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Abstract - Road congestion is estimated to cost the United 

Kingdom £307 billion by 2030. Furthermore, congestion 
contributes enormously to damaging the environment and 
people’s health. In an attempt to combat the damage 
congestion is causing, new technologies are being developed, 
such as intelligent infrastructures and smart vehicles. The 
aim of this study is to develop a fuzzy system that can 
classify congestion using a real-world dataset referred to as 
Manchester Urban Congestion Dataset, which contains 
data similar to that collected by connected and autonomous 
vehicles. A set of fuzzy membership functions and rules 
were developed using a road congestion ontology and in 
conjunction with domain experts. Experiments are 
conducted to evaluate the fuzzy system in terms of its 
precision and recall in classifying congestion. Comparisons 
are made in terms of performance with traditional 
classification algorithms decision trees and Naïve Bayes 
using the Red, Amber, and Green classification methods 
currently implemented by Transport for Greater 
Manchester to label the dataset. The results have shown the 
fuzzy system has the ability to predict road congestion using 
volume and journey time, outperforming both decision 
trees and Naïve Bayes. 

Keywords - Intelligent Transport Systems; Big Data; Fuzzy 
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I.  INTRODUCTION 

For centuries, people have naturally been migrating from 
rural to urban areas causing the natural occurrence of 
urbanization, which has contributed to one of the biggest 
challenges’ society faces each day, which is road congestion. 
Road congestion in urban areas is estimated to cost the UK 
economy a total of £307 billion by 2030 [1]. Furthermore, road 
congestion contributes enormously to damaging the 
environment, due to air pollution which has an impact on 
peoples well-being [2], [3]. 

In an attempt to reduce the impact of road congestion, many 
large corporations, such as Google, Tesla, and Uber are 
developing ‘smart vehicles’, such as connected and 
autonomous vehicles (CAVs) that will be implemented as part 
of an Intelligent Transport System (ITS) of the future. Smart 
vehicles are expected to reduce congestion levels and the 
number of fatal accidents on the roads, with an estimated 
37,000 lives a year predicted as being saved in the United States 
(U.S.) alone [4]. This is due to smart vehicles being able to 
communicate faster than a human and make better decisions 

based on information collected by sensors embedded within 
vehicles with other vehicles and infrastructure [5]. However, 
due to the limited access to these smart vehicles and their 
associated infrastructure, this study will use alternative data 
sources, which comprise of data similar to what is collected by 
CAVs and Road Side Units (RSUs) that will be used within  ITS 
of the future, such as a VANETs. Furthermore, these types of 
ITS will provide data from vehicle to vehicle (V2V) and vehicle 
to infrastructure (V2I) providing a constant stream of  big data  
[5]–[7], which can be used to provide different information, 
such as volume, journey time, speed, and weather conditions, 
which are also known as dimensions.  

Little work has been conducted using fuzzy systems to model 
road congestion [8]–[10]. However, this limited work has 
indicated that fuzzy models of road congestion are better for a 
stakeholder, such as a domain expert to understand that the 
conventional quantitative models previously implemented, 
such as the probability model [11] and the spatial-temporal 
model [12].  Fuzzy sets are the ideal choice for modelling road 
congestion because of their ability to handle the ambiguity, 
multifaceted nature, and uncertainty within traffic data, such as 
journey time, speed, traffic flow, accidents, road works etc. 
They have the ability to capture such variables through the use 
of linguistic variables and hedges which are easier for a domain 
expert to understand [13]. 

The contribution of this paper is taking an unbalanced real-
world big dataset with the support of an ontology and domain 
experts to construct a fuzzy model of road congestion. This is 
achieved through the construction of fuzzy systems comprises 
of a set of fuzzy membership functions and fuzzy rules that can 
be used to identify road congestion. An experiment is 
conducted to determine whether the fuzzy model can be used to 
analyse traffic data to classify congestion. Comparisons are 
made with an existing system used by Greater Manchester 
Transport authority in the UK and other known classification 
algorithms.   

