the scope of incident wave
frequencies, which is in agreement to the law of energy con-
servation. In viscous fluid flow results, dramatical decrease
of reflection coefficient can be observed around the resonant
frequency, indicating the energy dissipation due to the fluid
viscosity and rotational motion. Further comparisons indicate
that the corresponding frequency of minimal reflection coef-
ficient is the same with the resonant frequency of wave am-
plitude in the narrow gap, confirming that the largest piston-
type free surface oscillation in the narrow gap can generate
the most significant energy dissipation in the fluid field.

VI. INFLUENCE OF INCIDENT WAVE AMPLITUDE

Special attention is paid to the influence of incident wave
amplitude on the behavior of piston-modal resonance, con-
cerning with incident wave frequency. Numerical results of
wave amplitudes for the geometry of D = 0.252 m at three
incident wave amplitudes, Ai = 0.004 m, 0.008 m, 0.012 m,
are illustrated in Fig. 12. Again, the linear potential flow so-
lutions are included in the numerical analysis for the purpose
of comparison. It can be observed that the significant effect of
incident wave amplitude is mainly in the medium frequency
range, especially around the resonant frequency. For a spe-
cific geometry, the normalized free surface amplitude in the
narrow gap decreases with the increase of incident wave am-
plitude. More relative energy dissipation by fluid viscosity
and flow rotation in the vicinity of the narrow gap at resonant
conditions can lead to the phenomenon. However, the normal-
ized wave amplitude at wave gauge G4 increases with the in-
crease of incident wave amplitude, implying that more relative
wave energy retains in the upstream of the box. Summarizing
the variation tendency mentioned above, we can obtain that
the increase of incident wave amplitude can result in the vis-
cous fluid flow results being deviated more from the potential
flow results. This means the influence of fluid viscosity and
flow rotation on the wave responses around the box is more
important for larger incident wave amplitude, including the
energy dissipation in the gap region and the energy transfor-
mation between the inside and outside of the box. As for the
resonant frequency, comparisons in Fig. 12 suggest that it is
hardly affected by the incident wave amplitude/or the resonant
amplitude in the narrow gap in present numerical simulations.

Fig. 13 shows the magnitudes of horizontal and vertical
wave forces Fh and Fv on the box under different incident wave
amplitudes. Again, the significant effect of incident wave am-
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(a) (b) (c)

FIG. 9: General description for the wave amplitudes in the narrow gap and in the upstream of the box by the potential flow and
viscous fluid flow models. (a) Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.

(a) (b) (c)

FIG. 10: General description for the horizontal and vertical wave forces by the potential flow and viscous fluid flow models. (a)
Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.

plitude can be observed in the region of medium wave fre-
quencies. If the incident wave frequency is outside a certain
band at either side of the resonant frequency, the insignifi-
cant influence of incident wave amplitude on the wave forces
can be observed. Numerical simulations suggest that the nor-
malized amplitude of the horizontal wave force Fh/ρghAi de-
creases with the increase of incident wave amplitude around
the resonant frequency. It is similar to the variation of free
surface oscillation in the narrow gap, implying that the energy
dissipation in the vicinity of the gap is the dominating factor
for that of horizontal wave force. As for vertical wave force,
a two-phase variation at the scope of medium frequencies can
be suggested. The decrease of normalized vertical wave force
Fv/ρghAi with the increase of incident wave amplitude can be
observed around the resonant frequency; while the increase
of normalized vertical wave force Fv/ρghAi can be observed
at the frequency bound higher than the resonant frequency,
where the Fv/ρghAi approaches to zero in the potential flow
simulations. Referring to the Bernoulli equation, the vertical
wave force is closely relevant with the flow velocity under the
box bottom. Many factors can affect the velocity flow field un-
der the box bottom, including the shedding structure and eddy
motion, which can lead to the complex variations of velocity
flow. Analogous with the wave responses, the wave forces, in-
cluding the horizontal and vertical wave forces, are influenced
more by the fluid viscosity and flow rotation, which increase
with the increase of incident wave amplitude. Finally, the inci-
dent wave amplitude also hardly affect the resonant frequency
of wave forces in present numerical results.

