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Automated Model Construction for Combined
Sewer Overflow Prediction Based on

Efficient LASSO Algorithm
Wanqing Zhao, Member, IEEE, Thomas H. Beach, and Yacine Rezgui

Abstract—The prediction of combined sewer overflow (CSO)
operation in urban environments presents a challenging task
for water utilities. The operation of CSOs (most often in heavy
rainfall conditions) prevents houses and businesses from flood-
ing. However, sometimes, CSOs do not operate as they should,
potentially bringing environmental pollution risks. Therefore,
CSOs should be appropriately managed by water utilities, high-
lighting the need for adapted decision support systems. This
paper proposes an automated CSO predictive model construc-
tion methodology using field monitoring data, as a substitute
for the commonly established hydrological-hydraulic modeling
approach for time-series prediction of CSO statuses. It is a
systematic methodology factoring in all monitored field vari-
ables to construct time-series dependencies for CSO statuses.
The model construction process is largely automated with lit-
tle human intervention, and the pertinent variables together
with their associated time lags for every CSO are holistically
and automatically generated. A fast least absolute shrinkage
and selection operator solution generating scheme is proposed
to expedite the model construction process, where matrix inver-
sions are effectively eliminated. The whole algorithm works in a
stepwise manner, invoking either an incremental or decremental
movement for including or excluding one model regressor into, or
from, the predictive model at every step. The computational com-
plexity is thereby analyzed with the pseudo code provided. Actual
experimental results from both single-step ahead (i.e., 15 min)
and multistep ahead predictions are finally produced and ana-
lyzed on a U.K. pilot area with various types of monitoring data
made available, demonstrating the efficiency and effectiveness of
the proposed approach.

Index Terms—Combined sewer overflows (CSOs), efficient
model construction, hydraulics, prediction, wastewater.

I. INTRODUCTION

W ITHIN the water infrastructure of an urban
environment, combined sewer systems (CSSs) are

commonly employed to collect and convey both stormwater
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from precipitation events and sewage/wastewater from domes-
tic, industrial, commercial and municipal release together in
the same sewer [1]–[3]. The wastewater gathered in the CSS
is then directed to wastewater treatment plants (WWTPs),
usually driven by gravity through paved inclined sewers
together with a small number of lift pumping stations to
assist water transportation between sewers. It should be noted
the fact that in dry weather conditions and during light to
moderate rainfall, CSSs are usually designed to be capable of
conveying all the flows to WWTPs [4]. Besides, a compelling
feature of CSSs is that the system is equipped with com-
bined sewer overflow (CSO) structures [5]–[7] to discharge
combined untreated wastewater and stormwater runoff to
receiving water bodies (via a consent from governing bodies),
in order not to overload the maximum capacity of CSSs in
case of heavy rainfall (sometimes even moderate rainfall in
reality) [4], [8]. The occurrence of CSO spillages, especially
unexpected ones can potentially lead to environmental pol-
lution [9]. A variety of research has therefore been devoted
to identifying various pollutants, the possible impact on the
environment and drinking water quality and correspondingly
coping strategies [10], [11]. Since the actual use of CSOs is
stringently regulated by environmental agencies, unexpected
spillages can also incur fines and damage public relations of
water utilities. Whilst the release of diluted wastewater via
CSO structures has potential adverse effects, it can, however,
help avoid overloading of CSSs and reduce the risk of sewer
flooding on properties and streets [8], [12]. Therefore, the
real-time CSO status should be adequately monitored and
predicted to support the waste network management process.

To gain insight into CSO behaviors, typically, physical
hydrological-hydraulic models of the large-scale catchment
of interest must be developed and elaborately calibrated, in
connection with the actual CSO level formation process (i.e.,
the hydrological-hydraulic process of forming CSO levels,
from rainfall through to runoff and network flows) [13]–[15].
The whole model development process is time-consuming and
associated with high costs. Sufficient spatial and temporal res-
olution of rainfall data [16] monitored from either rain-gauge
stations or weather radar and flow survey data are needed
to delicately calibrate such physical models. In this regard,
Schellart et al. [17] discussed different sources of errors that
might be presented in rain-gauge (e.g., blockages, wetting, and
evaporation) and radar (e.g., spurious echoes and attenuation)
approaches. Currently, dedicated commercial products, such as
InfoWorks ICM [18], SWMM [19], and MOUSE [20], can be
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used to build these physical models. A list of weaknesses faced
by this conventional model building approach is summarized
in Section II.

Alternatively, the control-oriented modeling
approach [21], [22] using the “virtual tank” concept can
be adopted to approximate the field model. It is a simplified
mathematical processing of a number of subcatchments
divided from the whole catchment of interest, where the
network topology and some conversion and absorption
coefficients need to be specified and estimated. Such
modeling process requires the involvement of field experts,
which can be viewed as a lighter version of the traditional
physical modeling approach. It also includes manual analysis
processes, such as model structure determination based on
the provision of network topology and division of catchment.
With such simplified model, model-based predictive control
techniques can then be adopted to control the sewerage
network, for example, with the implementation of detention
tanks and actuation of retention/diversion gates.

Unlike the above model designed for control problems,
recent research has begun to study employing data-driven
approaches to tackle the time-series prediction of CSOs for
warning of future problems within the sewerage network,
such as the use of artificial neural networks [23]–[25]. Their
methodologies have been found favorable for modeling the
water hydrological-hydraulic behaviors without the need for
an in-depth understanding of the underlying sewer system.
Of these studies, the cross-correlation between the CSO and
rainfall variables, and the serial-correlation within the CSO,
are manually analyzed for various time lags in order to find
an appropriate range of lags to be considered as data-driven
model’s inputs. Though promising results have been demon-
strated, there is still a lack of systematic work. Some research
questions are still open to be addressed for the data-driven
approach.

1) The whole model construction process needs a certain
degree of human intervention (e.g., the manual correla-
tion analysis and model trial processes vary from site to
site) and is not fully automated, limiting the transferabil-
ity of CSO model construction in different catchments
and urban configurations.

2) The quantity of CSOs being analyzed is limited where
only one or several CSOs are studied within a catchment
for predictive model construction.

3) Only pairwise correlation between a CSO and a vari-
able is considered sequentially with distinct time lags
when determining appropriate variable lags, while the
global relationship across all field variables is not fully
analyzed and utilized.

4) Only CSO and rainfall data are included in the model
construction, rarely are other field variables investigated.

5) The interrelationships between different CSOs are not
captured in the model construction process.

6) The whole model construction process is still time-
consuming.

The research problem in this paper, therefore, is to achieve
the real-time prediction of future CSO statuses [single-
step (i.e., 15 min) and multistep ahead predictions] using
the previously observed statuses of pertinent field variables

without the need of human intervention and network topology.
The problem is defined on top of the field under investi-
gation and the current practice of network operation (e.g.,
using predictive control or local control techniques). In light
of the aforementioned considerations, this paper proposes a
systematic and automated approach for CSO predictive model
construction. The whole model construction process is largely
automated based on monitored field variables, in the catchment
of interest. The least absolute shrinkage and selection opera-
tor (LASSO) is employed to perform field variable and the
associated time lag selection, as well as model construction in
a stepwise manner under the well-known L1 norm regulariza-
tion. With the adjustment of the regularization parameter, the
overall model size is controllable, enabling the determination
of pertinent field variables and lags for a particular CSO. To
improve the computational efficiency of model construction,
an efficient LASSO solution generating scheme is proposed
based on least angle regression (LAR). The matrix inversions
are thereby eliminated and different model sizes in the LASSO
sense can be produced in sequence. A real catchment is stud-
ied as part of this paper with more than 20 CSOs with good
data availability. In addition to the CSO and rainfall data, other
field variables such as wet well levels and pumped flows are
also examined in the model construction. All field variables
are dealt with simultaneously in a global manner during the
model construction process, set by the criteria of L1 norm
regularization, without considering each correlation separately
and independently. Specifically, given the overall methodology,
each CSO predictive model also captures its interrelationships
with other pertinent CSOs in the field.

This paper is organized as follows. The preliminary rel-
evant domain knowledge and mathematical formulation of
CSO predictive models are given in Section II. Section III
presents the LASSO concept and its stepwise solutions. The
efficient LASSO solution generating scheme for CSO model
construction is then given in Section IV. The mathematical
derivations, algorithm and computational complexity are all
detailed therein. The experimental results from a U.K. pilot
area are presented in Section V, where a description of the
catchment and the detailed analysis of model construction
results are given. Finally, Section VI concludes this paper.

II. PRELIMINARIES AND CSO MODEL FORMULATION

To predict CSO statuses, the conventional approach uses
a first-principle mechanism by constructing a physical model
conceptualizing the actual process of CSO level formation. It
usually involves the development of two submodels that cor-
respond to the two subprocesses of the CSO level formation,
i.e., hydrological process and hydraulic process, each briefly
described below.

