
Please cite the Published Version

Khalfay, Amy, Crispin, Alan and Crockett, Keeley (2020) Solving the service technician routing
and scheduling problem with time windows. In: Intelligent Systems Conference (IntelliSys) 2019,
05 September 2019 - 06 September 2019, London, United Kingdom.

DOI: https://doi.org/10.1007/978-3-030-29516-5_86

Publisher: Springer

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/622782/

Usage rights: In Copyright

Additional Information: This version of the article has been accepted for publication, after peer
review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version
of Record and does not reflect post-acceptance improvements, or any corrections. The Version of
Record is available online at: http://dx.doi.org/10.1007/978-3-030-29516-5_86

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-1941-6201
https://doi.org/10.1007/978-3-030-29516-5_86
https://e-space.mmu.ac.uk/622782/
https://rightsstatements.org/page/InC/1.0/?language=en
http://dx.doi.org/10.1007/978-3-030-29516-5_86
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Solving the service technician routing and scheduling
problem with time windows

Dr Amy Khalfay1, Dr Alan Crispin2, and Dr Keeley Crockett2

1 IBM Services, Global Business Services amy.khalfay@ibm.com
2 Manchester Metropolitan University

a.crispin@mmu.ac.uk, k.crockett@mmu.ac.uk

Abstract. In this paper a greedy randomized heuristic is used to solve a service
technician routing and scheduling problem with time windows. Time window
constraints occur in many sectors such as telecommunications, maintenance, call
centres, warehouses and healthcare, and is a way of service providers differenti-
ating themselves to maintain customer satisfaction and ultimately retain market
share. The greedy randomized heuristic is coupled with a simulated annealing
with restart metaheuristic and tested on 36 problem instances. The greedy ran-
domized heuristic is compared against a parallel adaptive large neighbourhood
search heuristic, presenting new best known results in 18% of the datasets.

Keywords: Technician routing and scheduling problem with time windows ·
Greedy randomized heuristic · Simulated annealing with restart

1 Introduction

The service technician routing and scheduling problem with time windows (STRSPTW)
is an NP-hard combinatorial optimisation problem, meaning that as the problem size
increases, exact methods become prohibitive, and, therefore, approximate techniques
must be used in order to find feasible and high quality solutions within reasonable com-
putational times. This research is based on a combinatorial optimisation problem ap-
plicable to many industries such as the maintenance sector (Fırat and Hurkens, 2012
and Pillac et al., 2013), call centres (Van den Bergh et al., 2013) and home healthcare
(Hiermann et al., 2015 and Paraskevopoulos et al., 2016).

In the context of STRSPTW, it is not solely the cost of the employees, but also
the maintenance and repair of the fleet of vehicles that must be considered. Efficient
scheduling and routing of employees and vehicles can reduce the cost of a workforce,
ensure a balanced workload, and has the potential to reduce the environmental impacts
caused by the vehicles used.

The occurrence of time windows is becoming increasingly popular with service
maintenance providers, and directly affects the scheduling and routing of employees.
From a customer’s perspective, knowing that a technician/skilled worker will be ar-
riving between time ai and bi can improve the customer experience. It may allow the
customer waiting for a service to take less time off work, and even choose a preferred
time slot, providing not only convenience but satisfaction.



2 A.Khalfay et al.

In this paper, the first sequential heuristic to solve the STRSPTW data instances, that
were first proposed by Kovacs et al., (2012), is described. The problem instances were
adapted from the vehicle routing instances proposed by Solomon, (1987), by combin-
ing the datasets with skill domain information taken from the ROADEF 2007 challenge
(Society, 2016). The STRSPTW datasets each have 100 customers, a varying crew size,
and different proportions of jobs with time windows. Kovacs et al., (2012) used a paral-
lel adaptive large neighbourhood search (pALNS) algorithm. This research proposes a
sequential greedy randomized heuristic on the problem instances to provide a compar-
ative performance analysis.

