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Abstract: The lattice Boltzmann method (LBM) is a highly simplified model for fluid flows using a few
limited fictitious particles. It has been developed into a very efficient and flexible alternative numerical
method in computational physics, demonstrating its great power and potential for resolving more and
more challenging physical problems in science and engineering covering a wide range of disciplines
such as physics, chemistry, biology, material science and image analysis. The LBM is implemented
through the two routine steps of streaming and collision using the three parameters of the lattice size,
particle speed and collision operator. A fundamental question is if the two steps are integral to the
method or if the three parameters can be reduced to one for a minimal lattice Boltzmann method. In this
paper, it is shown that the collision step can be removed and the standard LBM can be reformulated into
a simple macroscopic lattice Boltzmann method (MacLAB). This model relies on macroscopic physical
variables only and is completely defined by one basic parameter of the lattice size δx, bringing the LBM
into a precise “lattice” Boltzmann method. The viscous effect on flows is naturally embedded through
the particle speed, making it an ideal automatic simulator for fluid flows. Three additional advantages
compared to the existing LBMs are that: (i) physical variables can directly be retained as the boundary
conditions; (ii) much less computational memory is required; and (iii) the model is unconditionally
stable. The findings are demonstrated and confirmed with numerical tests including flows that are
independent of and dependent on fluid viscosity, 2D and 3D cavity flows and an unsteady Taylor–Green
vortex flow. This provides an efficient and powerful model for resolving physical problems in various
disciplines of science and engineering.

Keywords: macroscopic lattice Boltzmann method; fluid flows; computational fluid dynamics;
numerical method

PACS: 47.11.-j; 02.60.Cb; 02.70.-c

1. Introduction

The birth of the lattice Boltzmann method (LBM) fulfils a dream that simple arithmetic
calculations can simulate complex fluid flows without solving complicated partial differ-
ential flow equations. The method is a highly simplified discrete model for fluid flows
using a few limited fictitious particles that move one grid at a constant time interval and
collide with each other at a grid point on uniform lattices, which are the two routine steps
for the implementation of the method to simulate fluid flows. As such, a real complex
particle dynamics is approximated as a regular particle model using three parameters of the
lattice size, particle speed and collision operator. The LBM is characterised by its simplicity,
parallel processing and easy treatment of boundary conditions [1]. The first fully discrete
model for fluid flows on a square lattice was proposed by Hardy et al. [2] in 1976. Ten years
later, Frisch et al. [3] for the first time obtained a correct lattice gas automata (LGA) for
Navier–Stokes equations using a six-velocity hexagonal lattice. The LGA is comprised
of two steps: streaming and collision. The two steps are represented by the lattice size,
particle speed and a collision operator on a uniform lattice. In physics, the former and
the latter simulate the phenomena of fluid movement and diffusion, respectively, which
determine the basic feature of an LGA. Often, simulations generated using an LGA are
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very noisy due to its Boolean variable with one for the presence and zero for the absence
of particles at a lattice point [4,5]. Furthermore, the numerical procedure involves the
calculations of particle probability, which reduces the efficiency of the model. To overcome
these, the lattice Boltzmann method was proposed [6], and its basic difference from the
LGA is that the Boolean variable is replaced with a particle distribution function. Such
an approach eliminates the statistical noise in an LGA and retains all the advantages of
locality in the kinetic form of an LGA [1]. McNamara and Zanetti [6] first used the lattice
Boltzmann method as an alternative to the LGA in 1988. As the collision operator takes
a complex matrix form, this prevents the LBM from becoming a competing numerical
method. A breakthrough in progress was made by Higuera and Jiménez [7] through
linearisation of the collision term around its local equilibrium state. This greatly simplifies
the collision operator. Noble et al. [8] used this idea to express the collision operator as
Ωαβ( f eq

