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Abstract

Facial expressions are a series of fast, complex and interconnected movement that
causes an array of deformations, such as stretching, compressing and folding of
the skin. Identifying expression is a natural process in human vision, but due
to the diversity of faces, it has many challenges for computer vision. Research
in markerless facial motion capture using single Red Green Blue (RGB) camera
has gained popularity due to the wide access of the data, such as from mobile
phones. The motivation behind this work is much of the existing work attempts
to infer the 3-Dimensional (3D) data from 2-Dimensional (2D) images, such as in
motion capture multiple 2D cameras are calibration to allow some depth predic-
tion. Whereas, the inclusion of Red Green Blue Depth (RGBD) sensors that give
ground truth depth data could gain a better understanding of the human face and
how expressions are visualised.

The aim of this thesis is to investigate and develop novel methods of marker-
less facial motion capture, where the focus is on the inclusions of RGBD data to
provide 3D data. The contributions are: A tool to aid in the annotation of 3D fa-
cial landmarks; A novel neural network that demonstrate the ability of predicting
2D and 3D landmarks by merging RGBD data; Working application that demon-
strates complex deep learning network on portable handheld devices; A review of
existing methods of denoising fine detail in depth maps using neural networks; A
network for the complete analysis of facial landmarks and expressions in 3D.

The 3D annotator was developed to overcome the issues of relying on existing
3D modelling software, which made feature identification difficult. The technique
of predicting 2D and 3D with auxiliary information, allowed high accuracy 3D
landmarking, without the need for full model generation. Also, it outperformed
other recent techniques of landmarking. The networks running on the handheld
devices show as a proof of concept that even without much optimisation, a complex
task can be performed in near real-time. Denoising Time of Flight (ToF) depth
maps, showed much more complexity than the tradition RGB denoising, where we
reviewed and applied an array of techniques to the task. The full facial analysis
showed that when neural networks perform on a wide range of related task for
auxiliary information allow for deep understanding of the overall task.

The research for facial processing is vast, but still with many new problems
and challenges to face and improve upon. While RGB cameras are used widely, we
see the inclusion of high accuracy and cost-effective depth sensing device available.
The new devices allow better understanding of facial features and expression. By
using and merging RGB data, the area of facial landmarking, and expression
intensity recognition can be improved.
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Chapter 1

Introduction

This chapter introduces the concepts, techniques and theories of motion capture

and animation. The terminology is shown in the background alongside the problem

statement, thesis contributions and thesis structure.

1.1 Background

Facial motion capture is a well-established field with many commercial applica-

tions/software available [2, 3]. Furthermore, facial animations a widely researched

field [4, 5, 6] with many techniques used to track the face and determine the ex-

pression. At its core facial motion capture relies on the work performed in image

processing to track points on the face, whether its optical markers or marker-less.

The motion capture is used to aid animators it creating realistic motion on a 3D

model. Many of the modern facial capture systems only implement 2D techniques

and attempt to infer both the 3D points and a 3D representation of the actor’s

face. However, depth data can provide a complete view of the movements, such as

how the wrinkle crease the skin and changes in depth like pouting. The research

focus of this work is to incorporate depth data into the facial motion capture

pipeline.
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1.2 Motivation

When the Kinect version 1 for the Xbox 360 was released, it signalled the begin-

ning of readily available low-cost sensors and caused massive interest in 3D from

both publicly and commercially. During this time there was a drastic increase in

research on how 3D data could improve many fields of research. However, devices,

such as the Kinect were designed for full-body tracking and show to improve re-

search in these areas, but in other areas the Kinect, such as facial identification

and expression recognition, the methods used were slow and hampered by noise.

Because of the limitations of the Kinect, research in this area is limited. How-

ever, the technology was still in its infancy, and newer depth sensing capture both

higher resolution depth maps with a fraction of the noise. With the technological

improvements, and with improved data merging methods could have a beneficial

impact on for facial processing.

A method that is capable of retrieve structural information in real-time would

provide aid in creating and tracking facial movements. Unfortunately, there are

many current restrictions, such as datasets are limited in the motions they are

targeting, and the complexity of faces increased when viewing 3D structure, in

comparison to 2D. The task of 3D landmarking has restrictions as many of the

high accuracy scanners cannot function in real-time, and real-time sensor suffers

from a significant degree of noise.

Many methods try to incorporate RGBD prefer to use the depth data only

for model construction, making the depth data a drain on resources after model

construction. Additionally, as they only use RGB for landmarking, the movements

are restricted, due to RGB only being able to identify landmarks in highly detailed

facial areas.
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1.3 Problem Statement

Currently the use of consumer based depth sensors focus on capture the 3D posi-

tions of large movements, such as limbs where it has made significant improvements

to how we approach analyse of human movement. However, for facial analysis the

devices are used significantly less, due to the large degree of noise that covers the

facial features. We perform our work to analyse the capability of low cost depth

sensors, to perform the acquisition of 3D facial landmarks.

Outside of commercial production companies, the use of 3D technologies is

uncommon, and when coupled with the costly equipment and difficultly set-up

small production or individual consumers cannot fully access the improved re-

sults. Additionally, recent technological improvements and innovations, such as

the Kinect have the potential to overcome the issues of using multiple cameras to

create stereography depth images. Furthermore, the existing methods use a com-

plex pipeline to produce their results, normally the traditional machine learning

is used for locating landmarks and assessing expressions.

Many of the problems come from the ability to retrieve 3D landmarks coordi-

nates in real-time when considering both, low powered consumer devices and the

level of noise found in depth maps. Further, the amount of datasets is limited

as many prefer the use of traditional RGB data, where 3D landmarks are not

accessible.

The logical progression of developing and improving methods of detecting

landmarks for expression recognition is to extend the work from the 2D viewpoint

and statistical facial models for 3D shape prediction, to the inclusion of accurate

depth data that can generate a near-identical 3D model of the users face from

single frame depth maps. Unfortunately, this is not a simple task. Traditional

machine learning techniques focus on small set of 3D landmarks, and the majority

of the focus is using a predefined 3D model or curvature analysis, which is a

processor intensive task. An additional difficulty comes from the diversity in faces

when moving into 3D, where the differences in a facial structure become more
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apparent and defined. Neural networks provide a way of quickly accessing facial

images that can efficiently process both RGB and depth images simultaneously.

Also, to retrieve landmarks in 2D and 3D.

This thesis addresses these limitations and proposes some new methods to

build the research gap. Firstly, we need to know the ground truth 3D points are

accurate before we begin training or the systems will not be adequate. We then

demonstrate the use of neural networks on portable mobile devices, to illustrate

neural networks application to consumers. We validate our choice of the stream,

to ensure the most effective and efficient network is implemented into our project.

As noise can be an issue with depth maps, we evaluate methods of real-time de-

noising.

1.4 Aim and Objectives

The primary aim of this research is to propose markerless facial motion capture

methods using deep learning approaches on RGBD data. The improvements will

aid current computer systems to gain a thorough knowledge of the face and its 3D

structure. The following objectives have been designed to achieve the aim:

• Identify the research gap and create resources with ground truth for valida-

tion.

• Propose new methods to detect 2D and 3D facial landmarks in real-time,

with a demonstration on portable devices.

• Investigate the ability of current RGB image denoising techniques and design

Convolutional Neural Networks (CNN)s for depth data denoising.

• Improve the performance of facial landmarking for accurate expression in-

tensity detection.
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1.5 Contributions

The main contributions of this thesis are as follows:

• A novel techniques of aligning 3D geometry to a 2D reference image without

calibration data, for 3D model data annotation. A new dataset, namely

KOED that contains synchronous RGB and depth data.

• Novel neural networks for the combination of RGB and depth data for real-

time 3D facial landmarking using auxiliary information, with a competitive

analysis of stream impact on network performance. We also demonstrate

real-time mobile based neural networks performing typically computationally

expensive tasks in real-time.

• An evaluation of existing denoising neural networks re-targeted for the use

of depth data, with a solution to the lack of ground truth, not noisy, ToF

depth data.

• A neural network for facial landmarking and the estimation of expression

intensity.

1.6 Thesis Organisation

Fig. 1.1 illustrates the structure of the thesis, where there are three main segments:

1. Chapters 1 - 3: Introductory chapters describe the topic of the thesis, the

existing work done and any terminology used.

2. Chapters 4 - 7: Contribution chapters explain each of the contributions made

in the thesis, their underlying novelty and how they work.

3. Chapter 8: Conclusion chapter of the thesis, this will provide a summary of

the thesis and outline future work.
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Figure 1.1: A visual guide to the structure and flow of the thesis.

A brief overview of each chapter follows:

Chapter 1: The current chapter is a guideline to the contents of the thesis

providing the background information of the problem statement, the motivation

to solve the issues and the contributions made to resolve the problems faced.

Chapter 2 presents the fundamental knowledge and provides a review of the

current papers in facial motion capture and animation. As this subject falls into

multiple categories, information on these subjects is provided.

Chapter 3 provides the technical knowledge required for understanding 3D

motion capture and animation techniques, including the computer vision methods

used to process input video data.

Chapter 4 introduces a developed tool to aid with the annotation of 3D models

with an evaluation of its performance with the traditional methods. Additionally,

we introduce a new Kinect based dataset.
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Chapter 5 reviews the effectiveness of a neural network is at merging RGB

and depth data for facial landmarking. We validate the method on our a Kinect

One based facial animation dataset. The use of the neural network on consumer

devices is demonstrated.

Chapter 6 presents an evaluation of methods capable of real-time denoising

of Kinect based ToF depth maps. We overcome the issue of ground truth data by

generating a synthetic depth dataset.

Chapter 7 uses the knowledge gained from the previous chapters to design

and implement an all-in-one neural network that focuses on improved facial land-

marking and facial expressions intensity prediction.

Chapter 8 concludes the thesis contributions and provide a summary of future

work.
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Chapter 2

Literature Review

This chapter introduces and examines existing methods and techniques available in

this field of study.

2.1 Introduction

In this chapter, an overview of the current literature in facial analysis and the dif-

ferent aspects required for facial landmarking. There is a large amount of research

into facial animation and its different aspects, such as detection, landmarking and

expression identification. Although using human motion for animation purposes

date back to 1917 [7], a method for facial motion capture only introduced in 1988

[8], which employed a helmet device that would be attached to a section of the

face and use potentiometers to track its motion. A more complete and detailed

view and history of motion capture can be found in [9, 10].

Since the early days of motion capture, the methods have improved signif-

icantly, and with technological advancements in a mobile device, the ability for

anyone to try motion capture is capable. However, the methodology is still so-

phisticated and requires multiple sections to work together to create a smooth

experience just for standard 2D tracking. The focus of tracking movements dif-

fers from other fields as the focus is on gaining an understanding of the facial
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movements and representing the expression on a 3D models. The current focus on

consumer-based programs is to work with 2D data, where we aim to extend the

capabilities of methods to 3D.

There is a limited number of datasets in this domain that annotate both

landmarks, other than the five common points, and facial expression. The lack of

available data has kept research in its infancy as many research use their datasets

or have to merge with different datasets to produce their results. The problem

of data deficiency is increase when trying to perform 3D facial landmarking and

expression recognition.

This section will give an outline of the current chapter. Firstly, we begin

with an overview of the face, its structure and facial expressions. Followed by the

categorisation of expressions objectively. After presenting a method of categorising

expression, we break down the current pipeline for processing image for animating

a virtual avatar. Furthermore, this introduces how we capture the motions with

the process of traditional machine learning which many of the current techniques

implement. Finally, the chapter leads to the current use of depth-sensing devices

for facial animation.

2.2 Facial Structure

The face constructed of three base layers: the skull, the muscles and the skin.

Attached to the skull is a series of muscles, the muscle can contract and relax to

change their shape which directly affects the skin, a highly deformable surface.

The face contains multiple muscles that control many different aspects of facial

movements, such as separate muscles for either raising or lowering the lip corners.

Expressions performed by activating or relaxing one or more muscles in tandem.

The final layer is the skin, which is a highly deformable layer it covers the head

region and links to the muscle on the face, when muscle contract they stretch and

crease the skin, creating the appearance of expressions.
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Facial muscles are a series of fast-moving fibres that can move in less than

20 milliseconds, which includes the time from the central nervous system sending

the signal [11]. The speed of expressions means a natural expression can change

in rapid succession with ease, without a human observer noticing. However, these

subtle expressions can add detail and realism to the characters.

The human visual cortex is a vital part of understanding how we interoperate

expressions. The human eye processes on around 10-12 images a second, with light

pooling lasting around 15 milliseconds. The speed of the processing of images and

light pooling indicates movement at 1/25th a second is near the limit of human

perception, which is one of the reasons many programs broadcast at 25 Frames

Per Second (FPS).

2.3 Emotion Representation

Expression recognition has many different techniques available that provide high

accuracy results. However, the question of how expression varies among different

people through environmental and cultural influence is vital, as if different cultures

recognise expressions differently the method must be adjusted for different places.

The universality of emotion was a commonly debated study from researchers, such

as Darwin [12] who first examined expression in humans and animals that were

universal. Later, the work was further expanded by Tomkins et al. [13] in which

he determined there are eight easily recognisable expressions. However, certain

gestures can have different meanings in different places around the world.

Ekman et al. [14] performed a series of tests around the world, including

tribes outside of modern influence. During the tests, they asked the tribes to

perform a series of expressions that relate to certain emotions. They found that

the people of the tribe performed certain expressions the same as people from all

around the world. These expressions are known as universal emotions:

• Surprise: A sudden or unexpected event
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• Fear : The threat of harm

• Anger : Interference with goals

• Disgust : Offensive in nature

• Contempt : Immoral action

• Sadness : Loss of a valued object or person

• Happiness : Pleasure

Figure 2.1 illustrates the neutral face and seven universal emotions defined by

Ekman et al. [15]. They also describe how emotions are caused by a two staged

method:

• Trigger : this is the person, object or event that causes the emotion.

• Impulse: This is an uncontrollable event which can induce one of the seven

universal emotions.

When an impulse occurs, facial muscle moves in tandem to perform the expres-

sion. However, after the initial movement, people may attempt to conceal their

emotions. Although the trigger may be identical, such as a dog running towards

someone, the impulse may be different people with dogs, may become happy, but

those afraid may show fear instead.

Figure 2.1: A visualisation of the seven universal emotions.
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After showing the universality of expression, Ekman et al. [16] continued

to produce a method of both annotating facial movement and intensity, namely

Facial Action Coding System (FACS). FACS is a method of objectively classifying

any humanly possible facial movement and the intensity of the movement. FACS

also provide no emotional attachment to movements, just how the move directly

affects facial appearance.

Each separate muscle movement can be categorised into a unique Action

Unit (AU) [16], and because of the universality of expressions, each expression

can be broken down into a set of AU. The method is capable of recording human

motion accurately even with the variations between individuals, such as wrinkle,

fat and bone structure because the underlying muscles remain similar. FACS has

firm guidelines on how to categories movements and how to interoperate multiple

facial muscles moving at the same time. Also, to score FACS movement, the

intensity is given a value between A-E, where A is a minor activation and E is the

highest intensity possible.

There are many challenges and limitations in the current work. Many re-

searchers focus on the realistic reconstruction of faces, including unique features,

such as wrinkles, which are difficult for consumer based sensors due to noise and

with monocular cameras. Furthermore, this extends to creating real-time meth-

ods that incorporate 3D data. Many of the methods focus on the refinement of

models over the tracking of the faces, preferring either a 2D tracking, which lacks

information but is quick. In contrast a full 3D model approach, that has more

information but is slower and hampered by noise.

2.4 Facial Expression Analysis and Landmarking

The human face is exceptionally complex providing many deformations that change

the appearance of the face. The changes in appearance give insight into the emo-

tions individuals are experiencing, but many of the existing automatic techniques

did not include intensity as a measure [17]. In production, the implementation
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of facial landmarking to allow facial features and movement tracking with high

precision. Furthermore, they realistically represent motion by intensity calcula-

tion from the expression peak to the current allowing realistic change of facial

expressions.

2.4.1 Facial Expression Analysis and Intensity Represen-

tation

Facial expression analysis is a widely researched area with many available tech-

niques for estimating facial expressions using computer vision. The areas of re-

search include expression classification, human-computer interaction and virtual

avatars. For an in-depth evaluation, the reader is advised to read [18, 19].

The pipeline for facial analysis divides into three key segments:

• Face Detection and Pre-Processing : This is the processes of face localisation

in an image. The face can then be cropped out of the image and resized for

further processing if required.

• Feature Extraction: Traditionally is performed into two main ways, such as

appearance-based with Principal Component Analysis (PCA) or Histogram

of Orientated Gradients (HOG) and feature-based using canny edge de-

tection or Sobel. For problems such as facial recognition [20], the use of

appearance-based methodology is more common, but for landmarking, im-

plementation of feature-based methods target specific facial features. Fea-

tures can be represented differently in images, such as edges, points and

blobs, but commonly referred to as “interesting” sections of an image, as

they provide key details of the face. In newer methods that employ deep

learning, the use of machine defined features are implemented. An algo-

rithm decides machines defined features at the time of training; this means

it could use shape features. Shape features, look at whole shape, such as the

lips and chin, these give a fuller view of the face and the expressions being

performed.
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• Processing Output : The final stage the estimation of both the landmarks

and performed expression.

The above three steps are performed in many of the current state of the art

methods [21, 18]. Although, the methods can adjust and add steps to improve

their performance. The focus on the output is a single task, such as landmarks or

expression, but extensions can be made to suit multiple outputs.

2.4.2 Face Localisation and Pre-Processing

The first stage of an algorithm is to localise the face and crop out the face. Viola

and Jones [22] developed a robust object detection algorithm that runs in real-

time. They used haar features as a core section of its processing, which is a series

of sliding windows that perform a series of feature selection methods. The haar

sequence was improved by Lienhart et al. [23] that allows for an increased amount

of identified features. However, like all object detectors, the effectiveness of the

method depends on the training data. Many face detectors train on frontal face

detection only, thus cannot successfully detect heads at extreme angles.

Once the face is detected, post-processing on the facial image to collect fea-

tures can begin. Post-processing usually includes cropping the face and resizing to

suit the next stage of processing. However, other methods of post-processing can

include, converting to Gs and using image processing techniques, such as Sobel or

tone mapping. Another technique includes the use of affine transformations [24]

to align facial geometry. However, this requires accurate landmarking as if the

landmarks position is incorrect the alignment will not be correct; the method also

struggles if the geometry is hidden, preventing face alignment at extreme angles.

Another popular method for aligning images but extends to 3D geometry is

provided through the use of Iterative Close Point (ICP) [25], which over a number

of iterations refining the position closer to the target. ICP has rigid, does not de-

form the target, and non-rigid versions which allow for precision translation of 2D

and 3D geometry. Whereas affine transformation requires pre-existing correlation,
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ICP attempts to predict the correlation automatically; the method can work well,

even with noise data but can suffer from unnatural results, where it fails to match

correct sections of the face.

Other methods for aligning face can integrate unsupervised method such as

3D Morphable Model (3DMM) [26]. 3DMM is a statistical shape method trained

on both scanned 3D model and reference images; this builds a statistical model of

faces, by implementing PCA, appearance-based features are learned. By providing

the trained PCA model with a new image, the PCA model can generate 3D models

that resemble a user unknown to the training data. 3DMM has also been expanded

over the years to include expressions and faces large rotations to the camera.

2.4.3 Facial Data Extraction and Representation

As mentioned, there are two types of image data extraction methods, feature-

based and appearance-based. The feature-based method focuses on localising key

“interesting” section of an image, this highlight facial features, such as the nose and

eyes. Whereas, appearance-based focus on the unique features of each face, should

as the wrinkles, colour and texture. For our work, we focus on both landmarking

which is a feature based method and the facial shape.

In early works, the use of optical flow and base feature tracking can cause

instabilities [27], due to inaccuracies in the landmarks, such as jittering. However,

many of the newer works, such as Weise et al. [4] who uses a depth camera (Kinect

360) for facial animation and Cao et al. [28] who uses a single image to regress 3D

landmarks for animation, the use of facial shape regression is implemented [29].

Methods, integrating PCA [30] considers facial shape when predicting expression,

while still using the popular methods, such as Action Appearance Model (AAM)

[31] and Active Shape Model (ASM) [32] to predict facial landmarks, to segment

the face for shape analysis.
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2.5 Landmarking methods

In traditional methods, the use of machine learning and statistical models provide

accurate landmarking for facial features. This section will break down the his-

tory of landmarking. The first breakthrough in automated facial landmarking was

through a statistical model based method called AAM. In which, could reliably

detect facial landmarks through a variety of pose, both extreme and straightfor-

ward. AAM works by first fitting a deformable base model to a reference image,

the base fitting to the image implements PCA and eigenvectors to represent the

transformations. The base fit, will not be entirely accurate the goal of the algo-

rithm is then to deform the initial fit to the object in the image. The algorithm

performs the merging by repeating a series of warping function and feature extrac-

tion. AAMs required training data as they a based upon the techniques of Point

Distribution Model (PDM) as part of the initial fit, but this allows adaptability for

any number of landmarks and different objects. Other statistical model methods,

such as Constrained Local Model (CLM) have been used to give high accuracy

result in facial landmarking.

Traditional machine learning for landmarking facial features is a vast area of

research. Kazemi et al. [33] showed a real-time high accuracy facial landmarking

method that provides excellent results even on extreme facial poses. They used

an ensemble of regression trees that use pair pixel intensity as feature values. By

using a simple, feature the algorithm can achieve fast processing times but can

become unstable under varying lighting conditions.

In recent years, the highest accuracy methods for facial landmarking integrate

deep learning methodology. Early methods, such as Sun et al. [34], proposed a

fully end-to-end CNN network that follows a standard network architecture of

convolutions and max-pooling before outputs, which gave a high performance but

only could predict five facial landmarks in clear areas of the face. Zhou et al. [35]

and Liu et al. [36] used facial feature detectors to detect and crop facial features,

such as eyes and nose, to feed into smaller neural networks. However, Zhou et al.