The rest of this paper is organised as follows: section 2 provides a literature review
of research in the field of personnel scheduling, section 3 presents the mathematical
formulation of the STRSPTW, section 4 describes the greedy randomized heuristic ap-
proach, section 5 presents the results of the computational experiments performed, sec-
tion 6 discusses the results obtained and section 7 concludes on the research undertaken
and suggests further areas for investigation.

2 Literature

Research in the area of personnel scheduling has included a diverse range of constraints
such as routing, teaming, priority levels, precedence, time windows, multi-period (mul-
tiple days), tools and spare parts, and experienced based service times. However, the
main characteristic featured in all of these problems is skill complexity. All of these
problems require jobs to be completed by a technician/team who collectively posses the
necessary expertise to perform the required job.

A study by Pillac et al., (2012) concentrated on the dynamic technician routing and
scheduling problem (DTRSP), in which new job requests appear, an aspect of a real
world situation faced by industry. In addition, a static TRSP was also studied by Pil-
lac et al., (2013, who extended instances from vehicle routing problems proposed by
Solomon [7] by combining them with randomly generated skill requirements and tools
and spare parts information. This TRSP used a crew of up to 25 technicians and sched-
uled up to 100 jobs and required the scheduling of crew over a single day. This research
included the complexity of tools and spare parts constraints, an important aspect in the
service maintenance sector.

An exact approach was studied by Tricoire et al., (2013) who compared the perfor-
mance of exact and hybrid solution approaches, concluding the trade off between com-
putational time and solution quality. Chen et al., (2016) studied a version of the TRSP
where the technicians became more experienced throughout the scheduling horizon re-
sulting in a reduction of service times, an aspect of the real world scenario previously
unstudied.

Other exact approaches in the literature include papers by Mathlouthi et al., (2016)
and Zamorano and Stolletz, (2016 who used mixed integer programming (MIP) and
branch and price solution approaches respectively. Mathlouthi et al., (2016) used arti-
ficial datasets that contained up to 25 jobs and used CPLEX to solve the mixed inte-
ger programming model. The problem included the complexities such as skill require-
ments, priority levels, time windows, breaks and overtime. This paper also illustrated



Solving the service technician routing and scheduling problem with time windows 3

how the computational time needed to solve the problems rapidly increases with prob-
lem size and complexity. Zamorano and Stolletz, (2016 used both artificial and real
world datasets containing up to 29 jobs, again emphasizing the difficulties faced with
the scalability of Mixed Integer Programming (MIP) solution approaches.

Throughout the literature it is clear that research is needed into approximate ap-
proaches in order to tackle medium and large scale problems as exact methods are pro-
hibitive. This research focuses on designing and implementing approximate approaches
that can deal with relevant real world constraints such as time windows. As evidenced,
time windows are an important consideration for service providers who seek to main-
tain customer satisfaction and maintain repeat business through providing a reliable and
customer focused service.

3 Problem formulation

The MIP formaulation of the STRSPTW datasets, as introduced by Kovacs et al. [6]
is presented below. The problem can be defined mathematically as a complete directed
graph G = {V,A}, where V is the set of all vertices i.e the set of jobs, and A a set of arcs
between the vertices. The set of jobs that is allocated can be defined as V ′, and jobs that
belong to V but not V ′ is the set of jobs that is outsourced.

There is a set of technicians T = {1, . . . , t} The starting depot is denoted as 0 and
the ending depot as N. Each technician has intrinsic skills s ∈ S and varying levels l ∈ L
within each area of expertise. The fleet of technicians is heterogeneous, each being
unique with different skills and levels within each skill area. The technician’s skills
can be represented by an L× S matrix where [pt

l,s] denotes the level of expertise the
technician has in skill area s to level l. Skill levels are hierarchical so if pt

l,s = 1 then
pt

l′,s = 1 for l′ < l.
Each job belonging to the set V has a service time denoted by di, a skill requirement

matrix, of size L× S, denoted as ql,s and a time window in which service of the job
must begin [ai,bi]. The aim of the problem is to construct the least costly schedule, by
minimizing the total sum of the outsourcing and routing costs. The following variables
are used;