β − fβ), in which fβ is the particle distribution function; f eq
β is the local equilibrium

distribution function; and Ωαβ is a collision matrix. Later, several researchers [9,10] sug-
gested a simple linearized form for the collision matrix by using a single time relaxation
towards the local equilibrium distribution, Ωαβ = −δαβ/τ, which is popularly known as
the Bhatnagar–Gross–Krook (BGK) collision operator [11], where δαβ is the Kronecker delta
function taking one when α = β, or otherwise zero, and τ is called the single relaxation
time that takes a value. The correct choice of τ together with the lattice size and time
step can achieve a desired fluid viscosity. This leads to the single relaxation time lattice
Boltzmann method (SRT LBM), which has been the most efficient and used so far,

fα(xj + eαjδt, t + δt) = fα(xj, t) +
1
τ
[ f eq

α (xj, t)− fα(xj, t)], (1)

where xj is a lattice coordinate along the j-axis in the Cartesian coordinate system, i.e., j = x, y
in the two-dimensional space; t is time; eαj is the jth component of the particle veloc-
ity vector eα in α-link of the lattice and defined by time step δt and lattice size δx, e.g.,
eα = (0, 0), (e, 0), (0, e), (−e, 0), (0,−e), (e, e), (−e, e), (−e,−e), (e,−e) when α = 0− 8
for nine particles moving in the two-dimensional uniform square lattice (D2Q9), in which e
is the particle speed and defined as e = δx/δt; and f eq

α is the local equilibrium distribution
function given by:

f eq
α = wαρ

(
1 + 3

eαiui
e2 +

9
2

eαieαjuiuj

e4 − 3
2

uiui
e2

)
, (2)

in which ρ is the fluid density and wα is a weighting factor depending on the lattice pattern,
e.g., wα = 4/9 when α = 0, wα = 1/9 when α = 1− 4 and wα = 1/36 when α = 5− 8 on
D2Q9. After the distribution function is calculated from the lattice Boltzmann Equation (1),
the macroscopic psychical variables, density and velocity are simply updated as:

ρ(xj, t) = ∑
α

fα(xj, t), ui(xj, t) =
1

ρ(xj, t) ∑
α

eαi fα(xj, t). (3)

Since then, the study of the lattice Boltzmann method and the applications of the
method have received extensive attentions, making it become a very powerful modelling
tool in many areas such as thermodynamics [12], aerodynamics [13], multiphase flows [14],
turbulent flows [15], hemodynamics [16], biomechanics [17], image analysis [18], biol-
ogy [19] and environmental science [20].

In applications, it is found that the SRT LBM suffers from a numerical instability.
To remedy this, the multiple relaxation time (MRT) collision operator was introduced in
1992 [21,22]. This improves the stability, but it reduces the efficiency. To accelerate the
simulation, a two relaxation time collision operator was developed in 2008 [23], which has
almost the same efficiency as the SRT LBM. As research progresses, it is noticed that MRT
or TRT still suffers from numerical instabilities when fluid flows with very small viscosity
are simulated. After realising that this is caused by an insufficient degree of Galilean
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invariance in the collision step, Geier et al. [24] proposed a cascaded lattice Boltzmann
method by relaxing the particle distribution function to its local equilibrium state in the
central moment space, making the LBM stable for simulating flows with small viscosity
close to zero. In 2015, Geier et al. [25] further improved their central moment LBM using
the cumulant in collision operator, which is called the cumulant lattice Boltzmann method
(CLBM). Despite such enhancements, these schemes are more complicated and less efficient
due to a manipulation of the matrices. In addition, these schemes share the same drawback
as the existing LBM in that the boundary conditions for a physical variable such as velocity
cannot be implemented without being converted to particle distribution functions, which
further reduces the efficiency and accuracy of the methods. Recently, Chen et al. [26]
developed a simplified lattice Boltzmann method without the evolution of the particle
distribution function, which successfully removes this drawback and enables the direct
use of a physical variable as the boundary conditions. However, the method involves
the two steps of the predictor and corrector, which is more complicated than the SRT
LBM. Nevertheless, through all this research, the LBM has greatly been improved and
developed to a point where it has become a very efficient and flexible alternative numerical
method in computational physics. Its potential power is much beyond the original scope,
being explored and demonstrated in various disciplines of science and engineering with
time [27–30].