1) The hydrological process that takes place in the catch-
ment, where rainfall is the input of the process and
the runoff hydrograph is the output. It consists of
the calculation of effective precipitation and then the
calculation of runoff hydrographs, factoring in param-
eters, such as evaporation, infiltration, wetting, and
surface storage [13]. Through this submodel construc-
tion, a hydrological rainfall-runoff relationship can be
established.
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2) The hydraulic process that takes place inside the under-
ground sewer network, where the above runoff hydro-
graph together with the sewage/wastewater released
from residents and businesses is the input of the process,
leading to the generation of network flows and CSO lev-
els. The diluted wastewater in the network is conveyed
either to WWTPs for treatment before being discharged
or to CSO structures for direct discharge into the envi-
ronment (e.g., following a heavy rainfall). Through this
submodel construction, a hydraulic relationship between
runoff/wastewater and network flows/CSO statuses can
be established.

A conventional modeling approach can therefore be used
to predict CSO statuses given the predicted/calibrated meteo-
rology rainfall and wastewater release information. However,
the whole model construction process is time-consuming and
costly. The developed model also needs to be carefully exam-
ined and calibrated. Some key restrictions for use of such
conventional approach to develop CSO predictive models are
as follows.

1) In-depth expert knowledge in the wastewater domain.
2) Sophisticated modeling skills in terms of using various

modeling software packages.
3) Detailed information gathered about the catchment and

sewer network.
4) Lack of model transportability (site specific).
5) Low model adaptability to change (e.g., modification

and aging of network).
6) Long model development cycle.
7) High model development expenses.
8) Time-consuming model simulation process.
9) Complicated model calibration process.
Although the advantage of using a hydrological-hydraulic

approach lies in the ability to provide accurate and reli-
able CSO time-series predictions, its wide applications are
inevitably limited by the above restrictions. Hence, as an
alternative to conventional models, in the sense of provid-
ing time-series predictions for a number of time-steps, the
data-driven approach relying on the monitoring data from the
field is to be investigated in this paper. The intention is not
to completely replace the often-needed hydrological-hydraulic
model, as the latter is essential to support a number of
stormwater management functionalities, such as the modeling
of drainage networks for real-time control and water behav-
ior analysis. It is worth noting that the aim of this paper is
to predict future CSO statuses (e.g., the future statuses of
the next 15–60 min) in real-time for the purpose of daily
network management under given catchment, network and
operational configurations, rather than performing predictions
between different constructions of network and catchment
infrastructure. The low model adaptability comment above,
therefore, refers to the fact that, in order to provide such
CSO time-series predictions after the change of catchment
and network, the physical network modeling approach would
need a high level of human intervention and calibration
work. In contrast, the data-driven approach just requires an
execution of the automated model reconstruction based on
new monitoring data. However, sufficient quantity of new
data, say one year, should be collected to reflect the full

Fig. 1. CSO data-driven model prediction framework.

complexity of the CSO behavior (e.g., seasonal variations).
Practically, the model can be reconstructed every month to
improve accuracy before the required historical data has been
made available. Within the data-driven approach, the nonlin-
ear dynamic time-series relationships between input/process
variables and the CSO status are then artificially established
exploring the measured data. Considering the general avail-
ability of data, the field variables presented in the problem
can be categorized as system input variables, system pro-
cess variables, and CSO outputs, which are in turn defined
as follows.

1) System Input Variables: Specifying the external infor-
mation that can be generally considered as the inputs to
the sewer system.

a) Rainfall Data: This involves real-time rainfall
information which is envisaged to have large
impact on CSO level formation. Rain-gauge and
radar measurements are both acceptable with suf-
ficient spatial (e.g., 1–5 km) and temporal (e.g.,
5–15 min) resolutions [16], [17], [26], [27] for the
catchments of interest.

b) Consumer’s Discharge: It provides another channel
of input to the sewer system from the domes-
tic release of sewage as well as other forms of
discharge such as industrial wastewater. This is
deemed to have considerably smaller impact to the
occurrence of CSO spillage.

2) System Process Variables: Specifying the internal infor-
mation originating from the operation of sewer systems.

a) Flow variables, such as those monitored from
pumps, sewers, treatment works, and inlets and
outlets of temporary storage tanks.

b) Level variables, such as those monitored from wet
wells and manholes.

c) Pump running statuses.
3) CSO Statuses: Specifying the actual levels/flows in CSO

structures. As CSO statuses are of particular interest to
the underlying research question, these are treated differ-
ently to other system process variables described above
and thus taken as the output variable from the sewer
system.

Given the above discussion, the following well-known time-
series prediction model (as depicted in Fig. 1), the nonlinear
autoregressive model with exogenous inputs [28]–[30], is
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employed to cope with the data-driven prediction of CSOs
in the waste sector

yi(t) = fi
(
u(t − 1), . . . , u(t − lu), y(t − 1), . . . ,

y
(
t − ly

))+ ei(t), i = 1, . . . , NCSO (1)

where u(t) = [u1(t), . . . , uNIP(t)] denotes the actual sewer
system’s input and process variables (with the total number
being NIP) at time sequence t with a maximal time lag of lu,
y(t) = [y1(t), . . . , yNCSO(t)] defines the CSO output variables
with a maximal time lag of ly, and NCSO is the total number of
CSO structures, fi(·) and ei(t) are, respectively, the predictive
model and model residual to be identified for the ith CSO. As
shown in Fig. 1, the CSO prediction problem lies in the iden-
tification of a data-driven model that relates the future CSO
status to the past status of field variables. It should be noted
that though the next step (the next 15 min for the pilot area to
be given in Section V-A) prediction is formulated in (1) and
primarily pursued in this paper, multistep predictions can sim-
ply be achieved by replacing yi(t) and ei(t) with yi(t+ tm) and
ei(t+ tm) therein (where tm+ 1 ≥ 2 is the number of multiple
steps predicted ahead). For simplicity, the subscript i in yi(t),
fi(·) and ei(t) will be omitted from now on to generally refer
to any CSO quantity.

The task then involves extracting a proper set of field
variables associated with certain time lags to construct the
following model for each CSO identity:

y(t) =
m∑

i=1

pi(t)�i,m + e(t) (2)

where pi(t) (i = 1, . . . , m) is the ith model regressor selected
from the set φ(t) = [ϕ1(t), . . . , ϕM(t)] = [u(t − 1), . . . , u(t −
lu), y(t− 1), . . . , y(t− ly)] ∈ �M (M = NIPlu +NCSOly), �i,m
is the corresponding model coefficient for the ith regressor,
and m is the number of selected model regressors. Assuming
that the full set of φ(t) is employed at the beginning of model
construction while N training samples are provided, (2) can
be reformulated as the following generic matrix form:

y = ��+ e (3)

where y = [y(1), . . . , y(N)]T ∈ �N and e =
[e(1), . . . , e(N)]T ∈ �N are, respectively, the actual CSO
output and model error vectors, � = [ϕ1, . . . ,ϕM] ∈
�N×M formulates the initial CSO regression matrix (ϕi =
[ϕi(1), . . . , ϕi(N)]T , 1 ≤ i ≤ M), and � =
[�1,M, . . . , �M,M]T is the model parameter vector.

III. LASSO AND ITS STEPWISE SOLUTIONS

Given (3), a relevant set of field variables together with
appropriate time lags must be identified in order to con-
struct the predictive model of a particular CSO. In this
paper, LASSO [31]–[34] is adopted to perform such vari-
able selection. Compared with other model selection methods,
such as forward/backward stepwise selection and ridge regres-
sion [28], LASSO is able to perform both variable selection
and regularization with enhanced generalization ability, while
also possessing geometric and Bayesian interpretations [35].
Essentially, the objective function of LASSO is to minimize

J(λ,�) = 1

2
eTe+ λ||�||1 (4)

where λ is a tradeoff parameter controlling the degree of
L1 regularization. Noting that the L1 regularization possesses
better shrinking properties compared to the well-known L2
ridge regularization (||�||22), in terms of being able to force
part model coefficients exactly to zeros [36]. However, the
objective function is no longer quadratic though still con-
vex; the corresponding solutions become nonlinear and no
closed form expression is thus available. As λ varies from
0 to larger values, the resultant coefficients generally move
from the least-squares estimate to partial zeros, until complete
zeros (meaning that different sizes of optimal model regressors
can be selected in the LASSO sense).