Bt
i = the beginning time of service of job i or the depot by technician t

Et
i = the end time of service of job i or the depot by technician t

xt
i, j that equals one only if technician t travels from job i to job j

zi equals one only if job i has been outsourced
yt

i equals one if job i is assigned to technician t

The problem can now be represented as;

min ∑
t∈T

∑
i, j∈A

ci, j · xt
i, j + ∑

i∈V ′
oi · zi (1)

Equation (1) shows the objective function of the problem, which is to minimise the
total sum of the routing costs (ci, j is the distance between customers i and j) and the
outsourcing costs (where oi is the cost of outsourcing job i). Subject to;



4 A.Khalfay et al.

∑
t∈T

yt
i + zi = 1 ∀i ∈V (2)

Equation (2) guarantees that each job is either outsourced or it is allocated to a techni-
cian.

∑
j∈V ′∪{N}

xt
0, j = 1 ∀t ∈ T (3)

∑
i∈V ′∪{N}

xt
i,N = 1 ∀t ∈ T (4)

Equations (3 and 4) ensure each technician departs from the central depot at the begin-
ning of the working day and returns to the depot at the end of the working day.

∑
j∈V ′∪{0}

xt
j,i = yt

i ∀i ∈V ′, t ∈ T (5)

∑
j∈V ′∪{0}

xt
j,i− ∑

j∈V ′
xt

i, j = 0 ∀i ∈V ′, t ∈ T (6)

Equations (5 and 6) confirm that if a technician is assigned to a job i, then the techni-
cian must travel to the job from another location, and leave the job to travel to another
location.

Bt
j ≥ (Et

i + ci, j)∗ xt
i, j, ∀i ∈V ′, t ∈ T (7)

Equation (7) states that if two jobs i and j happen sequentially, then the start time of j
must be equal to or greater than the end time of i plus that travel time between i and j,
to ensure continuity.

Bt
0 = 0 ∀t ∈ T (8)

Equation (8) sets the beginning time of each technician’s route.

yt
i ·qi

l,s ≤ pt
l,s ∀i ∈V ′, l ∈ L, s ∈ S (9)

Equation (9) ensures that if a job is allocated to a technician, the technician has the
skills necessary to service the job.

Et
i = (Bt

i +di) · yt
i ∀i ∈V ′, t ∈ T (10)

Equation (10) states that the end service time of a job must be equal to the beginning
service time plus the service time of the job.

ai ≤ Bt
i ≤ bi ∀i ∈V ′∪{N}, t ∈ T (11)

Equation (11) guarantees that the beginning of service of a job i is within the time
window.

xt
i, j, ∈ {0,1} ∀(i, j) ∈ A, t ∈ T (12)



Solving the service technician routing and scheduling problem with time windows 5

zi ∈ {0,1} ∀i ∈V ′ (13)

yt
i ∈ {0,1} ∀i ∈V ′, t ∈ T (14)

Bt
i ≥ 0 ∀i ∈V ′ (15)

Et
i ≥ 0 ∀i ∈V ′ (16)

4 Heuristic approach

The approach presented in this paper comprises of two parts, generating an initial fea-
sible solution, and secondly, iteratively trying to improve the current solution through
the use of local operators and evaluating using a simulated annealing with restart meta-
heuristic.

4.1 Greedy randomized construction heuristic

The greedy randomized heuristic behaves in a flexible manner by changing the sorting
criteria that decide which job is next to be allocated. There are five insertion methods;
earliest late window, minimum window size, complex jobs, depot distance and random.
Each of these methods is described in the following subsections. The pseudo code for
the greedy randomized construction heuristic is displayed in Figure 1.