2. Macroscopic Lattice Boltzmann Model

The above literature review highlights that the major research to improve the method
has been carried out on the collision operator for resolving the well-known instability
problem in the SRT LBM since 1992, leading to four representative variants of the method,
MRT, TRT, central moment and cumulant LBMs. Even so, choosing suitable parameters
or values for the collision operators is not clear, and they cannot be tuned without using
trial and error during simulations, which becomes more complicated in a non-single relax-
ation time scheme due to its complexity. This unnecessarily wastes time and computing
resource, and it may become awkward to simulate a large-scale flow system, preventing
the LBM from becoming an automatic simulator for any scale flows when a super-fast
computer such as a quantum computer becomes available one day. As the central problem
comes from the collision operator, such a problem may be resolved forever if the collision
operator can be removed. Since the function of the collision is to relax the distribution
function towards its local equilibrium state, it may be removed and replaced with the
local equilibrium distribution function by setting τ = 1 in Equation (1). Following this
idea, after mathematical manipulations, we obtain the following simple macroscopic lattice
Boltzmann model (MacLAB),

ρ(xj, t) = ∑ f eq
α (xj − eαjδt, t− δt), (4)

ui(xj, t) =
1

ρ(xj, t) ∑ eαj f eq
α (xj − eαjδt, t− δt), (5)

to determine the physical density and velocity directly from the local equilibrium distri-
bution function without calculating the distribution function using Equation (1) unlike
existing LBMs (the theoretical derivation is given in Section 3). Apparently, the model
involves the local equilibrium distribution function only. However, doing so brings a new
problem of how to consider the fluid viscosity in the absence of the collision step. We
overcome this from the finding, through the recovery of the Navier–Stokes equations from
Equations (4) and (5), that if the particle speed e is determined using:

e = 6ν/δx, (6)

which is employed in Equation (2) instead of using e = δx/δt to calculate the local equi-
librium distribution function f eq

α , the flow viscosity is naturally taken into account in the
model. In the MacLAB, once a lattice size δx is chosen, the model is ready to simulate a
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flow with a viscosity ν because (xj − eαjδt) stands for a neighbouring lattice point; f eq
α at

time of (t− δt) represents its known quantity at the current time; and the particle speed e
is determined from Equation (6) for use in the computation of f eq

α . In addition, the time
step δt is no longer an independent parameter and needs to be determined as δt = δx/e,
which is used in the simulations of unsteady flows. Consequently, only the lattice size δx is
required in the MacLAB for the simulation of fluid flows, bringing the LBM into a precise
“lattice” Boltzmann method. This enables the model to become an automatic simulator for
any scale flows without tuning other simulation parameters, making it possible and easy
to model a large flow system when a super-fast computer such as a quantum computer
becomes available in the future. The model is unconditionally stable as it shares the same
valid condition as that for f eq

α , or the Mach number M = Uc/e is much smaller than one,
in which Uc is a characteristic flow speed. The Mach number can also be expressed as
a lattice Reynolds number of Rle = Ucδx/ν via Equation (6). In practical simulations, it
is found that the model is stable if Rle = Umδx/ν < 1 where Um is the maximum flow
speed and is used as the characteristic flow speed. The main features are that there is no
collision operator and only macroscopic physical variables such as the density and velocity
are required, which are directly retained as boundary conditions with a minimum memory
requirement. The implementation of the model starting from the initial density and velocity
is to (i) choose the lattice size δx and determine the particle speed e from Equation (6),
(ii) calculate f eq

α from Equation (2) using the density and velocity, (iii) update the density
and velocity using Equations (4) and (5), (iv) apply the boundary conditions, and (v) repeat
Step (ii) until a solution is reached. The only limitation of the described model is that,
for very small viscosity or high speed flow, the chosen lattice size after satisfying Rle < 1
may turn out to generate very large lattice points (lattice points, e.g., for one dimension
with a length of L are calculated as NL = L/δx, and NL is the lattice points); if the total
lattice points are too big such that the demanding computations are beyond the current
power of a computer, the simulation cannot be carried out. Such difficulties may be solved
or relaxed through parallel computing using computer techniques such as GPU processors
and multiple servers and will be largely or completely removed using quantum computing
when a quantum computer becomes available.

3. Recovery of the Navier–Stokes Equations

Setting τ = 1 in Equation (1) leads to:

fα(xj + eαjδt, t + δt) = f eq
α (xj, t), (7)

which can be rewritten as:

fα(xj, t) = f eq
α (xj − eαjδt, t− δt). (8)

Taking ∑ Equation (8) and ∑ eαi Equation (8) yields:

∑ fα(xj, t) = ∑ f eq
α (xj − eαjδt, t− δt), (9)

and:
∑ eαi fα(xj, t) = ∑ eαi f eq

α (xj − eαjδt, t− δt), (10)

respectively. In the lattice Boltzmann method, the density and velocity are determined
using the distribution function as:

