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A Heuristic Distributed Task Allocation Method for
Multivehicle Multitask Problems and Its Application

to Search and Rescue Scenario
Wanqing Zhao, Member, IEEE, Qinggang Meng, Member, IEEE, and Paul W. H. Chung

Abstract—Using distributed task allocation methods for coop-
erating multivehicle systems is becoming increasingly attractive.
However, most effort is placed on various specific experimen-
tal work and little has been done to systematically analyze the
problem of interest and the existing methods. In this paper, a
general scenario description and a system configuration are first
presented according to search and rescue scenario. The objective
of the problem is then analyzed together with its mathematical
formulation extracted from the scenario. Considering the require-
ment of distributed computing, this paper then proposes a novel
heuristic distributed task allocation method for multivehicle mul-
titask assignment problems. The proposed method is simple and
effective. It directly aims at optimizing the mathematical objec-
tive defined for the problem. A new concept of significance is
defined for every task and is measured by the contribution to
the local cost generated by a vehicle, which underlies the key
idea of the algorithm. The whole algorithm iterates between a
task inclusion phase, and a consensus and task removal phase,
running concurrently on all the vehicles where local communi-
cation exists between them. The former phase is used to include
tasks into a vehicle’s task list for optimizing the overall objec-
tive, while the latter is to reach consensus on the significance
value of tasks for each vehicle and to remove the tasks that have
been assigned to other vehicles. Numerical simulations demon-
strate that the proposed method is able to provide a conflict-free
solution and can achieve outstanding performance in comparison
with the consensus-based bundle algorithm.

Index Terms—Distributed task allocation, multitask,
multivehicle, overall objective, search and rescue.

I. INTRODUCTION

RESEARCH into multivehicle systems has been increas-
ingly drawing a wide interest over a single vehicle as it

is more capable of accomplishing difficult and complex mis-
sions in an effective and efficient manner and is more fault
tolerant [1]–[6]. In a multivehicle system, a mission can be
divided into different tasks and a number of specialized vehi-
cles are then introduced to solve each task concurrently. These
tasks may be known by the vehicles before task execution
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stage or may be dynamically appeared during task execu-
tion [7]. For example, a team of autonomous vehicles are
executing an exploration mission [8]. The aim is thus to locate
and visit a number of predetermined targets in a partially
unknown terrain. The challenge is then how to assign these
targets to the vehicles in order to optimize an overall system
objective required by the mission.

The multivehicle task allocation problem (where multiple
vehicles are employed for task allocation) has been shown to
be NP-hard and, therefore, obtaining a globally optimal solu-
tion is computationally intensive [9], [10]. Most algorithms
thus provide suboptimal solutions. Early research used cen-
tralized approaches to generate a plan for cooperating all the
vehicles by using a central server who is able to gather the
whole system information (situational awareness) [11], [12].
In such approaches, an overall objective function for the prob-
lem of interest can explicitly be minimized or maximized
based on the full collection of every vehicle’s information
on the central server. The main advantage thus lies on their
ability of the optimization of the overall objective function
(thus for obtaining a solution which is optimal or very close
to it). However, they suffer from several weaknesses especially
for a large-scale system [13]. First, they require consistent and
complete communication between the central server and each
vehicle, which places a heavy communication burden on the
server and also reduces the mission coverage area. Second, the
computational demand is high as the computational operations
are all placed on the central server which also has to keep track
of changes in substantially internal knowledge of each vehicle
as the mission progresses. Third, centralized approaches are
vulnerable to the single point of failure.

Therefore, multivehicle task allocation problems are often
solved in a distributed manner using market-based mecha-
nisms, while auction approaches are among the most popular
since they are efficient in terms of both computation and com-
munication. The information of the vehicles and tasks can
be compressed into numerical bids and computed in paral-
lel by each vehicle. For single-assignment problems where
each vehicle can handle at most one task, the single-item auc-
tions [7], [14] can be used where vehicles bid on tasks that
are auctioned off individually. The vehicle with the highest bid
wins the task and then has to finish it. However, for multias-
signment problems where each vehicle is able to handle several
tasks, they are not so easy to be solved as essentially they
belong to the class of combinatorial optimization problem.
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Generally speaking, strong synergies exist between the tasks
for bidders. It is considered that a set of tasks have a posi-
tive synergy for a vehicle if their combined cost for executing
them together is less than the sum of their individual cost
incurred by doing them separately, and conversely for a nega-
tive synergy. On the one hand, one can achieve a near-optimal
allocation of a set of tasks to vehicles by using single-round
combinatorial auctions [15], [16]. It works by calculating the
bid for every vehicle, based on bundles of tasks rather than
individual tasks. The bid for each vehicle to hold a bun-
dle is computed through the smallest path cost that needs
to visit all tasks in the bundle from the vehicle’s current
location. However, it is computationally inefficient to bid for
all possible bundles of tasks as the number exponentially
increases with the number of tasks. On the other hand, parallel
single-item auctions treat each task independent of other tasks
and every vehicle bids for each task in parallel. Such mech-
anism has its computation and communication efficiencies
while it inevitably lead to highly suboptimal solutions since it
does not account for any synergies between tasks. On balance,
the sequential (multiround) single-item auctions [17], [18]
provide the advantages of solution quality from single-round
combinatorial auctions, and computation and communication
efficiencies from parallel single-item auctions. It works in a
multiround manner and in each round every vehicle places bid
on the unallocated tasks. The bid is computed as the smallest
cost increase resulted from winning the task and the vehicle
with the overall smallest bid is allocated the corresponding
task. The process is repeated until all the tasks have been
allocated.

Other distributed auction-based algorithms have been devel-
oped to remove the auctioneer and place the algorithms on
each vehicle. In such cases, consensus can be used to handle
those identical variables in different vehicles (as they may be
assigned with different values), thus resulting a conflict-free
solution amongst all vehicles. The consensus-based bundle
algorithm (CBBA) proposed by Choi et al. [19] has attracted
a lot of research interests. It iterates between a bundle con-
struction phase where a single bundle is constructed and
continuously updated as the auction proceeds, and a conflict
resolution phase which is used to reach consensus on the win-
ning bids and to release tasks that are outbid. Recently, a
number of modifications have been suggested to extend its
functions and application areas [20]–[22]. Basically, they all
rely on the market-based auction principles for task allocation
followed by a consensus process on the bidding values. In
this paper, a novel distributed task allocation method for solv-
ing the multivehicle multitask problem is proposed. Unlike
the auction-based method, the proposed method directly aims
at optimizing the overall objective mathematically formulated
under the problem of interest. The key concept is called sig-
nificance. The value of significance is calculated as the local
contribution of a task to a vehicle, which reflects the impor-
tance of a task to the local cost generated by the vehicle.
In this way, the overall cost of the objective function can be
decreased if certain criterion is satisfied on these significance
values when switching tasks between different vehicles. The
proposed method iterates between a task inclusion phase, and a

consensus and task removal phase. The former phase is used
to include tasks into a vehicle’s task list for decreasing the
overall cost, while the latter is to reach consensus on the sig-
nificance value of tasks for each vehicle and to remove the
tasks that have been included into other vehicles’ task list. The
two phases run concurrently on all the vehicles where limited
local communication exists between them. Various numerical
simulations are finally presented to demonstrate the effective-
ness and outstanding performance of the proposed method in
comparison with the CBBA [19].