This paper is organised as follows: Section II provides a 
brief overview of recent studies of fuzzy systems within the 
field of transportation. Section III provides an in-depth 
explanation for developing a fuzzy system capable of capturing 
the levels of congestion on an urban road network. Section IV 
presents the experimental methodology and Section V provides 
the results and a comparative discussion. Section VI concludes 
this study and provides insight into further work. 

 



II. FUZZY SYSTEMS IN TRANSPORTATION 

A. What is a fuzzy system? 

A fuzzy system is typically a control system based on fuzzy 
logic. The term “fuzzy” refers to the system’s ability to deal 
with terms that are not binary or predefined- often referred to as 
linguistic variables [13]. For instance, a humans’ understanding 
of the phrase, near or far, could imply: very near, near, not near, 
far, and very far. Hence, fuzzy terms are subjective and mean 
different things to different people. The main advantage of a 
fuzzy system is that the model itself is made up of a number of 
fuzzy rules, which can model a problem, such as congestion that 
can be expressed in terms a human operator can understand. 

 

B. Transport applications 

The approach to use fuzzy systems within the discipline of 
transportation to classify road traffic congestion is a relatively 
new field. For instance, a study was presented in [14] into a 
cooperative V2V road traffic detection congestion on freeways. 
The study uses a level of service metric created by a third party 
that collected aerial surveys to define the levels of congestion: 
slight, moderate, and severe. The author then created a new 
metric that uses four membership function: VerySlow, Slow, 
Medium, and Fast,  two inputs: Speed and Density, and sixteen 
rules to define an output for one of three levels of congestion. 
However, this study does not consider non-congestion as an 
output and has described only testing the model in a simulation 
with simulated data, furthermore, the focus of the study is on 
highways and does not reflect an urban road network, which has 
very different characteristics. Another study [9], examined road 
traffic anomalies that contribute to congestion at a single 
junction using a one-way traffic video sequence. This study 
uses two data inputs: Traffic flow and traffic density. Traffic 
flow has three membership functions called low, medium, and 
high. Traffic density also has three membership functions 
(sparse, normal, and dense) which are calculated using a 
statistical analysis of the pixels. This study uses nine rules, 
which were obtained through experts and empirical 
experiments and has an output of either: normal traffic, slight 
congestion, and heavy congestion. However, one of the 
limitations of this experiment is it was only tested on 3 different 
scenes and in total had 142 observations. Although the use of 
fuzzy systems is very new, despite limitations in current work, 
fuzzy set representation of the variables that model congestion 
encapsulate a greater human understanding of a multifaceted 
and dynamic environment. 

 

III.  DEVELOPING A FUZZY SYSTEM FOR CONGESTION 

 This section describes the methodology that was used to 
develop a fuzzy system for road congestion on an urban city 
network. The model utilises real-world data from Bluetooth 
sensors and inductive loop counters provided by Transport for 
Greater Manchester (TfGM) for Manchester, UK. These data 
sources will provide data that is equivalent to what will be 
provided by CAVs and RSUs. Moreover, experts in road 
congestion management (TfGM) and a road congestion 
ontology [3], [15] was used to help define the fuzzy sets to 
ensure thorough domain coverage. The road congestion 

ontology which was used to support the development of a fuzzy 
system capable of classifying road congestion was presented in 
[15]. The road congestion ontology states that congestion can 
be measured using multiple dimensions, such as journey time 
and volume. Furthermore, congestion is often the consequence 
of an event, such as rush hour, a road accident, a concert, a 
football match and roadworks. Finally, depending on the 
severity of congestion the magnitude can vary from very low to 
very high. Therefore, in this study, the magnitude ranges 
defined in the urban road congestion ontology [15] will be used 
to determine the membership functions: Very low, VL, low, L, 
medium, M, high, H, and very high, VH which will ensure coverage of the domain. 