ρ(xj, t) = ∑
α

fα(xj, t), ui(xj, t) =
1
ρ ∑

α

eαi fα(xj, t). (11)
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Combining Equation (11) with Equations (9) and (10) results in the current MacLAB,
Equations (4) and (5). Since the local equilibrium distribution function f eq

α has the features of:

∑
α

f eq
α (xj, t) = ρ(xj, t),

1
ρ ∑

α

eαi f eq
α (xj, t) = ui(xj, t), (12)

with reference to Equation (11), the following relationships,

∑
α

fα(xj, t) = ∑
α

f eq
α (xj, t), ∑

α

eαi fα(xj, t) = ∑
α

eαi f eq
α (xj, t), (13)

hold, which are the conditions that retain the conservation of the mass and momentum in
the lattice Boltzmann method.

Next, we prove that the continuity and Navier–Stokes equations can be recovered
from Equations (4) and (5). Rewriting Equation (1) as:

fα(xj, t) = fα(xj − eαjδt, t− δt)

+
1
τ
[ f eq

α (xj − eαjδt, t− δt)

− fα(xj − eαjδt, t− δt)].

(14)

Apparently, when τ = 1, the above equation becomes Equation (8), which leads to
Equations (4) and (5); hence, Equation (14) is a general equation and is used in the follow-
ing derivation. Applying a Taylor expansion to the two terms on the right-hand side of
Equation (14) in time and space at point (x, t) yields:

fα(xj − eαjδt, t− δt) = fα(xj, t)− δt

(
∂

∂t
+ eαj

∂

∂xj

)
fα

+
1
2

δt2

(
∂

∂t
+ eαj

∂

∂xj

)2

fα +O(δt3),

(15)

and:

f eq
α (xj − eαjδt, t− δt) = f eq

α (xj, t)− δt

(
∂

∂t
+ eαj

∂

∂xj

)
f eq
α

+
1
2

δt2

(
∂

∂t
+ eαj

∂

∂xj

)2

f eq
α +O(δt3).

(16)

According to the Chapman–Enskog analysis, fα can be expanded around f (0)α :

fα = f (0)α + f (1)α δt + f (2)α δt2 +O(δt3). (17)

After substituting Equations (15)–(17) into Equation (14), equating the coefficients of
δt with various orders results for the order (δt)0 in:

f (0)α = f eq
α , (18)

for the order (δt)1 in: (
∂

∂t
+ eαj

∂

∂xj

)
f (0)α ,= − 1

τ
f (1)α , (19)
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and for the order (δt)2 in:(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α − 1

2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)α

= − 1
τ

f (2)α +
1
τ

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α .

(20)

Substitution of Equation (19) into the above equation gives:(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α − 1

2

(
∂

∂t
+ eαj

∂

∂xj

)
(− 1

τ
f (1)α )

= − 1
τ

f (2)α +
1
τ

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α ,

(21)

which is rearranged as: (
1− 1

2τ

)(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α = − 1

τ
f (2)α . (22)

From Equation (19) + Equation (22) ×δt, we have:(
∂

∂t
+ eαj

∂

∂xj

)
f (0)α + δt

(
1− 1

2τ

)(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α

= − 1
τ
( f (1)α + δt f (2)α ).

(23)

Now, taking ∑Equation (23) leads to:

∑
(

∂

∂t
+ eαj

∂

∂xj

)
f (0)α = 0 (24)

as:
∑
α

f (1)α = ∑
α

f (2)α = ∑
α

eαi f (1)α = ∑
α

eαi f (2)α = 0 (25)

due to the condition of the conservation of mass and momentum Equation (13). Evaluating
the terms in the above equation using Equation (2) produces the exact continuity equation,

∂ρ

∂t
+

∂(ρuj)

∂xj
= 0. (26)

Multiplying Equation (23) by eαi provides:(
∂

∂t
+ eαj

∂

∂xj

)
eαi f (0)α + δt

(
1− 1

2τ

)(
∂

∂t
+ eαj

∂

∂xj

)
eαi f (1)α

= − 1
τ
(eαi f (1)α + δteαi f (2)α ).