Through deducing the gradient and subgradient of the
objective function (4) with respect to the model coefficient
vector �, the following Karush–Kuhn–Tucker optimal condi-
tions [34] can be obtained for deriving an LASSO solution for
a given λ:

�Te = λs (5)

where s = [s1, . . . , sM]T and

si ∈

⎧
⎪⎨

⎪⎩

{1}, �̂i,M > 0 (6)

{−1}, �̂i,M < 0 (7)

[−1, 1], �̂i,M = 0. (8)

Therefore, an LASSO solution (�̂i,M , i = 1, . . . , M) is
considered to satisfy (5)–(8), simultaneously. This leads to
a quadratic programming problem and there is no general
analytical solution available [37].

To efficiently solve the LASSO problem, Efron et al. [38]
proposed a novel approach based on LAR. Interestingly, the
LAR approach operates in a stepwise selection manner. This
means that it is able to locate the global optimum model
regressors in different sizes in a stepwise manner, in corre-
spondence to different values of λ in the LASSO sense. This
is an important property as the traditional forward/backward
stepwise selection has historically been only able to search for
suboptimal subsets of regressors in the least-squares sense. In
detail, every step, say at the kth step, a submodel �kθ̂k is
introduced to explain the remaining model error ek−1 result-
ing from the previous step, where θ̂k = γk(�

T
k �k)

−1�T
k ek−1,

�k = [p1, . . . , pk] and γk are, respectively, the submodel
coefficients, selected model regressors and step size. As γk
increases from zero, the next model regressor (pk+1) to be
selected is determined such that the largest absolute correlation
between those unselected regressors (say ϕi, i = k+1, . . . , M)
and the resulting model error ek is first found just equal
to the absolute correlation incurred by any selected regres-
sors. This will make the absolute correlations exhibited for
selected regressors always equal to one another and no smaller
than those for unselected ones. Based on this property and to
find successive sets of LASSO solutions, the following two
quantities of γk (k = 1, . . . , M − 1) need to be computed:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ �
k =

M
min

i=k+1

[
±ϕT

i ek−1 −
∣∣pT

k ek−1
∣∣

±ϕT
i �k(�

T
k �k)−1�T

k ek−1 −
∣∣pT

k ek−1
∣∣

]

+
(9)

γ ◦k =
k−1
min
i=1

[−�̂i,k−1/θ̂i,k]+ (10)
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where “[]+” denotes retrieving the minimum but positive value
for the above two quantities of γk, “±” means that the cor-
responding values in the denominator and numerator of (9)
should be chosen as either positive or negative simultaneously,
�̂i,k−1 is the accumulated coefficient for the ith model regres-
sor until the previous step with k− 1 regressors selected, and
[θ̂1,k, . . . , θ̂k,k]T = (�T

k �k)
−1�T

k ek−1.
Here, on the one hand, if 0 < γ ◦k ≤ γ �

k is not met, then
γk = γ �

k and the (k+ 1)th regressor pk+1 = arg γ �
k is selected

to form the new regression matrix, i.e., �k+1 = [�k, pk+1].
The LASSO conditions (5)–(8) are all satisfied simply because
the absolute correlations as stated in (5)–(7) for the selected
regressors are the same (being the value of the tradeoff param-
eter λ) and greater than that for any candidate regressors as
indicated in (5) and (8). On the other hand, if 0 < γ ◦k ≤ γ �

k
is met, then γk = γ ◦k and the rth regressor pr = arg γ ◦k
is to be removed from the current regression matrix, result-
ing in the new one �̃k−1 = [p̃1, . . . , p̃k−1]. This is because
if the selection proceeds using γ �

k and thus the model size
increases, the model coefficient sign for regressor pr is going
to be changed and thus different to the sign of this term’s
correlation, breaking the LASSO sign condition (6) or (7).
To continue meeting the LASSO conditions, pr is required to
be removed from the model, through adjusting the step size
(i.e., γk = γ ◦k ) accordingly to just make the corresponding
model coefficient equal to zero. Therefore, as the controlling
parameter λ (equally the absolute correlation for the selected
regressors) decreases, it can be found that though the num-
ber of nonzero model coefficients overall increases it does not
increase in a monotonic fashion.

IV. EFFICIENT LASSO ALGORITHM FOR AUTOMATED

CSO MODEL CONSTRUCTION

As presented in the previous section, the key task now is
to determine the size γk successively in order to derive dif-
ferent sets of LASSO solutions. This in turn lies in how to
efficiently compute γ �

k and γ ◦k based on (9) and (10). An
efficient LASSO solution generating scheme is proposed in
this section to relax the heavy computation requirements of
performing matrix inversions and vector correlations. As men-
tioned previously, the model construction process guided by
the LASSO criterion involves the bidirectional movement of
model regressors for either including or excluding a regres-
sor at every step, i.e., incremental movement and decremental
movement. The incremental movement performs the same as
in the original LAR and its efficient solution was recently
introduced by Zhao et al. [39], where a regression framework
was given for forward selection in LAR. To enable the efficient
derivation of LASSO solutions, the incremental movement
is briefly introduced first, followed by the decremental
movement.

A. Incremental Movement

To perform efficient computations in the case that only the
increase of model size is allowed, a new efficient LAR algo-
rithm has recently been presented in [39]. In detail, a so-called
residue matrix is defined as Rk = I − �k(�

T
k �k)

−1�T
k , with

the following main properties [39], [40]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rk = Rk−1 −
Rk−1pkpT

k RT
k−1

pT
k Rk−1pk

, k = 1, . . . , M (11)

Rkpi = 0;Rkei = Rky, i = 1, . . . , k (12)

pT
i Ri−1ej = pT

i Ri−1y
j∏

l=i

(1− γl)

i ≤ j ≤ k − 1, 1 ≤ i ≤ k − 1. (13)

To facilitate continuous computation of (9), a set of
variables including scalars, vectors and matrices have been
used and updated throughout the model construction process.
Assuming that a total of k regressors have just been added
into the model while deciding the size of γ �

k , those variables
are expressed as follows (ρk ∈ �, ck) ∈ �M−k, dk) ∈ �M−k,
Ak) ∈ �k×M , and bk) ∈ �k), which can later be extended in
the decremental movement where removal of model regressor
occurs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρk =
∣
∣pT

i ek−1
∣
∣, i = 1, . . . , k (14)

ck)
i = ϕT

i ek, k = 0, . . . , M − 1; i = k + 1, . . . , M (15)

dk)
i = ϕT

i �k(�
T
k �k)

−1�T
k ek−1

k = 1, . . . , M − 1; i = k + 1, . . . , M (16)

ak,i = pT
k Rk−1ϕi, k = 1, . . . , M; i = k, . . . , M (17)

bk = pT
k Rk−1y, k = 1, . . . , M. (18)

The step size in (9) is now computed as

γ �
k =

M
min

i=k+1

[
±ck−1)

i − ρk

±dk)
i − ρk

]

+
, k = 1, . . . , M − 1. (19)

Therefore, whilst only the increase of model size is consid-
ered, the aforementioned (11)–(19) give the rationales for fast
computation of its step size. The full algorithm, computational
complexity and relevant derivations can be referred to [39].
Based on these, the efficient removal of model regressors to
obtain LASSO solutions when triggering condition (10) will
be given based on the further adjustment of (14)–(18).

B. Decremental Movement

Assuming that now we are going to determine the step size
γk (where an error vector ek−1 and a total of k selected model
regressors are given) and γ �

k is computed as in the previous
section as if the (k + 1)th regressor is to be added into the
predictive model, the value of γ ◦k is taken as the smallest pos-
itive one that drives an existing model coefficient to zero, given
by (10). First of all, θ̂i,k can be computed as

[
θ̂1,k, . . . , θ̂k,k

]T

= (
�T

k �k
)−1

�T
k ek−1

= (
�T

k �k
)−1

�T
k

(
y−�k−1�̂k−1

)

= (
�T

k �k
)−1

�T
k y−

[
�̂

T
k−1, 0

]T

=
[
ϑ̂1,k − �̂1,k−1, . . . , ϑ̂k−1,k − �̂k−1,k−1, ϑ̂k,k

]T
(20)
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where Rky = y − �k(�
T
k �k)

−1�T
k y = y − (p1ϑ̂1,k + · · · +

pkϑ̂k,k) and the following can be obtained for i = k, . . . , 1:

ϑ̂i,k = pT
i Ri−1y−∑k

l=i+1 pT
i Ri−1plϑ̂l,k

pT
i Ri−1pi

= bi −∑k
l=i+1 ai,lϑ̂l,k

ai,i
. (21)

Given that �̂k−1 is already known from the previous pro-
cess, the corresponding model regressor pr = arg mink−1

i=1
[−�̂i,k−1/θ̂i,k]+ will be removed from the selected regression
matrix �k in the case that 0 < γ ◦k ≤ γ �

k . Otherwise, the
selection procedure proceeds as described in the previous sec-
tion, where the regression matrix expands by adding one more
regressor.