[35] included a pre-processing stage to align the face regions. By using a series
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of smaller neural networks, the network focus on the key attributes, instead of

generalising to all the facial features. Lia et al. [37] implemented a much larger

scale network that uses convolution and deconvolution to collect image features.

The network uses a series of Long Short-Term Memory (LSTM) [38] layer to

predict and refine landmark layers. By using deconvolution layers, they overcome

previous issues of over-pooling the images, that shrinks the image too much of

expression to be visible. However, they can only predict five facial landmarks.

2.6 Expression Recognition

Expression recognition is an extensive wide research area, and that splits into two

separate categories. The first category is from the emotion perspective; the goal is

to infer a person’s emotion, such as happy or sad. This research is essential in fields,

such as conversational agents or learning agents, where a system needs to engage

with the user to work effectively. The second category is the objective measure

of facial muscle movements by using FACS. The use of FACS has much more

application and more commonly used in animation as separate facial movement

can aid in transfers not just expressions, but personality traits.

Expression recognition, illustrated in much of the research performed cur-

rently [19, 39]. Wiese et al. [5] presented a method of expression animation based

on depth data only. To do this, they built a series of expression models off-line

and a rigid tracking mask. The rigid tracking mask is used to track the face

through different positions and rotations using ICP. An actor specific PCA model

of expressions is calculated, allowing for comparison of input frames for expression

prediction. By using the expression model and performing PCA on input, frames

allows accurate tracking of an actor expression. However, this required a high-

resolution 3D scanner, whereas noisy low-resolution sensors produce less accurate

results and the technique could only function at 15 FPS. Weise et al. [4] expanded

their work by using less accurate consumer based scanners. Due to the less accu-

rate depth data, colour image data is used to aid in expression prediction. These
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methods perform expression based tracking by comparing pre-recorded footage of

the person performing the expressions and then calculates which expression is the

closest. Cao et al. [29] expanded on the work, by only using a 2D web camera,

the method automatically detects, and furthermore it also allow users to adjust

the 2D landmark positions. Their method then performs 3D shape regression, to

predict the 3D facial model and landmarks.

2.7 Multi-Output Neural Networks

Many newer methods of expression recognition are based upon multiple outputs

to overcome many difficult tasks at the same time, such as facial landmarking

and facial direction [40]. Methods that perform multiple tasks may take longer

to process however, since they are forced to predict additional relevant auxiliary

information, during the training stage, the algorithm receives detailed feedback

of error allowing in-depth learning of both the face and features. By having an

improved knowledge of inputs, the accuracy of this method shows better results

than the single focused networks [24]. For multiple outputs, we focus primarily on

the use of deep learning. The work of using auxiliary information primarily came

from Zhang et al. [40] where they investigated the effect of auxiliary information on

network performance. To perform the experiment, they developed a series of small

neural networks, the only difference being after convolutions the data would go

to multiple fully connect layers depending on the output. The outputs consisted

of both generally easy challenges, such as the five basic landmarks and gender,

but also contain difficult tasks, face direction and age. The author’s experiment

showed that even when adding difficult tasks, by training to predict other relevant

features, the network could learn significantly better, receiving improved accuracy.

The authors expanded their method in [41]. Jourabloo et al. [42] experimented

on this work with a focus on refining a 3D model. Ranjan et al. [43] produced an

all-in-one network that can detect faces in images, and produce landmarks, gender

and pose with high accuracy.
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2.8 Machine Learning

Traditional machine learning is a method of getting a computer to produce a pro-

gram that can replicate the desired output. However, it still requires humans in

some aspects, such as determining the feature selection method. Features are in-

teresting sections in an image, for example, expression detection a feature selector

that provides insight into the lip shape is critical for certain expressions. Fea-

ture selection method can include, Local Binary Pattern (LBP), HOG and PCA

these are known as human defined features as a person has designed and made the

method they use to select features. Features can then be processed and shaped

into a vector for processing by a machine.

After pre-processing the input images for feature selection, there are a variety

of different machine learning techniques, in the aspect of face, Random forests [44]

is typically used, as it allows a diverse set of features, accurate and high-speed

results, as shown by Kezemi et al. [33], where they performed facial landmarking

in a millisecond.

Traditional machine learning works as it is capable of determining many linear

problems with high accuracy. Machine learning can quickly find correlations, even

with difficult non-linear challenges using higher dimensional data. However, a

limitation of machine learning is the reliance on human defined features and require

the person’s core understanding of the data.

2.9 Deep Learning

Deep learning with CNNs is a method of solving complex non-linear relationships

between input data and output. While machine learning is an open box, deep

learning networks are more of a black box as the whole network is trained rather

than just the prediction section, such as Support Vector Machine (SVM) in ma-

chine learning.
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Deep learning uses a neural network which is designed at the start and is

vastly interchangeable, with researchers capable of creating a network structure to

suit the problem faced. The first stage of CNNs is the use of convolutional layers,

which act as the feature selection stage of a neural network. Convolutions act as

sliding windows, performing basic matrix operation to decide the value of a single

matrix cell, which is similar to a traditional kernel-based method, such as Sobel.

After each convolution, the use of a linear activation unit normalises the values

from convolutions. A neural network can optionally apply pooling which down-

samples the feature maps. The convolutions and pooling can continue for many

iterations through the network, as the network becomes deeper more in-depth

and descriptive features are identifiable in images, but at the cost of increased

processing requirements.

The final stage of a neural network is the fully connected layers or Multi-

Layered Perceptron’s (MLP). The MLP is a series of interconnected neurons,

each neuron in one layer is connected to each neuron in the next, hence fully

connect layer. The connection applies a weight the values in each neuron and uses

the new value to determine the activation of the neuron. The output of the final

layer is the network’s prediction of results.

Although deep learning has shown vastly improved accuracy compared to

traditional machine learning [45], the method is limited as it requires a vastly

increased amount of training data. The increased data requirement is due to the

full training requirements, such as learning the kernels for feature selection and

ensuring the trained networks can work for a diverse amount of ethnicities.

2.10 Facial Animation set-up

In high-end commercial animation productions, the implementation of facial land-

marking can track the expression and also the intensity of the movements [21, 46,

47]. Landmarks also allow the presence of multiple expressions or non-universal de-

formation. As a result, this research will target on facial landmarking [48, 49, 50].
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For different methods of motion capture, facial models require unique preparation,

such as blendshape library for shape interpolation, or the use of control points for

model deformation. This section will discuss the available methods of generating

3D facial models and the techniques used to animate the models.

2.10.1 Model Generation

Generating a 3D model of a user’s face is a difficult task, as for animations the

model should be anatomically correct, realistic and as close to the actor’s features

as possible. In film and television industry, they can use professional 3D modellers

to build a realistic model of a user’s face. However, a commonly used and efficient

method, but highly expensive is the use of a lightbox [51]. Lightboxes work by

having the participant sat in the middle of a frame covered in controllable lights

and light receivers; a system then activates different lights and measure both the

diffuse and specular light bouncing off the individual’s features with high accuracy.

The participants will sit in the box and record a series of expressions to create

a blendshape library. Unfortunately, due to the required expertise and cost of a

professional modeller or a lightbox, these methods are not applicable to consumer

bases.

A popular method that applies to consumers is the use of a 3DMM [26] to

generate models of a user’s face. Once trained,3DMM can produce a wide array of

3D models from single images without the need of any depth data. 3DMM builds

a statistical model of an object, and stores parameters that define the shape, in

our case this could be landmarks. By using the model trained on a wide variety

of faces, inputting of facial parameters can create a realistic representation of a

user the trained model has not seen before, as many people share similar features.

However, constrained by the ranges in the training set. 3DMM is commonly used

in many different aspects of facial animation as it can also be used to perform

some expressions. Also, 3DMM in constrained as from 2D data it cannot collect

in detailed 3D features of a face, meaning the model may fit the appearance, but

may not have to true depth structure of the individuals.
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When depth data is available, most researchers implement the use of De-

formable Models [52] but this method requires some pre-processing. Firstly, gen-

erating a 3D model depth data is performed; this means the participant must hold

an expression while rotating their head to build a full model. Then a template

model is deformed to the rigid model creating a zero-hole model. This process

is slow and required in every expression the model. However, future work using

Dynamic Expression Model (DEM) [4] and Displaced Dynamic Expression (DDE)

[29] a single capture overcomes the issue, but still requires the pre-processed single

model, other methods allow for the models to be built during run-time and refines

them throughout the performance [6].

2.10.2 Rigging/ Parametrization

Using pre-built models for animation requires the ability to deform its shape to

replicate an expression. The model does this by moving the vertices that make

up the model’s structure. However, a face model is just a visual representation of

the facial skin, with no information of how the underlying bones and muscles in a

real person deforms the features. The process of rigging is to replicate the skeletal

and muscle features of a human on a 3D model and then weight the vertices to

the bones to push and pull the mesh. Weighting the bones to the skin is key, as

it simulates the muscle skin relationship in real faces.

2.10.3 Blendshapes

Blendshapes illustrate in Fig 2.2, are a library of deformations on a 3D model.

The method works by deforming a model vertices structure to replication facial

movement; done through rigs and vertex manipulation. Each of the libraries

deformations can be interpolated to replicate the stored deformations, but this

also allows interpolation of multiple deformations at the same time. Blendshape

libraries can contain hundreds of different expressions that can be interpolated to
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either alone or in combination. Blendshapes are the most common method used

for facial animation, as it can be used to display realistic expressions in real-time.

In existing works by Weise et al. [5, 4], models are generated as a pre-

processing step. To generate a model, the user must perform and hold an ex-

pression in front of a depth camera while rotating their head. While holding and

rotating their face in front of the sensor, the technique performs a series of tasks:

• Firstly, segmentation of the face from the depth map and generates a 3D

model on per frame basis.

• The generated model aligned with a rigid ICP mask, which all previous

frames have also aligned, allowing for smooth integration.

• Model deformation is then performed to deform and expand the previous

iteration to build a complete view of the face and expression.

• Finally, a template model that contains no holes, then deforms to the inte-

grated model produces the completed mask.

Weise et al. is an effective method but has it’s limitations, it can effectively build

a repository of user-defined blendshapes, but relying on a user’s ability to perform

and hold expressions is difficult without training and practice. Also, to deform

the template mesh, the user must manually annotate to facial feature on the 3D

model, which is difficult process even for trained annotators on a 3D model as

we demonstrate in chapter 4. Cao et al. [28, 6] expand on this by building an

automated method that recognises when a model requires refinement and when a

suitable pose is ready. Therefore, unlike Weise et al. because of the automated

refinement of pre-set motions, new expression can not be added.

2.10.4 Animation and FAU Generation

For real-time animation, the calculation of FAUs drives a library of Blendshapes.

FAUs is a series of values, between 0-1 but in cartoon characters can extend beyond
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1, that instructs how to deform the character mesh. As the face is complex and

Blendshape libraries can be different in scales; there are different standards for

AUs. FAUs can be coded to follow differently available deformation descriptors,

such as:

• FACS: [16] An anatomically correct description of facial movements that

uses two values muscle moved and intensity of movement.

• MPEG-4: [53] Is the current standard in facial animation using FACS but

tailored towards animation.

• Custom encoding: For some methods, such as games and on mobile devices

custom encoding methods are defined as full MPEG-4 is not possible with

the restrictions placed on models.

Figure 2.2: Example of an Autodesk model with a library Blendshapes
(Shape-points in Blender) on the right.

2.11 Depth Sensing

Depth Sensing in real-time can be done effectively by two existing methods, struc-

tured light and ToF sensing. This section will evaluate both of the methods and

give reasoning to the sensor type we implement.
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2.11.1 Structured Light

Structured light [54] is an older method of predicting the depth of a scene; it

projects a pre-made image into the scene, such as Fig 2.3. The device then takes an

image of the scene with the pattern projected. As illustrated by Fig 2.4 the image

is warped by objects in the scenes as different depths causing the evenly spaced

lines to go closer, further and change direction or shape when they encounter an

object in the scene. As a result of the warping and with the original image we can

use these distortions to estimate how far away an object in the scene is.

Figure 2.3: Example of an image used by a structured light projector, some
sensors employ variations with different colours or specular patterns to increase

accuracy.

Figure 2.4: Example of the image from Fig 2.3 projected into a 3D scene,
notice how the straight lines curve, change direction and thickness when inter-

acting with objects in the scene.

Although this is an effective method, there is some limitations to this method:
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• As illustrated in Fig 2.4 the projection causes shadows, and glare causing

some areas to lose track.

• As the projector and image cannot be at the same location, occlusions due

to the viewing differences will be present.

• The technique can only track areas where the image has contrast, as a plain

surface has no information to show depth change.

• Overly complicated images can confuse the method making it unable to get

accurate depth details.

With the first Kinect, implementing a Structured light scanner that projected

an IR specular pattern into the scene to calculate depth. However, this was a

low-resolution image containing noise artefacts.

2.11.2 Time of Flight

ToF similar to Structured Light requires a projector. However, it is more common

for ToF to implement IR technology. The sensor blasts IR light into the scene

and then uses an IR receiver to collect the burst of lights. As IR light travels at

a constant speed by recording the time from projection to the time of return, the

distance tracked reliably in real-time. The sensor does suffer from some limitations,

such as:

• Occlusion from the projector and receiver being at different positions.

• Differing light absorption through different colours and textures.

• Natural decay and disruption in received IR light.

With the Xbox One Kinect, implements a ToF sensor, providing a higher resolution

depth image than the original, but still contains some noise artefacts.
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2.12 Depth based facial landmarking and anima-

tion

As shown, in high-end production companies depth data for animation is highly

desired especially with the face, where equipment is made to fit the face holding

multiple cameras [55]. The current commercial systems, use the multiple cameras

and image stereography techniques to “stitch” images together, allowing predic-

tion of some depth information. They also implement visual markers for aid in

automatic landmark detection, these markers allow for high accuracy tracking, in

all areas of the face, but requires a long set-up time, prone to human error and

markers can fall off. The markers, when combined with multiple cameras allows

high, but limited range accuracy of 3D landmarks with the calibrated cameras.

However, with depth sensors, we can capture a realistic 3D face model in real-

time or high-speed (90FPS) with newer sensors, such as the real-sense D435 [56].

A single depth sensor could retrieve millimetre precise facial structure. Also, this

would reduce both the weight and complexity of a Head Mounted Display (HMD),

but to improve the model, it must have clearer details required for accurate 3D

landmarking.

The research in landmarking from 3D data is extremely limited; most work

focuses on the pre-built 3D model rather than the depth map. Methods, such

as 3DMM [26] and other 3D face reconstruction methods [57, 58, 59] and other

statistical model-based methods used to generate models from 2D images, by using

a statistical model the vertices are always in predetermined iterations, they can

be used to retrieve landmark coordinates. However, even in newer research the

models, they look like the individual they are still struggling with some expressions

and areas of low detail. Other methods to landmark use raw 3D models generated

from depth maps, which follow work on deformable face models, where a template

facial mesh is deformed to the structure of the depth map generated 3D model, and

a similar method to 3DMM to retrieve landmarking. Another notable method is

the use of curvature analysis [60]. However, this only work for landmarks in areas

of high curvature change and with low noise models.
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Rendering and processing on 3D models is a difficult and processor intensive

task, a solution to this is to implement computer vision techniques onto the depths

maps, which contains the critical 3D information, while in an easily processable

format for real-time use. Our work focuses primarily on the use of depth maps to

produce accurate 3D facial landmarks, without the need for a 3D model generation

or approximation.

2.13 Research Direction

With much of the available work focusing on model generation and using tradition

machine learning algorithms getting good results, but deviating significantly from

how the start of the art methods function. State of the art techniques employs

the use of high accuracy landmarking to identify and interpolate FAUs. This

method achieves the incredible results seen in many modern day film productions.

The issue with state of the art is the use of singular or multiple visual cameras,

and retro-reflective markers to identify the key tracking locations, which allows

accurate tracking and some 3D prediction possible.

Existing research follow the process of generating or predicting full 3D models

for prediction when a much smaller amount of points for accurate facial expression

determination can be integrated. The expressions can then transfer to a pre-

existing 3D models that have been set-up for animations, in a similar manner as

the current research. This help in many aspects as the research in this area does

not show how accurate 3D prediction of data is when using 2D data [29], while

also avoid complex processor intense model build processes, which require storage

in memory.

Detection of 3D landmarks has many challenges that can prevent an accurate

method from being deployed. Based on the currently available research there are

many challenges to be faced, the complexity of the face, the speed of movement

and the noise present in consumer-based depth data. The use of machine learning

and statistical models have previously implemented for animation purposes, with
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the authors created a prevousily available commercially software [2]. The problem

of detecting accurate 3D landmarks is still a common research problem and then

determining how many points is sufficient for FAU prediction. Furthermore, whilst

machine learning has provided a solution for these problems, the use of deep

learning is not used in this field, in which it could provide vastly improved accuracy

[18].

2.14 Summary

This chapter introduced the theory of expressions and facial movements and why

they are required to infer expressions. It then moves on the detection and analysis

of facial features, for both expressions and landmarks. Analysing and predicting

these point is common in 2D but is much more difficult in 3D, even for trained

annotators. However, this field is steadily growing with many researchers tar-

geting the alternative parts required for face representation in 3D. We still have

many improvements to make before this research is available for high-end and high

accuracy performance.

The work in this area focuses mainly on generating and predicting high res-

olution and realistic facial models, which is an intensive task and in prediction

make assumptions to the facial structure. However, in reality, only the key track-

ing points are required for the transference of expression to a 3D model. The key

position can be generated and synthesis in a similar way to the 3D model, but

with less processing power due to the reduced amount of points for generation and

the need for triangulation removed. This chapter has described the problem of

retrieving the landmarks in 3D and the issues with prediction and generating of

3D models for use in this field.
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Chapter 3

Theories and Techniques

This chapter explains the theories and reasoning of the techniques being used to

solve the problem statements. The section will explain in detail the inner working

of each of the techniques implemented in the thesis.

3.1 Introduction

The literature shown in the previous chapter shows that the research in this area

is widespread, covering many different aspects. Furthermore, we are focusing on

landmarking facial features in depth data for expression recognition and anima-

tion generation. The current section of the thesis we describe the theories and

techniques used to solve the issues outlined in chapters 1 and 2 of the thesis.

This chapter describes the camera settings, perspectives and different aspects of

a depth sensor, such as how the RGB image is recorded differently to the depth

map. Then, the techniques used in face image processing are described, both

RGB and depth. Finally, the use of deep learning in face processing and relevance

performance metrics are presented.
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3.2 Camera Settings

The camera used is a crucial section of the facial analysis, in our work we focus

on the Kinect version 2 as this is used in face research [61]. As the Kinect is a

multi-sensory device with 3D capabilities, background knowledge of the camera

spaces and 3D viewing frustum is required.

3.2.1 3D Viewing Frustum

In 3D environments, virtual cameras are used to view the scenery, to decide which

sections of the environment are rendered virtual cameras implement viewing frus-

tums that both identify and rendered the 3D geometry in view; This section will

explain and describe the different setting of the frustum. The primary setting is

the view mode, orthographic or perspective which drastically changes the image

generated by:

• Orthographic cameras use a box-shaped frustum to choose which objects

to render. However, unlike perspective cameras, the box-shape removes the

perception of depth.

• Perspective cameras, unlike orthographic, uses a pyramid-shaped frustum as

illustrated in Fig 3.1. The pyramid-shape allows the perception of depth in

a 3D scene.

Figure 3.1: An example of a 3D viewing frustum.
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As shown in Fig 3.1, the camera acts as the eye in the scene. The near and

far viewing planes are used to cull and crop objects that are not in the view of

the camera, this reduces the processing requirements before rendering. The final

setting is the Field of View (FOV), which determines the height and width of the

camera’s view.

3.2.2 Alternative Viewing Spaces and Metrics of Multi-

Sensory Devices

Multi-Sensory devices, such as the Kinect uses different metrics for the different

views as shown in Fig 3.2. Each sensor produces images. Due to different FOV, the

resolution and information captured by the RGB and depth cameras are varied,

as illustrated in Fig 3.2. Knowledge of the different spaces is required to use

multi-sensor devices effectively. The Kinect has three different viewing spaces:

• Image Space: This is the space of the colour image and measured in pixels,

as standard, the images are full high definition (1920*1080) in blue, green,

red and alpha format.

• Depth Space: This is the space of the depth image, where the colour image

stores the colour intensity at each pixel, depth image store the distance of

an object from the Kinect in millimetres.

• Camera Space: This is a middle space it contains the information of the

sensor position in relation to each other, with the distance measured in

meters.

Because of the different available spaces, the device requires calibration to

allow coordinates to map between the different views.
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Figure 3.2: Illustration of different viewing spaces from the Kinect depth
sensor.

3.3 Face Processing

Facial analysis is a vast research area covering but not limited to face detection,

segmentation and landmarking. For face processing, much of the research is ex-

tended and requires other techniques to be used as pre-processing steps, such as

landmarking methods as standard use face detection to crop out the face before

landmarking. This section will provide an overview of the different stages of facial

analysis.

3.3.1 Face Detection

The purpose of face detection is to localise a face and produce a bounding box

for the face. Once the face has a bounding box, it can be cropped and resized

for further processing. The Viola and Jones [22] is a commonly used method of

object and face detection as it allows fast image processing with high detection

rates. The algorithm splits into three main processes:
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• First the collection of Haar-like features with an integral image. The integral

image is a summed area table that uses rectangle features, produced by the

Haar Features.

• Secondly, The AdaBoost [62] learning algorithm is used to increase training

times and select the best features for the classifiers.

• Finally, the Viola and Jones use a series of weak classifiers in tandem to

produce a reliable result.

