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ABSTRACT 26 

Lower physical activity levels in old age are thought to contribute to the age-related decline 27 

in peak aerobic and anaerobic power. Master athletes maintain high levels of physical activity 28 

with advancing age and endurance or power training may influence the extent to which these 29 

physical functions decline with advancing age. To investigate, 37-90-year-old power (n=20, 30 

45% female) and endurance (n=19, 58% female) master athletes were recruited. Maximal 31 

aerobic power was assessed when cycling two-legged (VO2Peak2-leg) and cycling one-legged 32 

(VO2Peak1-leg), while peak jumping (anaerobic) power was assessed by a countermovement 33 

jump. Men and women had a similar VO2Peak2-leg (mL·kg-1·min-1, p=0.138) and similar ratio of 34 

VO2Peak1-leg to VO2Peak2-leg (p=0.959) and similar ratio of peak aerobic to anaerobic power 35 

(p=0.261). The VO2Peak2-leg (mL·kg-1·min-1) was 17% (p=0.022) and the peak rate of fat 36 

oxidation (FATmax) during steady-state cycling was 45% higher in endurance than power 37 

athletes (p=0.001). The anaerobic power was 33% higher in power than endurance athletes 38 

(p=0.022). The VO2Peak1-leg:VO2Peak2-leg ratio did not differ significantly between disciplines, 39 

but the aerobic to anaerobic power ratio was 40% higher in endurance than power athletes 40 

(p=0.002). Anaerobic power, VO2Peak2-leg, VO2Peak1-leg and power at FATmax decreased by 41 

around 7-14% per decade in male and female power and endurance athletes.  42 

The cross-sectional data from 37-90-year-old master athletes in the present study indicates 43 

that peak anaerobic and aerobic power decline by around 7-14% per decade and this does 44 

not differ between athletic disciplines or sexes.  45 

 46 

Key words: master athletes, ageing, fatty acid oxidation, VO2Peak 47 

  48 
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Introduction 49 

Ageing is accompanied by a progressive decline in bodily functions, ultimately resulting in 50 

death [1]. Such age-related decrements include a decrease in muscle mass, strength and power 51 

generating capacity [2], and reductions in aerobic fitness [3]. Similar changes are also seen 52 

during disuse [4]. It is thus likely that the reduction in physical activity in old age [5] contributes 53 

significantly to the age-related reduction in muscle power and maximal oxygen uptake. 54 

  55 

Master athletes maintain high levels of physical activity into old age [6] and show impressive 56 

athletic feats [7] such as a 97-year-old man still cycling 5,000 km a year [8]. They have better 57 

physiological function [9], longer lifespan, lower hospitalisation [10] and better quality of life in 58 

comparison to sedentary people of the same age [11]. Thus, regular exercise helps to combat 59 

the effects of ageing [12] and this provides an opportunity to distinguish the effects of ageing 60 

per se from the age-related reductions in physical activity [7].  61 

 62 

Low cardiopulmonary fitness and neuromuscular function, and high body fatness are 63 

common features of ageing and risk factors for disability and all-cause mortality [13, 14]. These 64 

changes are not only due to low activity levels, since even in master athletes, performance 65 

levels, cardiopulmonary fitness and neuromuscular function decline [15-18]. However, 66 

endurance and power training impose different stresses upon cardiopulmonary and 67 

neuromuscular systems, with for instance higher ground reaction forces produced during 68 

higher running speeds such as when sprinting [19, 20]. 69 

 70 

It remains unknown whether the characteristics that determine power performance, such as 71 

very high peak muscle power, decline with ageing at different rates from those that determine 72 

endurance performance, such as high cardiopulmonary fitness and muscle aerobic potential. 73 

Given that endurance and power training promote divergent adaptations, such as increased 74 

skeletal muscle cross-sectional area and power in power athletes [21], and increased 75 

cardiorespiratory fitness, oxidative and fat oxidation capacity in endurance athletes [22, 23], we 76 

hypothesised that the anaerobic power is better preserved during ageing in power than 77 

endurance athletes, while the aerobic and fat oxidation capacity is better preserved in 78 

endurance athletes. 79 
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Methods 80 

Participants 81 

The study conformed to the latest revisions of the Declaration of Helsinki [24] and was 82 

approved by the Ärztekammer Nordrhein ethics committee, Düsseldorf, Germany (number 83 