In addition, regarding the difference between the proposed
method and CBBA, it mainly lies in their different working
principles. CBBA is based on auction principles where gener-
ally each vehicle is selfish on reducing the local cost generated
by it, while the proposed method aims directly at optimizing
the overall objective for the problem of interest. In detail, in
CBBA, the largest bid is utilized by the vehicle to include
a new task in the task list at each step. Instead, our method
works heuristically on optimization principles and the largest
difference of the significance is pursued at each step for the
purpose of decreasing the overall cost for the problem. The
bid and significance also have obviously different meanings.
A bid in CBBA is calculated according to an extra bundle list
for recording which tasks were first added into the task list of
a vehicle. Thus, if the inclusion sequence of tasks has been
changed the bids for the corresponding tasks are no longer
valid. The bids for all the tasks cannot be traced if only a
solution is given for the whole problem of interest. This also
explains why the CBBA method needs to remove all the tasks
after the outbidded task in the bundle list. However, the sig-
nificance concept in the proposed method is directly assessed
based only on the task list and is not affected by different
task inclusion sequences. In other words, it has no relation-
ship with the intermediate process of an algorithm and can
be determined as long as a task list is given for a vehicle.
Therefore, our method can easily be applied to the results
produced by other methods by taking their results as the input
in order to further improve the overall system objective. In
particular, apart from the different working principles, it is
also worth mentioning that the basic difference between the
proposed method and sequential single-item auctions also lies
in two other aspects. On the one hand, the proposed method
is fully distributed with a planner placed on every vehicle
and cooperating with the linked local neighbors, while the
sequential auctions usually have an auctioneer to receive all
the bids from the vehicles which places limitations on the
network topologies. On the other hand, the proposed method
runs concurrently on every vehicle by allocating tasks in par-
allel, while the sequential auctions simply allocate tasks in
sequence.

This paper is organized as follows. Section II presents
the scenario description and system configuration. The objec-
tive for the problem of interest is then given in Section III
together with its mathematical formulation. Section IV pro-
poses the distributed task allocation method for multivehicle
multitask problems. The effectiveness of the proposed method
is then demonstrated through several simulated scenarios in
Section V. Finally, Section VI concludes this paper.
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Fig. 1. Search and rescue scenario with heterogeneous unmanned vehicles:
the aerial vehicles fly over together with the ground vehicles cruising in an
area where the survivors are believed to be located, gathering information
of potential survivors and cooperating between one another to rescue the
survivors found.

II. GENERAL SCENARIO DESCRIPTION

Consider a variety of heterogeneous unmanned vehicles
(such as large unmanned aerial vehicles (UAVs), small UAVs,
helicopters, ground vehicles) performing a search and rescue
mission on a bounded terrain, the purpose is to locate and
rescue a number of survivors whose positions are partially
unknown. The vehicles always know their own current loca-
tion and are capable of providing critical support to the search
and rescue mission. As shown in Fig. 1, heterogeneous vehi-
cles are deployed in a complex area of interest, performing
sensory operations to detect location and capture other rele-
vant information of the survivors, and meanwhile cooperating
between one another to rescue the survivors discovered. The
cooperative system for this search and rescue mission is thus
studied here, where each survivor has to be visited by one
vehicle to get rescued. The vehicles do not need to return
to their initial location after finishing each assigned task and
every vehicle always follows a minimum time cost path to
visit all of the unvisited targets allocated to it.

According to the nature of the underlying problem, the
heterogeneous unmanned vehicles can be generally divided
into a search and rescue teams as shown in Fig. 2. The for-
mer is used to find the survivors together with their location
and other relevant health condition information. The latter is
responsible for providing rescue operation. The general work-
ing mechanism of the cooperative systems is illustrated in
Fig. 2. A reasoning system which at the beginning uses search
team situation including all the relevant vehicles’ information
together with the terrain information as the input is applied
to generate search plan for the search team to find poten-
tial survivors. Whenever a vehicle gains more information
about the terrain, it shares this information with other vehicles.

Fig. 2. General system architecture for search and rescue.

As long as some survivor(s) are discovered, the reasoning
system in the meantime is capable of making appropriate deci-
sions on the rescue team for rescuing the discovered survivors
by also considering the input information from the current res-
cue team situation and the terrain information. Given this is a
dynamic system, the search and rescue operations work in par-
allel and interact with each other. The key problem here is to
design an effective reasoning system to meet all these require-
ments and the major challenges then arise in how to assign
these different tasks amongst all vehicles in order to satisfy the
system objective. If the remaining path to the unvisited tasks
of at least one vehicle is blocked or the terrain information
is updated, then all vehicles put up their unvisited tasks for
reallocation.

Given the key features of this reasoning system, potentially
there are several ways to realize it from adopting a centralized
planner to several distributed planners, which can be generally
categorized as follows.

1) One Planner: There is a centralized planner located at a
ground workstation or an extra server, being responsible
for producing a whole plan for all vehicles included in
the scenario.

2) Two Planners: There are two centralized planners
located at a ground workstation or an extra server, being
used to generate the search and rescue plans separately
for the search and rescue teams. The two planners can
interchange the information they have with each other
during their reasoning process.

3) Multiple Planners: There are several planners located
at the different distributed vehicles, each being adopted
to produce a plan for a vehicle or a local region of
vehicles. The planners at different location may com-
municate with one another to exchange the information
and to negotiate their designed solutions.

4) Mixed Planners: A mixed realization of the above two
types of planners, in which one of the team (search or
rescue) shares a common centralized planner and the
other one uses multiple planners.

It is worth mentioning that the actual system working archi-
tecture can vary from the different types of planners adopted



ZHAO et al.: HEURISTIC DISTRIBUTED TASK ALLOCATION METHOD FOR MULTIVEHICLE MULTITASK PROBLEMS AND ITS APPLICATION 905

for the scenario, and it depends on whether the planners are
centralized or distributed. Given the overall picture of the
whole problem, in this paper, we are only interested in using
multiple planners for the rescue team, where each rescue vehi-
cle (with limited local communication to others) is equipped
with a planner to cooperate with others to produce and execute
the final plan to support the survivors. The search team, how-
ever, can use a similar mechanism to find the survivors and
notify the rescue team. Without loss of generality, providing
a specific rescue support to a survivor is simply regarded as a
task in the following distributed task allocation method to be
presented.