 

A. Data Sources and Variables 

For this study, a real-world spatial-temporal dataset, known 
as the Manchester Urban Congestion dataset (MUCD) was 
used. The dataset consists of journey time, volume, weather, 
bank holidays, and event information. However, due to the 
nature of this study, only journey time and volume data 
collected from Bluetooth sensors and IDC will be used to 
simulate data collected by CAVs and RSUs. The MUCD has 
17376 records and each record consists of 126 attributes. 
Furthermore, the MUCD dataset is labelled using the Red, R, 
Amber, A, and Green, G, (RAG) method implemented by 
TfGM, UK. Where (G)reen is non-congestion (1), (A)mber is 
slight congestion (2), and (R)ed is major congestion (3). 

ܩ  = ܶܬ ≤ ݉݁݀݅ܽ݊ ∗ ܣ(1) 1.25 = ݊ܽ݅݀݁ܯ ∗ 1.25 < ܶܬ ≤ ݊ܽ݅݀݁ܯ ∗ 1.5 (2)ܴ = ܶܬ > ݊ܽ݅݀݁ܯ ∗ 1.5 (3)
 
Where JT is the average journey time for all Bluetooth 

enabled vehicles travelling between two sensors on each link. 
The Median is the 50th percentile of journey time for a single 
link within the MUCD. 1.25 and 1.5 are the congestion factors 
that TfGM experts use to measure network performance. The 
problems associated with the MUCD can be summarised as: 

• Due to the limited number of inductive loops 
counters, the ability to calculate the volume of traffic 
for each link in the network is limited. 

• The data quality of the Bluetooth sensors has many 
issues. For example, capture rates; during the night 
periods or a period where no vehicle with a Bluetooth 
device passes the sensors cause the sensors to provide 
an incorrect average journey time when being 
observed. 

• In bad weather, the sensors which use a mobile 
network to transmit the data to a central location, can 
fail and cause the dataset to have missing data. 

• The non-congestion class significantly outweighs the 
other, causing the MUCD dataset to be imbalanced, 
which imposes challenges for machine learning 
classification algorithms that is a problem because 
classification algorithms are often biased towards the 
majority class, which in this study is non-congestion. 

 



B. Membership Function Determination 

Table I shows the dimensions, data sources, and linguistic 
values determined from the urban road congestion ontology 
[15]. The linguistic values of the membership functions 
representing journey time and volume are also shown. 

 
 
 

Using the linguistic values identified in Table I, the creation 
of the fuzzy membership functions can be performed using 
three steps:  

• Step 1: Perform K-means clustering [16] on both 
journey time and volume data. 

• Step 2: Identify the final boundary values for a set of 
clusters (referred to in this work as groups) where they 
connect and define this value as dt (boundary threshold). 

• Step 3: Using the dt value, determine membership 
function domain coverage using one of three 
membership functions: linear increasing, linear 
decreasing, and trapezoidal. 
 

The primary objective of data mining is to discover patterns 
within large datasets, such as the MUCD dataset used within 
this study. K-means clustering is an unsupervised algorithm 
used within data mining to find a cluster of patterns in data. K-
means uses the inherent structures in the data to best organise 
the data into groups of maximum commonalities [17]. This is 
achieved by partitioning n observations into k (in this study k=5) clusters. Five clusters were used based upon early 
empirical experiments which found that five clusters provided 
sufficient resolution [15]. Figure 1 shows, as an example, 17376 
journey time records plotted on a 24-hour scale. Each 
observation within Figure 1 belongs to the cluster with the 
nearest mean value. Once K-means has been performed, it 
becomes possible to identify the boundary values between each 
cluster, which will be used to create the membership functions 
in the fuzzy system.  

 
Figure 1: Example of k-means clusters on 6 months’ worth of journey time data where k=5. 

TABLE I.  DIMENSIONS AND THEIR LINGUISTIC VALUES. 