The influence of incident wave amplitude on the behavior

of reflection coefficient Kr is considered in Fig. 14. The dra-
matical decrease of the reflection coefficients can be observed
for three incident wave amplitudes at the resonant frequency,
implying significant energy dissipation happens. However, in
difference to the resonant wave amplitude and wave forces re-
sults, there is no uniform rules on the variations of reflection
coefficient with incident wave amplitude for different box-
wall configurations. A typical example could be cited that the
increased reflection coefficient can be observed in Fig. 14a,
implying less percent of energy dissipation happens with the
increase of incident wave amplitude. Oppositely, the decrease
of reflection coefficient with the increase of incident wave am-
plitude can be found in Fig. 14c, indicating the larger incident
wave amplitude can lead to relatively more energy dissipation.
Roughly speaking, there are two factors affecting the variation
of reflection coefficient: one is the reflection by the upstream
of box; and the other is the energy dissipation in the narrow
gap. The increase of incident wave amplitude tends to enlarge
the reflection wave from the upstream of box, and hence rel-
atively less wave energy can enter into the narrow gap of the
box-wall system. It tends to amplify the reflection coefficient
by the larger incident wave amplitude at the resonant frequen-
cy. On the other hand, the larger incident wave amplitude
can lead to larger resonant wave response and more signifi-
cant energy dissipation in the narrow gap, which reduces the
reflection coefficient at the resonant frequency. The opposite
effect by the above factors is the main reason for the complex
hydrodynamic behavior of the reflection coefficient in Fig. 14.
Furthermore, the above results can also indicate that the ener-
gy dissipation is not the only factor to affect the behavior of
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(a) (b) (c)

FIG. 11: General description for reflection coefficients by the potential flow and viscous fluid flow models. (a) Bg = 0.050 m, D
= 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.

(a) (b) (c)

FIG. 12: Comparisons of normalized wave amplitudes Ag/Ai and Au/Ai in the narrow gap and in the upstream of the box under
various incident wave amplitudes. (a) Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252

m.

(a) (b) (c)

FIG. 13: Comparisons of normalized horizontal and vertical wave forces Fh/ρghAi and Fv/ρghAi on the box under various
incident wave amplitudes. (a) Bg = 0.050 m, D = 0.252 m, (b) Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.
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piston-modal resonance.

VII. INFLUENCE OF THE GAP BREADTH AND BOX
DRAFT

In this section, the dependence of piston-modal behavior
on the gap breadth and box draft is investigated. All of the ge-
ometries under the incident wave amplitude Ai = 0.012 m are
simulated. Figs. 15 and 16 show the variations of wave ampli-
tudes with gap breadth and box draft, respectively. Numerical
simulations suggest that the resonant frequency of free sur-
face oscillation in the narrow gap tends to decrease with the
increase of gap breadth and box draft. Based on the motion
equation of a linear-spring-mass system for the free surface
oscillation, the decrease of resonant frequency can be under-
stood because more fluid mass is entrapped by the larger gap
breadth or box draft. As for the resonant amplitude, it is be-
lieved that the piston-modal free surface oscillation has close-
ly relevant with the volume of fluid entering into the narrow
gap from the gap entrance. The injected water volume, de-
fined by ∆, during half period can be evaluated as follows,

∆ =
∫ T

2

0

∫ xr

xl

v(x, t)dxdt = Bg

∫ T
2

0
ṽ(t)dt (6)

where xl and xr are the left and right ends of the gap bot-
tom, respectively. T is the incident wave period and v(x, t)
is the vertical velocity component of fluid flow. ṽ(t) =

1
xr−xl

∫ xr
xl

v(x, t)dx is the time-dependent space-averaged verti-
cal velocity along cross-section of gap bottom. In accordance
with the free surface amplitude in the narrow gap, the ampli-
tude of ṽ(t) in the steady state between 100 - 200 seconds is
averaged as the amplitude of time-dependent space-averaged
vertical velocity, defined as Vg. More specifically, the piston-
modal resonant wave amplitude should be proportional to the
relative injected water volume per gap breadth,

Ag ∝
∆

Bg
=

1
Bg

∫ T
2

0

∫ xr

xl

v(x, t)dxdt =
∫ T

2

0
ṽ(t)dt (7)

Eq. (6) shows that the injected water volume is relevant to gap
breadth, resonant period, and vertical velocity; while Eq. (7)
indicates that the resonant amplitude in the narrow gap should
be controlled by resonant period and vertical velocity.