However, new techniques employing deep learning networks have been imple-

mented [63] and have vastly improved on accuracy under a wide range of head

poses. The deep learning network attempt to predict the top left and bottom

right corner of each face allowing a bounding box to be inferred. However, more

recent work implements complex multiple process networks, such as Mask-RCNN

[64] and Hyperface [43] to detect an object, crop, resize and process the output

further. The ability to detect and crop a face inside a network allows all-in-one

systems to be designed.

3.3.2 Landmarking

Facial landmarking is the process of identifying and localising critical locations

on a face image. The location of the facial landmarks is shown in pixel position

in relation to the input image size. In a traditional system, the use of machine

learning techniques with random regression forests is employed [65] or statistical

shape models. As with face detection, deep learning has improved the result of

landmarking.

Accurate landmark localisation is a key for many systems, such as facial

alignment. In facial animation the landmarks can be used in two ways:
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• Pre-recorded expressions: commonly used in high-end productions, recording

expressions before performance allows references to be made. After the pre-

recorded motions, new sets of landmarks can be compared for accurate facial

animation inference.

• Model-based inference: by normalising the facial landmarks with a neutral

frame. A trained model can take input landmarks and estimate an expression

or FAU.

3.3.3 Denoising

Denoising is a large area of research in 2D image processing [66]. The use of

methods, such as BM3D [67] allows for the noisy images to be restored. However,

for denoising depth images, RGB data is used to inform the system, to remove

and “smooth” noise from an image. However, the RGB systems can struggle in

areas of high contrast change, such as text on a shirt can cause inconsistencies

with results.

The use of neural networks on this problem has been widely researched, with

many networks achieving results, near indiscriminate to humans [68, 69, 70]. How-

ever, this method has not been extended to depth data. For the denoising networks

to be effective, a large scale dataset is required, but for depth data, this is currently

not available.

3.3.4 Automated Processing

For our work, we use the Dlib [71] package to detect faces in an image. Dlib

combines multiple methods to achieve high accuracy and reliable face detection.

Dlib uses HOG as a feature descriptor and a linear classifier to determine a face.

To aid in different face scales and image resolution, Dlib also uses the Image

Pyramid technique and the traditional sliding window. Another solution is the

CLM-framework [72], also known as the Cambridge facial tracker, which provides
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an extended amount of tracking features, such as head orientation and AU pre-

diction. However, there are license restrictions on its use and due to the extended

features requires more time to process. The CLM-framework also relies on Dlib

for its core components. The developers of CLM have switched focus to the new

projects of OpenFace Toolkit version 1 and 2 [73, 74] which incorporate deep learn-

ing algorithms for prediction of landmarks, FAUs and head pose, improving both

processing time and accuracy of the toolkit. Similarly, commercially available tools

are available such as Face++ [75] which incorporate high accuracy deep learning

models for high-end results, but cannot function in real-time as data must process

on their servers. As shown many effective systems have implemented Dlib as a

base for their systems, as it is an effective method public available, and due to

time restrictions, we use this as the core automation program.

For landmarking, Dlib uses a method by Kazemi et al. [33], that allows for

high accuracy landmarking of facial images to be performed within a millisecond.

They propose an approach that uses multiple regression trees working in tandem.

The decision is made using intensity threshold differences at the pixel level. In

current works, the use of CNNs is state of the art achieving high accuracy scores.

3.3.5 Depth Processing and Normalisation

Depth data has a variety of ways to be stored, and some researchers prefer to

render and only store 3D models. In our work, we store our depth maps similar to

images. We flatten images into 1-dimensional arrays and save as a 16-bit unsigned

short integer. Using 16-bit unsigned short integer allow for values outside normal

image range, 0-255, as the Kinect uses a millimetre metric, with a maximum range

of 8 meters, giving us a range between 0-8000.

As we store the image as 1-dimensional arrays once loaded and reshaped

back into 2D matrix the structure, similar to images. However, there are some

considerations to be made before processing:
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• Before processing, any values outside the reliable range requires culling,

Kinect reliable range 0-8000. The value that is not in the reliable range

resets to 0.

• Many kernel methods use the fact that images have colour information that

can smoothly blend or sharp edges. Depth has both of these but contains a

server amount of noise which can affect many traditional methods negatively.

Depth data can be treated both as normal raw data, but some methods may

require normalisation for depth data we use the following equation:

Norm =
Input−Min

Max−Min
(3.1)

where:

• Norm: is the normalised value.

• Max: is the maximum value, 8000 for Kinect.

• Min: is the Minimum value, with the Kinect values under 400 are considered

unreliable, but as unknown and unreliable values reset to 0. Using the value

400 as the minimum would cause a physical wall to appear in generated

geometry.

3.4 Deep Learning

Deep learning with CNNs is a subset of traditional machine learning, but in recent

years has significantly improved the accuracy and reliability of methods. Deep

learning can be applied to many linear and non-linear challenges. The principal

behind Deep Learning with CNNs is that the computer learns both the features

to extract and how to interpret those features. We give an overview of how deep

learning works and the background details on how a network begins to learn. After

the background, we show each stage of a traditional CNN and describe the inputs

and the process of each section.
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3.4.1 Background

The theory behind the use of machine learning is the use of derivatives. Derivatives

have two forms, but for deep learning, we use them to determine the gradient of

a line at a certain point. The slope predictions are useful in deep learning during

the training stage of a network, as the network learns processes examples and

compares to the ground truth the optimiser can plot the errors as described by the

loss function. Furthermore, when the optimiser adjusts the parameters to improve

data prediction, it creates additional plots. By using derivative functions, we can

determine the gradient; this allows us to determine if the network is performing

better or worse. Derivatives are especially useful with deep learning as it can

model non-linear functions as linear.

An example of how derivatives are calculated is provided. If we use the

function illustrated in Fig 3.3, where: f(x) = x2 + 5, we can calculate the slope

between two points with equation 3.2. However, this requires two points, to solve

this and calculate the derivative, we modify the input function to add a minuscule

value, such as 0.00001. By adding a small value, we can calculate the slope at a

specific point.

slope =
y2 − y1
x2 − x1

(3.2)

where:

• y is a 2D vector

• x is a 2D vector
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Figure 3.3: This illustrates how changing the input x to function f , affects
the output value, creating a ‘u’ shape.

3.4.1.1 Convolutions

A convolution is a kernel-based method to detect features in an image, it imple-

mented a small sliding matrix (kernel) over a matrix (input image) and applying

basic matrix operands on the values in the image, by the values provided in the

kernel. The kernels can perform a wide array of tasks, such as edge detection and

direction. In a CNN, a convolution layer has adjustable parameters, such as:

• Kernel Size: This value determines the kernels height and width in pixels.

Adjusting the filter size influences the networks ability to determine specific

features in an image.

• Stride: This value determines how much the kernel moves after each calcu-

lation. By increasing the stride, due to the nature of a kernel calculation,

the image is also down-sampled as it begins to skip pixels.

• Padding : Due to the nature of kernels where it used to calculate a single

value, for the pixel in the middle of the kernel, edges are usually skipped,

reducing the image size. Padding allows for the images to have zeros placed

around the edge, so the first pixels fit into the image edge, maintaining image

size.
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• Filter Count : This is how many kernels are used on the input image, each

kernel is running on the raw image and gives a separate output image. By

using an array of kernels at each layer, a single layer can identify a multi-

tude of different features as each kernel can focus on highlighting alternative

features, as shown in Fig 3.4.

Figure 3.4: An illustration of different filters that can be used to highlight
features.

3.4.1.2 Activation Functions

Activation functions take in values, processes them through a non-linear function

and use this value to determine if the neuron is activated. A commonly used

activation function is the ReLU, as it can aid increase convergence speed compared

to more complex sigmoid and tanh functions, but is limited as some neurons can

‘die’, due to the inability to use negative values.

In our work, we focus on the use of ReLU as other methods, such as sigmoid,

illustrated in equation 3.3, normalises the data between the range of 0-1. Fur-

thermore, for landmarking, this reduces the capability of the method as it cannot

return a pixel value, visualised in Fig 3.5. Whereas ReLU allows for an infinite

range of output values that are non-negative, this allows pixel positions for any

scale of images to be trained.
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Figure 3.5: This image shows ReLU (left) activation vs sigmoid (right), no-
tice how sigmoid normalises the range, but ReLU allows an infinite range, but

without negative values.

f(z) =
1

1 + e−z
(3.3)

where:

• z is the input to a function

• e is an exponential function

f(z) = max(0, z) (3.4)

where:

• z is the input to a function

• max returns the value of z if it is greater than 0, else it returns 0.

3.4.1.3 Pooling

Pooling is used to downsample an input, by focusing on certain values in the image

depending on the type of pooling used, such as in Max pooling. Max pooling

splits the input into separate non-overlapping segments and then for each window
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returns the highest values in each window, as illustrated in Fig 3.6. In pooling,

the size of the windows that split the images is controllable. Max-pooling similar

to convolutions can have variable sizes for the pooling window.

Figure 3.6: An example of a max-pooling window the network focus on the
highest values.

3.4.1.4 Fully Connected Layers

Fully connected layers can only take single dimensional data, and each neuron

connects to all values in the previous layer. Each connection has a weight applied,

with basic matrix operation with the addition of a bias value. These layers are

commonly referred to as the MLP. As the input to neural networks for our work is

images, which consists of two or more dimensions based upon the channels available

in the final layer, matrix reshaping has to occur. As the matrix is reshaped, the

network suffers from loss of spatial data.

3.4.1.5 Output

The output is the last layers of the neural network, regarding regression the final

fully connected layers, can be used as output. Whereas, in classification specialised

layers are required, such as softmax. Regression works natively with neural net-

works as the MLP performs weighting on the output neurons as it is processed,

these weight act as regressors and refine the values to their required values.

3.4.2 Loss

The loss is the error the network makes during training, at each stage of the

network, such as convolutions, we can calculate how far from the result we want
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the network is. The loss, used in determining the effectiveness of a network as

high loss indicates the networks is deviating from the wanted results by a high

amount. Loss can be calculated, in many ways, such as MSE and MAE.

The loss has a significant impact on the performance of the network by af-

fecting how it will learn. As shown in Fig 3.7, when de-noising images the type of

loss drastically affects the results of the cleaning. In Fig 3.7 we show overall, the

traditional method achieves better results than MAE trained network in, MAE,

MSE, accuracy and PSNR, in which we discuss further in Chapter 6.

Figure 3.7: This image shows how changing the loss function affects the result
of image de-noising. Even though the network is trained to optimise MSE, it
still achieves a better MAE score than the MAE based network. The network

was trained on the Morph dataset.

The difference, highlighted in Fig 3.8. MSE allows the hair to become better

defined and the bottom eyelids clearer.
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Figure 3.8: This image shows the effect of the denoisers when trained on
different losses.

3.4.3 Optimiser

Optimisers are used exclusively in the training stage of the network; they update

the weights of the network by using the information gathered from the loss stage.

The purpose of the optimiser is to guide the weights while avoiding the “man

on the hill” problem: If a blindfolded man is stood on top of a hill, and needs

to get to the bottom how does he get down? The problem seems simple, as he

slowly walks down the hill, the moment the incline stops the man has reached the

bottom. However, as shown in Fig 3.9, in reality, there are many stages in which

the gradient evens out, but has not reached the lowest point. The sections in the

gradient that even out are referred to as local-minimums and the optimisers, try

to avoid these to best perform the task they are learning.
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Figure 3.9: An illustration of a deep learning gradient; the loss can start
at any point along the line. Blue points show local minimums, in which the
network can appear to have converged but have not fully. The green point is
the global minimum at which we want our network to reach. Red points indicate

local maximums, which we want avoid.

A CNN works by combining these different sections into one complete net-

work; this section will show how a network is formed and trained. A standard

CNN network takes a single image as input; input image is fixed size meaning

images are resized to fit the required dimensions. The image is processed using

convolutions with activations, to reduce over-fitting and processing requirement

pooling is integrated [76], as it maintains a high-value feature set. After a series

of convolutions, activations and pooling the outputs a flattened into a single di-

mension, losing spatial information. The fully connected layer weight the features

using matrix operators with the inclusion of learnt biases, to determine the logical

output.

A CNN requires training to provide good results; this requires a large amount

of labelled training data to ensure high accuracy results. The network learns by

processing the training data in batches; larger batches allow the network to become

more generalisable. Each batch of training images are processed by the network

with the loss being calculated at each stage until the output has been produced,

this is forward propagation. The next stage uses feedback from the loss and the

optimiser to adjust the weights of the neural network based upon the learning

weight value, this is known as backpropagation.

An example of the method Adam [77] or Adaptive Moment Estimation is

given as this is the loss function performs well in this field. Adam is an improved
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method that learns from previous methods, such as AdaDelta, by remembering

previous past gradients, as shown in equation 3.5. Then, the weights are then

updated throughout the network with equation 3.6.

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(3.5)

where:

• m̂t is a vector of means gradients

• v̂t is a vector of the gradient variance

• β1 is 0.9, given by the author of the method

• β2 is 0.999, given by the author of the method

θt+1 = θt −
η√

v̂t + exp
m̂t (3.6)

where:

• m̂t and v̂t are the values shown in equation 3.5

• exp equals 10× exp(−8) as given by the author of the method

3.5 Performance Metrics

In this section, we describe and explain the different type of metrics we use

throughout the thesis to evaluate the work performed. We begin with the per-

formance metrics, which provide views of how the method is performing, such as

MSE for the distance from the correct answer. Then, the statistical methods used

for evaluating techniques and comparing with others are presented.
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3.5.1 Loss Functions

As the problems of landmarking is a regression-based issue, the use of MSE as a

loss function is implemented. MSE, as shown in equation 3.7 used in many deep

learning architectures.

MSE =
n∑

i=0

(yi − y′i)2

n
(3.7)

where:

• n is the number of samples in the training batches.

• yi is the ground truth for the training image.

• y′i is the predicted output for the training image.

As shown in equation 3.7, by squaring the value the function focuses on large

deviations from the ground truth. The focus on large error allows a network to

avoid major mistakes, and if an error does occur it is naturally small. However,

this does mean MSE commonly overlooks small errors.

Additionally, the use of MAE, illustrated in equation 3.8, can be used as a loss

function. MAE allows equal weighting to all errors. By allowing equal weighting,

the method can be more robust but is more prone to significant errors.

MAE =
n∑

i=0

|yi − y′i|
n

(3.8)

where:

• n is the number of samples in the training batches.

• yi is the ground truth for the training image.

• y′i is the predicted output for the training image.
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For classification based problems different evaluation techniques are required,

compared to regression problems. Classification methods produce a yes or no

result, but regression can produce a wide range of values. We use classification

in our methodology. Thus we show accuracy metrics. Classification with deep

learning can be performed in two ways:

• One-hot: A binary method of determining a class, for each output there is

one output, but only one can be “hot” equal to one. As shown in equation

3.9, binary accuracy as default in Keras, rounding is performed allowing for

a 0.5 error margin.

• Categorical: This works in single output networks with multiple classes, the

output of the method is a range, such as 1-5. The focus is on when output

is in the same range as the class. As shown in equation 3.10 categorical

accuracy uses the maximum predicted values, which is why value in the

range predicts as true.

BinaryAccuracy =
X

i
(3.9)

where:

• X is the number of correctly predicted classes when the predicted is rounded

to the nearest class.

• i is the number of images in prediction.

CategoricalAccuracy =
X ′

i
(3.10)

where:

• X ′ is the maximum value of correctly predicted classes when the predicted

is rounded to the nearest class.
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• i is the number of images in the prediction

As the aim of Deep Learning is to reduce the loss, some metrics cannot be

integrated as a loss function, such as PSNR illustrated in equation 3.11. PSNR is

used as a guide to how well denoising algorithms are performing, but the higher the

value, the better the algorithm has performed, meaning a network would naturally

train to get worse results, rather than better.

PSNR = 20× log10(MAX)− 10× log10(MSE) (3.11)

where:

• MAX is the maximum possible value in the ground truth, for the depth data,

this is 8000.

• MSE is equation 3.7.

As shown in equation 3.11, PSNR derives partly from MSE, but also consider

the maximum possible value to identify how much noise in relation to a signal

exists.

3.5.2 Statistical Analysis

3.5.2.1 T-Test

The t-test is a method of determining if there is a significant difference between

the means of two populations. The t-test is used to highlight both the difference, t-

score, and the chances that the data occurred randomly with the p-value. However,

the t-tests have two different variants:

• Standard t-test: is used for comparing two separate populations, such as in

healthcare where there is a control group with placebos and the test group.

In the standard t-test, no participant can exist in both populations.
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• Paired t-test: is used for comparing one group before and after, such as

improvements after training or for putting two populations through the same

procedure, such as vehicle safety check were all manufacturers have to go

through the same process.

t =
(
∑

D)/n√∑
D2−(( (

∑D)2

n
)

(n−1)(n)

(3.12)

where:

•
∑

D is the sum of the difference between each of the participant’s results

•
∑

D2
is the sum of the squared differences between each of the participant’s

results.

• (
∑

D)2 is the sum of the difference between each of the participant’s results,

squared

• n is the number of participant’s

• t is the t-score

In our experiments, we use a paired t-test. The t-score is calculated using

equation 3.12. The equation uses versions of the sum of the difference between

participants before and after results, divided by how many participants there are

at different stages.

The second stage of the algorithm is to determine if the results are by chance

using the p-value. The p-value is predetermined and set by the user, the lower the

p-value, the more chance of a null hypothesis, but shows the significance of the

result better. Many tests employ a p-value of 0.05 for experiments. To calculate

this, we use 1 − n and look up the value in a t-distribution table. By comparing

the value in the t-table to the t-score, ignoring ± as it works both directions, with

a set p-value a calculation to perform the significance of the results is possible.
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3.5.2.2 Standard Deviation

The SD calculation, illustrated in equation 3.13 is used to determine by how much

the results deviate from the mean. By calculating the deviation, it allows tracking

of the consistency of the data and how far out of the standard range value is. The

lower the deviation, the more consistent the results are. Whereas, the higher the

score, the less consistent and harder to predict the results will be.

σ =

√√√√ 1

n

n∑
i=1

(Xi − µ)2 (3.13)

where:

• σ is the SD

• n is the number of samples

• X is the input number

• µ is the mean of the input numbers

As shown in equation 3.13, the deviation is calculated by subtracting the

mean from all the input values and squaring the result. By squaring all results of

the calculation are positive. The next stage is to average out the squared values

and find the square root. The result is the deviation ± from the mean value.

For example, if we were determining the time to perform a task in minutes, and

the mean time was an hour with an SD of 5, the task would take between 55-65

minutes to complete.

The SD also only works for the population trained. For example, if the

deviation calculates for height in a specific country, it could not be used for other

countries as the deviations would be different.
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3.5.2.3 Confusion Matrix

To determine the effectiveness of face detection methods, the implementation of a

confusion matrix gives valuable insight to the performance. The matrix consists

of 5 values:

• The total inputs for evaluating the method.

• True positives, the number of values that correctly classified as true.

• True negative, the number of values that correctly classified as false.

• False positive, the number of values that incorrectly classified as true.

• False negative, the number of values that incorrectly classified as false.

The matrix gives a general view of how the method is performing. However, from

a confusion matrix, we can calculate a series of values, such as accuracy, precision,

specificity and recall, which give in detail views on the performance.

Accuracy, as shown in equation 3.14, shows how well the technique is per-

forming by correctly classifying items.

Accuracy =
(TP + TN)

Total
(3.14)

where:

• TP is the number of true positives

• TN is the number of true negatives

• The total is the number of inputs in the matrix

Specificity as shown in equation 3.15, shows when the method accurately

predicts false, to check against false positives.

Specificity =
TN

Total
(3.15)
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where:

• TN is the number of true negatives

• The total is the number of inputs in the matrix

Precision as shown in equation 3.16, shows when the method accurately pre-

dicts true, to check the true positive rate.

Precision =
TP

Total
(3.16)

where:

• TP is the number of true positive

• The total is the number of inputs in the matrix

3.5.3 Distance Metrics

Distance is a key aspect of understanding facial structure and its deformities al-

lowing accurate measurement of when features move in relation to each other. The

two commonly used methods are L1, Manhattan and L2, Euclidean distances.

Manhattan distance, as illustrated in equation 3.17, was created for travel in

places, such as New York where the distance can have obstructions, so will not

always be a straight line, the algorithm has to consider building and corners.

Manhattan =
n∑

i=0

|Xi − Yi| (3.17)

where:

• X is the starting point vector

• Y is the ending point vector
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For deep learning, Manhattan has little use, as even in 3D we only require the

distance at a straight line.

Euclidean distance, as illustrated in equation 3.18, calculates the distance

in a straight line. Calculating the exact distance for a point is useful for error

calculation.

Euclidean =
n∑

i=0

√
(Xi − Yi)2 (3.18)

where:

• X is the starting point vector

• Y is the ending point vector

3.6 Summary

This section has given an in-depth view of the techniques and performance metrics

used within the thesis. The camera used in the experiments was explained in

detail, including the alternative camera spaces and the metrics used. We showed

the traditional method of face detection and landmarking. The landmarking is

a core section of our methodology, and this gives insight into facial topography

and indications of occurring movements. After understanding how to track the

movements, the evaluation metrics for the features and why they are used. As the

work uses 3D methodology a description of the 3D viewing frustum is provided.

The viewing frustum helps to understand how the interpretation of 3D data is

performed. It also leads to the use of multi-sensory devices and the different

viewing spaces available. Deep learning is used to process the data from the

sensor and is much of the focus of the thesis is using the techniques made available

through this process. Then, we demonstrate deep learning, both at a consumer

base and for accurate 3D landmark determination.
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Chapter 4

Preliminary Research

This chapter analyses the current method of 3D ground truth annotation and

presents a new tool to overcome issues in existing datasets. An in-house RGBD

dataset is created and shared with the research community.

4.1 Introduction

From the chapter 2 literature review, the limitations of the existing datasets were

summarised as:

• Annotation had no procedures or conventional method.