Dimension 
(Variables) 

Data 
sources 

Linguistic 
values 

(Membership 
functions)

Journey time 
 
 

Bluetooth 
remote sensors 

Very Low 
(VL) 
Low (L) 

Medium (M) 
High (H) 

Very High 
(VH)

Volume Inductive
loop counters 

Very Low 
(VL) 
Low (L) 

Medium (M) 
High (H) 

Very High 
(VH) 



 
Figure 2 shows an example pair of linear opposing 

membership functions, which will be used for the VL and VH 
memberships.  The two pairs (4) and (5) are both linear 
increasing and decreasing membership functions L, can be 
defined as [18]:  

 

ܮ ↑ ,ݔ) ݀݉, ݀݊) = ൞ 0, ݔ ≤ ݔ݉݀ − ݀݉݀݊ − ݀݉ , ݀݉ ≤ ݔ ≤ ݀݊1, ݔ ≥ ݀݊  (4) 

 

ܮ ↓ ,ݔ) ݀݉, ݀݊) = ൞ 1, ݔ ≤ ݀݉1 − ݔ − ݀݉݀݊ − ݀݉ , ݀݉ ≤ ݔ ≤ ݀݊0, ݔ ≥ ݀݊  (5) 

 
Where dm is defined as dm=dt-nσ and dt is the value 

generated by K-means clustering on all variable i records. n is 
a real number n → [0.0, ∞], σ is the standard deviation, and x 
is the value of the variable i. n is empirically determined. 
Additionally, dn is defined as dn=dt+nσ.  

 
Figure 2: Example of a linear pair opposing fuzzy 

memberships functions. 
 
Figure 3 shows an example of a trapezoidal-shaped 

membership function, which will be used for the L, M, and H 
memberships. The trapezoidal-shaped membership function T 
(6), may be defined as:  

 

,ݔ)ܶ ݀݉ଵ, ݀݊ଵ, ݀݉ଶ, ݀݊ଶ) =
ەۖۖ
۔ۖ
ۓۖ 0, ݔ ≤ ݀݉ଵݔ − ݀݉ଵ݀݊ଵ − ݀݉ଵ , ݀݉ଵ ≤ ݔ ≤ ݀݊ଵ1, ݀݊ଵ ≤ ݔ ≤ ݀݉ଶ1 − ݔ − ݀݉ଶ݀݊ଶ − ݀݉ଶ , ݀݉ଶ ≤ ݔ ≤ ݀݊ଶ0, ݔ ≥ ݀݊ଶ

 (6) 

 
Where dm1, dn1, dm2, and dm2 are defined using the 

same method as dm and dn.  

 

 
Figure 3: Example of a trapezoidal-shaped membership 

function. 

C. Fuzzy Rules Determination (manual and expert) 

The fuzzy rules were initially created with every possible 
variation of each five membership functions, such as VL, L, M, H, and VH for journey time and volume, which gave a total of 
25 rules. However, with the support of the urban road 
congestion ontology [15] and domain experts, TfGM [19],  the 
rules were humanly optimised down to just six. This manual 
optimisation revealed that several rules were not firing so 
therefore, they were not relevant. For example, if journey time 
was VH then the output is congested regardless of the volume. 

Algorithm 1 uses both antecedents and consequents 
membership functions to fire six unique rules to acquire each 
rule strength ready for fuzzy inference.  

 
Algorithm 1 
 Rules for congestion 

Antecedents: Journey time, JT. Volume, V.  
Antecedents memberships: Very low, VL. Low, L. Medium, M, 
High, H. Very high, VH. 
Consequents: Congestion, C. 
Consequents memberships: Congested, Con. Non-congested, Non. 

