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ABSTRACT
Ant Colony Optimization (ACO) is a nature-inspired optimization
metaheuristic which has been successfully applied to a wide range
of different problems. However, a significant limiting factor in terms
of its scalability is memory complexity; in many problems, the
pheromone matrix which encodes trails left by ants grows quadrat-
ically with the instance size. For very large instances, this mem-
ory requirement is a limiting factor, making ACO an impractical
technique. In this paper we propose a restricted variant of the
pheromone matrix with linear memory complexity, which stores
pheromone values only for members of a candidate set of next
moves. We also evaluate two selection methods for moves outside
the candidate set. Using a combination of these techniques we
achieve, in a reasonable time, the best solution qualities recorded
by ACO on the Art TSP Traveling Salesman Problem instances, and
the first evaluation of a parallel implementation of MAX-MIN

Ant System on instances of this scale (≥ 105 vertices). We find that,
although ACO cannot yet achieve the solutions found by state-of-
the-art genetic algorithms, we rapidly find approximate solutions
within 1 − 2% of the best known.
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1 INTRODUCTION
Ant Colony Optimization (ACO) [15] is a population-based opti-
mization technique based on the foraging behaviour of ants [12, 13].
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The technique represents ants as software agents that traverse
a problem space and construct multiple solutions. Ants allocate
“pheromone” to each component of a good solution, and this signal
concentration is used by following ants to inform decisions. Over
time, this process of positive feedback causes the ant population to
converge to a high-quality solution.

Multiple ACO variants have been developed; these are often
specifically designed to perform more efficiently on certain prob-
lems, or with certain hardware in mind. We focus on one of these,
MAX-MIN Ant System (MMAS) [30], due to its established
good performance in terms of parallelization. MMAS differs from
the original ACO, known as Ant System [16], in two main ways.
Firstly, maximum and minimum pheromone levels are enforced in
order to limit the effects of a phenomenon known as stagnation.
Secondly, the act of pheromone distribution is restricted to only the
best performing ant, as opposed to Ant System and other variants,
which allow all ants to distribute pheromone.

Parallelization of the ACO algorithm is a well-researched area,
due to the inherently distributed nature of the technique. While
early parallel ACO techniques largely made use of distributed sys-
tems [5, 8, 14, 26, 28, 34] , more recent work has investigated use of
GPUs, with Nvidia’s CUDA framework [6, 7, 27] and Intel’s range
of manycore CPUs, Xeon Phi [19, 25, 32, 33] receiving particular
attention.

The Travelling Salesman Problem (TSP) was the first problem
used to demonstrate ACO, and is still commonly used for bench-
marking new techniques. While ACO is capable of finding good
quality solutions for TSP instances of varying sizes, it has not been
used on instances larger than a few tens of thousands of cities.
This is due to its reliance on a pheromone matrix, the data struc-
ture containing pheromone levels for (in this example) each pair of
cities. The size of this matrix grows quadratically with the instance
size. Assuming that a pheromone level is stored as a 32-bit float,
a TSP instance of size 10,000 requires a matrix occupying around
380MB, which can be easily handled by most modern hardware.
However, for a 100,000 city TSP, approximately 37GB is required,
which is much less practical. In order to allow ACO to effectively
solve these large-scale instances, we need to make fundamental
changes to the ACO data structure. Previous work in this area has
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focused on adopting a population-based ACO approach [9, 17]. In
this paper, we investigate an combination of alternative techniques
which allow us to use ACO to effectively solve large-scale TSPs.

While reducing the size of the pheromone matrix is a significant
step towards increasing the practicality of ACO for very large prob-
lems, the use of candidate sets is also crucial for reducing execution
time [10]. These restrict the number of options available to an ant
at any time step to a pre-determined number of nearest neighbours.
This significantly reduces processing time without impacting on
solution quality.

In this paper, we demonstrate the the effectiveness of combining
candidate sets with a reduced pheromone matrix, by restricting the
matrix to each city’s group of nearest neighbours (as opposed to
all pairs of cities). The fundamental underlying assumption is that
high quality solutions to the TSP generally avoid long-range jumps
between cities. This restriction allows our ACO method to solve,
to near optimality, TSP instances that are significantly larger than
those previously solved using this method, without compromising
the basic principles of ACO. Our principal contributions are: (1) a
scalable method for pheromone matrix representation with linear
memory complexity, based on a candidate set approach, (2) two
alternative fallback techniques for choosing edges outside of the
candidate set, and (3) the first evaluation of MAX-MIN Ant
System on large (> 105 city) TSP instances.