III. OBJECTIVE AND MATHEMATICAL FORMULATION

Generally speaking, two categories of optimization criteria
can be used in task allocation to achieve some stated system
objective, i.e., maximization (reward based) or minimization
(cost based) [23]. The first category is adopted when there
is a reward in assigning a task to some vehicle, while the
second can practically be more applicable when a cost exists
for performing a task and it can be further divided by the
following.

1) MiniSum: Minimizing the sum of the path cost over all
vehicles.

2) MiniMax: Minimizing the maximum path cost over all
vehicles.

Here, the path cost of a vehicle is the sum of the costs gen-
erated from performing each of the ordered tasks along this
vehicle’s task list. The MiniSum criterion can be used to min-
imize the total usage of resources consumed by all vehicles or
the average cost associated with performing each single task.
For example, if the cost is fuel consumption, then MiniSum
minimizes the total fuel consumed by all vehicles. Whilst the
cost is travel time, MiniSum can minimize how long it takes
on average for a task to be completed (average task comple-
tion time). The MiniMax is to minimize the cost of the worst
performing vehicle. If the cost is travel time, then MiniMax
minimizes the whole time that all tasks have been executed
(mission completion time).

For the search and rescue mission considered in this paper,
the time consumed on rescuing a survivor is the key factor
concerned as a survivor’s health condition deteriorates until
a vehicle comes to rescue it. This conducts the utilization of
the MiniSum criterion together with time costs for the prob-
lem of interest. Consider, for example, as shown in Fig. 3,
v1 denotes the location of a vehicle and t1, t2, t3, and t4
denote the locations of four survivors. Apparently, there are
strong synergies between these tasks, where the positive syn-
ergies are existed between t2, t3, and t4 for the vehicle and
a negative synergy is existed between t1 and t2. The vehicle
has a travel distance/time of three units to t1, four units to t2,
five units to t3, and six units to t4, from its current location.
Here, assume that every survivor is associated with a different
deadline for rescuing it (based on the survivor’s health condi-
tion, which is formulated as a constraint to be presented later)
and all the survivors get rescued before their deadlines in the
two assignments 1 and 2 as shown in Fig. 3. By ignoring the

Fig. 3. Illustration of the assignments given by different optimization crite-
ria (v1 represents the vehicle; t1, t2, t3, and t4 represent the four survivors;
assignment 1: start with rescuing t1; assignment 2: start with rescuing t2; the
numbers are the time for rescuing each survivor under each assignment).

task execution duration, the actual times for rescuing the sur-
vivors are shown in both assignments. In the assignment 1
(resulted from the MiniSum criterion with fuel costs, or the
MiniMax criterion with either time costs or fuel costs), rescu-
ing the survivor t1 first and then the survivors t2, t3, and t4 can
attain both least fuel consumption and earliest mission com-
pletion time. However, the latter three survivors t2, t3, and t4
are visited very late and the average rescuing time is 36/4. On
the contrary, in the assignment 2 (resulted from the MiniSum
criterion with time costs), rescuing the latter three first and
then the survivor t1 attains the least average amount of res-
cuing time (30/4) and thus obtains an overall better average
health condition of the survivors.

To formulate the problem of interest mathematically,
V = [v1, . . . , vn]T is defined as the set of n heterogeneous
unmanned vehicles and T = [t1, . . . , tm]T as the set of m sur-
vivors to be rescued. An allocation A = [a1, . . . , an]T is a
partition of T where ai, i = 1, . . . , n, is an ordered list of sur-
vivors assigned to be rescued by vehicle vi. The objective for
the scenario can be expressed as

J = min

{
1

m

n∑
i=1

αi∑
κ=1

ci,κ (ai)

}
(1)

where ci(ai) denotes the total time cost incurred by vehicle vi

rescuing all the ordered survivors in ai, ci,κ (ai) is the time
cost incurred by vehicle vi rescuing the κth survivor in ai, and
αi denotes the number of survivors assigned to vi.

For the convenience of formulating the constrains for the
underlying problem, the vehicle and survivor properties are
first described as follows. The vehicle property consists of
vehicle ID number (vi), vehicle type (e.g., large UAVs, small
UAVs, helicopters, ground vehicles, etc.), vehicle spatial loca-
tion (xv)

i , yv)
i , zv)

i ), and vehicle cruising speed (ωi, m/s). On the
other hand, the survivor property involves survivor ID num-
ber (tk), survivor type (e.g., needing water, food, medicine,
paramedic, doctor, etc.), deadline for starting to rescue a sur-
vivor (sk), execution duration (pk) for rescuing a survivor,
survivor spatial location (xt)

k , yt)
k , zt)

k ). Moreover, a symmet-
ric communication matrix G(t) is also defined to describe
the communication network amongst all the vehicles at time
instant t, where the entry gi,j(t) = 1 represents that an instant
connection exists between vehicles vi and vj at time t and 0
otherwise. Communication takes place between two vehicles
only when there exists a connection link between them. It
should be noted that each type of vehicle has a speciality in
performing only the same type of tasks, like dropping bottled
water or food.
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With the definitions of the survivor list ai, the time cost
ci,κ (ai), and the vehicle and task properties, the constrains
involved in the optimization of the aforementioned objec-
tive (1) can now be formulated as

|ai| ≤ mi (2)
n⋃

i=1

ai = T, ai

⋂
aj = Ø with i �= j (3)

Compatibility matrix H with entries hi,k = 0, 1 (4)

ci,κ (ai) ≤ sai,κ. (5)

Here, formula (2) represents the capability of each vehicle,
where | · | denotes the cardinality of the list, and the vehicle vi

can only be assigned a maximum of mi survivors. In (3), it
is used to guarantee that the allocation {a1, . . . , an} is a valid
partition of the whole set of survivors. As the vehicles are
heterogeneous, it is necessary to define a compatibility matrix
in (4), in which hi,k = 1 if a vehicle of type i is able to perform
a task of type k and 0 otherwise. Formula (5) is just a simple
constraint on the start time for rescuing the κth survivor (ai,κ )
in ai by vehicle vi. This is because each survivor has to be
getting rescued before the deadline due to its deteriorating
health condition. Thus, it would be failed if a survivor assigned
to a vehicle is rescued after its associated deadline. Since the
fact that a series of survivors can be included in a task list
to a vehicle, the value of ci,κ (ai) is usually confined with the
time costs for rescuing other survivors in the task list.