– Earliest late window (ELW) This insertion method orders the set of unallocated
jobs into a list. Each job has a time window [ai,bi], and the sorting method orders
the jobs into an increasing order of bi, i.e the end of the time window, the latest
time the job can be started. This method tries to ensure that all jobs are allocated
before their time window has passed, as they will then be outsourced in order to
stay within the feasible solution space, which incurs a cost.

earlylatei = bi (17)

– Minimum window size (MWS) The minimum window size method orders the set
of unallocated jobs into a list, sorting them by the size of their time window. This
method aims to ensure that jobs that have a small opportunity to be started, i.e the
difference between bi and ai is small, have a higher chance of being allocated in
favour of jobs with a larger difference between bi and ai.

minwindowi = bi−ai (18)

– Complex jobs (CJ) The set of unallocated jobs is ordered by the complexity of the
jobs that are currently unallocated. The difficulty of a job is calculated as the sum
of the total skill requirements across each domain and skill level, as in Cordeau
et al. [14]. This method aims to allocate jobs which require lots of skill earlier, and
jobs that are less difficult to schedule are scheduled later.

complexi = ∑
l∈L

∑
s∈S

qi
l,s (19)



6 A.Khalfay et al.

– Depot distance (DD) The depot distance method orders the set of jobs in ascending
order of distance away from the depot. The distance between a job i located at xi,yi,
and the depot located at x0,y0 is calculated using the Euclidean distance as shown
in Equation (20).

depotdistancei =
√
(x0− xi)2 +(y0− yi)2 (20)

– Random (R) The random sorting method orders the unallocated jobs by shuffling
the array that contains the jobs. In this work, the level of randomness, r, is set to
0.08.

Greedy randomized heuristic pseudo code Figure 1 shows the greedy randomized
construction heuristic. This algorithm takes the following variables, a set of jobs V , a
set of teams τ , a schedule S, an outsourcing list O, the following sorting methods ELW ,
MWS, CJ, DD, and R. The job selected for allocation is i, and τi the team selected to be
allocated job i. allocated job i.

Variables: V : set of jobs, τ: the set of teams , S: the schedule, O: outsource list, ELW : earliest
late window, MWS: minimum window size, CJ: complex jobs, DD: depot distance, R: Randomly,
i:job selected for allocation, τi: team selected to serve job i

1: initialise S
2: while jobs can be allcoated do
3: r← random(0,1)
4: technique←Choosesortingmethod(r,ELW,MWS,CJ,DD,R)
5: V ← method(V )
6: i← select job(V )
7: τi← selectteam(i,S)
8: assign(S,τi, i)
9: remove(V, i)

10: end while
11: O← addOutsourced(V )
12: return S

Fig. 1: Greedy randomized construction heuristic

First, an empty schedule S is initialised. While jobs can be allocated to the schedule
S, a random number r is generated on the interval {0,1}. Dependent on the value of r,
a sorting method is chosen; ELW earliest late window, MWS minimum window size,
CJ complex jobs, DD depot distance or R randomly. On line 5, the set of remaining
unallocated jobs V is sorted by the chosen sorting method, then a job i is selected
belonging to V . Job i is then assigned to a team (if one is available in terms of time
windows and skill requirements) and removed from the set of unallocated jobs. The
while loop is iterated through until no more job allocations can be made to the teams.
On line 11, any remaining unallocated jobs are added to the outsource list O. Lastly, on
line 12, the initial solution S is output.



Solving the service technician routing and scheduling problem with time windows 7

The cost of outsourcing a job is shown in equation (21). Note, it is always less costly
to schedule a job, if there are technicians available rather than to outsource it.

oi = 200+∑
l∈L

∑
s∈S

qi
l,s (21)

4.2 Simulated annealing with restart

In this work a simulated annealing metaheuristic with a restart mechanism has been
implemented. Simulated annealing was chosen due to its success in other types of com-
binatorial optimisation problems(Kundu et al., (2008) and Cordeau et al., 2010. The
implementation of this metaheuristic is shown in Figure 2.