• Datasets lacked a large quantity of simultaneous RGB and depth capture.

This chapter will address these limitations by providing solutions to bridge the

gaps.

The annotation of 2D face data has become a widely researched area of image

processing, with a vast amount of tools to aid in the annotation of images [78,

79, 80]. With the recent interest in deep learning, Face++ [75] has been used

in many research [81, 82] for facial landmark annotation in 2D. The annotation

software speeds up the process of annotation by predicting points, predicts future
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video frame landmarks and automatically outputs the points to remove human

error from the manual annotation. In 3D annotation, there is a reliance on 3D

modelling software, such as Maya [83]. However, Maya is a 3D model creation

software and outputting the vertex data requires in-depth knowledge of the Maya

Application Program Interface (API).

Moreover, the system cannot naturally generate an output file containing the

vertex locations. Other 3D annotators exist in Faceshift’s [2] built-in annotation

tool, but this does not use texture information. Hence, the identification of points

is difficult. Furthermore, Faceshift cannot output the annotated points and relies

on real-time capture from the Kinect (Xbox 360 version).

The purpose of annotating data is to create an effective training set for ma-

chine or deep learning. Mathias et al. [84] showed that using a strict annotation

regime can produce classifiers using machine learning with small-scale datasets,

that can match the accuracy of a classifier trained on a large-scale dataset. The

ability to train on smaller datasets benefits 3D data, as there are less publicly

available 3D datasets.

In 2D data features such as the eyebrows and lip edges were used to track

movement, but in 3D without texture, these points are difficult to identify. As

the lips become fused (one surface) when the mouth is closed, and the lack of

surface detail for the eyebrow makes the region difficult to identify. Although, the

facial features are hard to recognise without texture, on clean models the use of

curvature analysis can identify and highlight features on a clean model.

4.2 3D Data Annotation

In this section, we introduce the methodology of the created tool to overcome the

restrictions in annotating data. The tool uses novel alignment techniques allowing

a 3D model to be aligned with a reference image, relative to a virtual camera,

without the need for calibration data. The work was accepted and presented at
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the 12th IEEE International Conference on Automatic Face & Gesture Recognition

(FG 2017).

4.2.1 Related Work

This section will review the available methods to determine the efficiency of the

methods and suitability for facial annotation. There are three commonly used

methods to annotate 3D models:

• 3D modelling toolkit: Software, such as Maya allows the use of its built-in

vertex manipulation tools and the MEL script interface to retrieve individual

vertex coordinates. However, this cannot output to a file, without the user

having expert knowledge in the Maya API, MEL and python. The method

of using 3D modelling toolkits is slow, requiring experience with the soft-

ware. Maya offers the best interface as it allows the creation of user-defined

scripts, which can add features to the system allowing for an annotation in-

terface. Using 3D software to annotate also suffers from identical limitations

as Faceshift, where the points are difficult to identify. However, the user

interface allows for intuitive control over the model’s position, rotation and

scale to aid in locating the model features.

Figure 4.1: Example of two face models of the same individual taken from [1].
The neutral face (left) and the eyebrows raised (right).
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Fig. 4.1 illustrates the difficulty in identifying some facial features, such as

the eyebrows on a model. The issue of identifying points on a 3D model

increases when the vertex locations are displayed (Fig. 4.1).

Figure 4.2: The same models as Fig. 4.1, but with the vertex locations
displayed.

Using 3D modelling software for annotation provides a method of retrieving

vertex locations on a 3D model. However, the whole process is very time

consuming and prone to human error.

• 2D image interpolation: Image interpolation [85] requires the depth sensor

has a built-in RGB camera, which simultaneously captures both images and

models. If the depth sensor has a built-in RGB camera, the system will have

the capability to generate three types of coordinates:

– Colour space: The coordinates of the image produced in pixels.

– Camera space: This is the cameras location and the position of the

available cameras/sensors.

– Depth space: The distance of the object(s) scanned from the sensor.

The distance metric set by the sensor during calibration; as standard,

it is millimetres for the Kinect [86, 87].

By using a coordinate mapper to map between the different spaces, the

identified 2D (Colour space) landmarks can infer to the 3D (depth space)
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position. However, with cameras where the sensor and camera remain rel-

ative, giving an ideal setting for texture alignment, the texture can still

be incorrectly aligned. Another issue with interpolation is that it relies on

the available 2D methods to identify landmarks. The use of 2D landmark

detection restricts the number of landmarks the system can place, as only

features that 2D systems can accurately identify can be used. Furthermore,

this method relies on machine learning to annotate data for training. As

2D landmark detection is not perfect, any errors from the 2D location of

landmarks will be used to train the new 3D system.

• Shape-based: The most recent method by Zulqarnain et al. [88] uses shape-

based analysis to predict the facial landmarks. This method relies on the

facial curvature to identify the landmarks. The method works well on clean

data when identifying areas of high curvature change, such as the eyes and

lips, but in lower change areas, the system struggles to identify the land-

marks. Also, noise servilely hampers this methods ability to detect 3D based

landmarks. Overall, this is an effective method of determining landmarks on

clean models. Although it uses a process of refinement to identify landmarks,

which requires time to process.

Many systems do not, by default, texture the model that the depth sensor

produces. To texture, a 3D model post-processing of the images and models is

required. Texture generation can be performed if the camera and depth sensor re-

main relative or the camera calibration data is available. By calculating the colour,

camera and depth space, a texture transfers between the image and model. How-

ever, due to noise, glare and distance, even with relative sensors (such as Kinect),

the texture mapping method can be inaccurate as the texture information might

‘bleed’ into other objects. For example, a red cup on a table captured the sensor

can cause the cups texture to bleed onto the nearby table structure, this is known

as texture misalignment. Because of the texture misalignment and the inherent

difficulty annotating the 3D models, the misaligned texture can cause incorrect

identification of landmarks. Franken et al. [89] create a method of producing
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accurate UV maps. However, this method similar to the annotator produced uses

points placed on the texture and model to calculate texture coordinates. This

method uses a multitude of points and multiple images. Whereas this proposed

method uses fewer points and a single image, but if some of the landmarks are

occluded realignment with other images is possible.

The existing 3D annotators are arduous and prone to human errors. Further-

more, without the texture information, identifying facial landmarks is difficult.

As the landmarks are difficult to identify, locating the facial points in Maya is

ineffective for many facial features. The proposed method will resolve the issues

of identifying facial features, by using the 2D image data for identification of the

facial movement. The proposed method uses a series of intuitive user-interfaces to

speed up the time required to annotate models and output the landmark coordi-

nates.

4.2.2 Proposed Method

The proposed method requires a thorough knowledge of the viewing frustum, which

is the primary method of viewing a 3D scene. The viewing frustum (Fig. 3.1) is

built up of many components:

• The camera: The camera acts as the eye in the scene.

• The near and far viewing planes: These are used to crop objects that are to

close or far from the camera. Cropping the object means it will not process

for screen rendering.

• FOV: The FOV controls the height and width of the viewing plane. The

FOV settings can be used to replicate real-world cameras.

Images loaded into the 3D scene must retain their native aspect ratio. For

example, an image of aspect ratio 5:3 placed into a frame using the ratio of 16:9 will

stretch, increasing the difficulty in alignment. Without the image in the correct
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aspect ratio, alignment without non-uniformed scaling will not be possible, the

proposed method uses uniformed scaling to achieve alignment. Uniform scaling

reduces the amount of scaling errors considerably as early iterations may not match

rotation and will cause unnatural scaling of the face model to occur.

This proposed solution relies on:

−→
AB = B − A (4.1)

where
−→
AB is the direction and magnitude between the position vectors B and A.

By using the vector result of 4.1, we can increase the magnitude through objects

in the same direction as the vector. By extending the vector, if we have a 2D

image and a 3D model behind the image we can calculate the point at which the

beam would interact or ‘hit’ with the model. By using this equation if a model

and image are aligned, annotating the 2D image could yield the 3D results. To

interact with an object in the scene, the method used is as:

−→
R = V − C (4.2)

where
−→
R is equal to the coordinates on the viewing plane where the cursor is

present V minus the camera position C (Fig. 3.1 Dashed purple vector), giving

a directional vector into the 3D scene. Furthermore, by extending the magnitude

of the vector, we can calculate the exact position which the vector would collide

with an object, the face model, in the scene. The extended vector is used as a

base method to place the annotation and alignment points in the scene.

Now the base equation to interact with the 3D scene is known, the next stage

will discuss the proposed algorithm. The proposed method uses 5 points on both

the image and the model in corresponding locations. Using the corresponding

reference points, the position, rotation and scale of the model can be calculated

in relation to the image. Although, this method can be replicated to fit an image

to the model, to allow 2D techniques to be implemented the model fits the image.

The proposed method requires the points to remain corresponding to each other
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on the image and the model, meaning if the image is not from the same time as

the model, the differences in expressions can cause misalignment.

The first step of this algorithm is to align the position of the model, relative

to the image. For this algorithm, the pivot point is the nose tip. The pivot point is

also used to pivot the object during the rotation stage of the algorithm. To align

a point from both the image and model, the following equation is implemented:

Ĥ = H + ((
−−−→
I − C) ∗ (log(Iz − Cz)

(Mz−Cz) + α) + (
−−−−→
C −M)) (4.3)

where:

• Ĥ is a position where if the model H moves to this position, the image and

model pivot point will be aligned.

• H is a vector of the original vector position of the model we want to align

• I equals a vector of an image point position

• M equals a vector of a model point position

• C equals a vector of the camera position

• α is a floating-point distance value. By increasing the value of α the distance

between the model and image increases, this prevents the model piercing

the image. By having the alpha value, it allows objects where the pivot

point is not the closest to the image to be used, for example, if the person’s

hair/fringe is sticking out, without an increased α value, the hair would

‘seep’ through the image.

• Cz is the z (far) position of the virtual camera

• Iz is the z position of the nose point on the image

• Mz is the z position of the nose point on the model
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The first part of equation 4.3, (
−−−→
I − C) creates a vector from the camera to the

image pivot point. Equation 4.3 then calculates a scalar using a logarithm, to

move the model to the image point by adjusting the
−−−→
I − C vector. The α value

pushes the model away from the image while following the direction of the vector,

preventing the model ‘seeping’ through the image. The next section of the equa-

tion 4.3 uses the vector of the camera to the model’s pivot point (
−−−−→
C −M), and the

model’s original position (H), to account for the camera to image/model vectors

change of a positional vector to a directional vector centred at origin/root. The

resulting Ĥ is a position along a vector of increased magnitude from the camera,

which when the model H moves to this point, the model and image pivot point is

aligned.

When the model and image have their positions aligned, calculation of the

model’s rotation can be performed. This section of the thesis uses the condition

∆ < δ to compare the results between iterations where:

• ∆ is the previous iterations distance

• δ is the updated iteration distance

When ∆ < δ we are moving away from alignment/convergence, and the incre-

menting value must change. The incrementing value is a small value represent by

Λ. If the condition ∆ < δ is true, then Λ is changed by:

Λ = −Λ (4.4)

Equation 4.4 changes Λ between positive and negative values changing the rotation

direction.

The rotation, unlike the position alignment, uses the full five points. By

splitting the points into sets of three, that best represent the rotational axis. The

sets used to calculate the face rotation are:

• Yaw/Y: Left mouth corner, nose tip and right mouth corner
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• Pitch/X: Right outer eye corner, nose tip and right mouth corner

• Roll/Z: Left outer eye corner, nose tip and right mouth corner

The next stage is to project these points to the screen and retrieve the screen

location of the points. Once the screen location of the points is retrieved, removal

of unnecessary coordinates is made, for example in the Yaw rotation, the Y coor-

dinated will not be useful in calculating the rotation. As illustrated in Fig 4.3 if

we adjust the Y rotation of the model, the Y (up) value of the nose tip will remain

constant, where the X (left) will change. For the Yaw, the X position represents

the rotations effect well. Then the points are placed in order of ascending values:

B1 < B2 < B3 (4.5)

where:

• B1 is the X coordinate of the left mouth corner

• B2 is the X coordinate of the nose tip

• B3 is the X coordinate of the right mouth corner

A method of representing this is that it creates a bar representing the current

rotation (Fig. 4.3). By having a bar for both the image and model, when the

model rotation is adjusted it affects the bar allowing testing whether it is closer

to the images bar when compared to previous iterations.

Figure 4.3: An example of the Yaw bar calculation.
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B1 = 0 (4.6)

B̂2 = (B2 −B1)/(B3 −B1) (4.7)

B3 = 100 (4.8)

where B1, B2 and B3 are equal to equation 4.5.

As the rotation of the model changes the B̂2 value changes, the aim is to

match the model’s B̂2 value with the images B̂2 value. The model’s rotation is

adjusted by:

θ̂ = θ + Λ (4.9)

where:

• θ is the original model’s rotation on an axis

• θ̂ is the new model’s rotation on an axis

Eq 4.9 adjusts the model’s rotation θ along an axis by the value Λ. However,

many 3D engines and models use a different rotation axis, for example, Z up

(3DSMax [90]) or Z forward (Maya). Because of this Λ must be reversed if the

distance between the percentage of the model and the image is greater than the

last distance calculation. The distance δ is calculated using:

δ = |B̂2(image)− B̂2(model)| (4.10)

An issue during this stage is some of the available 3D tools, such as Unity [91]

require the physics engine to update in the 3D scene, for rotations and translations

to take effect; between the iterations, a break must be placed to allow for the scene

to update or the results will remain the same which can cause errors. This process

then repeats for the X and Z rotations of the model.
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Figure 4.4: A comparison of the number of iterations.

The final part of alignment requires the model scaling to the image points.

The positioning and rotation of the model methods are both scale-invariant, mean-

ing the model can be any scale for alignment in those steps. However, for anno-

tating the model it needs to be scaled to fit with the outline of the image features.

Scaling the model uses the same principle as the rotation, but if the points, when

projected back to the screen are higher for the model then the image, the model

requires a lower scale. Similarly, if the model points are lower than the image

points the model need to enlarge. The result of the higher or lower point changes

Λ, so the model scales correctly, similar to equation 4.4. The adjustment of the

scale is performed by:

Ŝ = S ∗ Λ (4.11)

where S is the scale of the model.

To ensure the scaling is correct the distance is calculated twice, once for the

highest correlating points and the two lowest correlating points, to attune for

rotational error. The scaling is performed uniformly, meaning the size on each

axis will remain the same but can be flipped either positive or negative.

Annotation of the points is performed using equation 4.2 and extending the

magnitude of the vector by a large scalar, usually infinity. By using collision

detection, an accurate measurement of the extended vector passes through both

the image and model can be gained.

The system uses iterations to refine the alignment. Each iteration consists of

a rotation of the X, Y, Z axis and a scale step.

66



In Fig. 4.4, the image and model converge/aligns at ten iterations, but the

system de-aligns the image and model slightly at twenty iterations. The converg-

ing and de-alignment is a result of the system using unified scaling. However, with

multiple iterations, the system will re-align/converge. By using unified scaling

there is less chance of error scaling, but the slight differences between the align-

ment points cause the system to re-evaluate the rotation from a different angle to

attempt a better fit.

4.2.3 Results

The annotator has been developed using the Unity3D game engine [91] in a WebGL

build, allowing for the tool to work inside modern internet browsers. The proposed

method is compared to Maya in three categories:

• Alignment time

• Annotation time

• The accuracy of annotations, by comparing the distance to ground truth

A visual comparison will also be shown demonstrating the difference between the

results. The test was conducted by asking participants to annotate twenty-five

landmarks on three models. The five points used to align are not considered

annotation points, this is because the five alignment points do not have to be

in fixed points, for example, mouth left corner, but in places which have clearly

defined features the user can identify in both image and model. The models

consisted of 3 expressions:

1. Neutral (Model 1)

2. Eyebrows raised (Model 2)

3. Mouth open (Model 3)
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The experiment recruited sixteen volunteers with computing backgrounds

with some having previous annotation experience. A certified FACS coder an-

notated the ground truth data. All participants were trained in both systems

before the experiment began that included a test to check the participants un-

derstanding; they were also free to ask any questions. The average time for the

experiment was 2 hours excluding any breaks.

The three models are used to identify the current capabilities of annotating

3D under an array of different expressions, for example, are the lower face move-

ments in model 3, tracked similarly to an upper face movement in model 2. Using

the multiple expressions allows for a more comprehensive comparison, visualising

annotation of the different facial landmarks. Firstly, the participants were asked

to annotate the three models using the conventional method (Maya). The partic-

ipants were then asked to repeat the annotations in the proposed annotator. To

remove bias from encountering one set of models first, the experiment order was

counterbalanced between experiments; this means half the participants used the

proposed annotator first and Maya second. Participants completed both systems

in one session but had breaks between each model.

For this experiment, the t-test was calculated using the average distance from

the ground truth. The t-test was used due to sample size, the paired t-test com-

pares two populations of means, with samples that are correlated. This comparison

suits the purpose of the experiment as the tests provides the same data outputs.

The first experiment is to determine two hypotheses; the first is to test if the dis-

tance from the ground truth between the two methods is significant. Then if the

results are significant, which of the systems gave the highest accuracy.

Table 4.1: Table of t-test results comparing the facial landmark accuracy.

Model t-value p-value

1 -0.78 0.21

2 -2.12 <0.019

3 -0.11 0.45
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Table 4.1 shows mixed results with each model. The mixed results could be

linked to the expressions on the models, as model 1 is the baseline using a neutral

face with the lips closed. Lips closed, when represented on a 3D model, creates

a single surface, creating difficulty in locating the outer and inner lip corners.

Whereas, in model 3 the mouth open is open creating clearly defined edges and

has the least difference. The second model represents an upper facial movement

(eyebrows raised), this shows a significant change implying that for this feature

without texture is difficult for users to annotate accurately. This will lead to future

work as, without accurate annotations of landmarks on a 3D model, the location of

landmarks will not be suitable for facial animation. Currently, the manual Maya

annotator provides better accuracy on the 3D face, but this could be related to

user learning the alignment tool and occlusions. The overall average distance from

ground truth is calculated to note the difference between the annotator and the

Maya method (calculated by the in both model and annotator) shown in Table

4.2.

Table 4.2: Table of the overall distance in millimetres.

Software Model 1 Model 2 Model 3

Maya 63.54 66.67 64.04

Annotator 67.76 78.73 64.70

In models 1 and 3, the discrepancy of distances is minor, but the model 2 has a

large discrepancy. The second model is the only model that contains a movement

hard to detect in 3D, the eyebrows raised. However, the SD in Maya remains

constant, and by comparing the results of the participant annotations (Fig. 4.6)

the landmarks on the eyebrows in Maya remain consistent, indicating that the

participant is guessing the facial landmarks.

The timing is a crucial part of the annotation because if the system takes

longer to align the image with the model before the annotations begin, then just

annotating in Maya, the system will not be preferred as Maya already requires
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significant time to annotate. Table 4.4 shows the mean and SD times, for both the

alignment and annotation of models in the proposed method. For evaluation, the

one-tailed t-test with a p-value of 0.5 was performed. The tests are to evaluate

the hypothesis that the two systems are not equal in the time taken to annotate

and the accuracy of annotations.

Table 4.3: Table of the t-test results for the time comparison.

Model t value p-value

1 -8.74 < 0.00001

2 -8.54 < 0.00001

3 -9.10 < 0.00001

Table 4.3 shows that the annotator and the conventional Maya method are not

equal, by having a significant difference between the times required to annotate.

As the value of p is low, it demonstrates a high significance, which is a result of

the reduced time required by the proposed annotator.

Fig. 4.5 compares the overall times between the traditional method (Maya)

and the proposed method. The time comparison took into consideration the time

to align and annotate a 3D model. As the proposed method has two sections,

alignment and annotation the times were recorded separately. Fig. 6 for the

proposed method shows the full times (alignment and annotation).
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Figure 4.5: The total Maya times (left) compared to the proposed method
(right)

Table 4.4: Table of the proposed methods average alignment and annotation
times (minutes) with SD.

Model Alignment Alignment SD Annotations Annotation SD

1 2.95 0.46 3.13 1.50

2 3.53 1.61 2.18 0.86

3 3.61 1.56 1.48 0.98

Table 4.5: Table of Mayas average alignment times with SD.

Model Annotation Annotation SD

1 21.26 6.98

2 16.98 5.05

3 15.06 4.00

Table 4.4 shows that a neutral face is, on average easier to annotate the align-

ment points, meaning the system can align the image and model when compared

with models performing expressions. The time difference between expressions indi-

cates that annotating the 3D models is a much more difficult task without texture
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Figure 4.7: The points placed back on the model similar to Fig. 4.6, but
aligned with an image.

that uses expressions. The difference in time gives a path for the future work to

provide an intelligent system, that can aid the user in aligning models that use

expressions and to reduce the overall alignment time and alignment errors.

Next, a visual comparison of the results is presented, to demonstrate the

accuracy of 3D points in relation to the face on a 2D image. For the comparison

all the collected points were placed back onto the 3D model and then aligned with

an image.

Figure 4.6: The results of the current tests the green points are the proposed
annotator and red points, Maya.

On inspection of Fig. 4.6, areas where the face curvature changes significantly

have the highest accuracy in Maya. Areas of high curvature change are face

sections, such as the nose tip and the eye ridge.
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4.2.4 Discussion

Fig. 4.7 compares Maya and our proposed method annotation points when aligned

to an image. The alignment gives a visual comparison between the two systems.

The alignment demonstrates that Maya does not locate all the landmarks cor-

rectly. The eyebrow edge is being annotated to close to the inner face, and in

the eyebrows raised, the points are placed lower down. The errors locating the

landmarks in Maya would prevent a system trained on this data to identify the

eyebrows successfully.

Overall, the proposed annotator performs well on the side of the face which

is most visible, but the occluded side of the face has worse groupings. A solution

to occlusions is to realign with an image from another angle, but the tests were

performed on the D3DFACS dataset [1], where only one side-on image is available.