(27)

Taking ∑ Equation (27) leads to:



Water 2021, 13, 61 7 of 16

∑
(

∂

∂t
+ eαj

∂

∂xj

)
eαi f (0)α

+ δt
(

1− 1
2τ

)
∑
(

∂

∂t
+ eαj

∂

∂xj

)
eαi f (1)α = 0

(28)

under the same condition (25) as that in the derivation of Equation (24). Evaluating the
terms in the above equation using Equation (2) produces the exact momentum equation,
the Navier–Stokes equation at second-order accuracy on the condition that the Mach
number M = Uc/e << 1,

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ν

∂2(ρui)

∂x2
j

, (29)

where pressure p is defined as:

p =
1
3

ρe2 (30)

and the kinematic viscosity is:

ν =
1
6
(2τ − 1)eδx. (31)

As τ takes a constant, the use of τ = 1 will recover the continuity and the Navier–
Stokes equations at the second-order accuracy, as the above derivation shows. In this case,
Equation (31) becomes Equation (6), which determines the particle speed e in the pro-
posed model.

4. Numerical Tests

In order to demonstrate the validation of the described model, five numerical sim-
ulations were carried out using D2Q9 and D3Q19 lattices for 2D and 3D flows, respec-
tively. For D3Q19, the particle velocity vector is eα = (eαx, eαy, eαz) = (0, 0, 0), (e, 0, 0),
(−e, 0, 0), (0, e, 0), (0,−e, 0), (0, 0, e), (0, 0,−e), (e, e, 0), (−e,−e, 0), (−e, e, 0), (e,−e, 0),
(0, e, e), (0,−e,−e), (0,−e, e), (0, e,−e), (e, 0, e), (−e, 0,−e), (−e, 0, e), (e, 0,−e), and the
weighting factor wα for Equation (2) is wα = 1/3 when α = 0, wα = 1/18 when α = 1− 6
and wα = 1/36 when α = 7− 18. Physical variables in SI units without explicit notation
are used in the numerical simulations, e.g., the density ρ = 1 implies ρ = 1 kg/m3.

4.1. Couette Flow

The first test is a Couette flow through two parallel plates without a pressure gradient.
The distance between the plates is h = 1. The top plate moves at a velocity of ux = u0 = 0.1
in the streamwise direction, and the bottom plate is fixed. If x stands for the streamwise
direction and y for the vertical direction, the analytical solution is:

ux(y) =
u0

h
y, (32)

which is the same test as that used by Chen et al. [26]. This is a very interesting case as the
steady flow is independent of the flow viscosity according to the theory (32). We use δx =
0.02 and 20× 50 lattices in the x and y directions for three simulations of flows with three
kinematic viscosities of ν1 = 0.01, ν2 = 0.001 and ν3 = 0.0006, respectively. The periodic
boundary conditions are applied at the inflow and outflow boundaries. After the steady
solutions are reached, the results are indeed independent of the viscosities, and one of
those is shown in Figure 1, demonstrating excellent agreement with the analytical solution.
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4.2. Couette Flow with a Pressure Gradient

The second test is the same flow as that in Test 1 except that a pressure gradient
of ∂p/∂x = −0.0001 is specified, which is added to the right-hand side of Equation (5)
as +δx/(eρ)∂p/∂x [31]. Both plates are fixed with zero velocities at the top and bottom
boundaries at which no calculations are needed. The flow is affected by viscosity, and the
analytical solution is:

u(y) =
u0

h
y +

1
2ρν

∂p
∂x

(y2 − hy). (33)

The flow is simulated using three viscosities of ν1 = 0.003, ν2 = 0.001 and ν3 = 0.0006.
The numerical results are plotted in Figure 2, showing the effect of viscosity on the flow, in
excellent agreement with the analytical solutions. This confirms the unique feature that the
current model can simulate viscous flow correctly due to the use of Equation (6), although
no explicit effect of viscosity on flows is taken into account.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.04  0.08  0.12

y
 (

m
)

ux (m/s)

MacLAB

Analytical

Figure 1. Couette flow through two parallel plates without a pressure gradient. The distance between
the plates is h = 1. The top plate moves at a velocity of 0.1 in the streamwise direction, and the bottom
plate is fixed, where no calculations are required at the top or bottom boundaries. The periodic
boundary conditions are applied at the inflow and outflow boundaries. δx = 0.02 is used for three
simulations of flows with three kinematic viscosities of ν1 = 0.01, ν2 = 0.001 and ν3 = 0.0006,
respectively. All the steady numerical results are almost identical and are independent of flow
viscosity, as shown here in the comparison of one numerical result with the analytical solution.
MacLAB, macroscopic lattice Boltzmann method.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.005  0.01  0.015  0.02  0.025

y
 (

m
)

ux (m/s)

ν1 ν2 ν3

MacLAB

Analytical

Figure 2. Couette flow through two parallel plates under a pressure gradient of ∂p/∂x = −0.0001.
The distance between the plates is h = 1. Both plates are fixed with zero velocities at the top and
bottom boundaries, where no calculations are needed. The steady numerical results are dependent
on flow viscosity and shown in this figure through simulations of flows with three viscosities of
ν1 = 0.003, ν2 = 0.001, and ν3 = 0.0006.