Now, consider that the removal of some selected regressor
pr from the regression matrix is required at the kth step, first
of all, the entries of the correlation vector ck−1) ∈ �M−k+1

for the remaining regressors are updated as

ck−1)
i =

{
pT

r ek =
(
1− γ ◦k

)
ρksr, i = k

ϕT
i ek = ck−1)

i − γ ◦k dk)
i , i = k + 1, . . . , M

(22)

where sr denotes the sign of the correlation for pr. Moreover,
the absolute correlation for selected regressors is simply
updated as ρk−1 = (1−γ ◦k )ρk. The resulted model coefficients
from adding the current submodel can be computed as

�̂i,k = �̂i,k−1 + γ ◦k θ̂i,k, i = 1, . . . , k − 1; i �= r (23)

and �̂k,k = γ ◦k θ̂k,k, where �̂r,k = 0 together with the cor-
responding regressor pr is going to be removed from the
coefficient vector and the regression matrix. The size of the
resulted overall model coefficient vector remains unchanged,
i.e., �̂k−1 ∈ �k−1.

At the next step, the model error resulted by adding a new
submodel to the overall model can be written as

ẽk−1 = ek − γk−1�̃k−1

(
�̃

T
k−1�̃k−1

)−1
�̃

T
k−1ek (24)

where �̃k−1 is the reduced set of selected regressors by remov-
ing pr, i.e., �̃k−1 = [p̃1, . . . , p̃k−1]. On the one hand, it can
be seen that the new correlation for the remaining regressors
after introducing this submodel becomes

c̃k−1)
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pT
r ek − γk−1pT

r �̃k−1

(
�̃

T
k−1�̃k−1

)−1
�̃

T
k−1ek

i = k

ϕT
i ek − γk−1ϕ

T
i �̃k−1

(
�̃

T
k−1�̃k−1

)−1
�̃

T
k−1ek

i = k + 1, . . . , M.

(25)

Combining (22), this can be equivalently formulated as

c̃k−1)
i = ck−1)

i − γk−1d̃k−1)
i , i = k, . . . , M (26)

where

d̃k−1)
i =

⎧
⎪⎪⎨

⎪⎪⎩

pT
r �̃k−1

(
�̃

T
k−1�̃k−1

)−1
�̃

T
k−1ek, i = k

ϕT
i �̃k−1

(
�̃

T
k−1�̃k−1

)−1
�̃

T
k−1ek

i = k + 1, . . . , M.

(27)

On the other hand, the associated parameters θ̂i,k−1 (i =
1, . . . , k − 1) for the newly added submodel are given
by [θ̂1,k−1, . . . , θ̂k−1,k−1]T = (�̃

T
k−1�̃k−1)

−1�̃
T
k−1ek. As

described at the beginning of this section, in order to pro-
ceed with the algorithm and determine the value of γ ◦k−1 and
γ �

k−1 based on the reduced set of selected regressors, the term
d̃k−1) ∈ �M−k+1 in (27) and the term θ̂i,k−1 (i = 1, . . . , k−1)
need computed. By using (11), the direction vector d̃k−1)

i
(i = k, . . . , M) can be calculated as

d̃k−1)
k = ck−1)

k − pT
r R̃k−1ek

= ck−1)
k − pT

r R̃k−1

(
y− �̃k−1�̂k−1

)

= ck−1)
k − pT

r R̃k−1y (28)

and for i = k + 1, . . . , M

d̃k−1)
i = (1− γ ◦k )dk)

i −
ϕT

i R̃k−1prpT
r R̃k−1ek

pT
r R̃k−1pr

= (1− γ ◦k )dk)
i −

ϕT
i R̃k−1prpT

r R̃k−1y

pT
r R̃k−1pr

(29)

where R̃k−1 = I − �̃k−1(�̃
T
k−1�̃k−1)

−1�̃
T
k−1 denotes the

residue matrix resulted from excluding pr from the regres-
sion matrix �k. Similar as in (20), the following can also be
easily obtained:

[θ̂1,k−1, . . . , θ̂k−1,k−1]T

= (�̃
T
k−1�̃k−1)

−1�̃
T
k−1ek

= (�̃
T
k−1�̃k−1)

−1�̃
T
k−1y− �̂k−1

= [ϑ̂1,k−1 − �̂1,k−1, . . . , ϑ̂k−1,k−1 − �̂k−1,k−1]T (30)

where R̃k−1y = y − �̃k−1(�̃
T
k−1�̃k−1)

−1�̃
T
k−1y = y −

(p̃1ϑ̂1,k−1 + · · · + p̃k−1ϑ̂k−1,k−1) and the following holds for
i = k − 1, . . . , 1:

ϑ̂i,k−1 =
p̃T

i R̃i−1y−∑k−1
l=i+1 p̃T

i R̃i−1p̃lϑ̂l,k−1

p̃T
i R̃i−1p̃i

. (31)

Here, it can be found that if pr was the last selected regres-
sor in the regression matrix, i.e., �̃k = [�̃k−1, pr], then
the corresponding matrix Ã and vector b̃ can be used to
solve (28)–(31). This can be achieved by restarting the process
with the newly selected sequence of regressors, though obvi-
ously it would be computationally expensive. Instead, a com-
putationally friendly solution [41] can be readily employed
here, by each time swapping two neighboring regressors in �k
(starting at which pr is located) and updating the correspond-
ing matrix and vector, for a number of times until pr has been
shifted to the last position of the regression matrix. Therefore,
after a total of k − r swaps, the selected regression matrix
will become �̃k = [p̃1, . . . , p̃k−1, p̃k], in which pr is moved
to the last position of �̃k, i.e., pr = p̃k. The intermediate
regression matrix Ã and vector b̃ are thus obtained. Given
this, the direction vector d̃k−1)

i and coefficients θ̂i,k−1 can now
be computed as

d̃k−1)
i =

{
ck−1)

k − b̃k, i = k
(1− γ ◦k )dk)

i − ãk,ib̃k/ãk,k, i = k + 1, . . . , M

(32)
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and θ̂i,k−1 = ϑ̂i,k−1 − �̂i,k−1 (i = 1, . . . , k − 1), where

ϑ̂i,k−1 =
b̃i −∑k−1

l=i+1 ãi,lϑ̂l,k−1

ãi,i
. (33)

The model learning process is then repeated by determining
whether an incremental or decremental movement is required
at each step to search for successive LASSO solutions until
some stopping criterion is satisfied.

C. Algorithm

The efficient successive LASSO solution generating scheme
for CSO model construction is now summarized, the pseudo
code being given in Algorithm 1. In consideration of all the
field monitoring variables with the designated maximum time
lags, a number of candidate regressors ϕi, say i = 1, . . . , M,
can be first obtained. For each CSO identity, a predictive
model can then be automatically constructed based on such
candidate regressors and the proposed efficient LASSO algo-
rithm. To get a predictive model with a size of one, the
correlations between these candidate regressors and the CSO
output are used to initialize the two vectors c0) and b1);
consequently, the regressor leading to the largest absolute
correlation is selected and added into the predictive model.
Correspondingly, the variables ρ1, �1, A1), b1), d1), k, θ̂1,1,
and γ �

1 are computed in sequence (where γ ◦1 is assigned
with zero in order to initiate the model learning process) to
prepare the computing framework for locating the next LASSO
solution.

As the regularization parameter decreases, the following
procedure is then performed efficiently to find the correspond-
ing LASSO solutions. In the case that 0 < γ ◦k ≤ γ �

k is not
met, the next regressor pk+1 = arg γ �

k to be added into the
predictive model is determined together with variables �̂i,k

(i = 1, . . . , k), ck)
i (i = k + 2, . . . , M), ρk+1 and �k+1. The

model size k will then increase by one and variables Ak),
bk), dk), and θ̂i,k (i = 1, . . . , k) are updated subsequently
to compute γ ◦k and γ �

k for use in pursuing the next LASSO
solution. On the contrary, if 0 < γ ◦k ≤ γ �

k is met, the term
pr = arg γ ◦k is removed from the current regression matrix, the
value of �̂i,k (i = 1, . . . , k) and ck−1)

i (i = k, . . . , M) being,
respectively, updated according to (23) and (22) together with
ρk−1 = (1 − γ ◦k )ρk. Then, through consecutively swapping a
series of two neighboring selected regressors in �k (starting
with pr) to update items �̃k = [p̃1, . . . , p̃k−1, pr], Ãk) and
b̃k), upon which the value of d̃k−1)

i (i = k, . . . , M) is thus
obtained by using (32). As a result, the size of the regres-
sion matrix is reduced by one (k = k − 1) together with
�k = �̃k, Ak) = Ãk), bk) = b̃k), and dk) = d̃k) updated.
The parameter θ̂i,k (i = 1, . . . , k), γ ◦k = mink

i=1 [−�̂i,k/θ̂i,k]+,
and γ �

k = minM
i=k+1 [(±ck)

i − ρk)/(±dk)
i − ρk)]+, are thereby

calculated and ready for use in searching for the next
LASSO solution. The whole algorithm can be terminated
by designating a specified number of model regressors first
reached during the model learning process or using other
criteria such as Akaike information criterion (AIC); thereby
the selected model regressors and associated coefficients are
retrieved.

