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METHODOLOGY ARTICLE Open Access

Alpha shapes: determining 3D shape
complexity across morphologically diverse
structures
James D. Gardiner1, Julia Behnsen2 and Charlotte A. Brassey3*

Abstract

Background: Following recent advances in bioimaging, high-resolution 3D models of biological structures are now
generated rapidly and at low-cost. To use this data to address evolutionary and ecological questions, an array of tools
has been developed to conduct shape analysis and quantify topographic complexity. Here we focus particularly on
shape techniques applied to irregular-shaped objects lacking clear homologous landmarks, and propose a new ‘alpha-
shapes’ method for quantifying 3D shape complexity.

Methods: We apply alpha-shapes to quantify shape complexity in the mammalian baculum as an example of a
morphologically disparate structure. Micro- computed-tomography (μCT) scans of bacula were conducted. Bacula
were binarised and converted into point clouds. Following application of a scaling factor to account for absolute
size differences, a suite of alpha-shapes was fitted per specimen. An alpha shape is formed from a subcomplex of
the Delaunay triangulation of a given set of points, and ranges in refinement from a very coarse mesh (approximating
convex hulls) to a very fine fit. ‘Optimal’ alpha was defined as the refinement necessary in order for alpha-shape volume
to equal CT voxel volume, and was taken as a metric of overall ‘complexity’.

Results: Our results show that alpha-shapes can be used to quantify interspecific variation in shape ‘complexity’ within
biological structures of disparate geometry. The ‘stepped’ nature of alpha curves is informative with regards to
the contribution of specific morphological features to overall ‘complexity’. Alpha-shapes agrees with other measures of
complexity (dissection index, Dirichlet normal energy) in identifying ursid bacula as having low shape complexity.
However, alpha-shapes estimates mustelid bacula as being most complex, contrasting with other shape metrics. 3D
fractal dimension is identified as an inappropriate metric of complexity when applied to bacula.

Conclusions: Alpha-shapes is used to calculate ‘optimal’ alpha refinement as a proxy for shape ‘complexity’ without
identifying landmarks. The implementation of alpha-shapes is straightforward, and is automated to process large datasets
quickly. We interpret alpha-shapes as being particularly sensitive to concavities in surface topology, potentially
distinguishing it from other shape complexity metrics. Beyond genital shape, the alpha-shapes technique holds
considerable promise for new applications across evolutionary, ecological and palaeoecological disciplines.

Background
The morphology of an organism is both a function of its
evolutionary past and its adaptation to present sur-
roundings. Quantifying morphology is fundamental to
the study of ecology and evolution. Organisms are, quite
literally, shaped by their evolutionary history. And
morphology is often the only source of evidence upon

which phylogenetic relationships may be reconstructed
through deep time. Morphology also plays important
role in linking the phenotype to ecology, by establishing
causal relationships between anatomy and performance
[1]. Flexible tools for quantifying organismal morphology
are therefore highly desirable amongst users spanning
the disciplines of ecology and evolutionary biology [2].
More broadly, the comparison of morphological features
is of interest to applied scientists from a diverse array of
background, including archaeology, chemistry, computer
science and medicine.
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The morphology of an organism and its component
parts can be described in terms of size, shape, structure,
colour and patterning. Of these, shape has historically
been difficult to consistently and objectively quantify,
and this challenge forms the basis of the field of mor-
phometrics. ‘Shape’ can be defined as all the geometric
information contained within an object, once the effects
of rotation, translation and scale have been removed [3].
Traditionally shape has been quantified as a series of
single measurements, including ratios [4] and angles [5].
Such measures clearly ignore a wealth of potential shape
data however.

Shape variation vs. shape complexity
Associated with recent advances in specimen digitization,
a suite of new techniques has been developed to analyse
3D biological shape data. Chiefly, these methods facilitate
the quantification of variation in form (size and shape)
among specimens using multivariate methods, allowing
for either the study of covariation between shapes or
between shapes and extrinsic factors [6]. Analyses of bio-
logical shape variation most often fall within the paradigm
of geometric morphometrics (GMM).
GMM studies typically proceed via the identification

of homologous morphological landmarks across a range
of specimens, and subsequent Procrustes superimposition
to remove the effects of translation, rotation and scale.
The placement of landmarks on sutures, muscle attach-
ment scars and tuberosities is therefore common. This ap-
proach has proved effective in ecological and evolutionary
studies across a range of biological structures, including
vertebrate skulls [7], insect wings [8] and tree leaves [9].
More problematic is the landmarking of less featured ob-
jects, such as the diaphyses of long bones [10], the body of
ribs [11], otoliths [12], seeds [13] and anthropological arte-
facts [14].
A class of related outline- or surface-based shape analysis

tools exist however, that do not necessarily require homolo-
gous landmarks to be defined a priori. ‘Eigenshapes’ [15],
‘Eigensurfaces’ [16, 17], ‘Canonical Sampling’ [18, 19], fully
automated landmarking (‘auto3Dgm’) [20, 21], ‘Elliptical
Fourier Analysis’ [22–25] and ‘Spherical Harmonics’
[26–29] are all important contributions to the morpho-
metricians toolbox of shape analysis techniques. In all
such cases, the principle goal of the analysis remains
the same: to describe the shape of objects, and the specific
ways in which objects differ in shape between themselves
and as a function of external factors.
Yet a second suite of morphometric techniques seeks

to quantify shape complexity. Within the field of biology,
complexity may be broadly defined as the number of ‘parts’
comprising an organism or a landscape (be that genes, cell
types, organ systems or habitat patches). In the context of
shape analysis, here we focus on topographic complexity.