The calculated injected water volumes ∆ and relative inject-
ed water volumes ∆

Bg
for various box drafts and gap breadths

at their respective resonant frequencies are tabulated in Tab. II.
For a specific gap breadth, the increased ∆ and ∆

Bg
can be ob-

served with the increase of box draft, which is analogous with
the variation of resonant amplitudes in Fig. 16. By comparing
the values of T and Vg in Tab. II, we can see that although Vg
increases and then decreases with box draft D, the sustained
increase of T can be observed. The increase of resonant period
(or the decrease of resonant frequency) may be the essential
reason for the increase of injected water volume and resonant
amplitude with the increase of box draft. The calculated data

in Tab. II also illustrates the influence of gap breadth on the in-
jected water volume and wave amplitude at resonant frequen-
cy. Although the increase of injected water volume ∆ can be
observed with the increase of gap breadth, the decrease of rel-
ative injected water volumes ∆

Bg
is able to result in the decrease

of resonant amplitude in the narrow gap, which is similar with
the influence of gap breadth on wave amplitude in Fig. 15. It
is essentially due to the decrease of vertical velocity along the
gap bottom ṽ(t), which is expressed as Vg in Tab. II. Further-
more, the magnitudes of the relative injected water volumes
∆

Bg
and the wave heights in the narrow gap Hg (Hg = 2Ag) are

almost identical with each other. The coincidence between
them can be demonstrated under the assumption of harmon-
ic functions. By substituting the linearized vertical velocity
ṽ(t) =Vg sinωt into Eq. (7), the following relationship can be
obtained,

∆

Bg
=
∫ T

2

0
ṽ(t)dt ≈Vg

∫ T
2

0
sinωt dt

≈ ωAg

∫ T
2

0
sinωt dt = 2Ag = Hg (8)

where a relationship of Vg = ωgAg is utilized, which has been
reported in Lu et al. (2010). The correlation between ∆

Bg
and

Hg can confirm that the free surface oscillation in the narrow
gap is essentially controlled by the resonant frequency and the
vertical velocity along the bottom.

Figs. 15 and 16 also illustrate the wave amplitude in the
upstream of the box at wave gauge G4. A general compar-
ison suggests that the wave amplitudes Au/Ai decrease and
increase with the increase of gap breadth and box draft, re-
spectively, which is similar with the tendency of the wave am-
plitude in the narrow gap at wave gauge G1. The decrease of
wave amplitude Au/Ai in Fig. 15 means that more wave ener-
gy is absorbed to support the large-amplitude fluid oscillation
and significant energy dissipation in the narrow gap with the
increase of gap breadth. This is analogous with the increase
of injected water volume ∆ with the increase of gap breadth at
the resonant frequency in Tab. II. As for the influence of box
draft, the increase of piston-like free surface oscillation in the
narrow gap can lead to the increase of radiation action, result-
ing in the increase of wave amplitudes Au/Ai in the upstream
of the box in Fig. 16.

Numerical simulations in Figs. 17 and 18 depict the influ-
ence of gap breadth and box draft on the horizontal and ver-
tical wave forces Fh and Fv on the box, respectively. Analo-
gous with the resonant frequency of the wave response in the
narrow gap, the characteristic/resonant frequency tends to de-
crease with the increase of gap breadth and box draft, indicat-
ing that the large-amplitude piston-modal free surface oscilla-
tion in the narrow gap is the controlling factor on the behavior
of wave forces. Generally, the variations of horizontal wave
force with gap breadth and box draft are also the same with the
wave amplitude in the narrow gap. It can be understood that
the horizontal wave force is dependent on the wave respons-
es around the box, in which the extremely wave amplitude in
the narrow gap is the most significant factor. A little differ-
ence between them can also be observed, such as in Fig. 17a,
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(a) (b) (c)

FIG. 14: Comparisons of reflection coefficients Kr under various incident wave amplitudes. (a) Bg = 0.050 m, D = 0.252 m, (b)
Bg = 0.070 m, D = 0.252 m, (c) Bg = 0.090 m, D = 0.252 m.