 
IF JT is VH THEN Con 
IF JT is H THEN Con 
IF JT is M AND V is VH THEN Con 
IF JT is M AND V is NOT VH THEN Non 
IF JT is L THEN Non 
IF JT is VL THEN Non 

 
 

D. Fuzzy inference  

One of the first control systems and most commonly 
implemented methods for computing fuzzy inference is 
Mamdani [20].  Furthermore, Mamdani was first implemented 
within the transport domain, where it was used in an attempt to 
control a steam engine and boiler combination [20]. 



 
Figure 4: A example of how Mamdani fuzzy inferences 

works. 
 
 Figure 4 shows the composition of fuzzy inference, the four 

stages are:  
Stage 1. Fuzzification of the non-fuzzy inputs (the average 

journey time and volume over a 15-minute slot for one link in 
the network), which are crisp, numerical, and specific to the 
attribute domain. The inputs are fuzzified according to 
membership functions. 

Stage 2. If the antecedent of a given rule has more than one 
part, the application of a fuzzy operator is required to obtain a 
single value that represents the individual rule.  For instance, 
the top rule within Figure 4 has two parts in the antecedent, so 
a AND operator is used to identify the minimum value as the 
result. 

Stage 3. Using the single value acquired in stage 2, the 
consequent is reshaped to provide the result of implication 
which is weighted depending on the linguistic characteristics 
that are attributed to it. 

Stage 4. Aggregation is the combination of the fuzzy sets 
that represent the outputs of each rule into a single fuzzy set 
(fuzzy output distribution). 

Stage 5. The input for defuzzification is the single 
aggregated fuzzy set and the output is a single value. This is 
discussed in more detail in section E.  

 

E. Defuzzification 

The method centroid of area (COA), also known as the 
centre of gravity (COG) (7) is used to defuzzify the final output 
fuzzy set (Figure 4) and output a crisp numeric value, which in 
this study is the probability of congestion. To achieve this, the 
total area of the output distribution membership is divided into 
a number of sub-areas and then the COA is calculated for each 
sub-area. Finally, all sub-areas COA are summed together to 
find the defuzzied value (probability of congestion). 

   ܼ∗ = ׬  μ஺̅ .(ݖ) ׬ݖ݀ݖ μ஺̅ ݖ݀(ݖ)  (7) 

Where µ is defined as the degree of membership (y-axis), z 
is defined as the value on the x-axis, Ā is the fuzzy set, and dz 
is the derivative of z. 

IV. EXPERIMENTAL METHODOLOGY 

The aim of the experiment is to determine whether a fuzzy 
system can be used to analyse traffic data to classify congestion. 
The hypothesis for this study is H1: Using journey time and 
volume data, it is possible to classify congestion using a fuzzy 
system. To evaluate the performance of the fuzzy system, it was 
compared against two alternative machine-learning algorithms: 
The decision tree C4.5 (using the Weka implementation  J48) 
[21] and Naïve Bayes,  on the MUCD dataset. The training and 
testing strategy is described as follows:  the MUCD dataset was 
split into two parts: Training Set containing 8688 records of 
which 6665 were classified as non-congestion and 2023 were 
classified as congestion, which accounts for only 23% of 
records. The test set containing the remainder of the dataset. 
Datasets were mutually exclusive. 

In order to evaluate the three methods using an unbalanced 
dataset, five statistical measurements were chosen, which are: 
True Positive Rate, TPR, also known as recall and sensitivity. 
TPR measures the proportion of actual positives that are 
correctly identified. TPR is defined in equation (8) where TP is 
true positive, and FN is false negative. ܴܶܲ = ܶܲܶܲ +  (8) ܰܨ

 
 False Positive Rate, FPR, measures the negative instance 

that is wrongly classified as positive. FPR is defined in equation 
(9) where FP is false positive, and TN is true negative. ܴܲܨ = ܲܨܲܨ + ܶܰ (9) 

 
Precision, also known as positive predictive value, PPV, 

measures the number of positive predictions divided by the total 
number of positive class values predicted. Precision is defined 
in equation (10). ܸܲܲ = ܶܲܶܲ +  (10) ܲܨ