IV. PROPOSED DISTRIBUTED TASK ALLOCATION METHOD

This section describes the proposed distributed task alloca-
tion method. A novel concept of significance is first defined,
followed by the basic idea of the proposed method. To better
facilitate the distributed computing for the task allocation as
discussed in Sections I and II and to avoid local optima caused
by local communication, the whole distributed task allocation
method is then fully presented. It will be shown that the pro-
posed method aims directly at optimizing the defined objective
while meeting the constraints as presented in Section III for
the problem of interest.

A. Basic Idea

Suppose, we have an allocation for all the vehicles at some
point during the task allocation process, the significance of
task tk with regard to its assigned vehicle vi is first defined as

wk,i(ai � tk) = ci(ai)− ci(ai � tk) (6)

where ai� tk denotes removing task tk from the corresponding
position of the ordered task list ai. In the search and rescue
scenario, apart from the disappearance of the time cost related
with tk in ci(ai� tk), it is worth pointing out that the removal
of the task tk may also cause the decrease to other time costs
ci,κ (ai) (κ = 1, . . . , αi; ai,κ �= tk) from performing other tasks
in the reduced list due to the inside synergies. On the contrary,
if the removed task is again inserted at the same position in
the task list from which it was removed, it will lead to the
same value of significance including the cost of itself and the

variation of costs from other tasks. Thus, the value of signifi-
cance is bidirectional, which truly reflects the contribution of
a task to the local cost generated by a vehicle.

The basic idea of the proposed method is now explained
as follows. First, the significance of task tk computed from
vehicle vi as described above is transmitted to another neigh-
bor vehicle vj where a communication exists between them,
i.e., gi,j(t) = 1. Second, the marginal significance w�

k,j(aj⊕ tk)
by adding tk into the currently ordered task list aj of vehicle vj

is calculated by

w�
k,j(aj ⊕ tk) =

|aj|+1
min
l=1
{cj(aj ⊕l tk)− cj(aj)} (7)

where aj ⊕l tk denotes adding task tk at the lth position in
the task list aj. The operator min is used to find the mini-
mal local cost increment by inserting tk at a proper position
in aj. Finally, by comparing the changes in the two local costs
incurred by vi and vj as a result of the movement of tk, it
is now obvious that the overall cost can be decreased if the
criterion

wk,i(ai � tk) > w�
k,j

(
aj ⊕ tk

)
(8)

is satisfied and the improvement to the overall cost is given by
the difference between the above two values. Then, the task tk
is removed from the task list of vehicle vi and included into
vehicle vj’s, thus giving the overall cost reduction. In this way,
the significance of task tk is further transmitted to other vehi-
cles and continuously updated, subject to the decrease of the
overall cost. The same process is repeated until no reduction
on the cost can be found by exchanging all the tasks between
the vehicles. The convergence is guaranteed as whenever a
change is made to the task allocation will decrease the overall
cost. It should also be noted that when i = j in (8), the equality
w�

k,j(aj ⊕ tk) = wk,j(aj � tk) should be followed. The inclusion
of task tk could thus cause the increase to the time cost cj,κ (aj)

(κ = 1, . . . , αj) of the tasks in aj. Thus far, the basic idea
is based on the global optimization of the original objective
defined in (1). It is not like other distributed methods which
do not explicitly go for the global objective, where they are
often selfish on optimizing the local cost defined for each vehi-
cle as global information for all the vehicles and tasks is not
available in the centralized manner. In the proposed method,
through the transmission of the significance value of the tasks
amongst every vehicle via local communication, the overall
cost can successively be decreased by performing appropriate
operations locally on each task list. As a result, the global
information imposed in a centralized optimization approach is
relaxed by the idea presented here.

However, since the nature of distributed computing, it is not
difficult to find out that the basic idea of the proposed method
can easily get stuck in local optima, especially for the task
allocation problem under employing heterogeneous vehicles.
For example, suppose we have an intermediate allocation at
some point during the algorithm running process as shown in
Fig. 4. A row communication network is applied here where
all the vehicles are widely distributed and there is a relatively
low communication between them. There are a total of six
survivors who need to be provided with food and another six
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Fig. 4. Illustration of local optima found under a row communication network
in the basic idea of the proposed method.

survivors with medicine, which can be solved by the corre-
sponding two types of heterogeneous vehicles. Specifically,
the first six survivors (i.e., t1, . . . , t6) can be taken care of by
vehicles v1, v4, v5, while the rest by vehicles v2, v3, and v6.
According to the previous discussions, we now assume that the
overall cost can be reduced if task t7 is going to be removed
from the task list of v3 and to be added into the task list of v6.
But this could not happen since vehicles v4 and v5 are not able
to include t7 into their task list due to heterogeneity, which
in turn means the only channel for gradually transmitting and
updating the significance of task t7 from v3 toward v6 has been
blocked. Thus, the local optimum has reached at this stage.
This phenomenon could also occur in the case of using homo-
geneous vehicles when some local optima have been reached
between part of the communicated vehicles during the algo-
rithm running process, as these local optima could affect the
transmission of task significance to other vehicles who may be
able to perform the corresponding task with reduced overall
cost.

B. Task Inclusion Phase

Given the above consideration, it is natural to consider cir-
culating the significance of every task amongst all vehicles.
In this way, every vehicle is able to know the significance
of all the tasks and thus to compare them with the corre-
sponding marginal significance calculated under their current
task list. Thus, the significance of a task can be updated in
the global manner, resulting in better objective values for the
problem of interest. The proposed algorithm is capable of
running on each vehicle concurrently. It is now described as
follows by first assuming that a significance list is defined by
γ i = [γi,1, . . . , γi,m]T on vehicle vi for recording all the tasks’
significance. This significance list is stored at every vehicle
(i = 1, . . . , n) and is able to be updated through communicat-
ing with other vehicles. The ideal case is that each vehicle has
an identical copy of the significance list, which means that all
the vehicles have reached the global consensus between one
another, to be discussed in more detail in Section IV-C.

Given the significance list and the current ordered task list of
a vehicle, the next step is to compute the marginal significance
according to (7) for all the tasks not included in the current task
list. In particular, since the start rescuing time is considered as
the cost for the search and rescue scenario with the objective
defined in (1), the marginal significance of task tk with regard
to vehicle vi can be calculated as

w�
k,i(ai ⊕ tk) =

|ai|+1
min
l=1

⎧⎨
⎩ci,l(ai ⊕l tk)+

|ai|∑
r=l

ci,r+1(ai ⊕l tk)

−
|ai|∑
r=l

ci,r(ai)

⎫⎬
⎭, k = 1, . . . , m. (9)

The time cost for the tasks after the new inserting task in
the task list could be increased as the start rescuing time
for these tasks may have been changed. As a result, a list
for storing all the task marginal significance on vehicle vi

(i = 1, . . . , n) can thus be formulated by γ �
i =

[w�
1,i, . . . , w�

m,i]
T, where w�

k,i (k = 1, . . . , m) is used for rep-
resenting w�

k,i(ai ⊕ tk) for simplicity purpose. One can use an
infinity value to denote those marginal significance related to
the tasks that have been already included in the task list or
that do not satisfy the constraints in (4) and (5), in order to
exclude them from the current task inclusion phase.