(a) (b) (c)

FIG. 15: Comparisons of wave amplitudes in the narrow gap and in the upstream of the box for various gap breadths. (a) D =
0.153 m, (b) D = 0.252 m, (c) D = 0.350 m.

(a) (b) (c)

FIG. 16: Comparisons of wave amplitudes in the narrow gap and in the upstream of the box for various box drafts. (a) Bg =
0.050 m, (b) Bg = 0.070 m, (c) Bg = 0.090 m.
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TABLE II: Water volume entering into the gap for various gap breadth and box draft at resonant conditions under incident wave
amplitude Ai = 0.012 m

Bg (m) D (m) T (s) Vg (m/s) ∆ (m2) ∆

Bg
(m) Hg (m)

0.050 0.153 1.102 0.384 6.74×10−3 0.135 0.139
0.050 0.252 1.337 0.423 9.01×10−3 0.180 0.184
0.050 0.350 1.571 0.399 9.98×10−3 0.200 0.211
0.070 0.153 1.208 0.345 9.29×10−3 0.133 0.136
0.070 0.252 1.396 0.371 11.54×10−3 0.165 0.167
0.070 0.350 1.698 0.346 13.09×10−3 0.187 0.195
0.090 0.153 1.282 0.319 11.72×10−3 0.130 0.132
0.090 0.252 1.496 0.332 14.22×10−3 0.158 0.160
0.090 0.350 1.848 0.257 14.31×10−3 0.159 0.161

(a) (b) (c)

FIG. 17: Comparisons of horizontal and vertical wave forces on the box for various gap breadths. (a) D = 0.153 m, (b) D =
0.252 m, (c) D = 0.350 m.

where the increased resonant wave forces with the increase of
gap breadth can be observed at D = 0.153 m. This can be ex-
plained by the wave response in the upstream of the box and
velocity flow around the box, especially the vortex motion in
the vicinity of the gap. The variation of vertical wave force
with gap breadth and box draft, with regard to the incident
wave frequency, is also considered in these figures. The in-
creased vertical wave force can be observed with the increase
of gap breadth and box draft if the incident wave frequency is
smaller than the characteristic frequency in the medium fre-
quency range. As for the regions of low and high frequencies,
the insignificant effect of gap breadth and box draft on the hor-
izontal and vertical wave forces can be observed, which can
also be predicted by the potential flow model, correctly.

The reflection coefficients Kr for different gap breadths and
box drafts against the incident wave frequency ω are depicted
in Figs. 19 and 20. In accordance with the resonant frequen-
cy, the corresponding frequency of the minimal reflection co-
efficient can be observed to decrease with the increase of gap
breadth and box draft. However, the variation of minimal peak
value is not monotonic only increasing or decreasing with the

change of gap breadth or box draft. As discussed in the previ-
ous section, many factors can affect the reflection coefficient,
including the free surface oscillation in the narrow gap, the en-
ergy dissipation in the vicinity of the gap, the radiation action
by the oscillating fluid bulk, etc. The increased gap breadth
and box draft can result in more injected water volume in the
narrow gap. On one hand, more wave energy is needed to sup-
port the oscillation of the fluid bulk, leading to the decrease of
reflection coefficient. On the other hand, the oscillating flu-
id bulk can be taken as a radiation source, which generates a
larger reflection coefficient. In addition, the energy dissipa-
tion connected with the vortical motion and the shielding ef-
fect associated with the geometries are also the indispensable
factors. All these phenomena can lead to the complex hydro-
dynamic behavior of reflection coefficients with gap breadth
and box draft in these figures.
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(a) (b) (c)

FIG. 18: Comparisons of horizontal and vertical wave forces on the box for various box draft. (a) Bg = 0.050 m, (b) Bg = 0.070
m, (c) Bg = 0.090 m.