2012157). Volunteers were recruited and assessed at the 18th European Veterans Athletics 84 

Championships (EVACs) at Weinau Stadium, Zittau, Germany between 16-25 August 2012. 85 

 86 

Volunteers provided written informed consent prior to participation. Those with a history of 87 

cardiovascular, neuromuscular or metabolic disease, or those who had a leg fracture in the 88 

past two years were excluded from the study. Participants were grouped into endurance and 89 

power disciplines by their primary entered events. Running events ≥800 m were classified as 90 

endurance, and ≤400 m and throwers were classified as power athletes (according to IAAF 91 

classifications: https://www.iaaf.org/disciplines). The age-graded performance for the main 92 

event of each athlete was calculated using the World Master Athletics age-grading calculator: 93 

http://www.howardgrubb.co.uk/athletics/wmalookup06.html. Participant characteristics 94 

are shown in Table 1. 95 

Experiments 96 

Peak jumping (anaerobic) power: Peak jumping power as a measure of peak anaerobic power 97 

[20] was assessed in 29 athletes on a Leonardo force platform (Novotec Medical, Pforzheim, 98 

Germany). The participants were instructed to perform a two-legged countermovement jump 99 

with the aim to raise the head and trunk as far as possible while freely moving their arms. 100 

Participants made two or three submaximal jumps to acquaint themselves with the 101 

procedure. They then performed three maximal efforts, each separated by 60 s rest and the 102 

attempt that gave the highest power (W) was recorded. The system computed the take-off 103 

velocity from the ground reaction force as described by Cavagna [25]. Instantaneous power 104 

was calculated as the product of force and velocity: Power (W) = Force (N) x Velocity (m·s-1). 105 

 106 

VO2Peak2-leg (aerobic power): VO2Peak2-leg was determined on a cycle ergometer (Jaeger 107 

Ergocycle) with a MetaLyzer 3B - R2 (Cortex BioPhysik GmbH, Leipzig, Germany) to measure 108 

VO2 and VCO2. Participants started to cycle at a workload of 50 W and a cadence of 70 rpm. 109 
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Workload was increased every 3 min with 50 W for men and 30 W for women until the 110 

respiratory exchange ratio was higher than 1.0 for at least 1 min. From this point onwards, 111 

workload was increased by 20 W every minute until the age-predicted HRmax (220 – age) was 112 

exceeded, if the participant reached volitional exhaustion and/or the respiratory exchange 113 

ratio was >1.1. Heart rate was measured using a Polar heart rate monitor (Polar Oy, Kempele, 114 

Finland). The assessment was followed by a 5-min cool down at low cadence (~40 rpm) and 115 

workload (25-75 W). The average of the values in the last 30 seconds of the last step was 116 

taken as the VO2Peak2-leg. The maximal workload during the test was presented as maximal 117 

aerobic power. 118 

119 

FATmax (maximal fatty acid oxidation): The rate of fatty acid oxidation was estimated for 120 

each workload as described previously [26]: 121 

Rate of Fatty Acid Oxidation (g·min-1) = (1.695 x VO2) – (1.701 x VCO2) 122 

Where VO2 and VCO2 are given in L·min-1 and negligible urinary nitrogen excretion is assumed. 123 

FATmax was calculated by fitting the rate of fatty acid oxidation vs. %VO2peak2-leg with a 124 

polynomial, where the peak of the line was considered the maximal rate of fatty acid 125 

oxidation.  126 

127 

VO2Peak1-leg : The VO2Peak1-leg during one-leg cycling was measured on a separate day from 128 

all other assessments in a subgroup of 18 participants with the same equipment and 129 

calibrations as the VO2Peak2-leg assessment. This assessment was included to estimate the 130 

peak aerobic capacity of the active leg muscles. Where VO2Peak2-leg may be limited by the 131 

cardio-respiratory supply of oxygen to the working muscles and/or by the uptake and 132 

utilisation of available oxygen within muscle fibres[27, 28], the cardio-respiratory supply of 133 

oxygen to active leg muscles during one-legged cycling is not generally limiting. Therefore, 134 

the VO2Peak1-leg more closely represents the leg muscle peak aerobic potential[29] .  135 