It is now ready to decide whether a new task should be
inserted into the current ordered task list ai on vehicle vi

(i = 1, . . . , n) according to the following criterion:
m

max
k=1
{γi,k − γ �

i,k} > 0, k = 1, . . . , m (10)

by comparing the global task significance list γ i with the
task marginal significance list γ �

i , where γi,k and γ �
i,k are the

corresponding entries from them, respectively. If the crite-
rion is met, the task corresponding to the largest objective
reduction, i.e., ti)� = arg maxm

k=1{γi,k − γ �
i,k} is added into the

ordered task list ai at the position li)� = arg w�
�,i(ai ⊕ ti)� ).

The significance of the task ti)� in the significance list is
updated as γi,� = γ �

i,�. The corresponding information about
the tasks in the task list of vi, such as the time cost, is thus
updated. To facilitate the consensus of the significance list
across all the vehicles to be discussed later, another vehicle list
β i = [βi,1, . . . , βi,m]T ∈ �m noting the assigned vehicle βi,k

to each task tk (k = 1, . . . , m) known by vehicle vi will also
be defined. Thus, the �th element of the vehicle list β i for
vehicle vi is updated with βi,� = vi. By again computing the
task marginal significance (9) and satisfying the criterion (10),
the above process continues. The process stops when the cri-
terion is no longer met or the maximum number of mi tasks
has been included in the task list as defined in (2). The signif-
icance list γ i needs to be updated according to (6) when this
process is terminated as the inclusion of new tasks into the
vehicle’s task list may change the significance of other tasks
in the list ai. Similar as in (9), the significance of the tasks
included in the task list ai for the search and rescue scenario
can be calculated as

wk,i(ai � tk) = ci,b(ai)+
|ai|∑

r=b+1

ci,r(ai)

−
|ai|∑

r=b+1

ci,r−1(ai � tk), k ∈ aT
i (11)

where b denotes the position of the task tk in the task list,
i.e., ai,b = tk.

C. Consensus and Task Removal Phase

As described by the aforementioned basic idea of the pro-
posed method, the significance of the tasks in the task list of
a vehicle should be transmitted to other vehicles in order to
notify them of removing the corresponding tasks from their
task list and to get the significance values further decreased.
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If a vehicle receives a significance value smaller than the
one it has produced for a particular task already in its task
list, this task is then required to be removed from the task
list. The significance of the tasks assigned to every vehicle
can be broadcast to other vehicles through local communi-
cations between one another. Since the algorithm is running
on all vehicles concurrently, different significance values for
a task can occur for different vehicles. A consensus stage for
reaching the global significance value for every task is thus
required. This global significance value of a task can only
originally be provided by one vehicle with the task contained
in its task list and is transmitted to the other vehicles via local
communications. Apart from determining whether to remove a
task from the current task list, the task significance after con-
sensus on every vehicle is also used for determining whether
to add new tasks into the current task list as presented in
Section IV-B. In this manner, several iterations of attempting to
reach consensus of task significance will lead to a conflict-free
assignment of all the tasks. The consensus and task removal
phase is now discussed in detail as follows.

Although the significance value of a task generally becomes
smaller during the algorithm running process, possible larger
value still occurs given that the strong synergies are existed
between the tasks. (The significance of a task is dependent on
other tasks in the task list and thus their changes.) A direct
broadcast of the significance list of each vehicle to the other
vehicles through a series of local communications to find the
smallest significance value for every task in order to obtain the
convergence of the global significance list across all the vehi-
cles is improper since some significance value for a task might
converge to a value nonexisted (in the sense of not being pro-
vided by any vehicle under its task list). Due to the significance
value of every task can vary in both directions, i.e., becoming
either smaller or larger, the consensus of it to the smallest one
which is also valid in the sense of being provided under some
vehicle’s task list, is needed. The heuristic rules presented in
CBBA for the consensus of the so-called winning bids are
employed here to reach the consensus of the significance list
through enabling the consensus value generally moving down-
ward instead of upward. Similar as in CBBA, a vehicle list β i
and a time stamp list δi are also utilized in assistance with
updating a proper global significance list.

After a local copy of significance list γ i on vehicle vi has
been updated by communicating with the neighbors, it is now
ready to determine if any tasks in the task list ai should be
removed. First of all, a set of tasks intended to be removed
from the task list are found by di = ai[β i[ai] �= vi]. The
criterion for removing a task is given by

|di|
max
k=1

{
γ �i [di]− γ i[di]

}
> 0 (12)

where γ �i denotes the significance vector of the correspond-
ing tasks, computed from the current task list of vehicle vi.
Then, the task associated with the largest objective reduction
is removed from the list ai and the set di. The time cost of
the remaining tasks in ai and the significance of the remain-
ing tasks in di are then updated due to the removal of a task.
Continuing this removal process until the criterion is no longer

satisfied or the set di becomes empty. Finally, the remaining
tasks in the set di (if they do exist) have smaller significance
value after the task removal process and they are retained in
the task list ai. The present vehicle ID is, therefore, needed to
be put back to the vehicle list, i.e., β i(di) = vi. The algorithm
then moves to the task inclusion phase as described previously.
The whole algorithm stops when no changes can be made in
the task inclusion and removal phases for a period of time.
Although the proposed method is devised according to the
search and rescue scenario, it also applies to other scenarios
with different types of objectives as the task significance can
be easily obtained. For example, in the case of optimizing a
distance objective, the calculation of the significance of a task
with regard to a vehicle is only related to the locations of
this task and its two neighbor tasks in the ordered task list of
the vehicle. Similarly, the marginal significance can only be
related to the locations of the new inserting task and its two
neighbor tasks in the task list.

D. Convergency and the Algorithm

By assuming that the cost function is diminishing marginal
gain (DMG) based on the bundle list, the solutions gen-
erated in CBBA can gradually be converged to the one
given by centralized sequential greedy algorithm (SGA). In
this way, CBBA convergency is guaranteed according to the
solution of SGA although it is not optimal even under the
DMG assumption. This is different for the distributed task
allocation algorithm proposed in this paper. It is a heuris-
tic distributed algorithm essentially working on the iterative
optimization principle (as also used by other centralized opti-
mization methods, e.g., genetic algorithms, cellular automata,
particle swarm optimization, differential evolution, harmony
search, etc.) with each vehicle aiming to decrease the overall
cost at each iteration, which hereby underlies its convergency
property. In detail, each vehicle receives the significance of
all the tasks and based on that, try to reduce the overall cost
as much as possible by recursively adding/removing the cor-
responding tasks into/from the proper position of its task list.
The significance value should be kept updated to reflect the
current allocation as this is a combinatorial optimization prob-
lem and the significance of a task is highly correlated with
other tasks in a vehicle’s task list. The algorithm is converged
when no changes can be made in the significance values and
in both task inclusion and removal phases.