Whilst topographic ‘complexity’ has numerous definitions
across the literature (see below), complex shapes can intui-
tively be thought of as those formed by combining parts, or
the entirety, of several simple ‘primitive’ shapes. Complexity
indices may differ in the specific ‘aspect’ of shape com-
plexity captured, ranging from the degree of self-similarity
(fractal architecture) displayed, to simpler metrics of surface
rugosity. Shape complexity has found numerous important
applications within the disciplines of ecology and evolution-
ary biology. Root complexity may be indicative of the health
of a plant [30], whilst tooth complexity has been used
to predict the palaeodiet of fossil vertebrates [31]. The
complexity of landscape patches has been linked to
habitat quality [32], and invertebrate genital complexity
has been interpreted in the context of sexual selection
mechanisms [22].
It is important to reiterate that the two suites of mor-

phometric techniques highlighted above measure two very
different aspects of form (namely shape variation vs. com-
plexity), such that two objects may occupy very similar
GMM morphospace whilst being characterised by differ-
ent values of shape complexity. Two outwardly similar
surface meshes with similar landmark configurations may
differ in shape complexity if the surfaces deviate in terms
of surface rugosity, for example.

Methods for quantifying shape complexity
Several metrics have been advanced for the quantification of
spatial or topographic complexity within biological systems:

Dissection index and relief index
In two dimensions, dissection index (DI) is the ratio of
an object’s perimeter to the square root of its area. Dis-
section index is therefore a dimensionless number, pro-
viding an indication of the extent to which a shape is
more complex than a circle [33]. In three dimensions,
the related Relief Index (RFI) is calculated as the ratio of
an object’s surface area to its planar area [34], and thus
provides an index of rugosity. Both metrics are simple to
calculate and intuitive to understand, and represent
single-parameter shape descriptors of complexity. A cor-
ollary of this however, is neither metric provides an indi-
cation of the distribution of complexity across an object.
Furthermore, the value of planar area incorporated into
RFI is necessarily orientation-dependent (total planar
area is dependent upon on the orientation of the object
relative to the observer when the plan view is taken).
When applied to tooth complexity, the preferred orien-
tation is obvious; planar area is calculated in the occlusal
plane when RFI is taken as a proxy for hysodonty [34].
Should RFI be extended beyond tooth crown complexity
to other biological structures however, the orientation of
planar area will need further consideration. Additionally,
the calculation of RFI requires a mesh from which to
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derive surface area, involving an intermediate processing
stage for point clouds or voxel- based data.

Fractal dimension
The fractal dimension (FD) is a measure of complexity
applicable to objects that are self-similar (exhibiting re-
petitive patterns across scales) [35]. FD metrics have
commonly been applied to physical landscapes [36] in
addition to biological organisms perceived to display
self-similarity, including plant roots [37], plant leaves
[38], stony corals [39], and brain structures [40]. Simply
speaking, the fractal dimension captures the ability of an
object to fill the Euclidean space within which it is lo-
cated. The most common implementation of FD applies
a ‘box-counting’ approach, in which a regular grid of
boxes of side length s is overlain across the 2D data and
the number of occupied boxes counted as N(s). This
process is repeated whilst varying the size of s. log N(s)
is subsequently plotted as a function of log (1/s), and the
slope of this graph is taken as an estimate of FD [41].
Whilst originally implemented on 2D data, fractal ana-
lysis has since been extended to operate in 3D [39, 40].
Fractal analysis is undoubtedly a powerful tool that pro-

vides an objective and scale-independent single metric of
shape complexity. However, numerous caveats have been
expressed when applying FD to biological datasets (see [41]
for a review). Most notably, when an object or pattern is
not obviously self-similar, the application of fractal dimen-
sions can be problematic [42]. Indeed, rather than being
truly self-similarity, some authors have gone so far as to
suggest that most ‘complex’ structures differ in their extent
of self-similarity across spatiotemporal scales, and are actu-
ally best described as self-dissimilar [43]. Furthermore, the
value of the fractal dimension for a given outline is a func-
tion of several ‘somewhat arbitrary’ decisions, including the
location of the grid starting point and the selected values
of minimum and maximum s [44]. Within the ecological
literature, occupancy is typically calculated across s values
spanning ~two orders of magnitude, yet such a limited
scaling relationship cannot be taken as strong evidence of
genuine fractality [41].

Dirichlet Normal energy
Dirichlet normal energy (DNE) effectively quantifies the
‘curviness’ of a mesh. Most simply “DNE measures the
deviation of a surface from being planar” ([45]; p249),
and ranges from zero in the case of a flat plane, to
higher values associated with steep crests and troughs. It
is calculated as the sum of energy values across all faces
of a mesh surface, where the energy value at each face is
quantified as changes in the normal map. The process
does not require the assignment of landmarks, and is
unaffected by scale or orientation. Additionally, energy is
calculated for every face of the mesh, facilitating energy

variation to be visualized across the surface of the object.
In this way, DNE allows for specific regions of ‘high’ and
‘low’ complexity to be identified across a specimen. Thus
far, DNE has found extensive use in the mammal tooth
literature [45–47], but has also been applied to quantify
the shape complexity of developing embryos [48]. DNE
does however, require a mesh a priori, and has been shown
to be sensitive to commonly-used mesh preprocessing op-
erations such as smoothing and decimating [49].

Alpha-shapes
In this study, our objective is to develop a straightforward
method for quantifying three-dimensional shape complex-
ity that is orientation-independent, does not require as-
sumptions of self-similarity or an intermediate meshing
stage, and is capable of quantify topographic complexity
across multiple scales. Our approach is based on the con-
cept of ‘alpha-shapes’.
An alpha-shape is formed from the boundary of an

alpha-complex, which is itself a subcomplex of the
Delaunay triangulation for a given set of points [50]. For
a given set of points in space, a family of alpha-shapes
may be defined, ranging from a very coarse (a convex
hull) to very fine fit around said points (Fig. 1). The par-
ameter ‘alpha’ dictates the level of refinement, with a
larger alpha resulting in coarser fits and a smaller alpha
in finer fits (see [50] for a comprehensive description of
3-dimensional alpha-shapes). The level of refinement
necessary in order for an alpha-shape’s volume to match
that of the original dataset to which it is fitted may be
taken as a measure of shape complexity: more complex
objects will require a more refined alpha-shape fit in
order for volumes to converge.
The resulting alpha-shape fit may comprise one volume