(a) (b) (c)

FIG. 19: Comparisons of reflection coefficients for various gap breadths. (a) D = 0.153 m, (b) D = 0.252 m, (c) D = 0.350 m.

VIII. VELOCITY FIELD PATTERN

The velocity field in the vicinity of the box-wall system is
investigated for demonstrating the hydrodynamic behavior in-
volved in the fluid resonance. The geometry of Bg = 0.050 m
and D = 0.252 m with the incident wave amplitude Ai = 0.012
m and three incident wave frequencies, ω = 4.00, 4.70 and
5.30, are considered, where the frequencies adopted are the
low, resonant and high frequencies, respectively. The velocity
vectors together with vortices contours at eight time instants
in a stable period T beginning from the up zero-crossing point
of the piston-modal free surface oscillation in the narrow gap
are depicted in Fig. 21, where the first, second and third rows
are arranged corresponding to the sequence of incident fre-
quencies mentioned above.

Roughly speaking, two typical flow modes can be identi-
fied in Fig. 21 corresponding to the resonant and non-resonant
conditions. The flow evolutions at the resonant frequency, ω

= 4.70, in the second row are investigated, firstly. At the be-
ginning of free surface oscillation, there are three developed
vortices in the vicinity of gap bottom, defined as {b−}, {a+}
and {a−}, respectively. The shear layers along the surfaces of
the box and wall in the vicinity of the gap can be observed, and

an attracted vortices {c+} with positive sign is being generat-
ed from the edge profile of the box. The generating process is
completed at the time instant of t = 2T/8. It is the time when
the free surface in the narrow gap becomes the crest value,
implying that the fluid begins to flow out of the narrow gap.
The outflow of the fluid can lead to the outflow of the vor-
tices {c+}, as shown in Fig. 21d. Meanwhile, a new negative
vortex bubble {d−} can be observed at the box lower corner
beside the {d+}. Velocity field pattern indicates that the vor-
tices {d−} results from the strong flow shear, without the clear
vortex structure identified by the flow vectors. With the time
elapses, the vortices {d−} is formed below the previous vor-
tices {c+}, and another negative vortex bubble {c−} is newly
developed at the lower corner of the box. In difference to the
vortices {d−}, the vortices {c−} has the clear vortex structure,
which can be identified by the flow vectors. After the time in-
stant of t = 5T/8 in Fig. 21f, the vortices {d−}, {c+} and
{c−} move downwards. A new positive vortices {e+} begins
to be generated at the time instant of t = 7T/8 in Fig. 21h.
The initial flow scenery at t = 0T can finally reappear at the
time instant of t = 1T . According to the process of the veloc-
ity pattern during one period, the P + S shedding mode can
be suggested for the resonant condition. The sign ’P’ refers
to the pair of vortex bubble {c+} and {c−}. The sign ’S’ in-
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(a) (b) (c)

FIG. 20: Comparisons of reflection coefficients for various box drafts. (a) Bg = 0.050 m, (b) Bg = 0.070 m, (c) Bg = 0.090 m.

dicates the single vortex bubble {d−} in these figures, which
comes from the strong shear flow from the edge profile of the
box by the velocity flowing out the gap.