Algorithm 1 Pseudo Code for CSO Predictive Model
Construction

1: Generate candidate CSO predictive model regressors
ϕ1, . . . ,ϕM from field variables associated with time lags.

2: Initialize items {c0), b1)} ← [ϕT
1 y, . . . ,ϕT

My], ρ1 ←
maxM

i=1 |c0)
i |, p1 ← arg ρ1, �1 ← p1, A1), b1), d1), and

k← 1 in sequence.
3: Compute θ̂1,1 ← b1/a1,1.
4: Find γ �

1 ← minM
i=2 [(±c0)

i − ρ1)/(±d1)
i − ρ1)]+ and

γ ◦1 ← 0.
5: while k ≤ m do
6: if 0 < γ ◦k ≤ γ �

k then
7: Assign pr ← arg γ ◦k .
8: Update �̂i,k (i = 1, . . . , k) and ck−1)

i (i = k, . . . , M).
9: Update ρk−1 ← (1− γ ◦k )ρk.

10: Compute �̃k ← [p̃1, . . . , p̃k−1, pr], Ãk), and b̃k).
11: Update d̃k−1)

i (i = k, . . . , M).
12: Update k← k − 1.
13: Assign �k ← �̃k, Ak)← Ãk), bk)← b̃k), and dk)←

d̃k).
14: Compute θ̂i,k (i = 1, . . . , k).
15: Find γ ◦k ← mink

i=1 [− �̂i,k/θ̂i,k]+.
16: Find γ �

k ← minM
i=k+1 [(±ck)

i − ρk)/(±dk)
i − ρk)]+.

17: else
18: Assign pk+1 ← arg γ �

k .
19: Update �̂i,k (i = 1, . . . , k) and ck)

i (i = k+2, . . . , M).
20: Assign ρk+1 ← (1−γ �

k )ρk and �k+1 ← [�k, pk+1].
21: Update k← k + 1.
22: Update Ak), bk), and dk).
23: Compute θ̂i,k (i = 1, . . . , k).
24: Find γ ◦k ← mink−1

i=1 [− �̂i,k−1/θ̂i,k]+.
25: Find γ �

k ← minM
i=k+1 [(±ck−1)

i − ρk)/(±dk)
i − ρk)]+.

26: end if
27: end while
28: Assign k← m.
29: Output �k and �̂k.

As for using the AIC criterion, it is expressed as [42]

AIC = N log(SSE/N)+ 2k (34)

where N, k, and SSE refer to the sample number, model size,
and sum of squared errors. In correspondence to the incre-
mental and decremental movements of the proposed algorithm,
SSE can be recursively computed as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eT
k ek

= (1− γk)
2eT

k−1ek−1 + γk(2− γk)eT
k−1Rkek−1 (35)

ẽT
k−1ẽk−1

= (1− γk−1)
2eT

k ek + γk−1(2− γk−1)eT
k R̃k−1ek (36)

where
{

eT
k−1Rkek−1 = eT

k−2Rk−1ek−2 − b2
k/ak,k (37)

eT
k R̃k−1ek = eT

k−1Rkek−1 + b̃2
k/ãk,k. (38)
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D. Computational Complexity

Based on the proposed algorithm described in the previous
section, the computational complexity comprises a fixed ele-
ment arising from successive inclusion of model regressors
without removal, and a varied element taking into account the
removal plus again inclusion of new regressors. Given that
N data samples and M candidate model regressors are made
available at the beginning of the training process, the fixed
amount of computational complexity resulted from m model
regressors being first generated is

Cfixed = mN(2M − m+ 1)+ (2N − 1)M

+ mM(m+ 9)− m(2m2 − 3m+ 49)/6. (39)

On the other hand, the computational complexity for remov-
ing a selected model regressor and adding another varies with
the underlying model size being considered (say k) and the
position of the regressor being removed from the regression
matrix (say δk), yielding

Cvaried = 2(k − δk)(2M − k − δk + 6)+ (2N + 2k + 19)

× (M − k + 1)+ 2(k + 2)2 − 28. (40)

Given the CSO predictive problem, it usually holds that δk <

k < m 	 M 	 N. The computational complexity involved
in (39) and (40) then mainly relies on terms 2mMN and 2MN,
respectively. The actual computational burden will therefore
depend on the number of decremental movements during the
LASSO solution searching process, and when and where they
occur. In addition, if AIC is applied to terminate the training
process, a fixed additional amount of 2N+13m+1 complexity
will be incurred, together with an extra of 18 computations
added to the varied complexity Cvaried.

V. EXPERIMENTS

In this section, the effectiveness of the proposed methodol-
ogy to automate the CSO predictive model construction and
the efficiency of the proposed algorithm are demonstrated. As
part of an ongoing research, a pilot area was chosen with the
presence of multiple CSOs and various field monitoring vari-
ables already in existence. The experiments were all performed
on a Intel Core2 Duo Processor P8600 2.40 GHz, with pro-
grams executed by MATLAB. A range of model performance
and results are provided.

1) The obtained model structure, and training/test time,
error and accuracy for CSO predictive model construc-
tion terminated by both designated number of model
regressors and AIC criterion [see (34)–(38)].

2) The consideration of modeling results for imbalanced
dataset.

3) The comparisons of the proposed algorithm with neural
network and fuzzy approaches.

4) The integration of multistep ahead predictions.

A. Pilot Area Description and Data Gathering

A U.K. pilot area depicted in Fig. 2(a) is employed to repre-
sent various features related to wastewater collection networks
and the corresponding catchments. The associated sensing
variables are shown in Fig. 2(b), with the entire area serv-
ing around 52 000 residents. The network assets within this

(a)

(b)

Fig. 2. Schematic of the pilot area. (a) Field map. (b) Monitoring variables.

pilot area are solely owned by Welsh Water (also known as
DCWW or Dŵr Cymru Cyfyngedig). The pilot area has been
chosen due to the fact that it contains a typical CSS with
certain complexities of catchment and topography, and the
network operator already has the network closely monitored
which would provide the opportunity of applying a data-driven
approach.

After an in-depth analysis of the quality of the data collected
by the existing sensing infrastructure, a total of 73 monitoring
variables were considered, including 24 CSO level variables
(percent), six rainfall variables (mm/h), nine flow variables (l/s,
e.g., pumped flows, treatment flows, and storm flows), and 34
other level variables (m or percent, e.g., wet well levels, sump
levels, and screen levels). A CSO level with a percent value
larger than 100% indicates the occurrence of CSO spillages.
These monitoring variables can be seen from Fig. 2(b), where
one of the weather stations for monitoring rainfall information
is located to the west just outside the trial area. The field
variables are monitored via Welsh Water’s proprietary systems.
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The monitoring data from various field variables was col-
lected from April 1, 2014 to March 1, 2016 at a time resolution
of 15 min (thus also being considered as the prediction time-
step). In principle, the total amount of samples for each
variable would be 67 205. In the case where missing values
exist, they were simply estimated using linear interpolation
methods. However, given that the proposed predictive method-
ology is independent of the data preprocessing, it would not
hinder the use of other (complex) data imputation techniques
though there is no consensus on the best approach to do
this. As a matter of fact, having reliable monitoring system
is required in order to avoid the long periods of missing data
as it would be very difficult to accurately infer the missing
values using imputation techniques. The negative and hugely
positive values together with other abnormal values resulting
from sensor reading errors were also regarded as missing val-
ues and processed in the same manner. It was found that an
average of 2.28% missing data existed over the various field
variables, where for some individual variables this can reach
as high as 20%. Specifically, for the variable with a high level
of missing data, if the missing data comprises a small number
of long periods, it makes little difference whether consider-
ing such a variable at the beginning of model construction
as the methodology can hardly relate this variable’s behav-
ior (resulting from the interpolated low quality of data) to the
CSO behavior of interest. Therefore, this variable would not
be selected in the resulting CSO predictive model. Whilst in
the case that the missing data is continuously accumulated (say
one missed in every five measurements), the behavior exhibited
by this variable can still be somewhat recovered by interpola-
tion and potentially considered for being related to the CSO
behavior. Finally, a data partition of 60% (from April 1, 2014
to May 26, 2015) of the entire collection period was used to
train the CSO predictive models, while the remaining 40%
(from May 26, 2015 to March 1, 2016) was employed for
model testing.