Variables: S: current solution, S′: neighbouring solution, SBest : the best solution, O: the set of
local operators, T : initial temperature, δT : the cooling rate, StepSize: maximum steps before
beginning from best solution, count: counter for iterations,

1: SBest ← S
2: count← 0
3: while termination criteria not met do
4: randomly choose o ∈ O
5: S′← o(S)
6: if S′ ≤ S then
7: S← S′

8: if S≤ SBest then
9: SBest ← S

10: count← 0
11: end if
12: else
13: r← random(0,1)
14: p← exp(S′−S)/T
15: if p≥ r then
16: S← S′

17: end if
18: end if
19: T ← T ·δT
20: count← count +1
21: if count = StepSize then
22: S← SBest
23: count← 0
24: end if
25: end while
26: return SBest

Fig. 2: Simulated annealing with restart metaheuristic



8 A.Khalfay et al.

The variables associated are: S the initial solution generated by the greedy random-
ized construction heuristic, S′ the neighbouring solution generated by applying a local
operator to S, SBest the best solution found, O the set of local operators which perturb
the solution S, T the initial temperature, δT the decrement rate, StepSize the maximum
number of steps before restarting from the best solution, and lastly, count which counts
the number of iterations.

The initial solution S, generated by the greedy randomized heuristic, is saved as the
best solution SBest on line 1, and count is set to 0. Whilst the termination criterion is
not met, i.e. there is computational time remaining, a local operator is selected on line
4. This local operator o is applied to the solution S on line 5 generating a neighbouring
solution S′. On line 6 this solution S′ is evaluated. If it has a lower objective function
than S, then it replaces S. Next, on line 8 the solution S is evaluated against the best
solution SBest and if better, the best solution is updated and the count is set to zero.
However, if solution S′ is not better than the current solution S then it is evaluated
using the simulated annealing criterion and compared to a random number r generated
on the interval (0,1). If the probability p of accepting this solution is greater than r
then solution S is updated. After every iteration, the simulated annealing temperature is
reduced and the count is incremented by one. Once the count has reached its maximum
value, StepSize, solution S is set to SBest on line 22, and the count is set back to 0. Once
the termination criterion has been met, the best solution SBest is output on line 26.

5 Computational experiments

The greedy randomized heuristic was programmed in Java and tested on an HP Z210
Workstation, with an i7-2600 CPU with 3.4 GHZ with 12GB of RAM. Each run lasted
80 seconds as in Kovacs et al., (2012 for comparison purposes. The greedy randomized
heuristic was run 5 times per data instance, and the best, average and worst results
obtained are shown in Table 1.

Column 1 shows the dataset, columns 2-4 show the best, average and maximum
objective value achieved by Kovacs et al., (2012 with the pALNS, and columns 4-7
displays the best, average and maximum objective values found by the greedy random-
ized heuristic. The highlighted rows indicate where the greedy randomized heuristic has
found a lower objective value than the pALNS.

6 Discussion

6.1 Performance of greedy randomized heuristic on NoTeam instances

Table 1 displays the results achieved for the NoTeam problem instances. In these datasets,
the sequential greedy randomized heuristic is able to find a lower minimum objective
value than the pALNS in 8 out of 36 datasets and is able to find the same minimum
objective value in two datasets, C201 6×6 NoTeam and C101 7×4 NoTeam.

The results illustrate that the greedy randomized heuristic finds a smaller gap from
BKS on the 01 instances compared to the 03 instances. The difference between these



Solving the service technician routing and scheduling problem with time windows 9