(larger alphas; Fig. 1c-e) or multiple smaller volumes
(smaller alphas; Fig. 1f). Hence, as alpha decreases, the re-
finement of the fit changes from a convex hull (the special
case when sphere radius is infinite, Fig. 1b) to finer fits as
more regions are removed by smaller spheres (Fig. 1c-e).
Eventually the radius of the sphere decreases to such an
extent that no points are intersected and no alpha-shape
is created.
The convex hull (Fig. 1b) and ‘coarser’ alpha-shapes

(Fig. 1c-d) occupy a volume equal to- or larger than that
of the underlying object (Fig. 1a). In contrast, very fine
alpha-shapes (Fig. 1f ) will have a volume smaller than
the original structure. At some ‘optimal’ level of refine-
ment, alpha-shape volume and specimen volume will be
equal (Fig. 1e), and it is this ‘optimal’ alpha upon which
we base our metric of 3D shape complexity.
Within the biological sciences, alpha-shapes have pre-

viously been used to describe characteristics of protein
surface shape [51], to segment forested areas from aerial
LiDAR data [52] and to describe the spatial distribution
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of fish within schools [53]. In a practical sense, alpha-
shapes has been implemented in the freeware ‘Meshlab’
[54] as a means of generating surface meshes from point
cloud data. The authors have previously applied an alpha-
shapes approach to the problem of body mass estimation
in fossil species [55]. In this implementation, a predictive
relationship between alpha shape volume and body mass
was derived from a suite of articulated modern mammal
skeletons digitised using LiDAR. The predictive model
was subsequently applied to extinct mammal taxa and
their fossil body mass estimated. To the authors know-
ledge, alpha-shapes has not previously been applied to
explicitly quantify shape complexity however.

Genital shape complexity
Within the field of evolutionary biology, genital form and
function has received considerable attention, albeit with a
heavy bias towards invertebrates [56]. Genitals are amongst
the most diverse, complex and rapidly evolving structures
observed in living organisms [57]. Genital shape, rather
than size, is often used by taxonomists as a means of distin-
guishing between closely related species [58, 59], implying
greater divergence in genitalic shape than size [22]. Indeed,
numerous experimental evolution studies have found direct
evidence for sexual selection acting on genital shape across
a range of taxa [23, 60, 61].
There is therefore considerable interest in developing

automated methods capable of quantifying shape across

such complex and diverse structures as animal genitalia. In
some instances, traditional landmark-based GMM tech-
niques have been applied [60, 62–65]. Such studies fre-
quently consider genital shape variation intraspecifically, or
between morphologically similar sister taxa [66, 67]. Yet
elsewhere, GMM methods have been applied to broader in-
terspecific samples of genitalia [65, 68, 69], highlighting the
applicability of these techniques to quantify shape change
in rapidly evolving structures, or those comprised entirely/
predominantly of soft tissue [70].
Here we use the mammalian baculum as a test case

for the application of alpha-shapes to qualifying mor-
phological complexity. In the past, bacula have been
used as a taxonomic character to differentiate between
otherwise indistinguishable sister taxa, such is their mor-
phological disparity between closely related species.
Whilst this is predominantly true for rodents and bats
[71], baculum morphometrics have also been developed
as a diagnostic tool for differentiating between species of
carnivore [72]. As far as the authors are aware, a trad-
itional geometric morphometric analysis of baculum
shape has not been attempted between species however,
potentially due to difficulties associated with the identifi-
cation of discrete homologous landmarks. The develop-
ment of a simple and intuitive method for quantifying
‘complexity’ in the mammal baculum in the absence of
homologous landmarks therefore has the potential to re-
invigorate the study of mammal genital evolution. In

Fig. 1 Diagram illustrating the nature of alpha-shapes, as understood in 2-dimensions. a, the original shape to which alpha-shapes are to be
fitted; b, a convex hull fitted to the data representing the special case when alpha = infinity; c-e, represent increasingly refined alpha-shapes fitted
to the data as alpha is reduced; f, represents the point at which the alpha radii can pass ‘internally’ through the data set and the alpha-shape
breaks down to form several smaller shapes. Intuitively, the alpha-shape represented in Fig. 1e would be considered as ‘most-representative’ of
the original shape described in Fig. 1a, as defined by equivalency of area
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addition, the present study is of significance for both
ecologists and evolutionary biologists (and those work-
ing more broadly in the fields of archaeology and com-
puter science) who will benefit from a new tool for
comparing 3D shape complexity across samples of ex-
treme shape diversity.

Methods
Raw data
Twelve mammalian bacula were scanned as an ex-
ample dataset using micro- computed tomography
(μCT). The taxa include three families of modern Carnivora
(Mustelidae, Canidae and Ursidae; Table 1) and span
a range of shapes (Fig. 2) from simple rod-like bones
(Ursidae) to complex curved, grooved and notched
structures (Mustelidae).
CT scans were conducted at Manchester X-ray Imaging

Facility using a Nikon 320/225 kV Custom Bay microCT
instrument, and the Natural History Museum London
using a Nikon 225 kV microCT instrument. Raw CT scans
were converted to binary data in ImageJ by automated
thresholding according the histogram of raw CT grayscale
values. Binarised CT scans were read into MATLAB
R2017a (The MathWorks Inc., Natick, MA, USA) slice by
slice, and any internal cavities present were filled using two
separate automatic gap and hole filling algorithms, (imclo-
se.m and imfill.m) from MATLAB’s Image Processing tool-
box. Imclose.m performs a morphological closing on each
binary image slice, using a 2D disc of a given radius. In this
instance, 6 pixels was found to be the minimum radius that
consistently closed the periosteal contour across the sam-
ple. Imfill.m identifies holes as being background pixels that
cannot be reached from the edge, and subsequently flood
fills them with foreground pixels. The relative ‘hollowness’
of bacula has not previously been described, yet all

specimens included in the present study did possess in-
ternal void spaces. Here we chose to focus on the shape
complexity of the external morphology, and hence filled
any internal cavities. Nevertheless, the alpha-shapes tech-
nique will function equally well for instances when the in-
ternal geometry is pertinent to the research question.
Having filled internal void spaces, CT data were con-