The rest of the paper is organized as follows: in Section 2 we
describe the background to our method and related work, and
in Section 3 we describe our new methods. We give the results
of experimental investigations in Section 4, before concluding in
Section 5 with an assessment of our method, and a consideration
of how it may be more broadly applied.

2 BACKGROUND AND RELATEDWORK
Previous work on improving the efficiency of ACO may be parti-
tioned into three main areas of focus: (1) parallelization, (2) candi-
date sets, and (3) pheromone matrix reduction. Most existing work
has concentrated on the first two areas; here, we focus on the third.
However, we first give a brief overview of relevant aspects of ACO
parallelization.

A fundamental component of any ACO algorithm is selection of
the next solution component (e.g., the next edge to traverse) for
each individual ant. This is done probabilistically, according to both
pheromone concentrations and any local rules associated with the
problem. Roulette Wheel selection is traditionally used by ants to
choose their next edge, with each edge receiving a “slice” of the
roulette wheel that is proportionate to its “weight”, a parameter
determined by a combination of pheromone level and distance.
While edges with a higher weight have a higher chance of being
selected, it is still possible for the ant to travel to any city that hasn’t
yet been visited. This technique is straightforward to implement
sequentially, but is difficult to parallelize.

The Independent Roulette (I-Roulette) [6] technique was a sig-
nificant development in parallel ACO on GPU, as it substituted the
traditional Roulette Wheel (i.e. fitness proportionate) method of
edge selection with a data-parallel approach. An alternative method,
Double-Spin Roulette (DSRoulette) [11], aimed to preserve the ex-
act proportionality of the original roulette (unlike I-Roulette, in

which the proportional relationship between probability and edge
weights is lost).

I-Roulette was later adapted to make use of the vectorization
potential provided by Intel’s Xeon Phi manycore co-processor, via
its Vector Processing Unit (VPU) and IMCI vector instructions. This
vectorized version of I-Roulette, known as vRoulette-1 [19], enabled
I-Roulette to be used on many-core SIMD (Single Instruction, Multi-
ple Data) architectures such as Intel Xeon Phi. A vectorized version
of DSRoulette, vRoulette-2, also performed better than the original
implementation. Similarly vectorized I-Roulette implementations,
UV-Roulette [33] and I-Roulette v2 [24], have been developed, as
well as a vectorized implementation of the traditional Roulette
Wheel approach [24].

We now consider the second technique for improving ACO effi-
ciency. Candidate sets are widely used with ACO to reduce compu-
tation time by only allowing ants to select from a pre-determined
number of their nearest neighbours. While vRoulette-1 made use of
candidate sets, the focus was on improving solution quality by en-
suring ants only visited nearby cities rather than on reducing execu-
tion time. The Vectorized Candidate Set Selection technique (VCSS)
[25] focused on using candidate sets to improve execution time
by introducing a Nearest Neighbour object to the ACO algorithm.
Designed to take advantage of the AVX512 instruction set, which re-
placed IMCI in the Knight’s Landing generation of Xeon Phi, VCSS
operates two separate selection methods: a candidate set roulette
(CSRoulette) and a fallback method. Both methods are very similar
to vRoulette-1, with the only difference being that CSRoulette only
selects from available nearest neighbour edges rather than selecting
from every available edge. If no nearest neighbour edges are avail-
able the fallback method is used, which is identical to vRoulette-1.
VCSS showed a significant speedup over vRoulette-1, and more
details of the technique are given in Section 2.2.