For this assessment, the dominant leg was secured to the pedal on the cycle ergometer, while 136 

the non-exercising leg was positioned on a central platform on the cycle ergometer to limit 137 

extraneous movements. The participants were asked to minimise upper body movement 138 

during the exercise. The workload began at 20 W at 70 rpm for the first two minutes of the 139 

test, after which the workload was increased to 50 W for one minute and then by 10 W per 140 

minute until volitional exhaustion or a cadence of 70 rpm could not be maintained. The 141 
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VO2Peak1-leg (L·min-1) was taken as the highest value of 30 s rolling averages, which in all cases 142 

occurred during the final minute of exercise.  143 

 144 

Statistical analysis 145 

Data were analysed using SPSS (v.24 IBM). A two-factor ANOVA was used with sex and athletic 146 

discipline (power vs. endurance) as between-factors. A discipline*sex interaction indicates 147 

that the effect of athletic discipline differs between men and women, determined by an 148 

additional post hoc independent samples t-test. A stepwise linear regression was performed 149 

with factors age, sex and discipline to assess the impact of these variables on the outcome 150 

measures, with adjusted R-values presented. Age-related changes in ratios of jumping power 151 

to VO2Peak2-leg, FATmax and the ratio of VO2Peak1-leg: VO2Peak2-leg were also analysed by this 152 

method. Statistical significance was accepted at p<0.05. Data are presented as mean (±SEM) 153 

unless stated otherwise. 154 

 155 

Results 156 

Participant characteristics 157 

Participant characteristics are shown in Table 1. There was no significant difference in the age 158 

of the endurance and power athletes. Men were taller and had a larger body mass than 159 

women (p<0.001). The body mass of the power athletes was larger than that of endurance 160 

athletes (p=0.001). The BMI was higher in power than endurance athletes (p=0.001), but did 161 

not differ significantly between men and women (p=0.061). The AGP did not differ 162 

significantly between athletic discipline or between the sexes (p=0.973 and p=0.718, 163 

respectively).  164 

 165 

Jumping (anaerobic) power 166 

Men achieved a 64% higher jumping power than women (Table 2; p=0.002). However, when 167 

normalised to body mass, there was no longer a difference between the sexes in peak jumping 168 

power (Table 2; p=0.070). Power athletes achieved 58% higher power during vertical jumps 169 

compared with long distance runners (Table 2; p=0.003) and 33% higher power than distance 170 

runners when normalised to body mass (Table 2; p=0.022). The take-off velocity from the 171 
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jump was 19% higher in men than women (Table 2; p=0.004), and was 15% higher in power 172 

than endurance athletes (Table 2; p=0.027). 173 

 174 

VO2Peak2-leg 175 

Men displayed a 38% higher VO2Peak2-leg (L·min-1) than women (Table 2; p=0.001), but this 176 

difference disappeared when normalised to body mass (mL·kg-1·min-1) (Table 2; p=0.138). 177 

VO2Peak2-leg (L·min-1) did not differ significantly between power and endurance athletes 178 

(Table 2; p=0.592), but when expressed per body mass it was 17% higher in endurance 179 

athletes (Table 2; p=0.022). Power (W) at VO2Peak2-leg was 37% higher in men than women 180 

(p=0.024), but did not differ between power and endurance athletes (p=0.817).  181 

 182 

FATmax 183 

There was a sex * discipline interaction for FATmax (g·min-1: p=0.027; mg·kg·min-1: p=0.019) 184 

which was reflected by a higher FATmax (mg·kg·min-1) in endurance than power athletes in 185 

men (p<0.001), but not in women (p=0.529) and a similar FATmax (mg·kg·min-1) in male and 186 

female endurance athletes (p=0.121) and male and female power athletes (p=0.067) (Table 187 

2; Figure 1). There were no effects of sex (p=0.964) or discipline (p=0.144) on the percentage 188 

of VO2Peak2-leg at which FATmax occurred.  189 

 190 

VO2Peak1-leg (L·min-1) 191 

VO2Peak1-leg was similar in men and women (p=0.159), and in endurance and power athletes 192 

(p=0.431). During the single-leg cycling tests, HRPeak reached 86±1% and 81±1% (p=0.433) of 193 

the values achieved during two-leg cycling for power and endurance athletes, respectively, 194 

with no difference between sexes (p=0.252). Power (W) at VO2Peak1-leg was not significantly 195 

different between sexes or disciplines whether normalised to body mass or not (p>0.05 in all 196 

cases). The ratio of VO2Peak1-leg to VO2Peak2-leg did not differ significantly between disciplines 197 