To run the proposed method, the significance values of all
the tasks can be initially assigned as infinite (this can be imag-
ined by assuming that huge costs are required to perform the
tasks allocated to some artificial vehicles) to allow the tasks
to be included in the vehicles’ task list. The two phases of
the proposed method running on vehicle vi is summarized in
Algorithms 1 and 2 and is now detailed as follows.

1) Sending the significance list γ i together with the vehicle
list β i stored on vehicle vi to its communicated vehicle vj

where gi,j(t) = 1.
2) Receiving the significance list γ j together with the vehi-

cle list β j from vehicle vj who has a communication link
to vehicle vi where gj,i(t) = 1.
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Algorithm 1 Consensus and Task Removal Phase Running on
Vehicle vi

1: Send the significance list γ i and vehicle list β i to vehicle
vj, where gi,j(t) = 1; j = 1, . . . , n; j �= i.

2: Receive the significance list γ j and vehicle list β j from
vehicle vj, where gj,i(t) = 1; j = 1, . . . , n; j �= i.

3: Perform the consensus procedure to update γ i and β i.
4: Find tasks intended to be removed di ← ai[β i[ai] �= vi].
5: while max|di|

k=1{γ �i [di]− γ i[di]} > 0 and di �= ∅ do
6: Remove the corresponding task given by ti)r ←

arg max|di|
k=1{γ �i [di]− γ i[di]} from task list ai.

7: Remove task ti)r from di.
8: Update time costs ci,κ (ai) for the tasks followed after

ti)r in ai.
9: Update significance γ �i for the rest of tasks in di.

10: end while
11: Update vehicle list β i(di)← vi.

Algorithm 2 Task Inclusion Phase Running on Vehicle vi

1: while |ai| ≤ mi do
2: Compute the marginal significance list γ �

i ←
[w�

1,i, . . . , w�
m,i]

T.
3: if maxm

k=1{γi,k − γ �
i,k} > 0 then

4: ti)� ← arg maxm
k=1{γi,k − γ �

i,k}.
5: li)� ← arg w�

�,i(ai ⊕ ti)� ).

6: Add task ti)� into ai at position li)� .
7: Update significance γi,�← γ �

i,�.
8: Update vehicle list’s entry βi,�← vi.
9: Update time cost ci,κ (ai) for the tasks followed after

ti)� in ai.
10: else
11: break.
12: end if
13: end while
14: Update significance list γ i ← [γi,1, . . . , γi,m]T.

3) Carrying out the consensus procedure to update the sig-
nificance list γ i and the vehicle list β i according to all
the received lists γ j and β j where j = 1, . . . , n and
gj,i(t) = 1.

4) Checking the current task list ai with the vehicle list β i
to see if any of the included tasks should be removed
according to the significance vector γ �i corresponded to
the current task list and the significance list γ i (after con-
sensus) obtained at the last step. The tasks are removed
from ai and di one after another by each time satisfy-
ing the criterion (12) and leading to the largest objective
reduction max|di|

k=1{γ �i [di]− γ i[di]}, given that di is not
an empty set. The time cost ci,κ (ai) and the significance
vector γ �i for the corresponding tasks are continuously
updated during the task removal process. The remaining
tasks in di are retained in the task list ai and the vehicle
list is revised as β i(di) = vi.

5) Computing the marginal significance list for all the tasks
γ �

i = [w�
1,i, . . . , w�

m,i]
T according to (9). The tasks are

then continuously added into the task list ai one after
another by each time satisfying the criteria (10) and (2)
and leading to the largest objective reduction with
the new task ti)� = arg maxm

k=1{γi,k − γ �
i,k} at position

li)� = arg w�
�,i(ai ⊕ ti)� ) in the task list. During this task

inclusion phase, the significance of the task ti)� and the
�th element of the vehicle list β i are set as γi,� = γ �

i,�
and βi,� = vi, respectively. The time cost ci,κ (ai) for
other tasks in the task list is also continuously updated.
Finally, the significance list γ i on the vehicle needs to be
updated according to (11) before this phase is completed.

6) Steps 1) and 5) are repeated until no actions have been
performed in steps 3)–5) for a period of time.

E. Computational Complexity

Given the cardinality |ai| of the task list ai and the capa-
bility mi of vehicle vi, the computational complexity of the
distributed method running on every vehicle is now ana-
lyzed according to the aforementioned two phases described
in Sections IV-B and IV-C. First of all, there are relatively
few computations required for the consensus of the signifi-
cance and vehicle lists on each vehicle as most operations are
simple rule-based logical judgements and assignments. Also,
the simple computations involved in knowing what tasks are
intended to be removed from the current task list and in deter-
mining which tasks are eventually removed afterwards at each
iteration can be omitted. Therefore, the major computational
complexity involved in the consensus and task removal phase
arises from the update of the significance value of the intended
removal tasks and the update of the time cost for the remaining
tasks in the task list. Assuming a total of ϑx tasks are found
potentially removed from the task list, this requires a compu-
tational complexity of |ai|ϑxσ − ϑx(ϑx + 1)σ/2+ (|ai| − 1)σ

maximally, where σ denotes the complexity of computing the
time cost of a task. The complexity is based on that the time
costs of all the tasks after a specific task in the task list need
to be updated when computing the significance of this task
or when removing it from the task list. Therefore, the actual
computational burden can be significantly smaller as practi-
cally only the time costs of several immediately followed tasks
in the task list are changed.

Regarding the task inclusion phase, similarly, there is a max-
imum computational complexity of (|ai|+1)(|ai|+2)ϑyσ/2+
|ai|σ including the computation of task marginal significance
and the update of task time costs in order to add a new task
into the current task list ai, where ϑy denotes the number of
tasks that are not yet involved in the task list and also meet the
constraint (4). It is now obvious that the major computation of
the proposed method comes from the task inclusion phase. As
a result, the computational complexity for the proposed dis-
tributed task allocation method is polynomial and dominated
by the task inclusion phase and it is O((mi − |ai|)|ai|2ϑyσ)

(considering a maximum number of mi − |ai| tasks that can
be added into the task list) at each iteration of the algorithm
running on each vehicle. It should be pointed out that the
proposed approach will find good solutions efficiently rather



910 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 4, APRIL 2016

than globally optimal solution by an exact algorithm which is
NP-hard for the multivehicle task allocation problems.