In this paper, we also focus on the memory complexity of ACO,
thus addressing the third highlighted opportunity for improvement.
The baseline memory requirement for a pheromone matrix on a
problem with n vertices is O(n2), which becomes prohibitive (on
current hardware) for solving instances with∼ 105 vertices or larger.
One previous attempt to overcome this restriction is Population-
based ACO (P-ACO) [17], although this was motivated by a need
to solve dynamic problems, rather than very large problems per se.
P-ACO removes the pheromone matrix entirely, replacing it with a
population of good tours that are deleted once they reach a certain
“age”. Rather than using pheromone in decisionmaking, ants consult
the population of good tours when selecting the next city to visit. P-
ACO inspired the PartialACO technique [9], which instead replaced
the pheromone matrix with local memory for each ant (storing the
best tour found by that ant). PartialACO also represents a radical
departure from the traditional ACO tour construction phase, by
having each ant change only part of a good previous tour, rather
than producing a new tour at every iteration. At the start of an
iteration, an ant selects a starting city and a number of cities to
retain from the local best tour. The PartialACO technique enabled
the first recorded results for ACO on four of the well-known Art
TSPs, six very large TSP instances ranging from 100,000 to 200,000
cities. PartialACO found tours that were within 7% of the best
known, in times ranging from around 1 hour to around 7.4 hours.
However, although this technique performs well on very large TSP
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instances, we will demonstrate that it is still possible to achieve
improved solution qualities whilst retaining the core features of
the traditional ACO algorithm.

In the rest of this Section we give an overview of the MMAS
variant of ACO, which forms the basis of our work, and provide
more details of the VCSS technique.

2.1 MAX-MIN Ant System
The ACO algorithm for the Travelling Salesman Problem may
be divided into two main phases: (1) tour construction, and (2)
pheromone update. During the tour construction phase, each of
them ants randomly selects a starting city, and moves across the
graph to gradually build a tour. At each iteration, an ant uses both
pheromone concentration and Euclidean distance between cities to
make a probabilistic selection of the next city to visit. The probabil-
ity of ant k at city i choosing to move to city j is given by:

pki, j =


[τi, j ]α [ηi, j ]β∑

i∈Nk
i
[τi, j ]α [ηi, j ]β

i ∈ N k
i

0 otherwise.
(1)

Here, ηi, j = 1/di, j where di, j is the length of edge (i, j), τi, j is
the pheromone value for edge (i, j) and N k

i is the feasible region for
i . The feasible region (the list of cities that ant k is able to visit) is
derived from a tabu list structure containing a list of cities already
visited by the ant (ants may not revisit cities on the tabu list).

Once an ant has visited each city once, it returns to the starting
city. The ant then begins the pheromone update stage. TheMMAS
update phase differs from other ACO variants in two ways: (1) only
the global-best or iteration-best ant deposits pheromone, rather than
every ant; and (2) pheromone is clamped between a minimum and
maximum bound (hence the name of the method) in order to reduce
the possibility of stagnation. The first difference has significant im-
plications for our own work, as restricting pheromone deposition to
a single ant makes the technique amenable to parallelization (since
there is no need for multiple write access to the pheromone matrix).
In general, the amount of pheromone deposited is proportional to
the quality of the solution: in the case of the TSP, the amount is
inversely proportional to the tour length, since shorter tours are
better. The pheromone is deposited according to:

τi, j = τi, j + ∆τi, j∀(i, j) ∈ L (2)
where L is the set of edges in the complete graph and ∆τi, j is

the amount of pheromone deposited on edge (i, j), given by

∆τi, j =

{
1/C if edge(i, j) ∈ T

0 otherwise
(3)

where T is the set of edges in the iteration-best or best-so-far
tour, andC is the total length of this tour. Once pheromone has been
distributed, the next step is pheromone evaporation, during which
the global pheromone is reduced by a constant fraction, allowing
sub-optimal solutions to be “forgotten” over time. The pheromone
is evaporated using the rule

τi, j = (1 − ρ)τi, j∀(i, j) ∈ L (4)
where ρ ∈ [0, 1] controls the evaporation rate.

In MMAS pheromone values in are “clamped” between two
limits, τmin and τmax , which are defined by

τmax =
1

pCbest
;τmin = τmax

2(1 − a)

a(nneighbours + 1)
(5)

where nneighbours is the number of nearest neighbours and
a = exp(log(0.05)/n).