(p=0.404) or sexes (p=0.959).  198 

  199 
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Ratio of aerobic to anaerobic power 200 

There was no significant difference (p=0.261) between men (7.1±0.5%) and women 201 

(8.4±0.6%) in the power at VO2Peak2-leg as a fraction of the jumping power. The same applied 202 

to the power at peak fat oxidation that was 3.4±0.4% of power achieved during a vertical 203 

jump in both women and men (p=0.589). The power (W) at VO2Peak2-leg as a fraction of that 204 

achieved during a vertical jump was higher (p=0.002) in endurance (9.2±0.6%) than power 205 

athletes (6.6±0.4%). The power (W) at peak fat oxidation as a fraction of the jumping power 206 

was higher (p=0.007) in endurance (4.1±0.4%) than in power athletes (2.7±0.3%).  207 

 208 

Age-related changes in aerobic and anaerobic power 209 

In table 3 it can be seen that age was the primary determinant of jumping power and 210 

VO2Peak2-leg, both in absolute terms and when normalised to body mass. Sex was the second 211 

factor determining absolute jump power and VO2Peak2-leg, but discipline was more important 212 

than sex when jump power and VO2Peak2-leg were normalised to body mass (Table 3). For 213 

absolute FATmax there was a significant effect of age, but normalised to body mass the 214 

FATmax (mL·kg-1·min-1) was determined solely by athletic discipline (Table 3). 215 

 216 

The aerobic:anaerobic power ratio was not significantly affected by age or sex, but was higher 217 

in endurance than power athletes (p=0.001; Table 2). However, the ratio of power at FATmax 218 

to that at VO2Peak2-leg was not affected by age, discipline or sex. The VO2Peak1-leg:VO2Peak2-219 

leg ratio was not significantly affected by age, sex or discipline. 220 

 221 

Absolute jumping power (W) (7.4% per decade, p<0.001), relative jumping power (W/kg) 222 

(9.4% per decade, p<0.001, Fig. 2A), absolute VO2Peak2-leg (L·min-1) (11.2% per decade, 223 

p<0.001), relative VO2Peak2-leg (mL·kg-1·min-1) (9.0% per decade, p<0.01, Fig. 2B) and 224 

VO2Peak1-leg (L·min-1) (14.2% per decade, p<0.001) declined with advancing age.  225 

 226 

Discussion 227 

 228 
It is widely acknowledged that regular exercise is an effective way to combat or ameliorate 229 

the declines in physical function that occur with advancing age. Cross-sectional data from 37-230 

90-year-old master athletes in the present study suggests that both peak anaerobic and 231 
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aerobic power decline by around 7-14% per decade and that this trajectory did not differ 232 

between power or endurance athletes. Even though master athletes perform better than age-233 

matched non-athletes [30], the present results suggest age-related changes in the 234 

neuromuscular and cardiopulmonary systems progress at similar rates, regardless of power 235 

or endurance competitive specialisations. 236 

The master athletes in the present study were amongst the most athletic Europeans for their 237 

age, as reflected by the cohort mean AGP of 82.7 ± 2.2%. To put this into context, a 75-year-238 

old male marathon time of 80% AGP is 3h:46m:53s and the 100 m sprint time is 16:50s. 239 

Despite these high achievements, physiological function clearly declined with increasing age.  240 

 241 

Power vs. endurance athletes 242 

The counter-movement jump is indicative of maximal anaerobic power [31]. In line with 243 

previous observations [15, 20] we observed that the jumping (anaerobic) power per body mass 244 

of power athletes was 33% higher than that of endurance runners, reflecting the expected 245 

greater muscle power in power than endurance athletes. A novel contribution of our study is 246 

that we also collected measurements of peak aerobic power for the same participants and 247 

can compare across age and across disciplines. In healthy young adults, VO2Peak2-leg during 248 

whole body exercise is limited by the oxygen supply to the working muscles [32]. An indication 249 

of the extent of the central limitation can be gained from the ratio of one- to two-leg cycling 250 