verted directly to point clouds. This highlights an important
advantage of the alpha-shapes approach as a means of dir-
ectly calculating shape ‘complexity’ from a CT dataset via
the process of surface meshing, rather than requiring a sur-
face mesh beforehand. The process of converting CT vol-
umes to surface meshes necessarily involves some degree of
smoothing to avoid faceting and topological artefacts result-
ing from image artefacts and noise. This process ought to
be, but is rarely, documented in the metadata [73] and the
effect of smoothing on subsequent data analysis is seldom
explored. Raw point clouds were generated by designating
the x-y-z coordinates of every voxel in the CT segmentation
associated with the baculum as being a single point in
space. That is, unlike surface-based point clouds generated
by other popular digitisation techniques such as LiDAR
(light detection and ranging) or photogrammetry, here
point clouds also comprise ‘internal’ points representing
the solid infilled bone. Raw point clouds were randomly
downsampled to 100,000 points each, ensuring all speci-
mens were represented by equally sized datasets (but see
‘Sensitivity Analysis’ below).

Alpha-shapes
Alpha and reference length
Prior to fitting alpha-shapes, the issue of scale must be
dealt with. Here we are interested in quantifying shape
‘complexity’ in the absence of potential size signals.
Alpha radii are calculated in the same units as the

Table 1 Baculum specimens included in analysis

Family Taxa Common name Accession
number

Baculum length
(mm)

Scan resolution
(mm)

Voltage
(kV)

Current
(uA)

Filter
(mm)

Mustelidae Mustela itatsi Japanese weasel 84.2.9.1a 30.4 0.031 150 160 Cu 0.1

Mustelidae Mustela kathiah Yellow-bellied weasel 33.4.1.248a 29.9 0.023 150 160 Cu 0.1

Mustelidae Mustela lutreola European mink PH133.06b 35.3 0.032 75 80 NA

Mustelidae Mustela nigripes Black-footed ferret Z.1999.206.003b 29.9 0.032 75 80 NA

Ursidae Melursus ursinus Sloth bear Z.2001.42.2b 156.6 0.050 100 90 Cu 0.1

Ursidae Tremarctos ornatus Spectacled bear Z.2001.42.2b 140.1 0.050 100 90 Cu 0.1

Ursidae Ursus arctos Brown bear 1938.6.24.3a 122.8 0.067 140 150 Cu 0.1

Ursidae Ursus maritimus Polar bear Z.2000.234b 186.8 0.050 100 90 Cu 0.1

Canidae Canis aureus Golden jackal 5.10.4.18a 64.1 0.048 140 150 Cu 0.1

Canidae Canis lupus Grey wolf LW3b 99.9 0.040 75 80 NA

Canidae Canis mesomelas Black-backed jackal 820a 52.6 0.031 140 150 Cu 0.1

Canidae Chrysocyon brachyurus Maned wolf Z.200.27b 97.7 0.040 75 80 NA
aNatural History Museum, London. bNational Museum of Scotland, Edinburgh
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underlying point clouds, therefore an alpha radius of
100 mm may entirely enclose one smaller specimen
yet only half of another larger specimen, for example.
Size normalisation may be achieved in one of two
ways: either by scaling all point clouds to the same
size, or by scaling alpha radii to the overall size of
each specimen.
In this implementation of alpha-shapes, we choose the

later. In doing so, the underlying point cloud remains
the same scale throughout. A specimen with a maximum
length of 100 mm will remain represented by a ~ 100
mm-long point cloud. The resulting alpha shapes mesh,
comprising all the triangles formed when the points con-
tributing to the alpha shape are connected, will likewise
remain at this original scale and may then be used in
downstream functional analyses (see Discussion). There-
fore, if two objects are identical in shape and both com-
prise an equal number of points, yet one is twice the
size, the larger specimen requires an alpha radius (α)
twice as large to ensure an equal refinement of fit. To
calculate the alpha radius for each specimen we use the
following equation:

α ¼ k � lref ð1Þ

where α is the alpha radii, k is the refinement coefficient
and lref is the point cloud reference length (as described
in the following section). Here we are interested in iden-
tifying an ‘optimal’ level of alpha-shape refinement (see
below) and therefore chose 200 values of refinement coef-
ficient k that result in alpha-shapes ranging from coarse
fits (convex hulls) to highly refined shapes. Refinement

coefficients ranged from 0.1 to 10,000 and were evenly
distributed on a logarithmic scale. At the smallest values
of refinement, the alpha-shape ceases to be one continu-
ous volume and the sphere passes inside the point cloud
to create multiple small volumes, hence no longer repre-
senting the overall shape of the object.

Scaling reference length
The point cloud reference length lref is a scaling factor
allowing equivalencies to be drawn between alpha-shapes
fitted to specimens of absolute different size, as discussed
above. Yet arriving at a single ‘reference’ length that ad-
equately describes the overall size of a point cloud is
non-trivial. A simple approach is to use the maximum di-
agonal of the bounding box as a reference length. Alterna-
tively, an earlier implementation of alpha-shapes as a
mass estimation tool [55] utilised the average distance of
all points from the centroid of the point cloud. Here, we
investigate a third technique, in which the average dis-
tance of each point to its nearest 100 neighbours in the
downsampled point cloud is used as a descriptor of overall
point cloud size. Ultimately, the nearest neighbour tech-
nique was preferred as this resulted in alpha-shapes
‘breaking down’ (i.e. becoming multiple small volumes) at
the same refinement coefficient (Fig. 3 - see asterisk *), im-
plying alpha radii is well scaled to the relative distance be-
tween points in the point cloud, and therefore the overall
size of the specimen.