2.2 Vectorized Candidate Set Selection
As previously noted, while the traditional Roulette Wheel selection
method performs well for serial implementations of ACO, it is a
difficult technique to parallelize. Although several parallel alterna-
tives exist, our selection method is based on Independent Roulette
(I-Roulette) [6]. Here, the weight of each edge available to an ant is
multiplied by a uniform random deviate between 0 and 1, and the
edge with the highest product of weight and random number is se-
lected. While higher-weighted edges are more likely to be selected
than lower-weighted edges, the selection probabilities are not di-
rectly proportional to weight, and I-Roulette selection is greedier
than the standard roulette wheel [20].

The I-Roulette technique was later vectorized as vRoulette-1
[19] which maintains the fundamentals of I-Roulette, but makes
use of vectorization provided by the Xeon Phi. Weights and random
numbers are loaded into 16-wide vectors and multiplied simulta-
neously using the IMCI instruction set. A highest weights vector
is maintained, storing the highest weight from each lane of the
vector. Once every weight has been multiplied, the highest weight
vector is reduced, with the result of this being the highest value
throughout the entire process. The city associated with this value
becomes the next to be visited.

vRoulette-1 was improved further with the development of the
Vectorized Candidate Set Selection (VCSS) [25] technique. The sig-
nificant difference between the two is the use of a new candidate
set structure in VCSS. An array of nearest neighbour objects, each
of which contains the index of one or more nearest neighbours, is
associated with each city. When an ant moves between cities, the
nearest neighbour object array of the current city is loaded directly
into a modified vRoulette-1 which performs the same actions as the
standard method, but which operates only on nearest neighbours
rather than on every possible vertex. If no nearest neighbour cities
are available, the standard vRoulette-1 is performed as a fallback.
To the best of our knowledge, VCSS is the best-performing parallel
implementation of ACO, and we therefore use it as the basis of the
work presented here.

3 RESTRICTED PHEROMONE MATRIX
Removing or significantly adapting the pheromone matrix is an
important and necessary step towards establishing ACO as an effec-
tive solution for very large problems. Previous work on P-ACO [17]
and PartialACO [9] focused on removing the pheromone matrix
entirely, relying instead on a population of solutions. The key con-
tribution of the current paper is the creation of a new, candidate-set
based memory structure, the Restricted Pheromone Matrix, to re-
duce the memory complexity of ACO from quadratic to linear in
instance size, thus allowing large problem instances to be solved
in a reasonable time. This data structure stores only the weights
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Table 1: Data requirements for Pheromone Matrix and Re-
stricted PheromoneMatrix on various TSP sizes, with a near-
est neighbour list size of 32.

Instance Size Pheromone Matrix Restricted Matrix
100 39 KB 12.5 KB
1000 3.8 MB 125 KB

10,000 381.5 MB 1.22 MB
100,000 37.3 GB 12.2 MB

between the current vertex and its nearest neighbours, as well as
other vertices stored in the nearest neighbour structure for efficient
vectorization. If nNN is the number of nearest neighbours, n is
the number of vertices and v is the vector size available on our
hardware, the restricted pheromone matrix requires n × nNN ×v
real numbers, compared to n2 for the full pheromone matrix. This
significantly reduces the memory requirements of ACO, especially
on very large instances, as demonstrated in Table 1. For a 100,000
city TSP instance, the restricted matrix occupies only 0.26% of the
space required by the standard pheromone matrix.

In order to accelerate the calculation, we also store a distance ma-
trix for vertices represented in the pheromone matrix. The edgeDist
matrix stores the distances between each vertex used for the weight
calculation, and requires the same amount of memory as the re-
stricted pheromone matrix. For a constant vector width and nearest-
neighbour list size, the memory complexity of the proposed algo-
rithm is therefore O(n).

3.1 Tour Construction
The tour construction phase is parallelized using OpenMP, with
each ant being allocated to an available thread. No synchronization
is required, as ants write only to local memory during a tour, and
global memory is only written to once per iteration, when all ants
have completed their tours. Each ant selects a starting vertex ran-
domly, and then repeatedly calls the edge selection function. The
first stage of the edge selection is similar to VCSS, with the only
difference being that weights are directly loaded (rather than hav-
ing to check a nearest neighbour data structure to look up indices
in the matrices), since the pheromone and distance matrices only
contain nearest neighbours. The process of applying the nearest
neighbour mask to obtain a vector of valid weights is shown in
Figure 1.