VO2Peak [29]. The similar ratio in endurance and power athletes suggests that the 251 

cardiovascular limitations to two-leg cycling are similar in both athletic groups, despite the 252 

very different competitive specialisation of these athletes. 253 

 254 

The VO2Peak1-leg (L·min-1) was similar for endurance and power athletes, despite the leg 255 

muscle mass being larger for power athletes than for endurance runners [33]. This is most likely 256 

due to the higher oxidative potential per unit muscle mass of endurance runners compared 257 

with power athletes [34] to compensate for lower muscle mass. In addition to the higher 258 

oxidative capacity per unit muscle mass of endurance athletes [34], we found up to 45% higher 259 

rate of fatty acid oxidation per unit body mass in endurance than power athletes at exercise 260 

intensities of 30-70% of VO2Peak2-leg. In line with this, previous studies have shown a 261 

significant increase in muscle mitochondrial enzymes and those of fatty acid metabolism 262 
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following endurance training [35]. A higher rate of fat oxidation, as we observed for endurance 263 

athletes, will make the muscle less dependent on glucose metabolism, sparing glycogen and 264 

thereby increasing prolonged endurance performance [36]. Such an adaptation is not required 265 

in power athletes who rely on anaerobic ATP generation from creatine phosphate and by 266 

glycolysis for success in their discipline. 267 

 268 

Interestingly, we found that the FATmax was higher in endurance than power athletes in men, 269 

but not in women. Nevertheless, like in male  (r=0.828, p=0.011) we also observed in female 270 

(r= 0.702, p=0.016) endurance athletes a correlation between body mass normalised FATmax 271 

and maximal aerobic capacity. Whatever the cause of the absence of a higher FATmax in the 272 

female endurance than power athletes, the FATmax appears to be related in both sexes and 273 

disciplines with maximal aerobic capacity.  274 

 275 

Based on previously published jump data in masters sprinters [15] and the VO2Peak2-leg data 276 

from endurance runners [42], it was estimated that the proportion of total power that can be 277 

generated through aerobic processes is around 30% of the peak anaerobic power [17]. This 278 

value is higher than the 9% and 7% we found in endurance and power athletes, respectively. 279 

The discrepancy may be due to the previous study deriving maximal anaerobic power data 280 

from master sprinters and the VO2Peak2-leg data from a different set of specifically-trained 281 

master endurance runners, while we calculated this ratio directly from measurements 282 

completed in the same individuals. The difference between 2-legged jumping and cycling is 283 

also apparent, in that cycling is an alternating limb exercise where every time only one leg 284 

produces power and little of the power is gained from musculo-tendinous elasticity, 285 

compared to the 2-legged jump [43]. In any case, the aerobic power is only a small fraction of 286 

the anaerobic power and this was true regardless of endurance or power training 287 

specialisations. The fraction of anaerobic power that can be generated at the peak rate of 288 

fatty acid oxidation is even smaller, at 4% for endurance and just 3% for power athletes.  289 

 290 

Ageing in power and endurance athletes 291 

We expected that the anaerobic power would be better preserved during ageing in power 292 

than endurance athletes, while the VO2Peak2-leg would be better preserved in endurance 293 
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athletes. This is important as throughout life both anaerobic power [2] and VO2Peak2-leg 294 

decrease with increasing age [3]. In this context it was noted that throughout the life span, the 295 

anaerobic power is larger in power athletes [15] and aerobic power larger in endurance 296 

athletes [16] than age-matched non-athletes. Similar to previous studies, we found that the 297 

rate of decline in peak jump power [15, 20] was similar in power and endurance athletes. The 298 

same applied to the decline in VO2Peak2-leg, which corresponds with other studies that 299 

showed that the age-related rate of decline in VO2Peak2-leg was similar in endurance runners 300 

and non-athletes [42, 44], even though the absolute decline is faster in athletes [16]. This suggests 301 

that there is an inherent ageing process that cannot be delayed.  302 

As a consequence of the similar rates of decline in anaerobic and aerobic power in both power 303 

athletes and endurance runners, and men and women, the aerobic:anaerobic power ratio 304 

remained constant with ageing and higher in endurance than power athletes. This 305 

corresponds with the similar relative age-related decrements in running speed records of 306 

endurance and power master athletes [17]. This consistent pattern of ageing appears to apply 307 

to the performance in many other athletic disciplines, including swimmers [45]. The age-308 