The D3DFACS dataset was used as the models contain little noise and is a high-

resolution model that gives a clear view of the facial landmarks when compared

to Kinect models where features are hidden by the noise. The D3DFACS removes

bias as it gives models which user have the best chance of identifying features

in Maya. However, the D3DFACS dataset provides a challenge for the proposed

method owing to the extreme rotation of the face, shown in the reference images,

Fig. 4.7.

This section of the thesis demonstrated a proposed novel method of aligning

a 3D model to a 2D reference image. By aligning the model to a reference image,

the issue of identifying facial landmarks on a 3D model is resolved. The proposed

method is designed to reduce the total workflow of the annotator and enable the

use of tried and tested methods of annotating 2D images. This system highlights a

commonly overlooked issue of annotation, which has a significant impact on facial

tracking in 3D and proposes a solution to this issue.
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4.3 Kinect One Expression Dataset (KOED)

This section of the thesis we analyse the in-house dataset made for the work. The

dataset overcomes a series of issues, such as the synchronous capture of both depth

and RGB. This Dataset is used in chapters 5, for the synchronous RGBD capture,

and 7 for the expressions. The dataset resolves a number of limitations of other

datasets by focusing on key aspects:

• Accurate ground truth landmarks

• Full recordings of the seven-universal expression with onset and offset

• Synchronous capture of RGB and depth data

• Controlled capture environment with ground truth colour and measurement

info in the scene

4.3.1 Experimental Protocol

For each participant, we followed a strict recording routine. We ensure that all

the ethics and consent forms were signed before beginning any recording. Each

participant was recorded 8 times, 16 for females with makeup on and off. Each

recording is of the participant starting in neutral, performing expression and back

to the neutral pose. The seven-expression captured are:

• Happy

• Sad

• Surprise

• Anger

• Fear

• Contempt
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• Disgust

• Neutral (full clip)

each clip is 5 seconds long at 30 FPS giving a total of 180 frames per expression

clip.

4.3.1.1 Emotional Replication Training

During each recording, a trained individual was present to advise of the partici-

pant’s expressions and give some prior training. However, during the recording,

the trainer would not give any advice to prevent distracting the participant.

4.3.1.2 Ethics

Ethics was reviewed and approved by the Manchester Metropolitan University

ethics committee (SE151621).

4.3.1.3 Equipment and Experimental Set-Up

The experiment required some equipment to record, such as:

• Green screen room access (with lighting)

• Kinect One with a tripod

• SSD spec machine for recording Kinect data

• Chair

• Colour Checker with stand

For the recording, the participant sat 1 meter away from the Kinect One, with the

Kinect positioned at the participant’s head height. The participant then has the
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colour checker placed to their left, also at head height and in the frame. The six

main lights were split into three groups directed at the participant from their left,

front and right. All cameras used the same lighting condition to ensure consistent

lighting across the face.

The Kinect requires no prior calibration, as we use the default factory settings.

We record at the Kinect maximum capabilities, Red Green Blue Alpha (RGBA)

1920*1080 @ 30FPS and depth 512*424 @ 30FPS, for speed we save both files in

binary format. We use six directional lights focusing on the individual participant.

The lights are set to emit white light only to prevent any discolouring of the

participant’s faces.

4.3.2 Dataset Ground Truth Acquisition

To crop faces from the recording we implement Dlib [71], to ensure conistent

bounding boxes. To ensure the accuracy of the system we evaluate the performance

on a subset of our KOED dataset using the methods found in [92]. The system has

been evaluated on multiple recordings. The recordings were performed by having

a participant sit in front of the Kinect and during the recording moving slightly

to ensure the tracker is following the face. To ensure the system can still function

when a user is not present a recordings containing no faces, was presented to the

system. The empty recording will determine if the system will give false positive

values. The scoring was performed using these rules:

• True positive: A true positive is define by a face detection by the system,

which outlines a face present in the image.

• False positive: A false positive is defined by a face detection by the system,

but the outline does not cover a face in the image.

• True negative: A true negative is defined by the system not detecting a

face, when there is no face present in the image.
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Table 4.7: Table of the overall performance

Result Score (percentage) Meaning
Recall 0.99 How often the system has predicted

true correctly over the available data
Precision 0.96 If the system predicts true, how of-

ten is this correct
Accuracy 0.97 The classifiers overall correct classi-

fications for the sample data
Inverse recall 0.88 How often the system has predicted

false correctly over the available
data

Inverse precision 0.99 If the system predicts false, how of-
ten is this correct

• False negative: A false negative is defined by the system not detecting a

face, when one is present in the image.

Table 4.6: Truth table of the Dlib face detection

Predicted Predicted

Total frames = 1616 Positive Negative

Actual True 1244 44

Actual False 1 328

Using the values produced in table 4.6, the performance measurements of Dlib

can be calculated, such as the recall. The system shows a high rate of correct

detections, while maintaining low false detections, but has failed to detect the face

in some of the images. To further understand these values, they have been used

to calculate the results in table 4.7. Table 4.7 shows that the Dlib face detector,

from the tests conducted, can perform accurate facial detection with low false

detections. By using the face detector in combination with Dlibs face tracking

allows for accurate face shape detection. Table 4.7 shows that Dlib provides an

excellent method of tracking the face in 2D with a low false detections. However,

these results are preliminary and comparison against other existing methods, such
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as EMGUs [93] face detection algorithm using HAAR [22] cascades should be

performed.

4.3.3 Dataset Analysis

4.3.3.1 Demographic Breakdown

The dataset has 35 participants, with a wide range of ages from 19 - 76. The

dataset manages to have a good male female split, but has a majority of white

British as shown in Table 4.8. However, it does include residents of Saudi Arabia,

India, Malaysia, China and Philippine. Collection of the dataset is still ongoing.

Table 4.8: Table showing break down of overall pariticpants

Participants Age Mean Age SD Percentage Male Percentage Female

35 37.8 14.8 51% 49%

4.3.3.2 Comparison with Current Datasets

As the experiment required RGB and depth data from the same synchronous

capture for the merging network and to prevent bias between the RGB only and

depth only networks, a review of the available datasets was performed. As the

results of the neural network are to produce the landmark locations in 2D and 3D

the depth data should be captured from a location relative to the camera, meaning

that most of the features will be in the same capture. Because of requiring the

features to match datasets that use devices similar to the Kinect are required as

it uses forward facing sensors that are only a few millimetres apart, resulting in

similar data outputs. A table showing the different attributes of the datasets is

shown in Table 4.9. The datasets analysed for this experiment are shown and

described:
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• Face Warehouse: [94] is a large-scale dataset containing 150 participants

with an age range of 7-80. The dataset contains RGB images 640 × 480,

depth maps and 3D models. 74 2D landmarks are given, but only for the 2D

colour images. The dataset only focuses on the posed expressions giving one

model and image when the participant displays the expression. Furthermore,

for capture, they use the Kinect version 1 [86]. The dataset also suffers as

it is captured under different lighting and in different places. As only the

expressions peak is captured, there is not a significant amount of data for

training deep learning, and it is at a low resolution compared to modern

cameras. Overall, the Face Warehouse is a good 3D face dataset providing

a wide assortment of expressions with landmark annotations, but with no

onset or offset of the expression.

• Biwi Kinect Head Pose: [65] is a small scale Kinect version 1 dataset con-

taining twenty participants, four of the participants were recorded twice.

During the recording, keeping a neutral face, the participants would look

around the room only moving their heads. The recordings are of different

lengths. The depth data has been pre-processed to remove the background

and all none face sections. The recording contains no facial landmarks, but

the centre of the head and rotation is noted per frame. Although the record-

ing was done in the same environment, the participants can be positioned

in different sections of the room changing the background, but the lighting

remains consistent. Overall, the Biwi Kinect dataset was not suitable for

the experiment as it contained no facial experiments and was recorded using

the Kinect version 1.

• Eurocom Kinect : [95] is a medium-sized dataset containing 52 participants;

each participant was recorded twice with around two weeks in between. Par-

ticipants were recorded by having single images of them performing nine

different expressions. The images were taken using the Kinect version 1 and

have had the heads cropped out of the images. The coordinates for the crop-

ping are given as well as six facial landmarks. The Eurocom dataset contains
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a few images for a deep learning network and is recorded with the Kinect

version 1 making it unsuitable for the experiment.

• VAP face database: [96] is a small size dataset containing 31 participants.

The dataset was recorded using the updated Kinect version 1 for Windows,

this version gives a bigger RGB image (1280× 1024) and larger depth map

(640× 480), but at the cost of reduced frame rates. The recording was also

done using the Kinects ‘near-mode’ which allows for the increase resolution

described. Each participant has 51 images of the faces taken at different head

angles performing a neutral face and some frontal face with expressions.

The recordings were done in the same place with consistent lighting. As

the dataset contains single images and few participants performing facial

expressions, it is unsuitable for the experiment, but for head pose estimation

would be appropriate.

• 3D Mask Attack : [97] is a small to medium-scale dataset containing 17 par-

ticipants, but a large collection of recordings. The participant is recorded in

three different sessions; in each session, the participant is recorded five times

for 300 frames per recording holding a neutral expression. The recording

uses the Kinect version 1 at 640×480 for both RGB and depth images. The

eyes are annotated every 60 frames with interpolation for the other frames.

The recordings were done under consistent lighting and background. The

3D Mask Attack dataset contains a vast number of frames, but all use the

neutral expression, face the camera and use the older Kinect making it un-

suitable for the experiment.

As shown, the currently available datasets are not suitable for the experiment,

for deep learning many images are required, that contains facial expressions. The

version of the Kinect used is the older Kinect that has lower resolution and slow

capture rate. Many researchers have used the Kinect version 1, and extensive

analysis of its accuracy [98] has been performed. However, though it is used less,

the Kinect version 2 offers improved image quality for RGB (1920×1080 compared

to version 1 of 640×480) and improved accuracy for depth information and higher
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resolution (512×424 compared to version 1 of 320×240). The Kinect 2 is less used

in research, but its accuracy improvements are recognised, because of its accuracy

and HD image quality, it is more suited to this experiment. For a full performance

evaluation between the Kinect 1 and 2, the reader is recommended to see [99, 100].

For a review of other available 3D datasets, not discuss in this section, the reader

is advised to read [101].

Table 4.9: Table Comparing available datasets

Dataset Data Capture Participants Age Range

KOED RGB, Depth, Model Time-series 35 19-76

D3DFACS RGB, Model Time-series 10 NA

Face Warehouse RGB, Model Peak 150 7-80

Biwi Kinect RGB, Depth, Model Peak 20 NA

Eurocom Kinect RGB, Depth, Model Peak 52 NA

VAP face dataset RGB, Depth, Model Peak 31 NA

3D Mask Attack RGB, Depth, Model NA 17 NA

4.4 Summary

The Chapter has shown the current methods of acquiring 3D facial landmarks for

use as ground truth. We extended the work by producing an in-house annotation

tool and testing against the traditional methods. For our in-house technique, we

use a novel alignment algorithm to align 3D geometry in a virtual environment.

Then we discussed available dataset for our project; we noted that the dataset in

vastly different in each one and few are at a large enough scale for training effective

neural networks. Thus we produce our dataset. The in-house dataset overcomes

many of the limitations of the other available datasets, such as synchronous full

expression recording on a broad demographic of individuals.
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Chapter 5

Real-Time Facial Landmarking

using Neural Networks

This chapter shows the deep neural networks approaches for 2D and 3D facial

landmarking. In 2D, the accuracy, as well as the implementation on mobile de-

vices, are demonstrated. In 3D, the accuracy and effect of auxiliary information

on performance are measured.

5.1 Introduction

Motion capture in commercial use has two main categories. For consumer based

applications the use of traditional machine learning for marker-less landmarking

is implemented. However, in recent years deep learning with CNNs has shown

to outperform traditional machine learning significantly [102, 103]. The accuracy

improvements do come at a cost; the machine defined features require a large

scale dataset for training to ensure the weights of the network are generalisable to

a wide demographic. Additionally, the storage of a deep learning network can be

significantly higher than a machine learning model. Finally, when training a model

on high-end machines with large capacity Graphical Processing Unit (GPU)s is

required, which creates an interpretation that a model can only run on similar
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machines. However, in reality, a trained model can process single images on a

low power device can perform adequately. In deep learning, the use of pooling

has many advantages it focuses on key values and reduces the input size, to aid

in over-fitting prevention. Furthermore, the ability of pooling to focus on high

values, while reduces image size significantly reduces the processing requirements

of the network, and both the Random Access Memory (RAM) and storage memory

requirements. We perform an analyse on how effective mobile devices are for

facial landmarking with CNNs and the effectiveness of max-pooling to allow more

efficient processing.

With the availability of RGBD sensors, the potential to increase accuracy

is possible by merging the data streams within a neural network. Merging data

streams, allows a marker-less system to predict depth without the requirement of

multiple cameras with high accuracy. The depth information assists significantly

in identifying facial feature movement and synthesising to 3D models.

An important factor is that although depth provides additional information,

in object recognition Gs outperforms RGB data significantly [104], showing more

information may not necessarily produce a better system. Thus we also compare

against Gs image and merged Greyscale Depth (GsD). This study improves upon

current work, as the literature is split between networks that use full RGB [41, 43]

and networks that run Gs [35, 42] without justification, and focuses solely on

2D landmarks prediction. 3D landmarks are essential for face recognition in the

presence of expressions [105] and real-time facial animation [78]. To do this, we

expand the existing work to predict 3D landmarks and investigate the impact of

2D and 3D data when used as auxiliary information.

As with many fields of research, the implementation of deep learning has

shown significant improvements in the area of facial landmarking [106], when com-

pared to traditional machine learning [45]. In this work, we focus on the use of

CNN, similar to the literature in this area. To perform the experimentation, we

develop near identical networks to reduce the deviation between results. In this

chapter, we target the issue of facial landmarking in the two categories shown, the
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2D techniques and demonstrate that consumer-based devices can effectively run a

landmarking system. We then extend the work and refine the networks to produce

3D landmark prediction networks and determine the effective streams.

This section of the thesis demonstrates to key attributes of the work. Firstly,

an analysis of state of the art landmarking neural network networks is performed.

The networks are then an neural network is designed, with variation that differ

in the amount of pooling layers. The networks are ported to mobile phones to

evaluate their performance in FPS, the accuracy and loss of training is recorded.

Secondly, using the information gathered from the first stage a neural network is

designed. Again, slight variations of the network is designed, but to analyse the

affect of how different or multiple input streams affect the networks performance,

such as is RGB or Gs better for landmarking. The comparison of stream allows

deeper understanding of networks interpretation of data, as RGB and Gs are easily

accessible to most devices and depth data is available on some, devices could see

significant improvement because of this. Additional networks are created with

different outputs, such as 2D and 3D landmarks. The additional outputs is to test

the ability of auxiliary information, to improve the landmarking performance, as

both tasks are similar.

5.2 Related Works

The related work divides into three sections. Firstly, we give an overview of the

current state-of-the-art deep learning to predict facial landmarks. We demonstrate

the critical aspects of the networks functionality and the features used to localise

landmark regions. The second section focus on the compression and optimisation

of the neural network on mobile devices. Lastly, we evaluate merging Gs/RGB and

depth information in a neural network and the current implementation methods.
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5.2.1 Facial Landmarking with Neural Networks

Facial landmarking in deep learning is well established, with state of the art show-

ing both real-time and high accuracy results. Neural networks have solved a wide

range of problems, such as facial landmarking, age identification and gender clas-

sification. Due to the adaptability of neural networks, previous literature has

evolved to use multi-output networks [40, 107]. Multi-output networks perform

an array of predictions simultaneously, such as age and gender. For our review, we

focus on both single and multi-output networks, such as landmark and gender [43]

and landmarking only networks. We discuss multiple output networks as they can

outperform landmarking only networks as research shows that auxiliary features

have a positive effect on network performance [63]. Auxiliary features, boost the

performance of the network by adding critical pieces of information. For example,

in age prediction, if using gender as an auxiliary feature, it aids the network as it

learns how the make-up and facial hair affect age prediction. The network predicts

auxiliary information in addition to other outputs, the input to the networks is still

a single or merged stream of data. Although our experiment is to see the effect of

different streams of data, on a neural network, for the area of facial landmarking,

auxiliary features, such as age and gender would be an aspect of future work.

We first evaluate networks that focus solely on the prediction of landmarks.

In 2013, Sun et al. [34] proposed an end-to-end network that takes a facial image

through a series of convolutions, max-pooling and fully connected layers, to predict

five facial landmarks with reasonable accuracy. Zhou et al. [35] expanded on the

work, by proposing a series of detectors to identify facial regions and process them

by small neural networks. They also use a refinement approach that aligns the

facial features before landmark prediction. Lia et al. [37] proposed a complex

network for landmark detection where they implemented a two-stage network, the

first stage is a series of convolution and deconvolution layers to process the image

given into a high-value feature set. The features were then processed by a series

of LSTM [38] layers to identify and refine the landmark position. Recently, Liu et

al. [36] used a multitude of facial feature detectors for localising regions, such as
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the eyes, nose and mouth. The authors processed these regions with small sized

neural networks that identify the landmarks on each of the features. This method

achieves high accuracy results, as the network and detectors specialise in different

aspects of the face, instead of trying to generalise to all of the unique features.

However, unlike Zhou et al. [35], they did not align the features.

We now review the work that uses multiple output networks. Zhang et al. [40]

experimented in the use of auxiliary features to increase a network understanding

of facial structure and features. They created multiple networks with the structure

remaining the same except for the outputs changing by adding critical pieces of

information such as facial direction, age and gender. By incorporating auxiliary

features, networks learned facial features in more depth. The authors showed a

significant increase in accuracy when asking the network to determine these extra

features, even when training the network to perform normally difficult tasks, such

as facial direction. More recently, Zhang et al. [63] extended their work on facial

alignment. Jourabloo et al. [42] used a similar method to predict landmarks by

having a series of networks to refine the positions. However, they focused on using

the landmarks to refine the appearance of a 3D model. Even though Zhang et

al. [63] and Jourabloo et al. [42] provide high accuracy networks, the networks

require pre-processing to crop faces out of the image.

Finally, we review all-in-one networks, requiring no pre-processing before net-

work prediction. The most recent research for facial landmarking focused on end-

to-end networks based on Recurrent Neural Network (RNN) [108]. Zhang et al.

[41] present an all-in-one neural network to identify and landmark faces in an im-

age. They used three interlinked networks to refine the landmarking approach.

The result of the network is five facial landmarks and bounding box for every face

in an image. On the other hand, Ranjan et al. [43] produced their all-in-one

network to retrieve the face bounding box, landmark, facial direction and gender

with high accuracy. The network included a separate classifier to check if the first

section of the network returned an actual face.
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The networks when trained of the separate streams of data, give high-end

accuracy results starting from the small-scale one output networks to complex

multi-model methods. However, the work is limited as it only considers single

RGB or Gs images to predict 2D landmarks. Whereas, state of the art uses mul-

tiple cameras or depth data to estimate the desired 3D landmarks. Additionally,

the literature does not give justification for the use of either RGB or Gs. As neural

networks are adaptable, we want to investigate how the different streams of data

affect a neural networks ability to predict both 2D and 3D landmarks. Further-

more, we extend this by analysing the effect of merging multiple data streams

for accurate facial landmark prediction, such as integrating both RGB or Gs with

depth. We also extend on Zhou et al. [35] work by analysing the effect of using

UV and XYZ as auxiliary features, compared to UV or XYZ only to train a model

that understands facial structure in detail.

Investigation on the use of depth information to predict facial landmarking

has been performed [109]. However, much of the focus is on using surface curvature

analysis. Curvature analysis does give reasonable results on low noise models, but

it is a slow process and can only track a few points in areas of high curvature

change. Another method of predicting 3D facial landmarks is shown by Nair et

al. [110], who impressively have predicted a total of 49 landmarks on the face,

but avoids the mouth area. However, this method required a generated 3D model

as point distributed model is used to deform a template face with landmarks

assigned to the new mesh. Deforming a 3D mesh to a template is an intense and

computationally expensive task. Both methods required pre-generated models

that is difficult at real-time on a consumer base, our focus in the sole use of

images to accurately infer the landmarks.

5.2.2 Neural Network Compression

There are many different options to make a neural network more efficient, such

as using smaller kernels in the convolutions and output fewer convolution images,

fewer filters, different output images are produced for each filter requiring more
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memory, at each of the layers. However, another method to reduce the strain

of the network is to implement max-pooling layers [76] into the network. The

max-pooling layer split the images into a number of regions, from each region the

highest value is taken and placed into a new matrix, illustrated in Fig 3.6. By

reducing the feature maps, max-pooling also helps with over-fitting as the data

becomes more abstract, as well as reducing the processing requirements. The issue

with implementing max-pooling layers is data loss by shrinking the data, possibly

reducing the accuracy, but reducing processing time. For facial landmarking, the

data should be preserved as much as possible, as it is easy to lose vital facial

features, such as the eye corners and nose tip when employing max-pooling layers.

Implementing max-pooling allows networks to run much faster on lower power

devices. The max-pooling acts as a cost/reward system which will be analysed in

this section of the thesis on the trade-off between speed and accuracy

Neural networks can be of varying sizes and scales. The types of layers can

drastically increase the amount of processing required to run the network, such

as the Inception [111] and LSTM [38] when compared to a convolution layer.

This section will describe the work done to compress and analyse neural network

performance on mobile devices.

The most commonly used methods to compress a neural network is the hash-

ing trick or HashedNets by Chen et al. [112]. Hashed networks function by group-

ing random connection weights into a single ‘bucket’; the connection weights are

all tuned by one parameter reducing the networks total size and memory require-

ments. However, joining multiple weight values into one can cause the network

to become less diverse, meaning the networks accuracy can be negatively affected.