The flow field patterns at the incident wave frequencies ω

= 4.00 and 5.30 rad/s are presented in the first and third rows
of Fig. 21, respectively. An general comparison suggests that
the flow evolutions between the excitations of low and high
frequencies are nearly the same to each other, which can be
analyzed together. As shown in Fig. 21a, two developed vor-
tices with opposite sign under the bottom of box can be ob-
served, defined as {a+} and {a−}, respectively. Another vor-
tices {b+}with positive sign is shedding from the edge profile
of box. With the time elapses, the vortices {b+} increases and
falls off the inner corner of the narrow gap at t = 2T/8. Then,
the flow begins to flow out of the gap, which leads to the vor-
tices {b+} propagating out of the narrow gap. Meanwhile, a
new vortices {b−} with negative sign is generated from the
edge profile of the box at t = 3T/8. The flow vector identifies
clearly the vortex structures of vortices {b−}. In the follow-
ing half period, an inverse process can be observed. That is,
the attached vortex {b−} propagates out of the gap with the
flow, and finally emerges with the secondary shear layer n-
ear the bottom of the box. Finally, the initial flow scenery at
0T reappears at T in this figure. By studying the flow pattern
from the numerical simulations, the P shedding mode in the
vicinity of the narrow gap can be suggested. The above P and
P + S shedding modes can also be found in Vortex Induced
Vibration (VIV) literature (Williamson and Govardhan, 2004;
Zhao, Cheng, and Lu, 2014; Lu et al., 2016; Munir et al.,
2018).

According to the analysis in this section, the vortex struc-
tures can be observed in all the cases with resonant and non-
resonant frequencies. The strength of the vortices of the P +
S shedding mode at resonant frequency is stronger than that
of the P shedding mode at non-resonant frequencies, which
is able to account for more significant physical dissipation in
quality. The above phenomena can be understood according
to a local Keulegan-Carpenter Number (KC Number), defined
as KC = VgT/D. The calculated KC Number are 1.20, 2.25
and 0.96 for ω = 4.00, 4.70 and 5.30, respectively. It can
be observed that the maximal KC Number appears at the res-
onant frequency, indicating that the most significant vortical
flow and energy dissipation happen. The above inference can
also be demonstrated by the formula of dissipation rate (ener-
gy dissipation per unit volume and unit time). In the context of

viscous fluid flow with incompressibility, the mechanical en-
ergy dissipation can be described by the dissipation rate from
the energy equation Ψ = 2µsi jsi j (Lamb, 1932), where µ s-
tands for the dynamics viscosity and si j = 0.5(ui, j + u j,i) is
the strain rate tensor. The function of dissipation rate can
be re-formulated by subtracting the continuity equation as
Ψ = µ[(v,x− u,y)2]+ 4µ(u,yv,x− u,xv,y). For a wall bounded
region, the total dissipation rate is mainly resulted from the en-
strophy (Ω̃ = ΩiΩi, square of vortices), which is the first term
of the above equation (Lu et al., 2013). The above formu-
la confirms that more significant dissipation can be generated
by the stronger vortical motion at resonant frequency. More-
over, the flow pattern shows that the vortex structures shed-
ding from the box are always near the gap bottom for the P + S
shedding mode at resonant frequency; while the vortex struc-
tures are always far from the gap bottom and mainly below the
box bottom for the P shedding mode at non-resonant frequen-
cies. Reminding the conclusion in pervious section that the
free surface amplitude in the narrow gap Ag is dependent on
the vertical velocity along the gap bottom Vg, the significan-
t influence of the P + S shedding mode on the piston-modal
resonance in the narrow gap can be expected. Summarizing
all the analysis mentioned above, we can confirm that the P +
S shedding mode at resonant frequency is able to significant-
ly affect the piston-like free surface oscillations in the narrow
gap. Therefore, the influence of fluid viscosity and rotational
flow cannot be neglected around resonant conditions. There-
fore, the influence of fluid viscosity and rotational flow cannot
be neglected around resonant conditions.

IX. CONCLUSION

The focus of the present work is on the wave resonance in
the narrow gap formed by a rectangular box in front of a ver-
tical wall. More specifically, the influence of fluid viscosity
and flow rotation on the behavior of piston-modal wave reso-
nance is investigated. This work is carried out by employing
a viscous numerical wave flume based on the OpenFOAM R©

package, where three incident wave amplitudes with different
frequencies at different gap breadths and box drafts are con-
sidered. The motivation of this study is to reveal the mechan-
ical essence behind the piston-modal resonance from the per-
spective of interaction between energy dissipation and energy
transformation. The major conclusions are given as follows,
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(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 21: Velocity field and vortices contour in the nearby region of the gap entrance during one period of oscillating motion of
fluid bulk in the narrow gap at various frequencies with Ai = 0.012 m for Bg = 0.050 m and D = 0.252 m. (a) 0T/8, (b) 1T/8,