related decrement is not limited to aerobic and anaerobic power, but also applies to the 309 

maximal rate of fat oxidation. While older untrained adults have lower rates of fatty acid 310 

oxidation than younger adults [37], the ratio of workload at maximal rate of fatty acid oxidation 311 

to workload at VO2Peak2-leg did not show an age-related decline in either discipline or sex in 312 

our study. These proportional declines in work at maximal fatty acid oxidation, and maximal 313 

aerobic and anaerobic power suggest that physiological systems determining these 314 

parameters age proportionally, irrespective of athletic discipline, or even being an athlete at 315 

all.  316 

Such a proportional age-related decline in physiological systems is also reflected by the stable 317 

ratio of one-leg to two-leg performance across the ages, irrespective of discipline. This 318 

indicates that in both endurance and power athletes the cardiovascular system remains the 319 

main limitation of whole body VO2Peak2-leg during ageing and that the systems involved in 320 

oxygen utilisation age proportionally [16]. Thus in older endurance and power athletes, the 321 

oxygen delivering and consuming systems do not violate the principle of symmorphosis that 322 

assumes that structures are matched to functional demands [46].    323 
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Study limitations 324 

In measurement of VO2peak2-leg, athletes were stopped when they exceeded by more than 325 

10bpm the age-predicted maximal heart rate. It is possible that athletes did not achieve true 326 

maximal oxygen uptake in some cases even if their true maximal heart rate was greater than 327 

the methodological constraint that we applied for study governance. However, this bias 328 

applied to both sexes and to both power and endurance athletes equally. The present study 329 

was a cross-sectional design and recruitment targeted very high performing athletes, which 330 

constrained recruitment to relatively low overall sample sizes, although this is commonplace 331 

for studies of high performing athletes and the results provide new insights into a model of 332 

ageing which is at the peak of physiological performance [7]. While it is possible that the 333 

physiological profiles of the athletes are the product of heritable pre-disposition, the intensive 334 

exercise training programmes undoubtedly contributed to their outstanding physical 335 

capabilities. Furthermore, it is not possible to determine whether the divergent profiles of 336 

endurance and power athletes are due to their specific training programmes and/or to 337 

heritable factors.  338 

Perspective 339 

Master power athletes appear to exhibit a higher relative anaerobic power and lower relative 340 

aerobic power than master endurance athletes. However, the relative (%) annual decline in 341 

anaerobic power and aerobic power is similar in both athletic groups. The present data also 342 

suggests that during ageing there is a proportional decline in the power at the maximal rate 343 

of fat oxidation, irrespective of discipline and sex. It thus appears that there is an inherent, 344 

unavoidable (at least by exercise) ageing process that affects cardiopulmonary and 345 

neuromuscular systems important for exercise performance. Despite aerobic and anaerobic 346 

power declines with advancing age in masters athletes, the benefits of exercise during aging 347 

are evident as higher physical function than in age-matched non-athletes [30]. 348 

 349 
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Figure Legends 485 

Figure 1. Rates of fatty acid oxidation. Measured during submaximal two-legged cycling and 486 

expressed as a function of the %VO2Peak. Male power athletes (open circles) and endurance 487 

runners (closed circles), and female power athletes (open squares) and endurance runners 488 

(closed squares) and female. Sex*Discipline interaction (p=0.019), reflected by a higher 489 

FATmax in male (p<0.001), but not female (p=0.529), endurance than power athletes.  490 

 491 

Figure 2. Aerobic and anaerobic potential of masters athletes. A) Absolute peak anaerobic 492 

power (W·kg-1) decline from the age of 35 years, (r= -0.713, p<0.001). B) VO2Peak (mL·kg-493 

1·min-1) decline from the age of 35 years, (r= -0.546, p<0.001). C) Power output at peak oxygen 494 

uptake expressed as a percentage of the peak jump power (W) (r= 0.103, p=0.603). D) Power 495 

(W) at FATmax as a percentage of the peak jump power (W) (r= -0.136, p=0.490). Male 496 

endurance runners (closed circles), male power athletes (open circles), female endurance 497 

runners (closed squares) and female power athletes (open squares). 498 
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Table 1: Characteristics of participants separated by discipline and sex.