Optimal refinement coefficient
Having calculated alpha radii using the above equa-
tion, alpha-shapes were fitted to point clouds using

Fig. 2 Surface renderings (lateral and ventral view) of three example Carnivora bacula, for illustrative purposes. a. Mustela kathiah; b. canis lupus; c.
ursus maritimus
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the MATLAB ‘alphavol’ function written by Jonas
Lundgren (http://www.mathworks.co.uk/matlabcentral/
fileexchange/28851-alpha-shapes), which both calculates
the fit of the alpha-shape and its associated volume.
Alpha-shapes were fitted for a range of refinement coeffi-
cient across all specimens, and volumes extracted. All ana-
lyses were run on a laptop computer with 8GB 1600MHz
DDR3 RAM and a 1.1GHz Intel Core M processor.
Each specimen is described by a representative curve

of alpha-shape volume against refinement coefficient. As
alpha-shapes become more refined (smaller refinement
coefficients), their associated volumes decrease. How-
ever, the profile of this alpha curve is a function of the
shape complexity of the bone, from gross overall shape
(straight vs curved, for example), to specific morphological
features (such as grooves or forked tips) and ultimately sur-
face texture/roughness (i.e. pitted or smooth). The alpha
curve often has a stepped appearance, with steep regions

corresponding to a sudden reduction in alpha volume when
alpha radius becomes sufficiently small so as to represent a
particular feature or surface texture.
For each specimen, we therefore identify the ‘optimal’ re-

finement coefficient best reflecting overall shape complexity
by comparing alpha volume against ‘raw’ volume. ‘Raw’
volume is an estimate of the biological volume of the speci-
men, as calculated from the hole filled CT data by multiply-
ing the number of threshold voxels by scan resolution
cubed, prior to point cloud downsampling. The refinement
coefficient producing an alpha volume that is closest to raw
volume will be taken as the ‘optimal’ refinement. To iden-
tify the ‘optimal’ refinement coefficient an optimisation
approach was undertaken using the ‘fminsearch’ function of
MATLAB’s optimisation toolbox, which applies a ‘Nelder-
Mead’ search method. The optimisation routine searches
for the refinement coefficient that produces the smallest
difference between alpha volume and raw volume. This
process continues until two conditions have been satisfied:
the difference between volumes (alpha volume vs raw vol-
ume) is less than 1e-4, and the difference between subse-
quent values of refinement coefficient is less the 1e-4. The
final refinement coefficient after both conditions have been
satisfied is taken as ‘optimal’.
Using our approach, 3D shape complexity is reduced

first into one curve per specimen and ultimately into one
refinement value per specimen (see supplementary mater-
ial for MATLAB code). We predict that simple rod-like
structures will require a relatively coarser refinement coef-
ficient (relatively larger alpha radii) to match ‘raw’ volumes
compared to complex, curved or grooved specimens that
will require a more refined alpha shapes (relatively smaller
alpha radii) to accurately represent total volume.

Comparison to other shape complexity measures
Here we compare alpha-shapes to three additional metrics
of topographic complexity commonly applied in the field of
evolutionary biology. Firstly, we calculate the orientation-
independent 3D ‘dissection index’ (DI) which represents
the ratio of the squared root of surface area to the cubed
root of volume. 2D dissection indices have previously been
applied to quantify shape complexity in invertebrate
genitalia [22], and here we modify this technique to
work on 3-dimensional data. Isosurface meshes (compris-
ing 10,000 faces, see DNE section below) were generated
from the binarised .raw CT stack in Horos [74], decimated
in Geomagic (3D Systems, North Carolina, USA) and sur-
face areas and volumes calculated using the ‘compute geo-
metric measures’ function in Meshlab [54].
Three-dimensional fractal dimension (FD) was estimated

using a box-counting algorithm written in MATLAB by
Frederic Moisy (https://uk.mathworks.com/matlabcentral/
fileexchange/13063-boxcount). The function was applied to
the binarized CT data after the internal cavities present

Fig. 3 Alpha-shapes results for all specimens. a, bacula of outwardly
‘similar’ shape complexity describe similar alpha-shape curves; b,
zoomed-in grey region of Fig. 3a. The location at which alpha
volume crosses 100% of CT voxel volume is taken at the ‘optimal’
refinement coefficient and used as a metric of overall shape
complexity. Mustelids require small values of refinement coefficient
to adequately represent their geometry, whereas comparatively
‘simple’ ursid bacula can be described by coarser alpha fits. The
point at which all alpha-shapes break down into multiple smaller
volumes (*) is consistent for all specimens, suggesting that alpha
radii is well scaled to the overall size of the point cloud
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were filled, but prior to conversion to a point cloud and
downsampling (see ‘Raw data’ section above). The function
calculates the number of cubes required to cover the bacu-
lum N(s) at sequential sizes of box, where the size of the
cube s is the length of one side. The slope of the relation-
ship of log(1/s) to log N(s) is taken as an estimate of the FD
of the object, where objects with higher topographic com-
plexity have a higher values FD.
Dirichlet Normal Energy (DNE) was calculated in the R

package ‘MolaR’ following the methodology of Pampush
et al. [47], using the same surface meshes as produced for
the 3D DI calculation above. As per previous applications,
meshes comprised 10,000 faces [47]. Higher values of
DNE are indicative of higher topographic complexity.

Sensitivity analysis
In theory, alpha shapes can cope with infinitely detailed
point clouds, yet practically the number of points com-
prising an object will be dictated by several factors. The
scanning technique used can impact the density of the
point cloud, with μCT scans often producing very dense
point clouds compared to LiDAR or photogrammetry
(although this does strongly depend upon the specifics
of a given imaging set-up). Larger point clouds necessi-
tate longer computational times, which may problematic
for large comparative studies. More importantly, the par-
ticular research question ought to have a large bearing
on the density of the point cloud. If the question under
investigation pertains to ‘gross’ morphology, a less dense
point cloud may be justifiable, whereas those focusing
on features of surface texture may require more detail.
Whilst final point cloud size is ultimately determined by
the users’ needs, ensuring that all specimens within a
comparative study comprise an equal number of points
is necessary in order that one sample is not represented
in significantly more detail than another, which may po-
tentially skew the results.
We therefore conducted a sensitivity analysis to exam-

ine the effect of point cloud density on calculated values
of ‘optimal’ refinement coefficients (and associated com-
puting time). Optimal refinement coefficients were calcu-
lated for each specimen comprising points cloud sizes
ranging from 104 to 106 points, typical for datasets derived
from LiDAR, photogrammetry or CT. Reference lengths
(see Eq. 1) of the 104 point clouds were used to scale alpha
radii for all point cloud sizes, ensuring consistent alpha
radii (at each refinement) between point cloud sizes and
that results are equivalent.