Another method called One-Shot Whole Compression by Kim et al. [113] focuses

on shrinking the entire convolution based network. Kim et al. [113] split the

compression into three main stages:

• Identification. Using Bayesian matrix factorisation, the sections of the neural

network, which contributes most to the success of the network. By identi-

fying the highest contribution sections, the method can better preserve its
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accuracy.

• Reduction. The method can apply one of two versions of Tuckers decompo-

sition, using the ranking from the Bayesian matrix factorisation for decision

making, the first analyses the core components and then merge them to a

single tensor. Whereas, the second performs single value decomposition.

• Fine Tuning. As the method modifies the network, the results produced

can differ significantly. Kim et al. [113] retrain the network with pre-built

models to aid in accuracy recovery.

Overall, Kim et al. [113] method allow for substantial decreases in file size with

only small losses in accuracy. Research has also been done to see how different

layers, such as recurrent layers can be used to shrink the network size [114].

5.2.3 Merging Visual and Depth

A multi-model network [115] for the merging of data, such as Gs and depth, usually

implements three separate networks that work together. The first two networks

take input from the separate streams of data; then they can be processed the

same way as a traditional CNN. The network uses these convolutions to extract

the unique features in each of the data streams. After the processing, the input

for unique features the outputs of the network can be fed into the third neural

network and the data merged using basic matrix operations. The third network,

similarly to the first two networks, functions as a traditional convolution network.

Merging separate streams of data is, in some areas, a common practice, such

as action recognition [116]. Berg et al. [116] show that by merging an RGB stream

with its optical flow counterpart in a neural network, significantly improves the

networks accuracy, by segmenting out the motion in action recognition.

Merging different data streams have also shown increased accuracy in object

recognition [117, 118]. Socher et al. [117] use a single layer CNN to retrieve RGB

and depth images to extract low-level features. The output of these networks is fed
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into separate RNNs. The results of both RNNs are fed into a softmax classifier.

By combining the data Socher et al. [117] shows significant improvement in object

recognition. The research in this field mainly follows Socher et al. and Berg et al.

on merging to increase the accuracy of detection and recognition systems.

For our experiment, we are trying to solve a different type of problem where

detection and recognition system use classification, landmarking is a regression-

based problem. Applying classification to a landmarking problem would mean

assigning a true or false value for every pixel in an image, which would be too

processor intense for real-time performance. Whereas, regression allows a single

output to be a wide range of values, significantly reducing the processing require-

ments. We implement the in-house dataset described in chapter 4 of the thesis, as

for training synchronous captured RGBD data is required.

5.3 Proposed Methods

The methodology splits into two sections; The first section focuses on 2D facial

landmarking for mobile applications. The second section focuses on facial land-

marking methods for 3D depth data.

5.3.1 Facial Landmarking for Mobile Applications

This section will demonstrate and analyse the networks designed for this experi-

ment and give details into the reasoning behind them. After this, a description of

the dataset and the elaboration of the pre-processing steps.

Three basic neural networks have been defined, to test the processing capa-

bility of the devices when implementing neural networks, each with similar layouts

designed to maximise the efficiency of the network. Each of the networks follows

the same structure as the Base network, as the purpose of this experiment is to dis-

criminate how the max-pooling layer affects the applications capabilities, a simple

neural network (henceforth, basic network) is chosen. The basic network consists
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of three layers: convolutions, max-pooling and activation, followed by two fully

connected layers with intermediate activation layers and the final output layer.

The initial convolution layer uses a 3×3 kernel, whereas the following convolu-

tions used a 2×2 kernel. The first two convolutions used 32 filters on each image,

and the last convolution uses 64. Filters are used to widen the neural network

as illustrated in Fig 3.4; they work by creating different convolution kernels for

using on the input image. Having multiple filters aid the network, as different fil-

ters focus on the type of variation the network could encounter, such as a frontal

face filter or side face filter. By having filters account for variation more reliable

network can be produced. The max-pooling layers were fixed to 2×2, effectively

shrinking the convoluted images by half as shown in Fig 3.6. The initial input

size of the image was 96×96 meaning the final image size for the fully connected

layer was 12×12 which equals to the required output of 136 (68 points × 2 for the

X and Y). The two activation layers use 1000 and 500 connected neurons before

connecting to the output layer. The goal of these networks is to give a clear view

of the cost/reward for implementing max-pooling layer to reduce the workload

of the network and how that impacts the networks accuracy. The max-pooling

layers are removed starting with the first, as the longer, the network maintains

the full data, the more it can learn. The seed for generating the neurons initial

weighting was fixed to 7 to improve reproducibility. Table 5.1 shows the number

of max-pooling layers in each model.

A network with no max-pooling was not considered due to the memory lim-

itations. The memory requirements for training could be improved by reducing

the batch size. However, this would have a detrimental effect on the accuracy and

increase training times. Deciding the correct batch size, is a complicated process,

regarding requirements, as each filter produces an additional image for each layer,

so from a single input image, 65536 images of 96*96 are produced (1*32*32*64),

this would require 604MB, much higher then what current phones have. For the

training stage, even the Titan Pascal (12GB) card with reasonable batch sizes

was not possible. The networks train for 300 epochs, this is because of data re-

tention through the removal of max-pooling layers, the longer the networks need
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to converge, and this gave the fairest option for comparison, as this shows when

convergence occurs.

Table 5.1: A comparison of the accuracy and loss for three types of network.

Network Max-Pooling layers Accuracy Loss

Basic 3 0.63 0.17

Two max-poolings 2 0.64 0.12

One max-pooling 1 0.69 0.38

For each of the networks, ReLU was implemented as well as root mean squared

error (eq. 5.1) for loss calculation equation:

RMSE =

√√√√ n∑
i=0

(yi − y′i)
n

(5.1)

where:

• n is the number of samples in the training batches.

• yi is the ground truth output for the training image.

• y′i is the predicted output for the training image.

These methods prevent any ‘squashing’ of the data between 0 - 1, which prevents

a thoroughly regressive learning system. The networks implement the Adam op-

timiser [119] as it has been shown to perform well in this research area.

The accuracy for the network was calculated using binary accuracy (eq. 5.2),

as with landmarking the chances of early networks getting an exact hit of the

landmarks is slim. As a result, the distance to the point is required, and this gives

a more explicit indication of how well the trained model is performing.

Accuracy =

n∑
i=0

yi

n
(5.2)
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Figure 5.1: A visualisation of the basic network used for porting to mobile.

where:

• n is the number of samples in the training batches.

• yi is the ground truth output for the training image, where if the out was

correct is 1 else is set to zero.

• [y′i] is the rounded predicted output of the training image.

The networks were designed and trained using Tensorflow [120]. Thus the ten-

sors were saved in graph form with both weights and structure in the same file.

Optimization was then performed to remove the training, testing and none re-

quire variables from the graph. The networks trained using the GTX 1080Ti GPU

(11GB) with a batch size of 120. The batch size was determined by modifying the

Basic network multiple times and comparing the accuracy which has a high im-

pact. All networks were trained with the same batch size and the random weights

initialiser seed was set to 7 to increase reproducibility and consistency. We also

split 10% from the training set to be used for validation. The Keras interface

performed the data chosen for validation.

In this section, we review the methodology behind the training of the neural

network and the preparation of data. The network was trained on the Morph

dataset [121] using 49828 out of the 55134 available within the dataset, images

were excluded if they had incorrect lighting, deformed or unrecognisable, had most

of the face obscured or failed in both the OpenCV and Dlib [71] face detectors, as

both are commonly used face detectors. Images that met the required standard

were passed to the next stage of annotation. An automatic approach was taken,

similar to [122, 94], was used to speed up the landmark annotation and maintain

consistency, which shows to boost system accuracy [84]. The dataset was loaded
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into a created program that would first transform all the images into grayscale;

the faces were then cropped out using Dlibs face detector and resized to 96×96

images. The images were passed into Dlibs face point detector to retrieve 68 facial

landmarks. The points and 96×96 images were saved into a Comma Separated

Value (CSV) file as input data for training. The format for the CSV file was

the face point x coordinate, face point y coordinate for all 68 points on the face

and the last cell was the raw 96×96 pixel information with a space between each

pixel value. The morph dataset consists of the frontal face only and with limited

expressions.

The neural networks were trained to take in a 96×96 grayscale face image and

process to retrieve the facial landmarks. To retrieve the facial image; the OpenCV

library [123] was used as it has high accuracy [124], the library is compatible with

mobile platforms making it suitable for this experiment. The OpenCV library uses

a Viola and Jones [22] style cascade classifier to detect the faces. To prepare the

images for the network, the images were first converted to Gs from RGBA to reduce

the processing time and also resized to 96 × 96. The network then processed the

resulting image after cropping and rescaling. The process of preparing data was

integrated into the mobile application using the phones backwards facing camera

(faces away from the user’s face) as the live image feed allowing for the real-time

cropping of the face and landmarking.

Neural Networks have seen an increase in use in recent years [125, 126], but

focusing on how accurate and effective the networks were. Whereas, another

primary focus should be the implementation of neural networks into consumer

and industry-based systems. As neural networks are showing increase accuracy

and reliability, it shows that many current consumer-based applications could be

improved by using these techniques. It is possible once the model is trained, to

run the model on devices of significantly less processing power as the removal of

the backpropagation and training layers allow faster computation. However, the

memory for processing the image is still required which is still a significant amount

for a mobile device.
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Figure 5.2: A visualisation of the basic network used for the auxiliary infor-
mation experiment. The networks was adapted from 5.1, having fewer pooling

layer to preserve the data.

Neural networks are usually stored as two separate files. The first file is the

model, the layout and structure of the networks. The second file is the weights of

the networks, which is larger size and controls how the network processes the data.

For porting to a mobile device, merging the weights and network structure files is

required saving loading times and memory. To run a trained neural network, the

device has to be able to load the file into memory, which is an issue on mobile

devices as even the most modern mobile devices contain little RAM, such as the

iPhone 7 which has 2GB. Also, Tensorflow can have issues with file sizes over

68mb, due to android compression. To load the model onto the device, Tensoflow

has a mobile-specific library [120] for Android; this allows the device to open a

tensor graph containing the model and weights.

Android Studio [127] was used to build an Android Package (APK) with

a build targeting the API level 25 on x86 and x64 CPU architecture; this was

to ensure compatibility with the Tensorflow library and OpenCV. By using the

Tensorflow library, the model can be loaded onto the device if sufficient memory

is available. OpenCV is then used to access the mobile camera to detect faces and

pre-process the images for the neural network.

5.3.2 3D landmarking with auxiliary information

We implement multiple near-identical networks that function by pre-processing

the image with convolutions with ReLU activations and then a series of fully

connected layers to determine the final output. We illustrate the base networks in

Fig 5.2. The base networks take a single stream of data, Gs, RGB or depth and
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Figure 5.3: A visualisation of the merged network used for this experiment

process through a series of convolutions to extract facial features. We use max-

pooling to focus on high-level features and decrease processing requirements, but

take into consideration this can negatively impact accuracy [128]. The network

utilises ReLU as an activation function after each convolutional layer as it does not

normalise data. The resulting feature maps are then processed by fully connected

layers to predict the facial landmarks. For the second stage, we examine the

effectiveness of merging data streams, RGBD and GsD; we have a multiple input

model, shown in Fig 5.3. The merged network used two CNN: one to take the

RGB/ Gs image, and another to take the depth image. The two networks then use

a series of convolutions to extract unique features from each of the inputs. The

results of the two CNN are combined and used as input to a third network. The

third network further convolutes over the images giving a high-value feature set

for the fully connected layer.

As auxiliary features do affect how the network learns and XYZ points are

desired, but not commonly predicted, we repeat the experiments not just with dif-

ferent data streams, but alternative outputs. The different outputs aid in showing

how the networks can understand and learn both the features and facial structure,

in different spaces. The three types of outputs and their metrics that we train the

networks to predict are:

• The UV coordinates, in pixels

• The XYZ coordinates, in meters

• The UVXYZ coordinates
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where the UV points are the 2D image landmark coordinates and the XYZ

point are the 3D location of the landmarks in camera space. As the outputs are in

non-compatible metrics, they cannot be predicted in the same fully connect layer.

To overcome this, we propose a multi-model output, where the final convolutional

outputs are fed into different output models. Having different outputs from the

convolutions means, for UV and XYZ there will be one model of fully connected

layers for the convolution to be passed into. However, the UVXYZ network will

have the convolutions output into two different models, one for UV calculation

and one for XYZ. Traditionally with the Kinect, we require the 2D landmarks and

use them to reconstruct the 3D points with a depth map. Furthermore, by asking

a network to infer UV and XYZ points, it could adopt the similar methodology,

thus improving performance.

The networks are trained with a batch size of 240 using a stride of one over

100 epochs, using tensor-flow [120] with the Keras [129] API. We used the KOED

dataset with 10-fold cross-validation, this ensures the network is trained, validated

and tested on multiple participants, illustrating reliability. The cross-validation

split was performed semi-randomly, with 70% training, 20% validation and 10%

testing, ensuring no participant existed in multiple sets. We use MSE as our

loss function, as shown in Eq. 3.7, using Adam [119] as the optimiser. MSE has

more emphasises on large numbers allowing for large outliers to be resolved during

training. However, we also calculate the MAE, as shown in Eq. 3.8. MAE gives

equal weight to all the errors illustrating the overall error. By using these error

functions, we can determine the number of errors the networks produce and the

size of errors. We use MSE for training as it is traditional in regression-based deep

learning.

5.4 Results

Using multiple networks, we showed that to track a large number of points on

the face, max-pooling layers can have a detrimental effect on the results of the

97



tracking as facial feature and expression are lost to the degradation of the data.

We compare the accuracy and the loss of different max-pooling layers in Table 5.1.

As the experiments are to determine the effectiveness of how deep learning

can be implemented on a mobile device, the file size of the trained net is compared

and illustrated in Table 5.2. The FPS is also given on the mobile devices as well

as the image size before the fully connected layers.

Table 5.2: Table of the result file sizes

Network File size Image size FPS

Basic 32.5MB 12× 12 15

Two max-poolings 120MB 24× 24 N/A

One max-pooling 518MB 48× 48 N/A

Face Detector Only 50KB 864× 480 17

As shown in Table 5.2, the number of max-pooling layers has an incremental

impact on the resulting weights file. For reference of how this would affect an

application, the current Google Play store [130] rules for publishing an application

are provided. An application on the Play store cannot exceed the files size of

100MB. Compression on the optimised file also cannot be performed as standard

methods negatively affect the reading and use of the files. As a result, the file size

of the one max-pooling and two max-poolings could not be loaded onto the mobile

device.
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Figure 5.4: The networks accuracy, both training and validation.

Fig 5.4 illustrates that as the network begins to retain more data by removing

a max-pooling layer, the network gets significant boosts in accuracy. The increase

is much more prominent from one max-pooling to two max-pooling, this could

be as it loses more data through max-pooling compared to two max-poolings to

Basic max-poolings. Fig 5.5 shows that the more max-pooling layer lowers the loss,

but is not as significant as the impact on accuracy. Fig 5.6 illustrates that when

removing max-pooling layers, the networks accuracy increases this is much more

prominent between Basic max-poolings and two max-poolings. The reason behind

the accuracy drops is that by using max-pooling on the neural face and large

movements can be learned, such as mouth open, because subtle movements and

deviation a lost though pooling. However, the method fails to track expressions,

such as mouth widen and struggle with accurate placement of the eyes. However,

with each improvement, we also receive a corresponding drop in performance.
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Figure 5.5: The networks loss, both training and validation.

Figure 5.6: The networks MAE, both training and validation.

We ported each of the models to an HTC 10 mobile phone (4GB RAM, Quad-

core (2× 2.15GHz and 2× 2.16GHZ) Central Processing Unit (CPU), Adreno 530

GPU) to test the effectiveness on live data. The live tests show that even though

the basic network runs the fastest it cannot distinguish between many of the facial

movement include mouth widen, the system favours the neutral face. As shown

in Table 5.2 all trained models struggle to reach a real-time landmarking time,

but the system also had to perform features, such as the face detection. When
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comparing the performance of the systems we recommend to implement one max-

pooling as it aids performance significantly with little impact on accuracy, giving

the best cost/reward trade-off, but further research needs to be done to optimise

the size for mobile devices. However, if the hardware is restricted and accuracy

is not too important, then the two max-poolings will suffice. Image from the live

capture shown in Fig. 5.7, where we tested in both controlled light conditions

and uncontrolled lighting Fig. 5.14. We also performed a comparison of glasses

on/off as in Fig. 5.15. We provide all codes use to build the Android application

(Android studio project), codes to train/export (Python 3.5) the model and the

models (.pb) used for this experiment publicly available.

The results from the changing the pooling layers and porting to mobile de-

vices, showed that state of the art layers were over pooling the input data, which

when coupled with the low image size input meant not enough data was left in the

images for the neural networks to track a wide range of facial movements. How-

ever, the work did show that the network where capable of performing accurate

facial landmark on low powered devices.

Figure 5.7: Example output of the android application

When we extend the work to 3D to compare the networks, we first show the

validation during training and examine the performance of each stream. For each

of the results we start with the UV (2D), then XYZ (3D) and finally the UV XYZ

(All) results. After this, we show an evaluation of the networks on testing data

101



and the feature maps produced by the networks. Finally, we examine the results

of the testing set with both MSE and MAE scores.

We use the information learned from porting to mobile networks to adjust

the neural networks structure to reduce the amount of pooling. We also use

multiple convolutions, in-between pooling as this is shown to allow for more in-

depth features to be collected, similar to [43]. This allowed the produced networks

to have increased performance when identifying facial landmarks.

Fig 5.8 illustrates for the prediction of UV landmarks, both RGB and Gs

converge at similar epochs, 40. Also, they both share many similar traits, such

as they both start with a significantly lower loss and have more stable learning

than input streams that incorporate depth. Overall, RGB performs the best in

both MSE and MAE. The networks that merge visual and depth data converge

much later than RGB and Gs, but their results of MSE are close to the RGB and

Gs scores. RGBD and GsD have unstable learning curves and encounter hidden

gradients that cause loss to increase rapidly. The single channel GsD converges

earlier than RGBD, indicating that a single clean frame learns faster on how to

smooth a noisy depth map than a three channel RGB image. The single channel

depth encounters the most unstable learning and converges at a much later stage,

showing without a visual stream to assist the depth data cannot easily locate UV

landmarks. Further illustrated by depth performing the worst when evaluated on

MSE and MAE.
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Figure 5.8: The MSE of the UV Only networks validation over 100 epochs.

Fig 5.9 illustrates, the MSE of the XYZ only network, similar to UV, RGB and

Gs start with a low loss and converge the quickest at around epoch 30. However,

the learning is unstable, indicating retrieving accurate 3D landmarks from visual

images is a difficult task, although in the final epoch RGB has the lowest MSE. The

input streams that incorporate depth converge sooner than in the UV prediction

networks. Furthermore, their learning rate is more stable than the RGB and Gs

stream, but hidden gradients are still an issue. Also, they converge at a similar

location slightly higher than RGB and Gs, although at some point they score

lower loss than the RGB and Gs networks. This convergence also occurs after a

hidden gradient, indicating there is a shared local minimum caused by the inclusion

of depth data, the most prominent of these is GsD, in which consistently has the

lowest loss over epochs until it reaches a hidden gradient, to which it then becomes

the worst performing stream.

103



Figure 5.9: The MSE of the XYZ Only networks validation over 100 epochs.

Fig 5.10 illustrates the MSE of the UVXYZ networks, where RGB and Gs

begin with the lowest loss, but RGB has a significantly lower loss than Gs. The

learning rates of RGB and Gs are stable and converge quickly around epoch 43,

with Gs performing the best. The input streams that incorporate depth data also

converge quickly, with depth and GsD having stable learning rates, unlike RGBD.

Furthermore, hidden gradients are still an issue. However, unlike in UV and XYZ

only networks the UVXYZ quickly recovers. The recovery demonstrates, how

auxiliary information is benefiting the networks ability to learn from the different

data streams by overcoming issues, such as the local minimum seen in Fig 5.9.
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Figure 5.10: The MSE of the UVXYZ networks validation over 100 epochs.

Fig 5.11 visually compares the results in both 2D and 3D. We summarise the

observations:

• In the UV only prediction, the results are visually similar, but there is some

deviation between each of the networks. When using depth as the input

stream, the predictions of both the right eye and lip corners are predicted less

precise than the other input streams; this could be directly affected by the

noise in the depth maps, as when merged with a visual stream, performance

is improved.

• For UVXYZ, there is no noticeable difference between the UV results.

• For the XYZ only predictions, we see much larger discriminations, in the

predicted facial landmarks. Some of the significant changes are:

– From the frontal view, there is a variation in the mouth width, with Gs

being the smallest and depth being the widest.

– Nose landmarks shifts in GsD were the nose tip, and right nostril is

predicted close to each other.

– Eye shape changes between networks, Gs and RGBD, produce smooth

round eyes. Whereas, others are more jagged and uneven.
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– From the side view, we see the profile of the face change with the

forehead and nose shape varying greatly between networks.

• In contrast to the UV results in the UVXYZ network, with the addition

of auxiliary information the resulting geometric landmarks on the mouth,

nose, eye and eyebrows, become more precise and consistent. In most of

the cases, the eyes are smoother, the eyebrows are more evenly spaced, the

nose irregularity in GsD no longer occurs and the mouth width consistency

has significantly improved. These results show that, as UV is easier for

the networks to learn as all streams manage similar results when used as

auxiliary information, they standardise the 3D locations as well. However,

there are still some variations in the profile of the nose, and in RGB the

right eye is predicted shut.

Figure 5.11: A visual comparison of the results from the 2D and 3D networks.