Given the distributed computing nature of the problem, it
is worth mentioning that the variables |ai|, ϑx, and ϑy vary
at each iteration of the algorithm but are also bounded by
the specific problem of interest and the associated constraints.
For example, the various communication limits placed on each
vehicle will then affect the consensus results, which in turn
affect the value of ϑx, |ai|, and ϑy but all are bounded by
the capability of the vehicle and the number of homogeneous
tasks being able to be performed by the vehicle. Noting that if
the distance objective is considered, the main computational
complexity for removing a task reduces to ϑxσ + σ as the
task significance then is only related to its two neighbor tasks,
whereas σ denotes the complexity of computing the travel
cost for performing a task. Similarly, adding a new task mainly
needs 2(|ai|+1)ϑyσ+σ , resulting in an overall computational
complexity of O((mi − |ai|)|ai|ϑyσ) at each iteration of the
algorithm running on each vehicle.

V. SIMULATION RESULTS

This section presents the simulation results for the proposed
distributed task allocation method to demonstrate its effective-
ness and outstanding performance. The scenario description
is introduced first in Section V-A, followed by the various
detailed simulation results in Section V-B obtained by the
proposed method from scenarios with different random ini-
tial settings and different number of vehicles and tasks. The
obtained results are also compared with results from CBBA
given the same objective of minimizing the average time cost
for rescuing a survivor.

A. Example Scenario and System Configuration

We now examine the proposed method for a multivehicle
multitask allocation problem based on the search and rescue
scenario, where the distributed framework and heterogeneous
vehicles are considered. As mentioned before, suppose that
there are a number of survivors discovered after a disaster
happened in an area, who need to be rescued by a team of
heterogeneous rescue vehicles. The goal is to provide emergent
rescue support to these survivors as quickly as possible by
using the heterogeneous vehicles since the health condition of
the survivors is getting worse over time. For example, there is
a total of 12 survivors found at different locations in a local
area (may be dynamically discovered in reality); six of these
survivors are injured and need medicine; the other six need
food. A heterogeneous rescue team of six members with two
types of specialized vehicles is able to cruise over the area,
where three of them can provide medicine to the survivors and
the other three can provide food. The mission is, therefore, to
send out these specialized rescue vehicles to achieve the goal
with limited local communications available on the vehicles.

In this simulation, the vehicles and survivors were randomly
generated in a 10 000 × 10 000 × 1000 m area. At the begin-
ning, the vehicles were uniformly parked in the whole area
of the corresponding 2-D ground plane, while the survivors’
location was uniformly distributed in the whole area of the

Fig. 5. System working architecture for the distributed task allocation
algorithm.

3-D spatial plane. The speed of each vehicle was assumed
constant and set to 30 m/s for the vehicles delivering medicine
and 50 m/s for the vehicles delivering food. All the survivors
appeared in the time range [0, 2000 s] and the particular dead-
line for each survivor to get the corresponding support was
randomly placed in this time range. Given the heterogeneous
vehicles, the task execution duration for the vehicles provid-
ing medicine and for the vehicles sending food were 300 and
350 s, respectively.

A total of ten simulations were conducted in the following
section for each method for various conditions according to the
different scenarios randomly generated in the design region.
To get all these survivors successfully rescued, the constraints
listed in (2)–(5) (mi = m) are required to be met to provide
conflict-free solutions for the underlying problem. Specifically,
except the constraint

⋃n
i=1 ai = T, the rest constraints are

generally satisfied to provide valid allocation of survivors to
each vehicle. For the constraint

⋃n
i=1 ai = T indicating that

all the survivors are rescued, it may not always be the case
due to the random generation of scenarios (where theoreti-
cally it is not possible to rescue all survivors) and also the
local optima occurred in an algorithm, since essentially there
is always a deadline imposed on rescuing a survivor. This
could, therefore, result in some survivors failed to be rescued.
The distributed task allocation algorithm runs on each vehicle
concurrently with the system working architecture as shown in
Fig. 5. The survivor locations obtained from the search team
together with the terrain information reflecting the path con-
nectivity are fed as the input to the algorithm running on each
vehicle. Each planner equipped with a copy of the proposed
method is placed on the corresponding vehicle and communi-
cates with other planners where communications exist between
them to negotiate an overall plan for the whole system.

Given the nature of the distributed task allocation, four
basic communication topologies [13] were tested for the pro-
posed method. Among which, the row communication shown
in Fig. 6(a) connects the vehicle one after another which has
a very low degree of communication between the vehicles,
while Fig. 6(b) generally depicts a row communication but
with one of the vehicle being able to correspond with several
other vehicles. Fig. 6(c) describes a circular communication
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TABLE I
RESULTS OF THE CBBA AND PROPOSED METHODS FOR PROVIDING EMERGENCY SUPPORT TO THE SURVIVORS

Fig. 6. Four basic communication topologies used between the vehicles.
(a) Row communication. (b) Star row communication. (c) Circular commu-
nication. (d) Mesh communication.

where each vehicle can communicate with two other vehicles.
A mesh communication is represented in Fig. 6(d), where a
vehicle is able to correspond with several vehicles within its
communication range. All the simulations were conducted on
an Intel Core 2 Duo Processor E8135 2.40 GHz, with programs
compiled by MATLAB under Windows 7 operating system.

B. Simulation Results

The proposed method was first examined on the aforemen-
tioned scenarios with a number of different vehicles and sur-
vivors involved, where the number of survivors being doubled
the number of vehicles was adopted here. For each specific
number of vehicles and survivors, a total of ten scenarios

established on random locations of the vehicles and survivors
and deadlines for rescuing the survivors were also evaluated.
The low communication topology, i.e., row communication,
was first adopted for the algorithm to conduct the simulation.
Given the distributed computing nature and that the two phases
involved in our method are iterative and only the final results
are guaranteed conflict-free, the results presented in this sec-
tion are thus the final output of the both phases. The difference
of the two phases in our method lies in that the former phase is
used to add more tasks into a vehicle’s task list, while the latter
is to reach consensus on the significance value of tasks and to
remove tasks from the vehicles’ task list. As these scenarios
were randomly generated given this heterogeneous problem
together with a limited number of vehicles being used, theo-
retically it might not be possible to find an overall solution
in order to get all the survivors rescued in time. This is prac-
tically reasonable since there are normally limited and fixed
resources for a sudden disaster just happened whilst the sur-
vivors’ health condition in the meantime is getting worse over
time. As a result, two kinds of scenarios, i.e., one with all
survivors rescued and the other with some survivors missed,
can be seen from the conducted simulations.