Results
The alpha-shapes methodology described here distils the
complexity of three dimensional baculum shape, firstly
into a single representative curve and ultimately into a
single parameter to facilitate further comparative analysis.

We consider the shape-fitting protocol to be straightfor-
ward and relatively computationally inexpensive when
operating on point clouds of ~ 100,000 data points. For a
typical specimen (Mustela itatsi,14MB 8 bit raw file), data
import and hole filling took 14 s, the calculation of refer-
ence length on the basis of 100 nearest neighbours took
14min, and the calculation of the optimal refinement co-
efficient took 2min.
In specimens appearing outwardly similar, the relation-

ship between alpha-shape volume and refinement coeffi-
cient is characterised by similar profiles. Ursid bacula,
for example, share a simple rod-like appearance which is
smooth and lacking in features such as grooves, curva-
ture or complex apices (Fig. 2 and Fig. 4), and likewise
the four bear bacula share similar alpha curves (Fig. 3). At
the highest value refinement coefficients (approaching a
convex hull), ursid alpha-shapes overestimate raw volume
by ~ 25–50%, and only the outermost points of the point
cloud contribute to shape fitting. As refinement coeffi-
cients decrease, divergence between alpha-shape volume
and raw volume is quickly reduced, and ‘optimal’ alpha is
reached (occurring at refinement coefficients between 11
and 36; Table 2). Beyond which, alpha-shape volume de-
creases with refinement coefficient at a slower rate, until
the alpha-shape fit breaks down to form several discon-
nected volumes (refinement coefficients below 0.6).
Whilst also lacking distinct curvature or a complex

tip, the canid baculum does possess a well-developed
broad urethral groove on the ventral surface (Fig. 2 and
Fig. 4). Optimal refinement coefficients of canid bacula
are therefore intermediate between those of ursids and
mustelids (Table 2). It follows that these specimens have
a more complex relationship between alpha-shape vol-
ume and refinement coefficient, with curves taking on a
multi-stepped appearance (Fig. 3). Steps coincide with
refinement coefficient values becoming small enough to
allow specific morphological features to be detailed. At
high values of refinement, alpha-shapes overestimate
canid baculum raw volume by ~ 200%. As the refine-
ment coefficient is reduced, canids display a very pro-
nounced ‘step’ (Fig. 3 iii to ii) at a refinement coefficient
of ~ 5. This coincides with alpha radii falling below ~half
urethral groove width (Fig. 5) and the distinctive feature
suddenly being resolved. Optimal alpha occurs soon
after at refinement coefficients of 2.7–3.6.
Finally, mustelids require low values of refinement coef-

ficient to accurately represent raw volume, as expected
due to their complex geometry. In Mustela itatsi (Fig. 4a)
for example, alpha-shape volumes generated by high
values of refinement coefficient vastly exceed raw volume
(by a factor of ~ 3), due to the highly-curved nature of the
bone. As refinement coefficient is reduced, previously un-
seen morphological features become apparent. Overall
dorsoventral curvature is defined at a refinement of ~ 10
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(Fig. 4a iii) whereas more detailed morphological features
such as the urethral groove and the rugose proximal por-
tion associated with attachment to the corpora cavernosa
become apparent at a refinement of 1.7 (Fig. 4a ii). Due to
the overall complex shape of this structure, alpha-shape
volume converges upon raw volume to produce an ‘opti-
mal’ refinement fit at low values of refinement.
Both DI and DNE complexity metrics agree with the

alpha shapes methodology presented here in finding
ursids to possess low complexity bacula (Table 2, Fig. 6).
Alpha-shapes is the only metric tested here in which all
taxonomic groups are entirely differentiated from each
other on the basis of surface complexity. In contrast,
there is very little differentiation between family group-
ings when baculum complexity is quantified by fractal
dimension (Table 2, Fig. 6). Average DI and DNE values
of canid bacula exceed those of mustelids, reversing the
trend present in optimal alpha.

Sensitivity analysis
The results of the sensitivity analysis indicate that opti-
mal refinement coefficients decrease with increasing
point cloud size (Fig. 7a). Less dense point clouds re-
quire relatively coarser refinement coefficients in order
to produce alpha shapes of equal volume to the original
dataset. This phenomenon has previously been docu-
mented elsewhere, and has been referred to as the ‘coast-
line paradox’ ([75], see Discussion). Between 105 and 106

points, the rank order of optimal refinement coefficients
remains relatively consistent across taxa (Fig. 7a). At the
lowest point cloud densities, canids are considered the
most ‘complex’, whilst mustelid bacula would appear
most complex at point cloud densities of ~ 105 points
(Fig. 7a). This simply reflects the scale at which shape
complexity is present. Canid bacula possess ‘gross’ com-
plexity (e.g. presence of a deep urethral groove), whilst
mustelid bacula are characterised by a more refined level
of complexity (e.g. a shallow urethral groove, curved tip
and complex apices) which may only be recovered at
higher point cloud densities. The time taken to compute
optimal refinement coefficients increases dramatically
between 105 points (1–2 min per specimen) and 106

points (15–35min per specimen) (Fig. 7b).