4.3. 2D Cavity Flow

The third test is a 2D cavity flow, which is a well-known complex flow within a simple
geometry. The domain is a 1× 1 square. The boundary conditions are that the top lid
moves at a velocity of ux = u0 and uy = 0 with u0 = 1; the other three sides are fixed,
or no slip boundary condition is applied, i.e., ux = 0 and uy = 0. The Reynolds number
Re = u0/ν = 1000. We use δx = 0.0025 or 400× 400 lattices in the simulation, which is
carried out on the inside of the cavity excluding the four sides where the velocities are
retained as boundary conditions. After the steady solution is obtained, the flow pattern in
the velocity vectors is shown in Figure 3, which closely agrees with the well-known study
by Ghia et al. [32]. The results are further compared against their numerical solutions for
velocity profiles of ux and uy along the y and x directions through the geometric centre of
the cavity in Figures 4 and 5, respectively, demonstrating very good agreements.



Water 2021, 13, 61 10 of 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y
 (

m
)

x (m)

Figure 3. 2D cavity flow within a 1× 1 square for Re = 1000. The top lid moves at a velocity of
ux = 1 and uy = 0, and the other three sides are fixed, or no slip boundary condition is applied.
After the steady solution is obtained, the flow pattern in velocity vectors shows a primary vortex and
two secondary vortices.
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Figure 4. 2D cavity flow within a 1× 1 square for Re = 1000. The top lid moves at a velocity of
ux = 1 and uy = 0, and the other three sides are fixed, or no slip boundary condition is applied.
After the steady solution is obtained, the comparison of the velocity ux profile along the y direction
through the geometric centre of the cavity with the numerical solution by Ghia et al. [32], showing
good agreement.
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Figure 5. 2D cavity flow within a 1× 1 square for Re = 1000. The top lid moves at velocity of ux = 1
and uy = 0, and the other three sides are fixed, or no slip boundary condition is applied. After the
steady solution is obtained, the comparison of the velocity uy profile along the x direction through the
geometric centre of the cavity with the numerical solution by Ghia et al. [32], showing good agreement.

4.4. 2D Taylor–Green Vortex

The fourth test is a 2D Taylor–Green vortex. This is an unsteady flow driven by
decaying vortexes for which there is an exact solution of the incompressible Navier–
Stokes equations, and it is often applied to the validation of a numerical method for
the solution to the incompressible Navier–Stokes equations. The initial conditions are
ux(x, y, 0) = −u0 cos(x) sin(y) and uy(x, y, 0) = u0 sin(x) cos(y). The analytical solutions
are ux(x, y, t) = −u0 cos(x) sin(y) exp(−2νt) and uy(x, y, t) = u0 sin(x) cos(y) exp(−2νt).
The time for an unsteady flow from the initial state is accumulated by its increase with
time step δt. We use δx = 0.157 or 40× 40 lattices for a square domain of 2π × 2π with
a kinematic viscosity of ν = 0.0314 and u0 = 0.05, which gives the Reynolds number of
Re = 2πu0/ν = 10. The periodic boundary conditions are used. The simulation is run for
the total time of 30 s. The velocity field is plotted in Figure 6, showing the correct flow
pattern. The velocity profiles for ux at x = π and uy at x = π/2 along the y direction
are depicted and compared with the analytical solutions in Figure 7, showing excellent
agreements and confirming the accuracy of the method for an unsteady flow.