B. Results and Analysis

The maximum time lag of the field variables was assigned
with a value of 10 (ten time-steps, i.e., 150 min of prior data)
followed by a preliminary site trial (determined by trial-and-
error as usual in time-series prediction), amounting to a total
of 730 potentially available model regressors at the beginning
of the model construction. It is worth mentioning that, as the
maximum lag increases, more time is needed to construct the
CSO model as the number of initial model regressors gets
larger for the model learning. In this case, it was found that
a value larger than 10 would not help improve the model
performance significantly. The original algorithm as well as
its realization [43] (followed by the modification of LAR) for
deriving LASSO solutions as described in Section III, was also
examined to verify the computational advantage of our algo-
rithm. To evaluate the efficiency of the proposed algorithm as
well as the effectiveness of the overall methodology of CSO
model construction, Table I lists the average modeling results
over all the CSOs produced by both original and proposed
algorithms with varying number of selected model regres-
sors. The model structure is expressed in terms of the number
of selected weather stations, CSOs and field variables and

TABLE I
AVERAGE MODEL CONSTRUCTION RESULTS OVER ALL THE CSOS

PRODUCED BY THE ORIGINAL AND PROPOSED ALGORITHMS

WITH VARYING NUMBER OF MODEL REGRESSORS

the model size (similarly for other tables in their respec-
tive settings as presented in this paper). It is apparent that
the proposed algorithm possesses significant computational
advantage over the original algorithm. The elapsed time for
constructing CSO predictive models using the proposed algo-
rithm compared with the original one is expected to decrease
by around two times, especially so when more model regres-
sors are included. It should be noted that in case of large-scale
sewer networks and associated datasets, the time needed for
each CSO model construction can increase significantly due to
the increased number of field variables (also see Section IV-D
for computational complexity analysis), so does the average
model construction time using AIC criterion to be given in
Table II. As model size (the number of model regressors,
i.e., the number of field variables associated with time lags)
increases, the training root mean squared error (RMSE) is
consistently decreased as expected, by optimizing the updated
LASSO objective function where the weighting of the L1 norm
of model parameters decreases and correspondingly the impor-
tance of L2 norm of model errors increases. On the other
hand, the test RMSE generally decreases first, then stabilizes
and increases again (where overfitting appears). Reflecting on
this, the test R2 generally increases first, then stabilizing and
decreasing again as the number of model regressors increases.

To examine the importance of weather rain-gauge stations
and the existence of interrelationships amongst different CSOs,
the average number of weather stations and CSOs contained
over all constructed CSO models for each subset of model
regressors are listed in the eighth and ninth columns of Table I,
while the last column gives the average amount of total
selected field variables also including other measures such
as pumped flows and wet well levels. Overall, the selected
field variables play an important role in constructing the CSO
predictive models. It can be found that the CSO plus rainfall
variables account for the major contributing factors when a
small number of model regressors are required to construct
the predictive models (where the summation of numbers of
selected weather stations and CSOs, over the total number of
selected variables is very high). Notably, in addition to the
involvement of weather stations, as many CSO variables are
also picked up for model construction, a clear interrelation-
ship between distinct CSOs is thus evident. With the model
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TABLE II
MODEL CONSTRUCTION RESULTS BY THE ORIGINAL AND PROPOSED

ALGORITHMS USING AIC FOR ALL THE CSOS

size increasing, other pertinent field variables would then have
more chance of getting selected to further improve model
performance. After a certain number of model regressors being
included (can be otherwise determined using the AIC crite-
rion), say around 30, the test performance becomes steady,
whereby the expansion of model size does not improve much
(or maybe reduce) the model performance. In this situation,
adding more field variables into predictive models would not
help improve prediction accuracy. In addition, from the model
complexity point of view, a simpler model in small size is
usually preferred.

Alternatively, through using the AIC criterion, the model
construction results for all the CSOs produced by the orig-
inal and proposed algorithms are given in Table II. It is
again shown that the proposed algorithm reduces dramati-
cally the computational time compared to the original for
all the CSO models; in this case, roughly 50% reductions
are achieved. The difference between the training and test
RMSEs is acceptable and indicates well-trained models with
good generalization ability. To facilitate direct comparisons
across different CSO models, the training and test R2 val-
ues (the percentage/proportion of the CSO behavior/variation
that is predicted/explained by the model) are given for every
model, where those exhibiting a larger value represent a better
constructed predictive model (a maximum value of 1.0 indi-
cates that the underlying CSO dynamic behavior is completely
explained and predicted by the model). Due to the distinct data
quality of each CSO and field constraints (e.g., some CSOs
might lack monitoring of close neighbor or correlated field
variables), it shows that different levels of model goodness-of-
fit are presented amongst these CSO models. Specifically, it
can be seen from Table II, there is a clear relationship between
the CSO and rainfall, whilst particularly, no correspondingly
existing rainfall stations were found important for explaining
the behavior of CSO #23, which potentially led to the less
accurate predictions. In this regard, improved spatial resolution
of rainfall data can be approached to enhance the model accu-
racy. Overall, the upper middle part of the pilot area received

comparatively accurate predictions, as more field monitoring
variables are distributed therein. Whilst some CSO models
obtained relatively low level of accuracy, others can achieve
extremely high accuracy with a test R2 value larger than
0.90. This demonstrates the effectiveness of the proposed data-
driven methodology for tackling the CSO prediction problem,
provided that high quality and resolution field data is made
available.

While the averaged test RMSE (6.0505) is a bit larger
than the training one (4.7871), notably, the averaged test R2
(0.8453) over all the CSO models is better than the training
one (0.7975), demonstrating the good generalization ability of
the constructed models. Though it maybe often seen that the
model generalization performance is worse than the training
one, this is not always the case as it is highly dependent on the
performance measure, the type of model and training algorithm
(e.g., using regularization, subset selection and local learning
techniques) as well as the differing data quality between the
training and test dataset. Looking through the eighth to tenth
columns, each CSO tends to exhibit a relationship with a rela-
tively higher proportion of the weather stations and the CSOs
than with the other 43 field variables.

It may be interesting to see the selected field variables with
time lags for the constructed models. Due to the large number
of CSOs involved, here, CSO model #9 is simply taken as an
example to illustrate the resultant model structure. It is found
that the following variables are presented in the predictive
model: y2(t−1), y3(t−1), y4(t−1), y9(t−1), y9(t−4), y9(t−
5), y9(t−7), y9(t−10), y11(t−1), y15(t−1), y18(t−1), w29(t−
1), w30(t − 1), w30(t − 2), l48(t − 5), l48(t − 9), l51(t − 1),

l54(t−1), l54(t−9), l54(t−10), where y, w, and l denote the cor-
responding CSO, rainfall, and level variables, respectively. In
order to predict future statuses for CSO #9, it can be seen that
the model captures the previous statuses of seven CSO vari-
ables (including itself #9), two rainfall variables (#29 and #30),
and three level variables (#48, #51, and #54). The variable #54
is monitored at the same location as #34. These variables are
considered as the most important determined by the LASSO
criterion and the time-series pattern exhibited in the monitor-
ing data. Under the current catchment/network configuration
and given the monitored data, the surrounding critical CSOs,
weather stations and level variables together with their time
lags are thus identified, leading to a total of 12 field variables
included in this model and a model size of 20 including the
various lags.