Table 1: NoTeam

Dataset pALNS GREEDY
min avg max min avg max

C101 5×4 NoTeam 1098.71 1111.08 1128.02 1096.85 1135.03 1180.95
C103 5×4 NoTeam 1018.61 1037.33 1049.41 1075.36 1119.66 1195.76
C201 5×4 NoTeam 1158.97 1180.93 1228.99 1157.65 1163.1 1183.31
C203 5×4 NoTeam 1046.93 1049.3 1052.83 1228.23 1297.39 1337.33
R101 5×4 NoTeam 1678.68 1685.85 1697.2 1672.55 1682.17 1692.81
R103 5×4 NoTeam 1238.67 1249.91 1282.28 1288.48 1312.95 1339.13
R201 5×4 NoTeam 1440.3 1448.93 1462.62 1526.43 1563.53 1599.98
R203 5×4 NoTeam 1098 1106.12 1123.08 1281.83 1334.01 1378.83
RC101 5×4 NoTeam 1708.51 1716.07 1729.75 1676.57 1721.95 1760.88
RC103 5×4 NoTeam 1337.99 1354.11 1388.13 1454.46 1482.46 1507.06
RC201 5×4 NoTeam 1601.89 1607.25 1610.75 1650.66 1698.03 1727.49
RC203 5×4 NoTeam 1161.53 1166.5 1178.64 1373.44 1430.32 1467.19

C101 6x6 NoTeam 989.21 1004.82 1029.72 973.05 1002.15 1029.72
C103 6×6 NoTeam 893.94 897.86 907.62 1075.26 1181.12 1239.93
C201 6×6 NoTeam 821.55 821.55 821.55 821.55 847.22 868.72
C203 6×6 NoTeam 689.6 703.1 750.12 831.51 908.91 970.66
R101 6×6 NoTeam 1658.27 1667.43 1672.57 1662.69 1666.02 1675.24
R103 6×6 NoTeam 1223.63 1231.49 1243.49 1243.7 1264.54 1286.5
R201 6×6 NoTeam 1261.94 1270.26 1279.81 1335.66 1375.56 1417.77
R203 6×6 NoTeam 932.35 951.84 964.54 1104.75 1153.24 1200.86
RC101 6×6 NoTeam 1679.13 1683.96 1690.06 1672.85 1686.62 1693.34
RC103 6×6 NoTeam 1281.55 1310.95 1331.46 1354.14 1381.79 1400.85
RC201 6×6 NoTeam 1395.4 1403.95 1411.48 1494.14 1547.03 1613.75
RC203 6×6 NoTeam 1001.04 1016.71 1030.15 1176.41 1236.67 1291.41

C101 7×4 NoTeam 1357.05 1398.95 1462.16 1357.05 1416.19 1553.71
C103 7×4 NoTeam 1215.7 1239.22 1264.17 1263.67 1295.83 1335.95
C201 7×4 NoTeam 1256.56 1282.18 1302.56 1256.3 1264.26 1302.56
C203 7×4 NoTeam 1150.85 1151.27 1152.94 1288.96 1354.81 1474.64
R101 7×4 NoTeam 1776.46 1793.95 1813.53 1771.56 1791 1807.89
R103 7×4 NoTeam 1346.8 1375.09 1399.95 1402.04 1423.96 1456.49
R201 7×4 NoTeam 1398.14 1410.9 1427.95 1427.56 1458.63 1474.29
R203 7×4 NoTeam 1164.9 1166.94 1169.27 1285.35 1334.17 1407.76
RC101 7×4 NoTeam 1821.9 1844.37 1859.17 1832.75 1903.58 1980.33
RC103 7×4 NoTeam 1435.63 1455.33 1477.84 1547.33 1610.13 1679.64
RC201 7×4 NoTeam 1697.82 1701.25 1705.48 1771.25 1793.66 1811.06
RC203 7×4 NoTeam 1239.45 1241.65 1249.72 1422.35 1459.22 1527.29

datasets is the proportion of time windows, the 01 instances are more constrained (con-
tain 100% time windows) compared to the 03 instances (contain 50% time windows)
and therefore, there are fewer feasible options of when to allocate a job. In the 5× 4,
6× 6 and 7× 4 datasets, the gap from minimum objective results in the 01 instances



10 A.Khalfay et al.

is 1.08%, 1.98% and 1.12%. This increases to 11.77%, 14.03% and 8.82% in the 03
instances.

Another trend within the results occurs in the 203 datasets. These datasets achieve
the highest gap from BKS overall, regardless of the distribution of job locations i.e C
clustered, R randomly, RC randomly clustered. This pattern occurs across each set of
domains and levels, 5×4, 6×6 and 7×4.