  
F-measure, also known as F1 Score, F1, measures the 

balance between the precision and TPR. F-measure is defined 
in equation (11). 1ܨ = 2 ∗ ܶܲ2 ∗ ܶܲ + ܲܨ +  (11) ܰܨ

  
Overall efficiency, also known as accuracy measures the 

amount of correctly classified instances. Overall efficiency is 
defined in equation (12) ܱ݈݈ܽݎ݁ݒ ݕ݂݂ܿ݊݁݅ܿ݅ܧ = ܶܲ + ܶܰܶܲ + ܶܰ + ܲܨ +  (12) ܰܨ

 
However, due to the class imbalance as mentioned above, it 

is important to provide a single value that represents the 
performance of both classes for TPR, False Positive Rate, 
precision, and F-measure. To achieve this a weighted average 
will be used and is defined in equation (13). Where ܥ௡௢௡ 
represents the statistical measurement being weighted for the 
class non-congestion.  ܥ௖௢௡ represents the statistical 
measurement being weighted for the class congested. ܹ = ௡௢௡ܥ ∗ (ܶܲ + (ܰܨ + ௖௢௡ܥ ∗ (ܶܰ + ܲܶ(ܲܨ + ܰܨ + ܶܰ + ܲܨ  (13) 

 



V. RESULTS AND DISCUSSION 

The purpose of this study was to determine whether it is 
possible to classify road congestion using a fuzzy system and 
real-world traffic data. Table II shows the results for each 
statistical measurement for the three machine-learning 
algorithms and their classes: Non-congestion (Figure 5) and 
Congested (Figure 6) and the weighted average of both classes 
(Figure 7) defined in equation (13). 

 Before discussing the results, the authors would like to 
reiterate the challenges of performing classification on an 
imbalanced dataset. Global performance measurements, such as 
overall efficiency, provides an advantage to the majority class 
and can be misleading. For example, the overall efficiency of 
the fuzzy system is 88 per cent, which seems good. However, 
assume the dataset had 100 instances, with a split of 80 for non-
congestion and 20 for congestion. Assume the system classifies 
non-congestion as 92 instances and congested as eight 
instances. This means the class, congested is only 40 per cent 
efficient/accurate and not 88 per cent. Therefore, the discussion 
will focus on TPR, FPR, precision, F-measure.  

The results show Naïve Bayes achieved a TPR of 99.8 per 
cent for non-congestion, which is the higher TPR across all 
algorithms and both classes. However, it achieved the second 
highest FPR of 57.8 per cent. This is attributed to the paradox 
of imbalanced datasets. The FPRs for the minority class across 
all three algorithms are significantly low, for instance, the fuzzy 
system is 5.5 per cent, the decision tree is 4.8 per cent, and the 
Naïve Bayes is 0.2 per cent. The FPRs for the majority class 
across all three algorithms are noticeably higher, for instance, 
the fuzzy system is 32.9 per cent, the decision tree is 59 per 
cent, and the Naïve Bayes is 57.8 per cent. Because of these 
noticeable differences, it has been decided from this point to 
only compare the weighted averages of both classes. The TPR 
weighted average for the fuzzy system is 88 per cent, which is 
higher than both, the decision tree by ≈6 per cent and Naïve 
Bayes by ≈2 per cent. The FPR weighted average for the fuzzy 
system is 26.5 per cent, which is lower than both, the decision 
tree by ≈20 per cent and Naïve Bayes by ≈18 per cent. The 
precision weighted average for the fuzzy system is 87.6 per 
cent, which is higher than the decision tree by ≈6 per cent, 
however, it was lower than the Naïve Bayes by ≈1 per cent. The 
F-measure weighted average for the fuzzy system was 87.6 per 
cent and is higher than both the decision tree by ≈7 per cent and  
Naïve Bayes by ≈3 per cent. Furthermore, the fuzzy system 

overall efficiency was the highest of all three machine-learning 
algorithms. 