As shown in Table I, the number of failed rescued survivors
is presented in the first row for each method. Then, the aver-
age time cost for rescuing a survivor is shown in the second
row if all the survivors were successfully rescued; otherwise,
the number of failed rescued survivors in each type (needing
to be provided medicine or food) is, respectively, listed there.
Generally speaking, our method found more scenarios with
all the survivors rescued across different numbers of vehi-
cles and survivors. For the first two cases, i.e., (6, 12) and
(8, 16), in which the values in the brackets denote the num-
ber of vehicles and survivors, respectively, the CBBA method
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TABLE II
RESULTS OF THE CBBA AND PROPOSED METHODS ACROSS DIFFERENT COMMUNICATION TOPOLOGIES

Fig. 7. Every vehicle plan of both our and CBBA methods where all the
survivors were rescued by our method. (The horizontal line denotes the time
period for rescuing a survivor and the vertical line is the deadline for starting
to rescue a survivor. Similarly afterwards in Figs. 8 and 9.) (a) Results from
our method (all survivors rescued). (b) Results from CBBA (survivor t4 with
deadline at 168.4163 s missed).

was only able to find one scenario with all the survivors res-
cued (scenarios 10 and 3, respectively). The situation became
even more worse for the last four cases when larger num-
bers of vehicles and survivors involved, i.e., (10, 20), (12, 24),
(14, 28), and (16, 32), where none of the scenarios has been
found with all the survivors rescued. Moreover, regarding the
only two scenarios in which all the survivors rescued by using
CBBA, more average rescuing times were consumed com-
pared to that from ours. Apart from some scenarios where

theoretically only part of the survivors can be rescued, our
method was still able to reach feasible solutions for all the
survivors in other scenarios to which the CBBA failed. On
the other hand, for the scenarios where both methods did not
provide emergency support to all the survivors, the advantage
of our method can also be observed in terms of missing less
number of survivors. In conclusion, it has been demonstrated
that the proposed method achieved outstanding performance
in providing emergency support to the survivors.

Specifically, one scenario with all the survivors rescued and
another part of the survivors rescued are, respectively, shown
in Figs. 7 and 8, where the time period between the actual
start and completion times for rescuing a survivor is plotted
as the horizontal line and the deadline for starting to rescue a
survivor is denoted by the vertical line. Fig. 7(a) gives each
vehicle’s plan for rescuing the survivors assigned to it from our
method, resulting in all the 12 survivors successfully rescued.
However, for the CBBA results shown in Fig. 7(b), the last
six survivors needing food supply were successfully rescued,
while the survivor t4 with a deadline at 68.4163 s had been
failed in getting medicine. Regarding Fig. 8, both methods had
missed to rescue survivor t6, which is caused by its too early
deadline (69.5223 s). According to the locations of the survivor
and the three vehicles capable of providing medicine to t6, the
earliest arrival times of these right vehicles to reach the loca-
tion of the survivor are 180.8837, 226.1896, and 213.1589 s,
respectively, which by then would all be too late. Therefore,
theoretically it is unable to get the survivor t6 rescued given
the current resources. Besides t6, our method had rescued all
the other survivors.

Since the proposed algorithm is distributed and running on
each vehicle concurrently, it is interesting to see the effective-
ness of the algorithm by running the simulation under different
communication topologies presented in Fig. 6. As described
previously, the same ten scenarios were employed to pro-
ceed the simulation given 6 vehicles and 12 survivors. Apart
from the results obtained from row communication which
were already shown in Table I, the results from star, circular,
and mesh communications are hereby, respectively, listed in
Table II. It is also confirmed that the proposed method was
generally able to produce promising results for all the different
communication topologies.

Further simulations were also conducted to investigate the
performance of the proposed method under dynamic and
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TABLE III
RESULTS OF THE PROPOSED METHOD FROM ADDING TWO NEW DIFFERENT TYPE SURVIVORS AFTER THE COMPLETION OF ALLOCATIONS

Fig. 8. Every vehicle plan of both our and CBBA methods where part of
the survivors were missed by both CBBA and our methods. (a) Results from
our method (survivor t6 with deadline at 69.5223 s missed). (b) Results from
CBBA (survivor t6 with deadline at 69.5223 s missed and survivor t10 with
deadline at 385.5396 s missed).

unexpected situations when new survivors appeared after
the allocation of the previous survivors had been finished.
Here, one survivor who needs medicine support together
with another needing food supply was randomly generated
with the deadline in the time range of [1500, 2000 s].

Fig. 9. Obtained vehicle plan by adding two new survivors to the completed
allocations corresponding to Figs. 7 and 8 in the proposed method. (a) All
original survivors rescued, corresponding to Fig. 7: the new survivor t13 is
allocated to v3 and the new survivor t14 is allocated to v6. (b) Some original
survivors missed, corresponding to Fig. 8: the new survivor t13 is allocated
to v3 and the new survivor t14 is allocated to v5.

The number of missed survivors from all the survivors and
from the newly added survivors, together with the average
rescuing time or the number of missed survivors from each
type is listed in Table III for different scenarios and different
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numbers of vehicles and tasks. It can be seen that both newly
added two type survivors had been successfully allocated to
the corresponding vehicles based on the previous allocation as
shown in the second row of each bundle of vehicles and sur-
vivors. The proposed method was capable of dealing with the
dynamic changes in the appearance of new tasks. Particularly,
for the number of 6 vehicles and 12 survivors, as compared
to the previous allocations as shown in Figs. 7 and 8, the
new allocations after adding survivors t13 and t14 are given in
Fig. 9. The two survivors were appeared in the task list of the
corresponding heterogeneous vehicles [v3 and v6 in Fig. 9(a),
v3 and v5 in Fig. 9(b)].

VI. CONCLUSION

This paper has proposed a novel distributed method to solve
the multivehicle and multitask allocation problems. Given the
search and rescue scenario, the objective and its mathemati-
cal formulation was first extracted from the general scenario
description. Considering the requirement of distributed com-
puting for solving this NP-hard problem, a heuristic and
effective distributed task allocation method was then pro-
posed aiming directly at optimizing the mathematical objective
defined for the problem of interest. A new concept called sig-
nificance was devised to measure the contribution of a task
to the local cost generated by each vehicle. The overall cost
of the objective can thus be decreased by switching tasks
amongst different vehicles to satisfy certain criteria. The pro-
posed method iterates between a task inclusion phase, and a
consensus and task removal phase, the first phase being used
to include tasks into a vehicle’s task list while the latter being
responsible for the consensus on significance values of tasks
for each vehicle and for removing the tasks that have been
taken over by other vehicles. Finally, a series of simulations
were conducted under various conditions for the proposed
method according to the different scenarios randomly gener-
ated in a local design region. The results have demonstrated
the effectiveness of the proposed method and its outstanding
performance in comparison with the CBBA.
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