Furthermore, another pattern across the distribution of customers’ locations is evi-
dent in the 5×4 and 7×4 datasets. Throughout the distributions, C, R and RC, the gap
from BKS increases. In 5×4 the gap is 5.75%, 6.59% and 7.03% and in 7×4 the gap
is 3.98%, 4.07% and 6.86%, respective of distributions R,C and RC.

The results here demonstrate that as the problem instances become more complex,
in terms of the number of skill domain areas, or the proportion of time windows, the
greedy randomized heuristic is unable to match the performance of the pALNS.

7 Conclusion

This research has presented an approach to solving the STRSPTW, and 8 new best
known results for these datasets have been found. It is evident that the quality of solution
produced by the greedy randomized heuristic is heavily dependent on the proportion of
time windows within the datasets. Future work will investigate enhancements that could
be made to this heuristic in order to improve performance on the ’03’ datasets.

The parallels the STRSPTW has with other domains should not be underestimated,
there are many constraints and complexities that are shared with other problems such
as the home healthcare problem.

Future research will focus on improving the performance of the greedy randomized
heuristic on these instances, and also investigating other common complexities in re-
lated service maintenance combinatorial optimisation problems such as tools and spare
parts.



Bibliography

[1] Murat Fırat and CAJ Hurkens. An improved mip-based approach for a multi-skill
workforce scheduling problem. Journal of Scheduling, 15(3):363–380, 2012.

[2] Victor Pillac, Christelle Gueret, and Andrés L Medaglia. A parallel matheuristic
for the technician routing and scheduling problem. Optimization Letters, 7(7):
1525–1535, 2013.

[3] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester,
and Liesje De Boeck. Personnel scheduling: A literature review. European Jour-
nal of Operational Research, 226(3):367–385, 2013.

[4] Gerhard Hiermann, Matthias Prandtstetter, Andrea Rendl, Jakob Puchinger, and
Günther R Raidl. Metaheuristics for solving a multimodal home-healthcare
scheduling problem. Central European Journal of Operations Research, 23(1):
89–113, 2015.

[5] Dimitris C Paraskevopoulos, Gilbert Laporte, Panagiotis P Repoussis, and Chris-
tos D Tarantilis. Resource constrained routing and scheduling: Review and re-
search prospects. 2016.

[6] Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. Adaptive
large neighborhood search for service technician routing and scheduling problems.
Journal of scheduling, 15(5):579–600, 2012.

[7] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 35(2):254–265, 1987.

[8] French Operational Research Society. What is the roadef 2007 challenge, 2016.
URL http://challenge.roadef.org/2007/en/.

[9] Victor Pillac, Christelle Guéret, and Andrés Medaglia. On the dynamic technician
routing and scheduling problem. 2012.

[10] Fabien Tricoire, Nathalie Bostel, Pierre Dejax, and Pierre Guez. Exact and hy-
brid methods for the multiperiod field service routing problem. Central European
Journal of Operations Research, 21(2):359–377, 2013.

[11] Xi Chen, Barrett W Thomas, and Mike Hewitt. The technician routing problem
with experience-based service times. Omega, 61:49–61, 2016.

[12] Ines Mathlouthi, Michel Gendreau, and Jean-Yves Potvin. Mixed integer pro-
gramming for a multi-attribute technician routing and scheduling problem. 2016.

[13] Emilio Zamorano and Raik Stolletz. Branch-and-price approaches for the multi-
period technician routing and scheduling problem. European Journal of Opera-
tional Research, 2016.

[14] Jean-François Cordeau, Gilbert Laporte, Federico Pasin, and Stefan Ropke.
Scheduling technicians and tasks in a telecommunications company. Journal of
Scheduling, 13(4):393–409, 2010.

[15] S Kundu, M Mahato, B Mahanty, and S Acharyya. Comparative performance of
simulated annealing and genetic algorithm in solving nurse scheduling problem.
In Proceedings of the International MultiConference of Engineers and Computer
Scientists, volume 1, pages 96–100, 2008.