Once this vector of valid weights has been filled, the tabu mask
is then applied in order to filter out any cities that have already
been visited. The weights are then multiplied by a vector of random
numbers between 0 and 1. The randomized weights are then com-
pared with the running maximum weights vector on a lane-by-lane
basis, with larger values in the current weights vector replacing
values in their line in the maximum weights vector. This process is
repeated until all the vectors of weights in the nearest neighbour
list have been considered. We then perform a reduction on the
maximum weights vector to find the highest overall weight. The
index associated with this weight is then used as the index of the
next visited city. At this point, it is possible that no city is selected,
if all the cities in the nearest neighbour list are tabu; in this case,

Figure 1: Applying theNNmask tofilter out non-NNweights

one of the two “fallback” methods described in Sections 3.2 and 3.3
is used to select the next city.

The process continues until every city has been visited, at which
point the ant returns to the starting city. Further details about the
VCSS technique can be found in [25]; while VCSS falls back to v-
Roulette1 when no nearest neighbour vertices are available, here
we propose two alternative fallback methods.

3.2 Heuristic Fallback
In standard ACO, the highest-weighted vertex is usually chosen
when all nearest neighbours are tabu. When using the restricted
pheromone matrix, however, no pheromone is available for ver-
tices outside the nearest neighbour list. The first fallback algorithm
we propose is to select the nearest vertex not yet visited. Since the
pre-computed distance matrix also extends only to the nearest
neighbour list, the distances must be directly computed from the
vertex coordinates. To avoid having to perform a square root cal-
culation, we therefore look for the vertex with the lowest squared
distance to the current vertex.

3.3 Pheromone Map Fallback
The Pheromone Map Fallback method aims to faithfully reproduce
the MMAS algorithm by ensuring that all edges make use of a
varying level of pheromone (not just the nearest neighbour edges),
but without compromising on memory requirements. We make
use of a C++ map object (an associative array), which stores data
in key-value pairs. This stores a pheromone value for every edge
that forms part of a best ant’s tour and which is not a nearest
neighbour edge (a hash map has previously been used to replace
the pheromone matrix [3]).

The key for map entries objects is a hash value that uniquely
identifies one edge, and the value is the weight of that edge. The
hash value is calculated with the simple formula of (A × N ) + B,
where A is the current vertex, B is the next vertex, and N is the
overall number of vertices (A and B are swapped if B is a higher
index than A).

Since this fallback is used only when all nearest neighbours are
tabu, we may assume that if an edge is found in the map then it has
an associated pheromone value, otherwise the pheromone value
is taken as τmin . Each vertex is iterated over, and the hash value
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corresponding to the edge is looked up in the map. The edge weight
is computed using the pheromone and Euclidean distance, and
compared with the current highest weight, becoming the highest
weight if it is greater. After iterating over all vertices, the vertex
associated with the overall highest weight is visited next.

3.4 Pheromone Distribution
The pheromone distribution phase of the algorithm differs depend-
ing on the fallback method that is used in the tour construction
phase. If the Heuristic fallback is used, pheromone levels on edges
between nearest neighbours are adjusted. Edges traversed by the
best ant in the current iteration have their pheromone levels in-
creased by an amount determined by the pheromone deposit for-
mula given in Section 2.1. However, as pheromone is not stored for
non-nearest-neighbour values, no pheromone is deposited on those
edges. While pheromone value is stored for certain non-nearest
neighbour vertices that are in the NN object of NN values, these
weights are never actively used, so their pheromone is not updated.
Pheromone reduction, as well as clamping between maximum and
minimum values, takes place after the pheromone has been de-
posited.

The Pheromone Map fallback pheromone distribution phase
includes the steps taken when using the Heuristic fallback, but
includes an additional step. If pheromone is to be distributed on an
edge where at least one vertex is a non-nearest-neighbour value,
a new entry is created in the pheromone map. If the hash already
exists in the map, the associated pheromone value is increased, but
if it does not exist, a new map entry is created with the hash as the
key. As with the Restricted Pheromone Matrix, the map is iterated
over, and every value in the map is evaporated and clamped.