Discussion
The alpha-shapes methodology presented here repre-
sents an additional tool for quantifying 3D shape com-
plexity across biological samples characterised by high
morphological disparity. Alpha-shapes operates by con-
verting thresholded CT data directly to point clouds,
thereby removing the requirement to surface mesh
structures beforehand. The alpha-shapes algorithm does
produce a suite of surface meshes as an output however,
which may be incorporated into subsequent functional

Fig. 4 Alpha-shapes fitted to three example bacula. a, mustelid; b,
canid; c, ursid. As refinement coefficient is decreased, the volume of
alpha-shapes (as a percentage of CT voxel volume) decreases. i, when
this value drops below 100, the alpha-shape has ‘broken down’ and the
fit passes internally of the point cloud; ii, the ‘optimal’ refinement occurs
when alpha volume is exactly equal to CT volume; iii, an intermediate fit
alpha-shape defined as halfway between ‘optimal’ alpha and the cnvex
hull describes some coarser geometric features, such as the curvature of
the mustelid baculum, but misses finer-scale detail such as the canid
urethral groove; iv, the coarsest alpha-shapes are equivalent to convex
hulls, fitted only to the outermost extremes of the point cloud and
representing gross morphology. Due to the curved nature of the
mustelid baculum, coarse alpha-volume is considerably greater
than the CT voxel volume
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analyses. For example, the impact of the canid urethral
groove on the biomechanical performance of the bacu-
lum may be quantified by constructing a suite of finite
element models, based on coarser (groove absent)
alpha-shapes and finer (groove present) alpha-shapes.
The alpha-shapes algorithm is implemented in program-
ming languages including MATLAB (‘alphaShape’) and
R via the ‘alphahull’ package [68], thereby facilitating
greater automatization in the future. Furthermore,
alpha-shapes functionality is also present in the freeware

software ‘Meshlab’ [54] for those preferring a graphical
user interface.
A recent phylogenetic reconstruction of mammalian

baculum presence/absence found support for the inde-
pendent evolution of the structure on 8–9 occasions, with
at least two independent gains of baculum within primates
[76]. As alpha-shapes does not require the placement of
homologous landmarks, it may therefore be extended to
the analysis of potentially analogous structures or used to
quantify shape complexity through ontogenetic sequences.

Table 2 Optimal values of alpha derived from shape-fitting protocol, compared to 3D dissection index values, fractal dimensions
and Dirichlet normal energies

Family Taxa Optimal refinement coefficient Dissection index (2√SA/3√V) Fractal dimension Dirichlet normal energy

Mustelidae Mustela itatsi 1.67 3.54 2.17 1241

Mustelidae Mustela kathiah 2.04 3.57 2.16 1427

Mustelidae Mustela lutreola 2.36 3.3 2.24 1330

Mustelidae Mustela nigripes 2.18 3.3 2.26 1384

Ursidae Melursus ursinus 20.9 3.09 2.24 656

Ursidae Tremarctos ornatus 10.7 3.12 2.20 578

Ursidae Ursus arctos 32.5 3.29 2.11 826

Ursidae Ursus maritimus 36.2 3.37 2.10 718

Canidae Canis aureus 2.87 3.87 2.13 1242

Canidae Canis lupus 3.18 3.81 2.20 1389

Canidae Canis mesomelas 3.59 4.1 2.12 1460

Canidae Chrysocyon brachyurus 2.71 3.9 2.11 1714

SA, surface area; V, volume

Fig. 5 The stepped alpha-shape profile of a canid baculum (modelled in 2-dimensions for illustrative purposes). Circles illustrate the value of
alpha radius at four locations (a-d) along the alpha curve. The step between b and c represents the point at which the alpha exceeds the width
of the urethral groove. Once the groove is no longer distinguished, alpha volume increases dramatically
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We do also urge caution against the a priori assumption
of analogous baculum function for mammals however, as
no consistent relationship has yet been identified linking
features of the baculum to underlying organismal biology
across the whole group.
Here we find agreement between alpha-shapes, DI and

DNE techniques in identifying ursid bacula as possessing
low topographic complexity (Table 2, Fig. 6). This is per-
haps unsurprising, as bear bacula lack both grooves/
ridges/curvature at a macro scale and possess a smooth
surface texture on a finer scale. In contrast, alpha shapes
departs from the other complexity metrics in classifying
mustelid bacula as more complex than canids, a pattern
that is reversed in DI and DNE values (Table 2, Fig. 6).
Disagreement between metrics of shape complexity is
not unprecedented [22], and suggests the methods are
simply capturing different aspects of complexity.
In this instance, we interpret these differences as being

due to the relative sensitivity of each metric to concave
versus convex topology. In DI and DNE, any change in
topology (concave or convex) will contribute approxi-
mately equally to the complexity metric. In contrast, the
calculated optimal alpha appears to be more influenced
by the presence of concave sections. In Fig. 5, for ex-
ample, alpha shapes fitted to the convex dorsal surface
of the canid baculum change very little across two

orders of magnitude in refinement coefficient. In con-
trast, the form of the alpha shape fitted to the highly
concave ventral margin varies substantially alongside re-
finement coefficient. Thus, for specimens possessing large
concave surfaces such as the urethral groove or distal tip
curvature, small values of refinement coefficient are ne-
cessary for said features to be resolved. We consider
alpha-shapes complexity to therefore be weighted more
towards gross concave features than corrugated-like sur-
face rugosity, in which convex and concave sections occur
with approximately equal frequency and magnitude.
Relative to other metrics of topographic complexity

considered here, fractal dimension does not distinguish
between taxonomic groupings (Table 2, Fig. 6). Indeed,
Fig. 8b would suggest carnivore bacula do not exhibit
self-similarity, and the application of FD to this structure
is not justified. In the box-counting technique applied
here, true fractal behaviour would be identified by a
‘plateauing’ in local slope values across several scales of
box-size [77]. As can be seen in Fig. 8b, no such plateaus
exist, and bacula cannot be considered to behave in a
fractal manner across several orders of magnitude scale.
Whilst the alpha-shapes method is not heavily user in-

tensive, the process of shape-fitting can be computation-
ally costly. To expedite the process, point clouds are
downsampled. However, our sensitivity analysis does