Although all algorithms perform to a similar level with the 
fuzzy system performing the best overall, it should be noted that 
each algorithm has its own level of complexity with some 
stakeholders possibly struggling to understand how the model 
produces an explainable decision. For instance, the easiest of 
the three algorithms for a stakeholder to understand is the fuzzy 
system. This is because the rules are comprised of linguistic 
variables, which are easier to understand and interpret by 
stakeholders. The single defuzzied output of the fuzzy system 
gives a measure of the probability that congestion occurs in a 
specific 15-minute slot on road link x, where x is a road link on 
the urban network being modelled. The second easiest to 
understand is the decision tree, J48, where a branch of the tree 
is split based on a value of the variable being used and this is 
repeated until the leaves are reached and an outcome is decided. 
It should be noted the bigger the tree and the more leaves  (and 
hence rules) the harder it is to understand the decision 
transparency and hence, may become harder for stakeholders to 
follow. The decision tree model in this experiment has a tree 
size of 17 and a total of 9 leaves. The 9 rules are transparent and 
could be understood by a transport expert. The most complex 
algorithm for a stakeholder to understand is Naïve Bayes 
because it is a probabilistic classifier, which uses a probability 
distribution over a set of classes, instead of only outputting the 
most likely class that the observation should belong to.  

 

  
Figure 5: TP rate, FP rate, precision, F-measure, and 

overall efficiency for non-congestion. 
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TABLE II.  RESULTS FOR FUZZY SYSTEM, J48, AND NAÏVE BAYES. 

Experiment Class 
TP Rate / 
Recall (%) 

FP Rate  
(%) 

Precision 
(%) 

F-Measure 
(%) 

Overall 
Efficiency 
(%) 

Fuzzy 
System 

Non 94.4 32.9 90.4 92.3 

88.0 
Congested 67.0 5.5 78.4 72.2 
Weighted 
Avg. 

88.0 26.5 87.6 87.6 

Decision 
tree (J48) 

Non 95.2 59.0 84.2 89.3 

82.5 
Congested 41.0 4.8 72.1 52.3 
Weighted 
Avg. 

82.6 46.4 81.4 80.7 

Naïve Bayes 

Non 99.8 57.8 85.0 91.8 

86.3 
Congested 42.2 0.2 98.5 59.1 
Weighted 
Avg. 

86.4 44.4 88.2 84.2 



 
Figure 6: TP rate, FP rate, precision, F-measure, and 

overall efficiency for congested. 
 

 
Figure 7: Weighted average of TP rate, FP rate, precision, 

F-measure, and overall efficiency. 
 

VI. CONCLUSION AND FURTHER WORK 

This study has proven the hypothesis, H1: Using journey 
time and volume data, it is possible to classify congestion using 
a fuzzy system and has demonstrated a proof of concept fuzzy 
model. The initial results have demonstrated the fuzzy systems 
ability to predict congestion using volume and journey time, 
outperforming both the decision tree and Naïve Bayes. 
Moreover, the fuzzy system using, only six rules was able to 
handle an unbalanced dataset. Additionally, the author believes 
it would be possible to implement this model on other urban 
road networks. To further this study, the authors are currently 
working on expanding the system to classify the three types of 
congestion [15]: Non-recurrent, Recurrent, and Semi-recurrent. 
This is an important requirement for TfGM who would benefit 
from not only being able to identify congestion but the type of 
congestion, which would allow for different mitigation 
strategies to be put in place. Additionally, they will be able to 
measure how much of the network is, at a given time, exhibiting 
signs of non-congestion, recurrent, non-recurrent, and semi-
recurrent congestion. To achieve this goal, the fuzzy system 
will be expanded to add linguistic variables for different times 
of day, different days of the week, bank holidays, distance from 
an attraction, and direction of traffic flow.  
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