3.5 Local Search
Variants of the local search [2] technique have been successfully
paired with ACO implementations on multiple occasions [9, 15, 22].
Local search is used with ACO to improve completed tours by find-
ing the local optimum with respect to some neighbourhood (2-opt,
2.5-opt or 3-opt). The 3-opt operator removes three edges in a tour,
and evaluates the seven possible ways of reconnecting the tour. If
any of these seven possibilities lead to a shorter tour distance, the
original three edges are replaced with the new optimum configu-
ration, and this process is repeated until no further improvement
is found. Here, we use the 3-opt local search code from ACOTSP
[29], and apply this operator to all tours created in an iteration. The
local search phase is parallelized across the threads owned by the
ants; each ant performs local search on its own thread at the end of
tour construction.

4 EXPERIMENTAL RESULTS
In this Section, we present the results of experiments to evaluate
the two proposed methods, and compare the results of the better-
performing of the two with the published results for PartialACO
and P-ACO, which are the only other ACOmethods in the literature
which have been applied to large-scale TSP instances. We compare
our results on solution quality with published results using P-ACO
and PartialACO and, although this is not a direct comparison since
the original runs used different hardware, these published results

Table 2: Solution quality and mean execution time results
for Heuristic (HF) and PheromoneMap (PMF) fallbacks over
10 runs each of 1000 iterations on the mona-lisa100k in-
stance. Solution quality is measured as the percentage dif-
ference of tour length from best known.

Solution Quality (%)
Method Min Median Mean Max t/hrs

HF 1.684 1.704 1.698 1.712 1.07
PMF 1.689 1.7 1.7 1.709 5.15

represent the best solutions found to date using ACO on these
large instances. Experiments on the Heuristic and Pheromone Map
fallbacks were run on a machine with an Intel® Xeon E5-2640 v2
processor with 20 cores of 2 threads each (for a total of 40 threads),
and a clock speed of 2.4 GHz. The code was compiled using the
GNU C++ compiler (g++), with O2 optimization enabled.

4.1 ACO Parameters and Problem Instances
For each experiment, we use 40 ants. Conveniently, this number
is equal to both the number of threads we have available, and the
generally recommended number of ants [21]. We use the MMAS
parameter values of α = 1, β = 2, ρ = 0.02. Each ant has a Nearest
Neighbour list of size 32, in line with the recommended list size in
[31]. Each run of our algorithm consists of 1000 iterations.

The problem instances used in our experiments are taken from
the well-known Art TSP collection [1] of Traveling Salesman Prob-
lem instances. We used all six of the instances, which are shown
in Figure 2. We compare our results with the best-known tour for
each of these instances. All of the best known solutions were found
using a genetic algorithm with Edge-Assembly Crossover (EAX)
[18].

4.2 Fallback Comparison
Our first experiment was performed to determine which of our two
fallback methods performs best, and to evaluate whether or not the
use of the heuristic fallback (which disregards the pheromone on
edges outside the candidate set) has a detrimental effect on solution
quality.

We carried out 10 runs of 1000 iterations with each fallback
method, using the mona-lisa100k instance. The results are given
in Table 2. We find that the solution qualities for both fallback
methods are consistent with each other, and within each ensemble
of runs; in all cases the tours found are around 1.7% longer than the
best known. AWilcoxon signed-rank test on the two sets of solution
qualities gives a p value of 0.959, indicating that our data cannot
support the conclusion that one fallback produces a better solu-
tion quality on average. However, the Heuristic fallback constructs
tours in significantly shorter time, with the runs taking on average
around an hour, compared to around 5 hours for the Pheromone
Map fallback. The extra overhead in querying the pheromone map
dominates the time to solution in this case.

Figure 3 shows themeanmemory consumption of the pheromone
map as a function of iteration. Although this grows steadily, the
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Figure 2: Best known tours for the Art TSP instances:
mona-lisa100k (top left), vangogh120k (top right), venus140k
(middle left), pareja160k (middle right), courbet180k (bot-
tom left) and earring200k (bottom right).

map consumes a relatively small part of the overall memory budget
for pheromone data (less than 1 MB out of a total of 13 MB).

4.3 Solution Quality
While we see no significant difference between the tour lengths for
either fallback method, the difference in execution time makes the
Heuristic fallback a much more practical method for evaluating our
restricted pheromone matrix on the five larger Art TSP instances.