Fig. 6 A comparison of four metrics for quantifying topographic shape complexity, as applied to carnivore bacula. a, alpha-shapes (displays
1/refinement coefficient, such that lower values indicate less complex shapes, in line with other metrics); b, dissection index (DI); c, fractal
dimension (FD) estimated using box-counting; d, Dirichlet normal energy (DNE) calculated from surface mesh
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indicate that optimal refinement coefficients are a func-
tion of point cloud density (Fig. 7a). In denser point
clouds, surface textural information (such as attachment
scars, and small fossae) are preserved and a finer ‘fit’
around such features in necessary in order to recreate
the original volume. At lower point cloud densities, only
gross morphology is preserved and a coarser ‘optimal’
refinement coefficient is sufficient.
This effect is related to a well know phenomena

known as the ‘coastline paradox’ [65], in which the
length of a country’s coastline increases as the scale of
the measuring unit is decreased. Intuitively, more fea-
tures of a coastline can be resolved and incorporated
into a metric of length when using a shorter ‘measuring
stick’. In the case of alpha-shapes, as point cloud density
is downsampled, the likelihood of removing points lying
on the outer contour is increased. As the outermost
points define the margins of the specimen, downsam-
pling results in an apparent ‘smoothing’ of the object
and hence a coarser optimal refinement coefficient. To
illustrate this effect, the alpha-shapes methodology was
applied to a 2D point cloud map of Great Britain (Fig.
9). The results mirror our baculum dataset, with denser
point cloud maps requiring more refined alpha-shapes
in order to match the original area (Fig. 9). Low density
point clouds loose many of the finer features of the

coastline (thin peninsulas, bays etc.) and only gross
shape is preserved.
Furthermore, the sensitivity analysis highlighted a change

in the rank order of species’ optimal refinement coefficients
associated with downsampling between 104 and 105 points
(Fig. 7a). As discussed above, this pertains to the ‘hierarchy’
of complexity which may be revealed at a given point cloud
size. Canids possess ‘gross’ complexity which may be re-
solved in low resolution point clouds, whilst mustelids are
characterised by concave features of micro-complexity
which require higher density point clouds to be detected.
Beyond 105 points, rank orders are relatively stable yet
computational time increases dramatically (Fig. 6b).
Ultimately, point cloud density will be at the discretion

of the user. This is not unusual, and similar decisions
are made (implicitly or explicitly) whenever selecting the
required resolution of a digital photograph or μCT scan.
As a rule of thumb in μCT scanning, voxel size must be
at most one-quarter to one-third of the size of the feature
of interest in order to resolve said feature and avoid partial
volume effects. Similarly, to guarantee their inclusion in an

Fig. 7 Alpha-shape sensitivity analysis. a, optimal refinement coefficients
for study species over a range of point cloud densities. b, the associated
computational time to find the optimum refinement coefficient for a
given point cloud density

Fig. 8 Box-counting estimation of fractal dimension (FD). a, Fractal
dimension is calculated as the slope of the relationship between
log(1/s) and log N(s), where s is the length of box edge and N(s) is
the number of boxes required to cover the object. Steeper slopes
are associated with increased topographical complexity; b, the local
slopes as calculated between sequential data points of Fig. 8a.
When objects are said to exhibit ‘true’ fractal behaviour, the local
slope will plateau over a range of box sizes. In this instance, it is
clear that no such plateaus occur, and thus bacula cannot be
considered ‘fractal’
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alpha-shapes analysis, we recommend the minimum di-
mension of a given feature (for example, the width of a
groove or diameter of a fossae) comprise at least 3–4 data
points within the point cloud. Beyond this, the final point
cloud density will reflect a compromise between the level
of detail required by the user and computer processing
time.
That ‘optimal’ refinement coefficients are a function of

point cloud density is not problematic for the application
of alpha-shapes within a comparative analysis framework.
Minimum point cloud density should be dictated by the
smallest feature of interest across the whole sample, and

all specimens downsampled to this same degree. Thus,
‘optimal’ refinement coefficients are equivalent across a
given dataset. The absolute values of refinement coeffi-
cients will be specific to that given dataset however.
In addition, the current implementation of alpha-shapes

is limited in the sense that between-subject variation in
alpha volume can be difficult to ascribe any one particular
geometric feature. Figure 10 represents an initial attempt to
address this shortcoming, in which data points of the point
cloud are coloured according to the coarsest alpha-shape to
which they contribute. The urethral groove of the canid re-
quires a similar level of refinement in order to be resolved

Fig. 9 ‘Coastline paradox’ example. 2D point clouds of Great Britain increase in density from a-f. As point cloud density increases, refinement
coefficient k must decrease in order to resolve fine-scale features and maintain an equivalent alpha-shape area. Map modified
from https://upload.wikimedia.org/wikipedia/commons/a/ab/England%2C_Scotland_and_Wales_within_the_UK_and_Europe.svg
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as the curved tip of the mustelid (Fig. 10, green), and would
therefore be consider equally ‘complex’ in the current im-
plementation of alpha—shapes. In contrast, the urethral
groove of the mustelid required a more refined ‘fit’ of alpha
in order to be distinguished (Fig. 10, red), contributing to
the low values of optimal alpha calculated for all mustelids
here. Future implementations of alpha-shapes will seek
to further quantify regional variation in shape complex-
ity within specimens, and will explore means of extract-
ing additional information from alpha-curves.

Conclusions
The alpha-shapes methodology presented here is an im-
portant addition to the biologist’s tool kit, providing a
metric of topographical complexity that complements
and extends pre-existing techniques such as Dissection
Index, Fractal Index and Dirichlet Normal Energy. In
particular, alpha-shapes appear sensitive to surface con-
cavities, with features such as grooves and pits consid-
ered particularly ‘complex’. Alpha-shapes differs from
methods that have previously been applied to genital
shape, such as GMM and spherical harmonics, in that it
describes the extent to which an object is structural
complex, as opposed to how objects differ in the posi-
tioning of particular features. We therefore consider
alpha-shapes to be especially useful for measuring the
functional properties of shapes, be those animal genitals,
corals, or the occlusal surfaces of teeth. Because optimal
alpha values reflect the topographical complexity of a
surface, rather than the specifics of how that complexity
is achieved, it does not require the placement of hom-
ologous landmarks and may therefore be used to com-
pare shape complexity across unrelated structures.
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