To visualize the model performance, Fig. 3 depicts one
of the best obtained CSO models (model #10) with a train-
ing and test R2 of 0.9912 and 0.9822, respectively. It can
be found that the majority of CSO levels were distributed in
the range between 20 and 60, resulting in the dense plot of
data in the bottom part of Fig. 3(a). Compared with the mea-
sured values, both trained and predicted CSO levels are well
modeled for the whole period starting from April 1, 2014 to
March 1, 2016. It is worth noting that the missing data for
this CSO variable is mainly between October 10, 2014 and
November 12, 2014 (accounting for less than 5% of the entire
data collection period), and linear interpolation was applied
as indicated in Section V-A. Considering the large number
of monitoring variables and that different variables can have
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(a)

(b)

(c)

Fig. 3. One of the best constructed CSO predictive models (#10).
(a) Measured and modeled CSO levels for the whole period between
April 1, 2014 and March 1, 2016. Zoomed-in view of measured and (b) trained
CSO levels in August 2014 and (c) predicted CSO levels in August 2015. (The
red sign “x” denotes the sensor reading and the blue dashed line depicts the
model output.)

different periods of missing data, the overall usable amount
of data can be dramatically reduced if such durations of miss-
ing data are removed directly (every removal of a sensing
period due to one field variable can cause a correspondingly
overall size reduction of useful dataset given its a time-series
problem). On the other hand, the model will also need to have
certain level of anti-noise ability regarding data quality (as well

illustrated here) where the missing values could be due to
accumulation from many small periods or one/several long
periods. Notwithstanding, given the focus of this paper (i.e.,
the proposed methodology) is independent of the handling
of missing values, other imputation techniques can also be
used. Here, the historical data from three weather stations and
ten CSO variables were found to be relevant to construct the
underlying model, while a total of 41 model regressors were
selected also including various degrees of time lags from these
variables. In order to see a more detailed comparison between
the model output and the system output, the modeled and mea-
sured CSO levels in August 2014 (training dataset) and August
2015 (test dataset), are illustrated in Fig. 3(b) and (c), respec-
tively. Out of these, the underlying complexity of the CSO
behavior including large and small instances has been clearly
learned and predicted by the developed model. In this case,
though the instances monitored are imbalanced in terms of
huge amount of small levels of CSOs and considerably less
quantity of large measurements, the learning algorithm was
still able to cope with it appropriately.

It should be mentioned that the mechanism for the CSO
time-series prediction is to predict future CSO statuses based
on the input of a number of previously observed statuses of
field monitoring variables. During the model training period,
the modeled CSO levels try to fit all those contained in the
training dataset including both monitored and interpolated
(where missing values occur) data. However, due to the input
of less accurate (or even incorrect) interpolated values for the
previous network statuses, the model can thereby infer wrong
predictions at that specific moment (the period in which miss-
ing values occur). This would not be a problem for model
training as it is just a way of maximizing the overall length
of training dataset. In short, though the model is constructed
to explain the CSO behavior with the selected field variables
and associated time lags, however, the actual prediction is also
dependent on the quality of the monitoring data that feeds into
the model. Once the model is constructed, in the worst case
scenario, the model will not be able to produce any predictions
if there are persistent missing values from the field monitor-
ing data. In the case of missing data (which can be detected
directly from the sensing system, not from the model), both
predicted and monitored values do not exist for comparison.
The comparison between the predicted and monitored CSO
statuses can therefore be made under the normal running of
sensing system to indicate if there is a malfunction with the
sewer network.

On a different note, it was found that for some CSOs, e.g.,
#24, the imbalanced data issue can be extremely serious, i.e.,
the number of monitored large instances (e.g., larger than 90%)
of CSO level readings is dramatically less than the number
of monitored small instances (e.g., less than 90%) of CSO
level readings. As shown in Fig. 4(a), though the model was
trained well to predict the majority of small levels of CSOs,
the large levels were not fully modeled. Given the imbalanced
dataset, the training procedure tended to learn dynamics more
exhibited by the small instances. This issue can be simply
addressed using the common upsampling technique (i.e., repli-
cating instances from the minority) [44] to increase the amount
of instances from those that are under-represented. In detail,
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(a)

(b)

Fig. 4. CSO data is seriously imbalanced in terms of relatively few large
CSO levels measured. (a) Predictive models constructed without upsampling
(large CSO levels not well fitted). (b) Predictive models constructed with
upsampling (large CSO levels well fitted). (The red sign x denotes the sensor
reading and the blue dashed line depicts the model output.)

for each CSO model construction, as long as the total number
of large instances for the CSO of interest is less than a partic-
ular proportion (say a threshold of 2%) amongst the training
dataset, these large instances together with the corresponding
instances of input variables will be replicated up to this propor-
tion for model training. By using the upsampling techniques,
the average model construction results under varying num-
ber of model regressors and the updated model construction
results for these CSOs seriously suffered from this imbalance
issue are, respectively, shown in Tables III and IV. This again
confirms the computational superiority of the proposed algo-
rithm in comparison with the original one by looking at the
second and third columns of both tables. The overall train-
ing RMSE/R2 is slightly reduced as the training process was
forced to fit more onto the rarely occurring large CSO values at
the expense of partially sacrificing fitting the absolute majority
of low CSO values. Moreover, as expected, the involvement
of rainfall information in the constructed models is seen gen-
erally enhanced, as these large CSO values are intrinsically
more driven by heavy rainfall. Specifically, it is worth not-
ing that the training and test RMSEs for CSO #21 as well
as the small difference between them indicate the model is

TABLE III
AVERAGE MODEL CONSTRUCTION RESULTS OVER ALL THE CSOS

PRODUCED BY THE ORIGINAL AND PROPOSED ALGORITHMS

WITH VARYING NUMBER OF MODEL REGRESSORS

(UPSAMPLING CASE)

TABLE IV
MODEL CONSTRUCTION RESULTS BY THE ORIGINAL AND PROPOSED

ALGORITHMS USING AIC FOR THOSE SERIOUSLY

IMBALANCED CSOS (UPSAMPLING CASE)

acceptable. The large difference between the training and test
R2 values is because the CSO levels in the training dataset
are very closely distributed around its mean value (giving the
low training R2), whereas it is not the case in the test dataset.
Finally, Fig. 4(b) illustrates a better predictive model in the
sense of well-fitted large CSO levels compared with Fig. 4(a).

To continue examining the performance of the con-
structed models, neural networks and fuzzy systems were also
employed to learn the CSO behavior based on the selected field
variables and associated time lags produced by our method-
ology, envisaging the potential of improving model predictive
accuracy. Here, the well-known feed-forward backpropagation
network (optimized by Levenberg–Marquardt method) and
Sugeno-type fuzzy system (optimized by the hybrid of least-
squares and gradient descent methods) were used employing
MATLAB neural network (feedforwardnet and train) and
fuzzy logic (genfis3 and anfis) toolboxes, respectively. During
the model training process, 20% of the training data was
used for validation purposes in order to mitigate overfitting.
The training and test time/RMSE/R2 are shown in Fig. 5
based on the nonupsampled data. It once again shows that
our approach required significantly less training and test times
as in Fig. 5(a) and (b). Though the training RMSE and R2
[Fig. 5(c) and (e)] of the proposed models were slightly
increased and decreased, compared to that of the neural and
fuzzy models, more importantly, our model’s generalization
performance indicated by test RMSE and R2 [Fig. 5(d) and (f)]
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparisons between the proposed, neural, and fuzzy models for
all the CSOs. (a) Training time. (b) Test time. (c) Training RMSE. (d) Test
RMSE. (e) Training R2. (f) Test R2.

was even better as fundamentally desired. Some CSO models
(e.g., #11 and #21) produced by neural networks and fuzzy
systems give very poor test R2 values. Therefore, the out-
standing performance of our algorithm, in terms of both model
accuracy and computational time, has been demonstrated
owing to the regularization and fast training.

Furthermore, given the proposed methodology, it is also
straightforward to develop multistep CSO predictive mod-
els where needed, by using the CSO status at the required
prediction step as the model output. The training and test
RMSE/R2 across the 24 CSOs for five prediction steps
are illustrated in Fig. 6. As expected, with the increase of
prediction steps, the prediction accuracy generally reduces
due to less recent information about the system being avail-
able (uncertainty increases) and considered by the model.
However, as for the CSOs with high accuracy at single-
step prediction, they still possess very good performance at
multistep prediction where large accuracy reduction was not
seen.

Based on the aforementioned facts including the obtained
performance in a variety of settings and comparisons with
other approaches, in conclusion, the proposed methodology is
confirmed capable of quickly and effectively automating the
entire CSO predictive model construction process. It is worth
mentioning that other field variables such as flows and levels

(a) (b)

(c) (d)

Fig. 6. Multistep ahead predictions for all the CSOs. (a) Training RMSE.
(b) Test RMSE. (c) Training R2. (d) Test R2.

(other than that in CSOs) can be predicted in the same way
as CSO statuses using the proposed approach; this, however,
is out of the scope of this paper.

C. Discussion

The main aim of this paper is to propose an automated
predictive model construction methodology to address the
future CSO status prediction problem. The requirements for
developing CSO predictive models were elicited as part of
an EU FP7 water project (WISDOM) involving a multi-
disciplinary consortium from the water value chain across
Europe, and mainly attributed to our water utility partner
(DCWW). It is an important research topic that has attracted
interest of a number of previous studies [23]–[25]. In gen-
eral, the predictive model can provide data for the construction
of an online decision support tool that can be used to
consistently.

1) Predict future CSO statuses (especially those indicat-
ing a spillage event) in advance (using either single or
multiple step predictions), thus enabling network oper-
ators to take corrective actions (e.g., getting the excess
CSO spillages properly treated/processed) as early as
possible in order to mitigate the potential adverse effects,
or alerting customers/authorities;

2) As a secondary benefit, inform network operators about
abnormal CSO performance by comparing the predicted
with monitored statuses and detecting if there is a sig-
nificant discrepancy between them, thus allowing timely
CSO performance restoration from asset malfunctions
such as that originated from failed pumping and sewer
blockages.