For each instance we performed ten runs of 1000 iterations. We
compare our solutions with those found by PartialACO and P-
ACO [9], where these exist. Our technique produces solutions that
are approximately 1-2% over the shortest recorded tours for these
instances, which is a significantly smaller difference than P-ACO
and PartialACO (see Figure 4 for a comparison). It is difficult to
directly compare solution times due to hardware differences, and
the fact that the PartialACO technique does not create full tours
for each iteration, but, for completeness, a comparison of execution
times is given in Table 3. We can at least say that these are broadly

Figure 3: Pheromone map size over time

Figure 4: Plot of the solution quality difference between
P-ACO, PartialACO (results taken from [9] and Restricted
Pheromone Matrix (our experiments) against shortest
known tour. No P-ACO or PartialACO results are available
for pareja160k and courbet180k.

comparable times to solution, in both cases using recent commodity
hardware.

Figure 5 plots solution quality over time for each of the instances.
Although small gains are still being made when our runs are termi-
nated, in all cases the solutions are well converged.
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Table 3: Execution times for PartialACO and Restricted
Pheromone Matrix.

Instance Execution Time (Hours)
PartialACO Restricted Matrix

mona-lisa100k 1.07 1.36
vangogh-120k 1.45 1.92

venus140k 2.09 2.63
pareja160k N /A 3.45

courbet180k N /A 4.5
earring200k 5.06 6

4.4 Discussion
We have demonstrated the feasibility of scaling up ACO to solve
large (> 105 city) instances of TSP, and shown that ACO can pro-
duce tours within 2% of the best known on a selection of well-
known large instances. Our code runs in times of order an hour on
commodity hardware, compared to the supercomputing resources
required to find the best-known tours using genetic algorithms[18].
We note that our solution qualities degrade only slightly between
the mona-lisa100k and earring200k instances, with only a mini-
mal difference of ∼ 0.2% (compared to the almost 2% degradation
seen using PartialACO). This consistency of solution qualities sug-
gests that our technique could potentially be used to obtain good
quality tours for problem instances that are even larger than the
Art TSPs.

While it is perhaps intuitively obvious that the Pheromone Map
fallback should produce better quality solutions (due to the avail-
ability of more accurate edge weight information through the use
of pheromone), we find that ignoring pheromone on edges outside
the candidate set has little impact. We should note that, overall,
the fallback rate is very low, with fewer than 5% of tour construc-
tion selections being made using either fallback method. While
pheromone is an integral part of ACO, our experiments suggest
that it is less important when the cities being traveled between
are significantly far apart. Quantifying the effect of pheromone at
varying distances in the nearest-neighbour list is an area for future
work. Given the negligible difference in solution quality, the much
faster execution time of the Heuristic fallback makes it a far more
practical technique than the Pheromone Map fallback.

5 CONCLUSIONS
In this paper we presented a Restricted Pheromone Matrix method
which allows ACO to be used to solve large instances of the TSP, by
reducing the memory complexity from quadratic to linear. We also
presented two selection techniques for cities outside the nearest
neighbour list. By combining the Restricted PheromoneMatrix with
the Heuristic Fallback technique, we found tours that are within 2%
of the best known solutions for the Art TSP instances, a substantial
improvement on previous attempts using ACO. Importantly, our
implementation closely follows the originalMMAS algorithm, and
represents the first evaluation of this algorithm on large instances
of the TSP.

While the substantial reduction inmemory size allows us to solve
much larger instances than previously possible, the time complexity

Figure 5: Solution quality versus iteration for the Art TSP
instances using the heuristic fallback.

of ACO remains a limiting factor. Though the execution time is
greatly reduced through the use of parallel and vector methods
such as the VCSS selection technique, substantial changes to the
core ACO algorithm would be required to reduce this complexity.
However, neither of our fallback techniques currently uses the
vector instructions employed by, for example, I-Roulette and VCSS,
and a significant speedup could be obtained by vectorizing the
fallback algorithms. Future work will focus on this.

Finally, we note that many problems to which ACO has been
successfully applied share with the TSP the properties of quadratic
memory complexity and the use of candidate sets to accelerate
the solution. Examples include the Quadratic Assignment Problem
[21], Resource-constrained project scheduling problems [23], and
vehicle routing problems [4]. The methods presented in this paper
could be also be applied in these cases, where the solution of large
instances is limited by memory.
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