0

π

2π

0 π 2π

Figure 6. Taylor–Green vortex within the 2π × 2π domain for Re = 10. The initial conditions
are ux(x, y, 0) = −u0 cos(x) sin(y) and uy(x, y, 0) = u0 sin(x) cos(y) with u0 = 0.05. The periodic
boundary conditions are used. Shown here is the flow pattern in velocity vectors at t = 30 s, the
same vortex pattern remaining as that at the initial state.
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Figure 7. Taylor–Green vortex within the 2π × 2π domain for Re = 10. The initial conditions
are ux(x, y, 0) = −u0 cos(x) sin(y) and uy(x, y, 0) = u0 sin(x) cos(y) with u0 = 0.05. The periodic
boundary conditions are used. Shown here is the comparisons of the relative velocity profiles
for ux/u0 at x = π and uy/u0 at x = π/2, matching the analytical solutions of ux(x, y, t) =

−u0 cos(x) sin(y) exp(−2νt) and uy(x, y, t) = u0 sin(x) cos(y) exp(−2νt) at t = 30 s.

4.5. 3D Cavity Flow

The final test is a 3D cavity flow. This is again a well-known complex flow involving
3D vortices within a simple cube with dimensions of 1× 1× 1 in streamwise direction x,
spanwise direction y and vertical direction z. No-slip boundary conditions, i.e, ux = 0, uy =
0 and uz = 0, are applied to five fixed sides except for the top lid, where ux = u0, uy = 0 and
uz = 0 with u0 = 1 are specified. The Reynolds number is Re = u0/ν = 400. δx = 0.004
or total lattices of 250× 250× 250 are used, and the simulation is undertaken only within
the cube, excluding the boundaries where the velocities are retained. After the steady
solution is reached, the flow characterises are displayed through the two-dimensional
planar projections of the velocity vector field on the x-z, y-z and x-y centroidal planes of
the cube in Figures 8–10, respectively, demonstrating flow patterns in good agreement with
those by Wong and Baker [33]. In addition, the distribution of the velocity component ux
on the vertical plane centerline is widely used as a 3D lid-driven cavity benchmark test.
We compare this velocity component against the results by Wong and Baker [33] and also
by Jiang et al. [34] in Figure 11, showing good agreements.
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Figure 8. 3D cavity flow within a 1× 1× 1 cube for Re = 400. The top lid moves at a velocity of
ux = 1, uy = 0 and uz = 0, and the other five sides are fixed, or no slip boundary condition is applied.
After the steady solution is reached, the flow pattern in vectors in the x− zcentroidal plane show the
primary and secondary vortices.
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Figure 9. 3D cavity flow within a 1× 1× 1 cube for Re = 400. The top lid moves at a velocity of
ux = 1, uy = 0 and uz = 0, and the other five sides are fixed, or no slip boundary condition is
applied. After the steady solution is reached, the flow pattern in vectors in the y− z centroidal plane
shows one pair of strong secondary vortices at the bottom and one pair of weak secondary vortices
at the top.
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Figure 10. 3D cavity flow within a 1× 1× 1 cube for Re = 400. The top lid moves at a velocity of
ux = 1, uy = 0 and uz = 0, and the other five sides are fixed, or no slip boundary condition is applied.
After the steady solution is reached, the flow pattern in vectors in the x− y centroidal plane shows a
pair of third vortices close to the inflow boundary.
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Figure 11. 3D cavity flow within a 1× 1× 1 cube for Re = 400. The top lid moves at a velocity of
ux = 1, uy = 0 and uz = 0, and the other five sides are fixed, or no slip boundary condition is applied.
After the steady solution is reached, the comparisons of the distribution of the velocity component
ux on the vertical plane centerline with the results by Wong and Baker [33] and Jiang et al. [34].
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5. Conclusions

A novel macroscopic lattice Boltzmann method (MacLAB) for the Navier–Stokes
equations is proposed and validated. It can accurately simulate fluid flows using only the
lattice size, bringing the LBM into a precise lattice Boltzmann method and revolutionising
the standard LBM theory. This takes the research on the method into a new era in which
future work may focus on improving the accuracy of or formulating a new local equilibrium
distribution function. The particle speed is determined through the viscosity and lattice
size, and the time step δt is calculated as δt = δx/e. The model is unconditional stable as
long as the valid condition for the local equilibrium distribution function holds. When a
super-fast computer such as a quantum computer becomes available in the future, this will
enable the MacLAB to take any fine lattice to simulate most challenging fluid flows such as
turbulent flows without relying on a turbulent flow model. All these make the method an
automatic simulator for fluid flows in all relevant problems. The method is straightforward
to extend for resolving other physical problems in different disciplines such as chemical
and environmental engineering.
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