As shown in Table 5.3, for UV landmarks RGB has the lowest MSE, with Gs

not far behind. It also shows that for predicting landmarks in 3D only, that having

both a visual and Depth data allows for the highest precision results, with RGBD

and GsD scoring the lowest with marginal differences in score. For the MAE and

MSE of the UVXYZ networks we show the separate stages of the loss calculation:

• Combined loss, which is the sum of UV and XYZ layers loss.
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• UV loss, the loss of the UV layers alone.

• XYZ loss, the loss of the XYZ layers alone.

The combined loss shows the networks overall performance, but the UV and XYZ

alone show the performance of the networks on the individual outputs. By compar-

ing the loss of the UV and XYZ alone, we illustrate how the auxiliary information

is affecting network performance, compared to networks predicting UV only or

XYZ only landmarks. When trying to predict UVXYZ data, Gs performs the best

overall. We show that by introducing the 3D landmarks, we reduce the overall

loss significantly to UV alone in both RGB, Gs and GsD networks. Furthermore,

the prediction of XYZ is improving in the same networks. We see similar results

in the MAE, shown in Table 5.4, where networks reduce the loss below the UV

alone networks. However, RGB sees the least MAE for UV. For overall combined

loss and XYZ loss, Gs scores the lowest in MSE and MAE.

Table 5.3: Table of the testing set evaluations on MSE.

Input Data UV XYZ UVXYZ UVXYZ(UV) UVXYZ(XYZ)

Gs 1.8192 0.0023 1.3695 1.3676 0.0019

Depth 6.4672 0.0023 6.6509 6.6482 0.0027

Gs Depth 2.1845 0.0022 1.8933 1.8911 0.0022

RGB Depth 2.1561 0.0022 2.8744 2.8752 0.0022

RGB 1.7488 0.0023 1.5612 1.5592 0.0019
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Table 5.4: Table of the testing set evaluations on MAE.

Input Data UV XYZ UVXYZ UVXYZ(UV) UVXYZ(XYZ)

Gs 1.0052 0.0341 0.9127 0.8797 0.0330

Depth 1.9150 0.0361 1.9705 1.9322 0.0382

Gs Depth 1.1210 0.0379 1.0617 1.0246 0.0371

RGB Depth 1.0848 0.0367 1.3056 1.2685 0.0371

RGB 0.9553 0.0346 0.9685 0.9388 0.0297

The key differences in single task networks and multi-task networks in pre-

dicting facial landmarks were observed in the feature maps of the networks. The

network kernels learnt the spatial information from UV prediction. Therefore,

the feature maps shown in the UV prediction demonstrates the activation of

appearance-based facial features. On the other hand, when predicting the geom-

etry coordinate of XYZ, we observed that the feature maps of the convolutional

layers with point-based (facial landmarks) activation. The point-based landmarks

are due to the Z component which makes the facial landmarks more separable. The

UVXYZ column depicts the features maps in UVXYZ prediction. We observed

it has better pattern representation with both appearance-based and point/land-

marks information. The feature maps show the networks are capable of processing

the input stream to focus on the specific landmark regions of the face. Further-

more, by adding auxiliary information, the kernels become refined able to detect

features with high intensity, as the network is forced to learn how the structure

appears both 2D and 3D.
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Figure 5.12: A visual comparison of the output of the final convolutional filter
for each type of network prediction on the RGB Images. The third column
illustrates the feature maps for UVXYZ prediction, the best performance with

auxiliary information.

To demonstrate the effectiveness of the network, we visualise the predicted

landmarks of the Gs network on a 3D model, shown in Fig 5.13. With Gs as

input data stream, our proposed method predicts accurate 3D facial landmarks

on raw depth data using auxiliary information. Furthermore, this illustrates the

accuracy of the network, even with raw depth data, our proposed method manages

to estimate accurate 3D facial landmarks after pre-processing to crop and resize

depth images for the network, where a human would be incapable of without

full-size depth images [131]. However, due to the noise from the raw data, the

limitation of our proposed method is not able to locate the Z position precisely in

some cases.

109



Figure 5.13: The result of the Gs UVXYZ trained network and the appropriate
model from the same input depth map. The model is transparent to show the

geometry coordinates of the facial landmarks.

5.5 Discussion

We have demonstrated the effectiveness of basic neural networks on mobile devices

and compared the subtle changes in the network design and its effect on the

performance, both on the device and the accuracy of the network. More processor

intensive networks can achieve better accuracy for the system, but its performance

on mobile is unregistered and an open area of research. By testing higher resource

required networks on mobile devices and showing their effectiveness in comparison

to the one shown in this paper will aid in benchmarking the progression of systems

in the future. A major requirement for future work is to perform optimisation on

the application to increase the frame rate to real-time, methods, such as Fagg et

al. [132] fast fourier transform face detector, that can run over 60fps freeing up

memory and time for the neural network. Other methods could also be tested,

such as Ranjan et al. [133] to allow a neural network to handle everything from

face detection to landmarking.
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Figure 5.14: Example output of the android application in a controlled en-
vironment(bottom) and wild environment (top), with both male and female

faces.

Figure 5.15: Same Scenario as Fig 5.14, but with glasses.

In the extended work, we have shown and illustrated the effect of different

data streams within neural networks, to identify which streams are ideal for current

research topics, as current literature uses a mixture. We also extended the work by

the prediction of points in the camera (XYZ) space as this is a valuable resource

in the area of facial expression recognition and animation synthesis, but current

literature focuses on image (UV) space coordinate systems. Unique insights into

each stream of data were obtained, demonstrating, the pros and cons of each

stream. To prevent bias, an in-house dataset was used, showing that each network

was able to some extent reliably track facial features and expressions in both 2D
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and 3D. The networks showed that the existing data-streams could accurately

predict 2D and 3D landmarks.

Comparing the results and feature maps of the networks demonstrates the

ability of the networks to process and understand the different forms of data and

if they are beneficial to the network. Full RGB performed the most effective on UV

with the least amount of errors and lower scale of the errors that occurred. While

depth shows its effective at predicting landmarks, the noise it presents requires

additional streams, such as RGB to smooth out and retrieve reliable results. In the

final experiment, for predicting UVXYZ, we show that although for UV alone RGB

is the most efficient, Gs outperformed it, illustrating that more generalizable single

frames are more effective when predicting a wide range of values. While, depth

has shown to be difficult for the networks to learn from, with limitations, such as

exploding gradients, even after merging with cleaner streams it has been showed

to be effective even when cropped and resized for the prediction of landmarks,

where traditional methods require full-size depth images.

This work focused exclusively on the use of neural networks to predict facial

landmarks without the aid of physical markers, sensors, or references points placed

on the individuals. There have been many incremental studies into the used of

neural networks to predict the image (UV) space landmarks successfully. However,

the results all use different streams of data with little consensus on why the stream

is used, except due to dataset or memory limitations. Also, XYZ coordinates

are not being predicted by neural networks in current systems. In-which, many

industries desire the use of 3D landmarks in real-time.

There are several limitations to this study, mostly related to the data used to

train the network and the difficulty of 3D landmarks. Firstly, due to the context

issue of cropping a depth map recording was done in a controlled environment,

so the network only has to learn a manageable part of the 3D viewing frustum.

This, regarding animation, has an advantage as it normalises the facial position,

while still tracking 3D facial movement. However, for full 3D prediction full depth

maps would still be required. Future work should seek out new technologies, such
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as the Intel real-sense D435 [56], which could resolve the noise issue of the Kinect

as it uses stereo IR emitters with an IR projector to create clean depth maps,

which could see significant improvements. Other aspects, would be to further the

work with a larger dataset to test the reliability, of no depth streams with a wider

demographic of faces.

5.6 Summary

We have demonstrated that the max-pooling layers have high potential to aid

in compressing the size of a network to operate on mobile devices. Employing

max-pooling layers allows networks to become ‘lighter’ and be trained faster, but

with reduced accuracy. With the basic network, the standard learning libraries

in networks that don’t employ the max-pooling layers have improved results. We

have implemented a deep learning network onto a mobile platform, tested the

performance on real-world data. We have also show that the outputs on an array

of varying neural networks to demonstrate how the networks were affected by the

max-pooling layer. By comparing the cost/reward, we recommend the Basic max-

pooling network as it has high accuracy, with little impact on the phones memory

or processing capabilities for mobile platforms.

We have shown and analysed how the input data stream can affect a deep

neural network framework, for the analysis of facial features, which can have an

impact in facial recognition, reconstruction, animation and security, by providing

how the networks interact with the different data streams. The stream shows

different levels of accuracy and reliability which can positively affect future work.

Future work will include increasing the number of the participants, increase the

amount of reliably track without markers 3D reference point on the face as current

literature is limited in this area.
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Chapter 6

Depth Data Denoising

This chapter discusses the issue of the noise in depth data produced by the com-

mercial sensors. Additionally, we evaluate the purpose of neural networks for RGB

image denoising, and the possibility to transfer it to depth images. We show neural

network denoising on depth images by using a generated 3D depth image dataset.

6.1 Introduction

Facial animation is challenging because of the highly deformable surface of the

face, and the structural difference between individuals [134, 135]. Furthermore,

many of the techniques available use RGB data that gives a 2D view, where some

motions, such as pouting and cheeks puffed are easier to be view in 3D depth

data. Many motion capture productions use “middleman” models and have the

final model resemble the actor’s face, which synthesise the motions onto the model.

The requirement for a model resembling the acting has been a research challenge

for many years, with satisfactory results from single camera reconstruction using

3DMM [26]. Although this method produces high-quality results that simulate a

real face, errors in the facial structure can occur and the method is profoundly

affected by lighting [136, 137], which is why many commercial companies employ

the use of optical motion capture for capturing the motion and use a light stage

114



Figure 6.1: A comparison of different noise generation methods applied to the
depth data and then render into models.

[138, 51] to generate the 3D expression models used in the animation. 3D depth

sensor has been used in the past [4] mainly for model generation, which is a

much cheaper alternative, but the noise produced by the sensor has prevented its

widespread adoption by the research community.

Noise reduction in standard image processing has been significantly improved

with the introduction of deep learning techniques capable of denoising a wide

range of images, that preserves fine details in images, such as facial features [66].

However, for deep learning approaches, this requires both noisy images and the

clean images (as ground truth) to train denoising networks. In depth sensors, from

a Kinect One [87] perspective, providing clean depth data as ground truth remains

a significant challenge. As supervised learning algorithms requires a substantial

amount of data [126], it is common for researchers to incorporate synthetic data

into their training data [139]. There are techniques [140, 141] using neural network

to synthesise the training data and generate training data on the go.

Several attempts at noise reduction have been made in the past. A popular

method of denoising natural images is BM3D [67]. Difilippo et al. [142] suggested

to “warm up” Kinect before recording, which improved the result of full body

images but did not preserve the face details. Temporal denoising [143] require

sequences of depth data, where the subject needs to stay still or perform certain

poses, which are computationally expensive and do not work on a single frame.

Zhang and Wu [63] proposed a light convolutional network to denoise depth image.

However, the method did not preserve the image size. Consequently, it is not able

to generate the 3D model due to the changes in perspective and size.
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This chapter presents a novel method in denoising face depth data in real-

time while preserving the details of facial features. We introduce a customised loss

function for the training of neural networks and demonstrate its capabilities on

2D data, as well as 3D data. We show that it is possible to use Neural Networks

to achieve comparable denoising results as state of the art, BM3D, with lower

computational time. To overcome the issue of data deficiency in depth data, we

proposed a new method for generating synthetic depth data (clean model) and

add Gaussian noise (noisy model) for our experiment. The neural networks train

on this large synthetic dataset and able to denoise the synthetic depth data and

real depth data on single frame depth data in real-time.

6.2 Related work

The depth sensing devices, such as Kinect, has been used to build 3D face models

in the past. Frame integration and non-rigid ICP [25] were used to remove noise

from the constructed model, which allows for accurate facial landmark annotation

[131]. Frame integration is vulnerable to motion distortion, and it allows a full

rotational model of the face to be generated. An example of the Kinect raw frame

vs an integrated frame is shown in Fig 6.2.

Figure 6.2: An example of an integrated model (left) and a single frame model
(right).

Noise reduction is an important field for signal and image processing. Images

can be affected by a wide range of noise types [144]. Image processing approaches

have been used widely in denoising images, such as median filter and average filter.
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Figure 6.3: A comparison of the different values of sigma for BM3D. Tradi-
tionally sigma is increased with noise, but for depth data, we found reducing

sigma increases performance.

However, such a filter may not be suitable for face depth data as they remove the

finer details in the image, such as facial features.

BM3D [67] is the state-of-the-art algorithm for natural 2D image denoising. It

identifies similar regions in an image and places them into a 3D group. The groups

go through a series of 3D transformations, linear, shrinkage and finally an inverse

3D transformation. The final image is then produced by a collaborative filter that

preserves the unique features of each image and the features that are common.

However, the method is an intensive computational task, and the image must be

split into overlapping blocks and compared, which gives both its broad application

and long processing time. BM3D is also limited due to its block matching nature,

without any matching blocks it cannot perform. Furthermore, as sections of noise

can match, the system can in extreme cases spread the noise.

The related works are split into two sections. Firstly, we evaluated the method

of merging RGBD for cleaner depth maps. Secondly, we investigate depth only

refinement methods. However, many of the techniques shown focused on denoising

RGB images, where they showed good results, which could be transferred onto

depth.

Traditional ToF depth data denoising follows a strict path of using the easily

acquired high-resolution colour images to give detail into the depth surface and

refine depth positions. Diebel and Thrun [145] proposed the use of a multiple-

resolution based Markov Random Field to combine a low-resolution depth image

and a high-resolution colour image to refine the depth data and improve its reso-

lution. This method was proposed as light is absorbed differently by the different
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colours, such as black absorbing more light causing depth to be predicted further

away and vice-versa for white. They provided a good clean result on the area with

a distinct deviation between colours but is not able to smooth areas, such as wood

due to its colour diversity. Qingxiong et al. [146] proposed an up-sampling ap-

proach for multiple functioning sensors with a refinement approach. They refined

the depth map with a series of cost calculations, bilateral filtering and then sub-

pixel refinement to the depth map. Their method provided clean up-sampling rates

at higher factors than other methods at the time. Chan et al. [147] extended on

existing work on Joint Bilateral Upsampling by Korf et al. [148]. They wanted to

improve the system as although the methods allowed some improvements, texture

information from the colour image could be synthesised into the depth map, such

as text on a bag that could not, naturally, be picked up by a depth camera. The

effect of textures being applied causes problems as the true depth has changed,

Chan et al. proposed a noise aware filter that considers colour before applying

changes to the depth map to reduce the texture effect by applying Gaussian filters

independent to the depth. By using this approach, they produce high-resolution

depth maps with less large noise peaks. Park et al. [149] broke away from using

bi-lateral filtering to use a least-squared algorithm that utilises multiple weight

factors with nonlocal means filtering to preserve depth edges better while main-

taining smooth surfaces, even on complex shapes. He et al. [150] created a guided

filter that uses information from a reference RGB image or the image its self.

The guided filter improves upon existing methods by describing more than just

when to smooth the depth map, by having filters available for edge preservation,

and when encountering light scattering surfaces, such as fur. He et al. focused

their attention on the denoising of colour images instead of depth but produced

a noteworthy high-end result. Wu et al. [151] provided a much-improved method

of improving depth images, that again uses a reference RGB, but normalises the

luminance in the scene and produces an albedo image. The albedo image is then

used to produce an edge map, and coarse information refined using the shade

information. They then used an iterative process to refine the depth map that

allows for even subtle details to be passed to the depth map while avoiding colour
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texture, such as text being passed. They finalised the work by employing it to a

GPU allowing for real-time processing at 30 FPS. The methods shown provide

effective means to clean a depth image and improve some detail found in the im-

ages. However, the issue with the methods shown is that they rely on receiving a

clear RGB image and then good alignment of RGB and depth images, this means

areas in low (dark)/high (glare/white-wash) of fast /blurry movement cannot be

used as an effective method to clean the depth image. A method of depth only

cleaning would be more effective.

Although many denoising techniques with deep learning use single images,

some use multiple images as reference for the neural network, such as Zhang et

al. [152]. Like the previous section, they used an aligned RGB reference image to

aid clean the depth map. However, instead of using a statistical model they use

deep learning to refine the depth map. The work gave good results but implement

max-pooling which reduced image size drastically; they also used the Middlebury

dataset which used different scanners for ground truth but adds ‘holes’ in the depth

map to simulated noise, which is not an entirely accurate depiction of depth noise.

For our experiments, we want to only use single depth maps as input for denoising,

bridging the gap towards more traditional methods of image denoising. Due to

the nature of depth maps and the techniques of rendering 3D data, we review

networks used in denoising, but only test networks where the input size is equal

to the output. Xu et al. [153] improved upon denoising by using Deconvolution

Neural Network (DCNN) targeted for denoising through the uses of deconvolution

filters. Deconvolution filters have the opposite effect on image size to normal

convolutions allowing for the image to be up-sampled, this is commonly used

in VAE, and they compress and uncompress data which has the potential for

denoising. They also introduce a multiple stage network that performs outlier-

rejection to improve network performance. Using the outlier-rejection network,

the authors significantly improve denoising accuracy, but their network down-

samples images from their input size, even with deconvolution layers owing to the

use of Max-Pooling. Dong et al. [69] experimented with the use of deep learning

for denoising with a small scale neural network. The authors create a three-layered
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neural network that utilises ReLU activation after the first two convolutions. The

network although small uses a large number of kernels, 64 for the first convolution,

32 for the second, and just 3 (RGB channels) for the third. The authors achieved

a high accuracy well performing neural network, that can restore and highlight

many different types of features. Zhang et al. [154], created a much deeper neural

network. The authors created this network to be able to clean noisy images with

a variety of noise levels, against the traditional method of denoising images with

a consistent Gaussian noise level applied. As a result, the network was much

more resistant to different noise levels and became more diverse. The network can

outperform many state of the art methods, such as BM3D [67], which is commonly

used as a benchmark. Mao et al. [155] expanded denoising in two ways firstly;

they use VAE methodology, where the image is convolved into its core features and

then restored, usually used in compression. However, by reducing an image to its

core features, noise can be removed before the restoration process. Additionally,

Mao et al. implemented a technique where the result of previous convolutions is

saved and added to future convolutions to preserve information. The preservation

of data and the length of the network makes the authors technique effective, but

memory and processor intensive. Nah et al. [156] proposed a series of refining

neural networks that cleans a noisy image. The authors’ technique starts with a

small image that is processed by a neural network to perform denoising. After the

processing, the image is then up-sampled and passed to another neural network

that performs more denoising. This process is repeated until the image size is

met. Their technique improved performance significantly in dynamic scenes, such

as pedestrians moving or camera-jerk. Bae et al. [157] proposed a large scale

neural network that repeats a module of convolutions with batch normalisation.

The network is designed to denoise Gaussian data. In most recent work, Mildenhall

et al. [158] produced a new network, similar to Mao the use a VAE style network

with data retention between the layers. The network is also trained to be diverse

in the levels of noise the network can remove. The network uses a large number

of filters in each layer and instead of max-pooling implements average pooling. A

large number of filters allows full in-depth de-noising that can target both large
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and subtle features in an image.

The networks describe, except Zhang et al. [152], focused on the denoising of

2D images. When using neural networks for denoising, MSE is used as a standard

as a loss function, and then PSNR is used on the result to determine the effective-

ness of the model. However, with minor adjustments, PSNR can be used as a loss

function for neural networks allowing the network to optimise for the standard

evaluation metric. We show the customised loss function in equation 6.1, which is

the negative of 3.11. By using the negative form of PSNR the metric can be used

as a loss function in a neural network, which means the network will be optimising

for the metric it is commonly evaluated on.

PSNR = −(20× log10(MAX)− 10× log10(MSE)) (6.1)

where:

• MAX is the maximum possible value in the ground truth, for the depth data,

this is 8000.

• MSE is equation 3.7.

6.3 Proposed Methods

During this experiment, we went through significant revisions of our methodology

after being peer-reviewed by experts in the field. In this section, we discuss our

first attempt of denoising depth data.Then we show and give reason for the the

drastic changes in the methodology and demonstrate are revised technique.

6.3.1 Proposed Data Synthesizing method

Two existing methods are currently used for synthesising depth data. The first

is BlenSor [159], which employs a physically accurate ray-cast system to calculate
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the light bouncing off surfaces. The ray-cast give BlenSor high accuracy but is

very computationally expensive. BlenSor produces an accurate depth map and

then post processes to add noise. The second method by Rahmani et al. [139]

employed a series of computationally intense processes, such as backface culling

and hidden point removal. They then use Gridfit [160] to put the vertices in the

form Z(X, Y ), image form. Gridfit smooths the surfaces, so nearest neighbour is

used to remove any unwanted points and lastly normalisation between 0-255 is

performed. The authors method creates a depth map but loses information along

the way with Gridfit and normalisation.

As the two previous methods have shown that they can produce depth data,

they are processor intensive tasks to produce their results. They also use compli-

cated steps that take time to recreate and follow. However, most of these steps

have been done naturally for 3D computer graphic systems. To explain how virtual

environments are rendered, the viewing frustum is shown in Fig 6.4. The viewing

frustum is common in all 3D applications; many referred it to the camera or eye.

The viewing frustum is used for rendering the scene to the 3D view. During the

rendering process, the origin of the camera becomes the origin of the scene; every

object position is relative to the camera. The frustum then begins a sequence of

culling:

• Out of view culling: The pyramid style structure of the camera is used to

detect if an object or part of an object is within the view of the camera.

If any section of an object is not within the frustum, it is culled from the

scene as it will not appear in the rendered image; thus, wasting memory by

performing rendering and lighting calculations on it.

• Occlusion culling: Another pass is then made to detect if an object is oc-

cluded by another in front of it, any occluded sections of an object are culled

from the scene. During this stage, a special case can happen owing to the

transparency of objects; this should be taken into consideration if working

with a model implementing alpha channel textures.
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• Distance culling (Z pass): As shown in Fig 6.4 the frustum contains a near

plane and a far plane. The frustum then calculates the distance between the

camera and each of the remaining objects in the scene. The system uses the

distances to cull any points outside of the viewing range.