(c) 2T/8, (d) 3T/8, (e) 4T/8, (f) 5T/8, (g) 6T/8, (h) 7T/8
1st row: ω = 4.00 rad/s; 2nd row: ω = 4.70 rad/s; 3rd row: ω = 5.30 rad/s

1) The large-amplitude piston-type free surface oscillation in
the narrow gap can be observed around the resonant fre-
quency. The harmonic analysis shows that the first har-
monic wave component dominates the piston-modal free
surface oscillation. Analogous phenomena can also be ob-
served in the evolution of horizontal wave force. Only a
little non-sinusoidal characteristic can be observed in the
time signal of vertical wave force. Generally, the effec-
t of free surface nonlinearity on the resonant behavior is
insignificant when the incident wave frequency is close to
the natural frequency of fluid bulk.

2) Around the resonant frequency, wave amplitudes in the nar-
row gap and in the upstream of the box are over-predicted
and under-estimated by the potential flow model, respec-
tively. The inherent neglect of energy dissipation due to
the eddy motion and vortex shedding is the major reason
for the over-prediction in the narrow gap. Meanwhile, the
change of energy transformation between the inside and
outside the box associated with free surface motion can
lead to the under-estimation of the wave amplitude in the
upstream of the box. In short, the influence of fluid vis-
cosity and flow rotation not only leads to the decrease of
free surface amplitude in the narrow gap, but also results
in the increase of wave amplitude in the upstream of the
box.

3) With increasing the incident wave amplitude, the normal-
ized wave amplitude in the narrow gap become smaller

around the resonant frequency. However, the increase of
the normalized wave amplitude around the resonant fre-
quency can be observed in the upstream of the box. The
numerical results mentioned above can be summarized
that the normalized wave amplitude around the box devi-
ates more from the potential flow results with the increase
of incident wave amplitude. It indicates that the influence
of fluid viscosity and flow rotation on the wave responses
is more significant with the increase of incident wave am-
plitude, including the energy dissipation in the gap region
and energy transformation of local near-field interaction.

4) More fluid mass attends the resonance with the increase of
gap breadth and box draft, leading to the decrease of res-
onant frequency of the fluid oscillation. The relation of
equivalence between the piston-modal resonant amplitude
and the relative injected water volume per gap breadth
can be established, theoretically and numerically. Further
analysis indicates that the piston-modal free surface am-
plitude is controlled by the resonant period and vertical
velocity along the gap bottom. In the region of present s-
tudy, the piston-modal resonant amplitudes in the narrow
gap give rise to decrease and increase with the increase of
gap breadth and box draft, respectively. The former is due
to the decrease of vertical velocity along the gap bottom;
while the latter is the reason of the increase of resonant
period.

5) The definition of the three-phase variation for wave ampli-
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tude in the narrow gap is also suitable for the wave forces
on the box. With the increase of incident wave amplitude,
the tendency of deviation of the potential flow results with
the viscous fluid flow results can also be observed in the
normalized wave forces. A minimal peak value of reflec-
tion coefficient at the resonant frequency can be observed
by the viscous fluid flow model, indicating the significant
energy dissipation happens in the whole fluid field. How-
ever, the dependence of the minimal reflection coefficient
around the resonant frequency on the incident wave and
box-wall geometry is quite complex.

6) Flow field examinations indicate that two typical flow
modes, that is, the P + S shedding mode and the 2P shed-
ding mode, can be identified according to the resonan-
t and non-resonant conditions, respectively. The vortical
strength of the P + S shedding mode is stronger than that
of the P shedding mode, indicating more significant dissi-
pation happens at the resonant frequency. Moreover, the
vortex structures of the P + S shedding mode are always
near the gap bottom, which can further affect the wave am-
plitude in the narrow gap around the resonant frequency.
The flow pattern analysis confirms the conclusion that the
rotational flow plays an important role around the resonant
frequency, which is highlighted for revealing the dynamic
mechanism behind the piston-modal behavior in the box-
wall system.
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