Running

Discipline

N Age

(years)

Height

(m)

BM

(kg)

BMI

(kg·m-2)

AGP (%)

Endurance 8 ♂ 62±5 1.74±0.04 66.1±3.6 21.8±1.1 86.3.0±5.5

11 ♀ 58±3 1.63±0.02* 54.9±1.4* 20.7±0.5 79.6±3.8

Power 11 ♂ 58±5 1.79±0.03 78.6±2.9† 24.4±0.5† 78.1±4.9

9 ♀ 63±6 1.63±0.02* 61.4±2.7*,† 23.0±0.6† 88.1±3.7

BM: body mass; BMI: body mass index; AGP: Age-graded performance. Data are shown as mean±SEM. *indicates 

significant sex difference, †indicates significant difference between disciplines.
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Table 2: Muscle aerobic and anaerobic power of participants separated by discipline and sex

Running 

Discipline

Sex JP (W) JP/BM 

(W·Kg-1)

Velocity 

take-off 

(m·s-1)

VO2Peak2-leg 

(L·min-1)

VO2Peak2-leg/BM 

(mL·kg-1·min-1)

Power 

VO2Peak2-leg 

(W)

HR VO2Peak2-leg 

(bpm)

FATmax 

(g·min-1)

FATmax/BM 

(mg·kg-1·min-1)

Power 

FATmax 

(W)

Aer:Anaer 

Power (%)

VO2Peak1-leg 

(L·min-1)

Power 

VO2Peak1-leg 

(W)

VO2Peak1-leg: 

VO2Peak2-leg

1985±179*

♀
(n=8)

35.5±2.5 2.10±0.11* 2.35±0.18* 42.9±3.4 188±16*
152±5

0.39±0.04 7.07±0.81 84±12* 9.34±0.92
1.95±0.27 

(n=5)
108±12 0.84±0.04

2963±465*,†

♀
(n=7)

47.9±7.7†    2.23±0.12*,†       2.54±0.16* 41.7±3.1† 190±12*
164±5

0.38±0.04▲ 6.32±0.82▲ 81±13* 7.24±0.69†
1.83±0.44 

(n=4)
93±21 0.73±0.10

JP: Jumping power; JP/BM: Jumping power per body mass; VO2Peak2-leg/BM: two-leg VO2Peak per body mass; FATmax: maximal rate of fat oxidation; Aer:Anaer: 

Aerobic:Anaerobic Power (%); VO2Peak1-leg: VO2Peak2-leg: VO2Peak of one- vs VO2Peak of two-leg cycling. Data are shown as mean±SEM. *indicates significant sex difference,

†indicates significant difference between disciplines, ▲indicates interaction between sex and discipline.

Endurance ♂
3081±453

(n=6)

152±8
45.3±4.7 2.33±0.12 3.62±0.38 54.2±2.9 259±43 0.61±0.09 9.12±0.96 149±30 8.94±0.47

2.83±0.62

(n=4)
173±50 0.78±0.04

Sprint ♂
4696±432†

(n=8)

157±5
56.9±3.8† 2.75±0.11† 3.17±0.26 40.0±2.7† 258±28 0.38±0.03† 4.75±0.30† 126±14 5.98±0.42†

2.25±0.26

(n=5)
123±30 0.79±0.04
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Table 3: Stepwise linear regression between jumping power, aerobic capacity and rates of 

fatty acid oxidation with age, sex and discipline.

Jump Power 

(W)

Jump power 

per body mass

(W·kg-1)

VO2Peak 

(L·min-1)

VO2Peak per 

body mass

(mL·kg-1·min-1)

FATmax 

(g·min-1)

FATmax per 

body mass

(mg·kg-1·min-1)

A: 0.391*** A: 0.490*** A: 0.374*** A: 0.279*** A: 0.132* D: 0.197**

S: 0.652*** D: 0.600*** S: 0.637*** D: 0.364***

D: 0.789*** S: 0.680***

The R-values increase from top to bottom, representing the increased R when an additional factor is included; A: 

age; S: sex; D: Discipline; FATmax: maximal rate of fat oxidation; *: P < 0.05.**: P < 0.01; ***: P<0.001. Adjusted R- 

values are presented.
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SIMILAR RELATIVE DECLINE IN AEROBIC AND ANAEROBIC POWER WITH AGE 

IN ENDURANCE AND SPRINT MASTER ATHLETES OF BOTH SEXES 

 
Reviewer(s)' Comments to Author:  
 
Reviewer: 1  
 
Comments to the Author  
The authors have done very good work. The data is valuable because it is very difficult to 
have such master athletes as subjects. The results are clear and important for practice. All 
parts of the manuscript are of high scientific work.  
 