In the latter case, if at some point, it is found that there
is a significant discrepancy starting to appear between the
predicted and actual monitored CSO statuses, this can poten-
tially indicate part of malfunctions (e.g., blockages) that have
occurred within the sewer network if such malfunctions can
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lead to the CSO behavior change. In this case, the predicted
CSO statuses can (dramatically) either rise above or drop
below the monitored statuses depending on the actual mal-
function, as the predictive model no longer represents the
CSO behavior given the malfunction. The CSO predictive
model for normal conditions in the sewer network therefore
gives predicted CSO statuses different from the monitored
ones resulting from the network with malfunctions. It should
be noted that rather than prediction of malfunctions, here it
considers to inform network operators timely whenever such
a malfunction has occurred. Therefore, our model can help
improve the management of CSOs and network assets, for
example, in the development of an online warning system
underpinned by some rules that can be triggered based on the
real-time predicted and monitored values of CSOs, to alert
water utilities enabling them to react with remedial actions
proactively or timely, thus reducing the volume or quantity of
unexpected CSO spillages. More specifically, both single-step
and multistep ahead predictions can be generated in real-time
but with different level of accuracies (the prediction accuracy
improves with the decrease in number of forward prediction
steps), as more recent field information (leading to less uncer-
tainty) is collected and processed by the model for fewer
step ahead predictions. Thus, the multistep ahead prediction
can be used in the control room for the preliminary/coarse
decision making (e.g., to put field teams and resources on
standby), while more recent predictions (especially next step
predictions) can be adopted for more precise decision mak-
ing (e.g., to examine specific CSO structures and determining
solutions to fix issues). Moreover, the proposed data-driven
approach for CSO time-series predictions (e.g., statuses of the
next 15–60 min) also helps reduce the cost and time associated
with model development and calibration in comparison with
the hydrological-hydraulic modeling approaches, while meet-
ing regulatory obligations imposed by environment agencies
and/or local authorities.

As the aim of the research is to develop a predictive model
for real-time prediction of the future state of CSOs, based on
the current composition and operation of the sewer network
and catchment, therefore, similar to using the hydrological-
hydraulic model, the data-driven model usually does not
change once constructed. However, the developed model does
need the continuous provision (update) of new field monitor-
ing data to produce consecutive predictions as time moves
forward. If there is a significant change in the field network
or the catchment, then the data-driven model can be recon-
structed automatically using the new sensing data after the
change, a simpler process compared with utilizing and updat-
ing the hydrological-hydraulic model (where a tedious manual
process is involved to modify, test and calibrate the model). In
order to acquire an accurate data-driven model, the field data
collected for model learning should be representative and of
sufficient quantity to reflect the full complexity of the CSO
behavior. Roughly, a year’s worth of data was utilized in this
paper to cover any seasonal effects on the CSO behavior.
The requirement of the relatively long time-series data some-
what constitutes a drawback of the data-driven approach if the
model needs to be reconstructed. In practice, to improve model
accuracy while also providing predictions after a change to

the network, the model can be reconstructed say every month
before the whole year data is made available. In addition,
though independent of the proposed methodology, techniques
of data validation and reconciliation can be employed to
improve the quality (i.e., accuracy and reliability) of field mea-
surements. Notably, the model is not able to respond to the
actual intervention, but to alert when a remedial intervention
is required; however, whenever such an intervention occasion-
ally alters the sewer network an update of the model is needed
as indicated above.

Moreover, the time saving achieved for model construc-
tion can have both practical and methodological meanings.
The practical implications lie in the algorithmic ability to
not only accurately but also quickly (re)construct the CSO
predictive models for their subsequent use and integration in
the water utility’s network management process. This is espe-
cially important when dealing with large-scale networks and
data where substantial model construction time can be experi-
enced. On the other hand, the methodological meanings from
a wider research community perspective provide contributions
to an important research topic: development of low-complexity
machine learning algorithms for fast model construction. The
efficient model selection algorithm developed in this paper can
be employed or integrated in various model training and struc-
ture determination tasks including that for polynomial models,
artificial neural networks, support vector machines and fuzzy
systems, where high computational burden and model com-
plexity are usually a concern as experienced in model learning,
understanding and reasoning processes.

Finally, the proposed data-driven approach does not need to
know the network topology or detailed information about the
drainage network, thus to reduce the effort and time spent
in collecting and analyzing the corresponding information
related to a particular network and also to improve the gen-
eral applicability of the algorithm across different networks.
However, given that the aim of the data-driven model is to
predict CSO statuses in a number of future steps, it cannot
be used to analyze the actual propagation of a malfunc-
tion within the network. Our methodology is systematically
based on the global optimization of LASSO criterion fur-
ther enhanced by computational advantage, without testing
all the possible combinations (i.e., exhaustive approach) of
model regressors resulting from the monitoring variables and
their associated lags. It is widely recognized that an exhaus-
tive approach guarantees the optimality of the solution, but it
can take years or even be practically impossible to complete.
Other approaches such as relying on expert knowledge (per-
haps together with simplified mathematical processing) with
the aid of network topology information, and performing for-
ward/backward stepwise selection can be employed to reduce
the model development time but at the expense of reduced
solution quality. In this regard, our approach enjoys both
global optimality in the LASSO sense as well as computational
efficiency.

VI. CONCLUSION

This paper has proposed a systematic and automated data-
driven methodology to construct CSO predictive models.
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Various field monitored variables can be holistically taken into
account by the proposed approach. Little human involvement
is needed given the fact that the proposed approach is able
to collectively search for the relevant field variables and their
time lags associated to a particular CSO model. The model
training solutions provided are directly under the global opti-
mization of L1 regularization, making it more convenient and
effective than performing the pairwise correlation analysis for
a CSO as previously used. Computational efficiency was also
achieved by the proposal of a successive LASSO solution
generating scheme without matrix inversions. Given the field
investigation where many CSOs were involved, it is evident
that most CSOs exhibited a clear interrelationship with other
CSOs and field variables, in addition to the relationship with
the rainfall data as previously studied. Experimental results
showed that the proposed approach was able to automatically
construct CSO predictive models with good generalization
capability. For some CSOs with good spatial availability and
quality of surrounding data, the prediction accuracy can be
extraordinarily high, where more than 90% (R2 value) of
the underlying CSO behavior (variation) has been predicted
by the model. The superiority of the proposed approach
in terms of computational efficiency and model generaliza-
tion performance was also illustrated in comparison with
neural networks and fuzzy models. Furthermore, in addi-
tion to single-step ahead predictions (i.e., 15 min), multistep
ahead predictions were examined to demonstrate the promising
potential of the proposed methodology though the accuracy
decreases as the number of prediction steps increases. Such
CSO predictive models are easily constructed and run online,
by simply connecting a computing platform to the network’s
existing sensing framework. It can then be used to pro-
vide decision support to network operators as discussed in
Section V-C, in order to alleviate the impact of unexpected
CSO spillages.

Given this is a data-driven approach, it is worth highlighting
that the model construction requires availability and access to
reliable field monitoring data which can present a substan-
tial effort and challenge to network operators. Despite the
regulatory and operational requirements, it is also recognized
that the quality and availability of sensing data in drainage
networks can vary with different sites and network operators.
With the overall improvement of the situation in the future, the
chance of providing better CSO predictions using the proposed
data-driven methodology can be correspondingly increased.
Moreover, it is known that the use of gray or green infras-
tructure (e.g., storage and attenuation) can reduce the amount
of CSO spills through moving the stormwater runoff outside
the catchment or absorbing/leveraging the runoff across the
catchment (utilizing natural cycles and ecological systems).
The data-driven model is able to predict CSO statuses in catch-
ments with existing gray or green infrastructure as the model
is constructed to learn such particular catchment and network
behaviors. However, on the other hand, it cannot be used to
predict the potential benefit (effect) of using an envisaged
gray/green infrastructure though this particular problem is out-
side the scope of this paper. The same conclusion can also
be drawn on other options of stormwater management, e.g.,
the model can be trained to predict the CSO behavior in the

near future but cannot deduce the effect in the planning phase.
In that respect, our proposed model addresses a specific use
case aiming at the prediction of future outcomes, as opposed
to the testing/assessing of hypotheses. Finally, future work
within this paper will involve increasing prediction time-steps
and conducting online model learning while also considering
acceptable model accuracies by leveraging the advanced model
and algorithm development, in order to allow more response
time for network operators to react with remedial actions.
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