The authors wish to thank the reviewer for their kind appraisal of the quality of our 
work and its place in the field of literature.  

 
Reviewer: 2  
 
Comments to the Author  
This is an interesting manuscript which has studied the effects of age relate declines in   in 
function in a cross-over - type design.  It has  done this by comparing explosive muscle 
function and aerobic capability in both sprint and endurance athletes. The paper  
provides some novel information about ageing that should be published.  
 

The authors wish to thank the reviewer for their kind appraisal on the novelty of the 
work presented in our manuscript and their recommendation to publish. Thank you also 
for the suggestions listed below to improve the quality of the manuscript. All 
amendments made to the manuscript are highlighted in yellow and a line number given 
below. 

 
Weakness / Suggestions for improvement  
The number of subjects / master athletes is quite low.  

 
The number of participants is lower than we would normally aim for when studying 
human physiology and ageing. This may limit the interpretation of the data. 
However, the participant group is highly specialised and belongs to the top 
performers of their age. This selection makes recruitment challenging indeed but at 
the same time we believe that this selection ensured a dataset that offers novel 
insights into the maximal achievable performance at a given age. Nevertheless, we 
have given the low number as a limitation in the study limitations section (lines 330-
333). 

    
The classification of 800m as a sprint even is dubious. What would happen if these were 
moved into the endurance category?  Or a third category of middle distance athletes 
created?  
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If we created categories for power, middle and long distances, the group sizes would 
become 22, 9 and 8 respectively, and we believe these groups’ sizes are too small. 
However, we do agree with the reviewer that 800 m is not classically defined as a 
power event and for this reason; we have re-classified ≥800m as endurance and 
≤400m as power (Lines 89-91). This has made very little difference to the overall 
results (with the exception of a newfound sex * discipline interaction for FATmax 
measures; detail added to result section lines 184-188 and the discussion lines 269-
274).  
Further to this, we have also re-classified the athletes as “power” and “endurance”. 
The reason for this is that athletes in our cohort competed over multiple events 
(heptathlon, pentathlon, throwing etc). The AGP presented is for the athletes “best 
performance” (ie, the highest AGP from all of the performances at this competition).  
 

The rationale for the 1 legged protocol needs to be made much clearer earlier in the paper.  
 
The rationale for this protocol was detailed in the discussion. However, we have 
added further detail in the methods section (lines 130-135) as suggested. 

 
It would be helpful if the details of each of the athletes (ages, events, physical 
characteristics etc)  in a table (possibly as supplementary material?).  This would be of utility 
to the reader.  
 

We have discussed this amongst authors and decided that we cannot release the 
individual data as recommended. In the manuscript we have named the competition 
and the year. If we proceed to also release details of the specific event, ages and 
height etc., then it would theoretically be possible for somebody to look on the 
freely-available competitor listings and identify our study participants. This could be 
classed as a serious breach of participant confidentiality. 
 

Measured maximum / peak heart rates should be included along with the caveat that there 
were imposed restrictions.  How many reached VO2 max without reaching the cut off for 
max HR?    
 

We agree with this comment. The methodology has been fully described so that 
readers are aware of the methodological constraints affecting the data. 92% of 
athletes tested reached (or mostly greatly exceeded) predicted VO2max as 
determined in Jones et al., Normal standards for an incremental progressive cycle 
ergometer test, 1985.  
Further to this, one participant has been excluded from analysis (male, power 
athlete) due to premature termination of the 2-leg VO2peak test (49% Predicted 
VO2peak/65% max HR). 

 
The Results section starting at line 24 does not seem to describe cover the main findings of 
Figure 1 in regard fat oxidation differences between two groups? 
 

An additional line has been added to better explain the findings presented in figure 
1. This section now describes that finding that FATmax occurs at a similar %VO2peak 
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between endurance and power athletes, however over the spectrum of exercise 
intensities, endurance athletes utilise significantly more fatty acid at given exercise 
intensities from 30-70% VO2peak. Lines 184-188  
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