To generate the depth data, we use the Distance culling or Z pass. The

frustium uses the points within it’s view to produce a depth image of the scene,

using the camera as an origin, just like the Kinect. The depth image is produced in

real-time (or the speed at which you render) and is accessible in most 3D software

packages, either through code or a shader [161]. This allows full scene depth

capture with preserved accuracy while avoiding computationally expensive steps

in previous research [139, 159] such as hidden point removal, Gridfit and nearest

neighbourhood matching. The Z pass, also skips the processor intensive task of

ray-casting the scene method of BlenSor. Similarly, compared to both BlenSor and

Rahmani et al., this method gives a clean depth image and by setting the frustum

to replicate the setting of any available depth sensor (FOV and resolution), an

ideal image that we would want from the Kinect, which we can post process

to add Kinect like noise to the image. We provide the code (python based) to

extract this from blender, set to capture when the user renders an animation. We

demonstrate this method using blender, but it can be easily recreated in a wide

range of 3D applications, such as Maya [83], Unity3D [91] and the Unreal Engine

4 [162].

Even though this was made to simulate Kinect data to be a baseline for

showing synthetic data can be used for improving real data, this applies to other

depth sensing devices as they implement the same data capturing mechanism.

For our method, we calibrate the camera to Kinect specifications. However, it is

possible to recalibrate with the other camera. Furthermore, as most of the real-

time sensors use IR or structured light, the noise is nearly identical. As noise is

near identical, it implies that simulation of noise is achievable by fine-tuning the

Gaussian intensity and distribution.

123



Figure 6.4: The 3D viewing frustum (perspective mode) used in many 3D
applications.

6.3.2 Generation of noise upon depth images

The Kinect One’s noise is generated by its ToF system, which implements an IR

blaster [163]. The Kinect sends a pulse of IR light and uses the time it takes to

return to triangulate the distance from the sensor. Although depth sensors, such as

the Kinect can provide accurate depth images of the environment, Wasennmüller

et al. [164] and Choo et al. [165] showed the sensors usually produces a wavelet

style noise over the whole scene, with additional noise at edges of objects. It

should also be noted that the noise generated by the Kinect is also reduced once

it reaches operating temperature [98, 166].

The wave style of noise on the Kinect image is similar to ripples in a puddle,

where we still get a smooth surface, but the noise comes from the waves causing

some sections of the puddle to be higher and some lower than the still height,

in our case further away (lower) and closer (higher). To identify the best noise

generation method, we compare three state-of-the-art methods: Gaussian, Poisson

and Speckle noise. We applied different intensities and value to closly represent

the noise created by the Kinect sensor as shown in Fig 6.1. As shown in Gaussian,

noise resembles the noise produced by the Kinect sensor. This is similar to the

BlenSor system that uses Gaussian to add noise to the system. The Gaussian

blur was set with the mean of the random distribution to 0 and a variance of 1.

However, they did not fully resemble the Kinect ToF noise, making the method
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ideal for real-time clean depth collection, but not simulating Kinect style noise.

However, the method of using Gaussian to simulate ToF data has been used in

modern research [167].

In our initial work we used the propose data generation method. However,

after peer-reviews we adjust the noise generation method to a C++ implementa-

tion of BlenSor with a sensor set up to the Kinect standards. Due to the method

of BlenSor, where a ray-cast must be used and then noise applied to change the

ray-cast, this means an original clean depth map can be captured before noise

simulation. The ability to capture both clean and noisy depth maps allows the

system to take a 3D model and produce the dataset required for de-noising.

The split is performed semi-randomly to ensure no participants exists in mul-

tiple sets to prevent bias. The datasets used are:

• D3DFACS [1]

• Face warehouse [94]

• Biwi Kinect [65]

Each model was placed one meter in front of the sensor facing directly into it,

all models were uniformly scaled to ensure natural proportions were maintained

and the datasets use different size metrics. This method generated a total of 46,140

noisy facial images. A sample of a model generated by the noisy and clean images

can be seen in Fig 6.5 and demonstrates the clear difference between what sensor

could predict vs what current sensors receive. If it is possible using deep learning

to receive models similar to clean it could improve the accuracy of 3D systems

drastically.

6.3.3 Experimental Setup

This section describes the experimental setup for all methods. To ensure a fair

assessment, the experiments follow a similar protocol. For input data, we test the
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Figure 6.5: An example of a clean (ideal) model versus a noisy model. The
image illustrates the type of noise we must simulate, such as the wave type effect
over the skin and the self-occlusion noise of the positional difference between

the IR transmitter and receiver.

networks with two types of input: raw data and normalised data. Raw data is the

depth sensor’s reliable range, i.e., 400-8000 for Kinect. For our first attempt at

denoising, the systems outperformed BM3D.

We perform 10-fold cross-validation on the dataset. As our training dataset

was constructed from multiple existing datasets, we ensured that an equally repre-

sentative amount from each dataset was in the testing set. The split provided use

with 34122 training images and 3844 testing images. Due to the size of the training

set and memory limitations on RAM, we split the training set into mini-batches

of 4000, meaning it took 9 of these to train a single epoch.

In our revised work from our initial submission, we test against a series of

state-of-the-art networks that focus on colour image denoising, to demonstrate

the increased difficulty in denoising ToF data compared to standard 2D images.

Also, we propose a customised loss function derived from PSNR. As illustrated in

equation 6.1, we flip the value of PSNR to negative allowing it to be implemented

as a loss function. We implement the PSNR loss function as MSE is used in

standard denoising neural networks, but to test the effectiveness of the network

PSNR is used. With deep learning, it makes more sense to use a loss function that

optimises for the evaluation metric performed. To test the performance of PSNR

loss, we train networks with 2D Gs images, using both MSE and PSNR as loss

function and compare the results.
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Table 6.1: The results based on raw depth data. The mean and SD are
obtained for PSNR and Time. The model indicates if the method can generate

a 3D model.

Methods PSNR Time (seconds) Model
BM3D [67] 31.98± 0.48 1.8559± 0.036 No
BaseNet1 64.36± 0.07 0.0027± 0.0004 Yes
BaseNet32 87.56± 2.50 0.0077± 0.0005 Yes
VAE1 52.92± 3.11 0.0039± 0.0004 Yes
VAE32 58.80± 3.58 0.0065± 0.0005 Yes
Burger et al. [66] 34.57± 0.49 4.6503± 0.0909 No

Table 6.2: The results based on normalised data. The mean and SD are
obtained for PSNR and Time. The Model indicates if the method can generate

a 3D model.

Methods PSNR Time (seconds) Model
BM3D [67] 92.60± 0.52 1.9660± 0.0501 Yes
BaseNet1 31.70± 22.69 0.0028± 0.0004 Yes
BaseNet32 31.59± 37.14 0.0077± 0.0005 Yes
VAE1 31.93± 8.96 0.0039± 0.0004 Yes
VAE32 31.78± 11.91 0.0065± 0.0005 Yes
Burger et al. [66] 16.19± 0.01 4.6903± 0.0599 No

6.4 Results

In our initial work, we experimented on a series of small neural networks for depth

data only. When we extended the work, we implemented the state-of-the-art

networks and test on both colour image denoising and depth data.

As mentioned, VAE were used in the hope of acting like an attenuation net-

work, learning just the key features in the images and then from them to recon-

struct the facial features. Although the networks scored high in training, surpris-

ingly they performed poorly on the normalised depth values (0-1), and 32 kernels

could produce a model, and it did not produce a usable depth map.

In Table 6.2, we showed a comparison of the available methods performances.

For the BaseNets and VAE network, they were trained on normalised data. Table
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Figure 6.6: This figure represents a visual comparison of the denoised 3D
models using normalised data. The clean shows the ground truth, BM3D is
state of the art. BaseNet1 and BaseNet32 are our proposed methods; VAE1

and VAE32 are the networks based on VAE.

Figure 6.7: A visual comparison of the denoised 3D models using raw depth
data. The clean show the ground truth model; BaseNet1 and BaseNet32 are

our proposed methods; VAE1 and VAE32 are the networks based on VAE.

6.2 shows that BM3D has achieved a mean PSNR of 92.60 and an SD of 0.52. In

contrast, the BaseNets and other methods have poor accuracy and a high SD, but

BaseNet1 is significantly faster than BM3D. A visual comparison of the denoised

models using normalised data is illustrated in Fig 6.6, where it is evident that

BM3D produces a clean model. The BaseNets struggle to clean the complex

features of the face and the edges of the model recede inwards. Whereas the VAE

network reconstructs some of the facial features, such as the eyes, much of the

model has been smoothed or is missing.

Table 6.1 shows the experimental results on raw depth data. BaseNet32

achieves the best result with a mean PSNR of 87.56 and an SD of 2.50. State

of the art, BM3D, and Burger et al.’s method performed poorly on raw depth

data. The BaseNet1 achieves the fastest processing times, but BaseNet32 is not

far behind. BaseNet1 has improved if compared to the results on the normalised

data, and BaseNet32 manages to denoise while preserving the facial features, such

as the mouth as illustrated in Fig 6.7.
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Figure 6.8: The PSNR Loss of networks the trained networks.

In the extended work, we began by training state of the art denoising net-

works, image super-resolution [68] and Deep Denoising Super Resolution Convolu-

tional Neural Network (DDnSRCNN) [155] on the morph dataset. The networks

used to allow for state of the art results and comparison. The networks were

trained three times using alternative loss functions:

• MSE

• MAE

• PSNR

where MSE is the traditional loss function, but MAE is implemented in some cases.

The use of PSNR is to compare the results of the differently trained network to

demonstrate a change in the networks performances.

For RGB denoising, we train on the Morph dataset. To simulate noise, we

perform the traditional method of applying a Gaussian filter, reducing the image

size by half and restoring the image size. We evaluate the custom loss function

against network trained to optimise MSE and MAE loss.
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Figure 6.9: The MAE Loss of networks the trained networks.

Fig 6.8, illustrate that when optimising the network, it naturally has increased

performance for PSNR evaluation in the image super-resolution network, but for

DDnSRCNN the optimal loss function is the MAE. The difference between the

two networks highlights the variability between neural networks, where network

structure can be more suit to alternative functions.

Furthermore, the difference was highlighted in the when the networks are

compared on MAE, illustrated in Fig 6.9, where MAE performs well, but in im-

age super-resolution, PSNR performs well. In contrast, DDnSRCNN again has

improved performance with MAE as its loss metric. Also, we observed similar

result when evaluating the MSE components. A visual comparison on the super-

resolution network is illustrated in Fig 3.8, showing how changing the loss gives

vastly different results.

For 2D image denoising, we have shown that for some cases using the PSNR

loss function can improve network performance, but plenary tests should be per-

formed. Using the knowledge gain from this work we expend the networks to

denoise depth data. For the state of the art methods, we used data generated

using the C++ version of BlenSor.
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Figure 6.10: The MSE Loss of networks the trained networks.

Figure 6.11: The Loss of the depth networks.

As illustrated in Fig 6.11, we see similar results to the RGB tests. Our results

show that DDnSRCNN had significantly improved performance in comparison to

the other evaluated networks. In some cases, the depth data even scores higher

PSNR when compared to RGB data. However, the validation illustrates a very

different aspect, whereas the training steadily decreases validation remains consis-

tent, which is also shown in MSE Fig 6.13. In contrast, this differs when visualising
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Figure 6.12: The ground truth clean (left), the noisy input (middle) and the
network result (right).

Figure 6.13: The Loss of the depth networks.

the data, as shown in Fig 6.12 the edges of the face have become faded. Further-

more, this extended to 3D when using the depth map to render a 3D model.

6.5 Discussion

From our experiments, only BM3D (on normalised depth data) and BaseNet32

(on raw depth data) are suitable for face depth data denoising. However, when

compare the computational time, BM3D takes 1.9660s to denoise while BaseNet32
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only requires 0.0077s for the similar task. Also, BM3D requires a pre-processing

stage to normalise the depth data. In this aspect, BaseNet32 is more suitable

for an end-to-end solution as it works well with raw depth data. Even though

BM3D has the best PSNR, for real-time depth data denoising, we recommend

our proposed BaseNets (BaseNet32) as the solution. To illustrate the practicality

of our proposed BaseNet32 in a real-world application, we have demonstrated its

performance on a real-time Kinect depth sensor system.

In the extension, we showed a custom loss function could help with the de-

noising of RGB data. However, for depth, the system could not easily denoise, even

with a large-scale dataset. A solution to this would be to generate an even larger

dataset, but even the current dataset has memory restrictions. For training the

depth denoising networks a machine with 128GB RAM is required. Additionally,

as depth data is saved in its custom format, loading the data can be a slow process.

Another, solution is the use of inception network architecture [111], the fading of

the edge, could be attributed the kernels not seeing the full curvature, only the

noise from the small filter size, our initial work shows large kernels overcome this,

but state of the art shows small kernels are more effective denoisers. Inception

networks could overcome this as they can gather both the larger surface and the

smaller details, at the cost of computation time.

6.6 Summary

In this section of the thesis we have shown a novel method of capturing synthetic

depth data and then using that data to train a Deep neural network to denoise

real-world Kinect One depth data, with the easy application to work on similar

depth sensing devices. We evaluated current methods and neural networks capable

of performing denoising and propose a new network that can take in noisy depth

data and output a clean depth map that preserves the facial features. We also show

the running times on each of the methods to show their applications to real-time

usage. We compared this to the state-of-the-art denoising methods and showed
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a minor cost in accuracy to increase the processing time significantly. We have

shown that using the synthetic data we are also not restricting the method by

testing on real-world data and receiving a clean model. This work can be applied

to many fields of facial tracking and animation, where due to the noise in the depth

sensor has been avoided. The method of creating synthetic data also has many

applications in future work, which is why we have provided all code for capturing,

training, using the models as wells as the pre-trained models available for use.

This work has been peer-reviewed at an international conference (CVPR2017),

where although they liked the idea, it was rejected. The focus of the rejection was

the initial methods of data synthesis using the viewing frustum and not enough

comparison against state of the art. From the conferences feedback, we imple-

mented the C++ version of BlenSor to replicate the noise more realistically.

The main reason for maintaining the size of the depth images is to enable

future expansion of our work to broader applications. Now that we know that

neural networks can remove the noise from depth sensor data in real-time, we

want to generate random office and rooms within a virtual environment. We then

can render out depth maps and use this to test how neural network can denoise

images with a wide range of structure, such as a smooth wall, humans and various

small items.

In the extension of the work, we analysed a custom loss on RGB images and

showed improved performance with some networks. We then applied the networks

to depth data. Unlike tradition de-noising depth poses additional challenges for

denoising. As the datasets used for generating the training set focuses are head

only models, we crop the images to 96*96 containing the head only. We crop the

faces as preliminary work showed that as the full image contained no information

and the loss function of MSE and MAE, cause then network to create a plain

average image. Whereas, by focusing the network on the face, the networks could

learn. However, when the networks learn the can only denoise the centre of the

face, and the edge fades significantly.
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Chapter 7

Multi-Tasking Neural Network

for facial landmarking

This chapter introduces an all in one network for facial landmarking and expression

intensity prediction. In the area of deep learning, some networks target key sections

of the facial animation production pipeline but do not focus on the use of it.

7.1 Introduction

As shown in chapter 5, by adding additional auxiliary information to a deep learn-

ing network, performance can be increased significantly. Expression recognition

using deep learning is widely performed, but the majority of the existing works did

not include expression intensity [168], which is an important property for anima-

tion. However, some FACS prediction work [169], focuses on the intensity aspect

as it is a natural part of FACS coding. Since high-end systems for facial animation

employ landmarking based inference and consumer-based use generated model in-

terpolation and comparison for the expression prediction, we want to integrate

these systems into a single neural network.

The purpose of combining landmark prediction and expression intensity is

twofold:
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• Firstly, previous research [24] showed that using the networks to predict

additional auxiliary information boosts the performance of the network sig-

nificantly. As the state-of-the-art methods use landmarks for emotional in-

ference, these can provide critical descriptors to the network when trying to

learn the facial structure and what features best represent the facial expres-

sions.

• Secondly, a restriction on many trained models is that they can only predict

what they have been trained on, with access to the landmarks with a system

that understand the deformities cause by expressions, it can be used in a

multitude of ways through post processing, such as alignment.

Landmarking is a widely researched with implemented techniques, in both

2D and 3D. In research, landmarking is used for facial alignment and to guide

processing methods to target areas of the face, such as wrinkle analysis [170] and

movement detection [171]. Whereas in commercial, landmarking is used in various

mobile applications that augment facial appearance, identify faces for security

and animation models. As shown, much of the work deals with dynamic faces,

such as alignment and facial feature augmentation, whereby training a system

to understand expressions the systems landmarking could improve due to the

knowledge of facial movements. By providing additional 3D landmarks, further,

understanding of facial structure and movement can be learnt, such as when a

landmark could be occluded.

Gender prediction is widely researched and can be done with high precision

[43, 172]. As networks can distinguish common attributes that indicate whether

a person is male or female, such as the width of the chin being generally wider in

males. By using the network to discover features that separate male and female,

it can use this knowledge in other areas, such as how beards affect the landmarks

through obscuring the view.

The aim of this chapter is to demonstrate the effectiveness of extending 2D and

3D landmarks to accurately predict intensity expression. To do this we perform

the following steps:
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• Adapt landmarking networks to predict both expression intensity and gen-

der, as landmarks can provide valuable insight into both of these fields.

• Visualise the convolutions to demonstrate networks understanding of facial

regions. Additionally, describe convolutional outputs to show there signifi-

cance.

• Visualise the MLP to demonstrate how the neural networks interpret the

convolutions and differentiates between the expressions and genders.

• Demonstrate the training process of the network.

7.2 Related Works

In commercial productions, such as the widely used Visage face tracking [173], used

in FaceRig [3], can use single RGB or Gs cameras to track a face in a video input.

They can produce a wide range of outputs, such as a 3D face model, allowing

for both 2D and 3D landmark prediction. Furthermore, like many commercial

productions for animation, they follow MPEG-4, which allows extensive use of

the 3D model for animation, such as those from Autodesk character generator

[174] and Mixamo [175] of instant transfer for the facial pose to the models. In

commercial production, the method of following an MPEG-4 or FACS method is

conventional as it requires little prior information from the user, mainly just a

neutral face image. The landmarks are then normalised to allow for the tracking

of facial movements. The advantages of these methods are:

• Widespread use of the MPEG-4, means many 3D models are pre-setup to

accept this information for animation

• The MPEG-4 and FACS cover natural motions of the face

• Built-in expression intensity

• The knowledge that different features will move in tandem, but must be

categories separately
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• Little human interaction required

However, the system is difficult to train as the motion cover a wide range of

movements. In contrast, some high-end productions will use customised actor

models for tracking, as it tailors to the actors own unique facial features.

As shown in the Chapter 2 literature review, the pre-existing research in

animation focuses on the use of tailored 3D models that are pre-recorded. Then,

with a repository of existing 3D models when a new frame is present, comparisons

can be performed to determine the expression/s being performed. Building a

dataset for individual users has some advantages:

• Custom Blendshape library

• Tailored to each user

However, this method requires a great deal of human interaction, such as choosing

motions and holding expressions for recording. Also, where MPEG-4 would cate-

gories the expression happiness into separate movements of the mouth and eyes if a

recording of a smile is used the combined movements can later confuse a pre-built

movement model. The process of using pre-recorded models is demonstrated in a

commercial product, such as Faceshift [2].

7.3 Proposed Method

We implement a CNN style network for prediction using an entirely regressive

approach. We train a single network to predict four key facial features:

• UV Landmarks: these are the coordinates of facial key points in the input

image.

• XYZ Landmarks: These are the coordinates of facial key points in 3D real-

world space.
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Figure 7.1: A visualisation of the network used for this experiment

• Gender: This is the gender of the person present in the image.

• Expression intensity: This is a series of values that determine the current

expression and its intensity.

The neural network, adapted from previously done research [24], showed the

most effective stream for a neural network when working with multiple outputs.

Furthermore, the network showed improved results against other state-of-the-art

networks. As illustrated in Fig 7.1, the network takes single Gs images and pro-

cesses through a series of convolutions with ReLU activations. Unlike other cur-

rent methods of landmarking [63, 34], we perform multiple convolutions between

pooling layers as:

• Convolutions act as the feature selection method, by performing multiple

convolutions with only activation in-between we can get highly descriptive

features. Whereas, few convolutions can only achieve general facial features.

• By only using the pooling layer twice and starting with large images we

better maintain the image ratio which directly affects the accuracy [128].

The cost of accuracy with max-pooling is due to the loss of features during

pooling. Features can be lost during pooling, due to the reduction of the

image size, pooling half the images size with a 2*2 kernel, further pooling

reduces it again. The reduction from multiple pooling layers means not all

features can remain in the image.
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As illustrated in Fig 7.1, the fully connected layers for each output use the

same amount of neurons, except for the last output which is the number of required

outputs, for example, 64 for UV landmarks and 1 for gender.

The network takes in a large scale facial image (96×96) that provides a full

view of the facial and allows room for pooling without the removal a key facial

details. The network integrates two max-pooling layers (2×2 windows), with the

first after two convolutions when the general facial features have been collected and

secondly before the MLP, by using the pooling layer before the MLP we remove

a great deal of processing requirements, while holding onto the final convolutions

key features. The network uses five convolutions layers the first layer implement

a 3×3 layer followed by a 2×2, after the max pooling the convolutions follow a

similar pattern, but with the last convolutions layer at 2×2. The output of the

convolutions is feed into multiple MLP layers that is used to predict the alternative

outputs, 2D landmarks, 3D landmarks, gender and expression intensity.

We performed a 10-fold cross validation on the dataset. The split was per-

formed semi-randomly to ensure no participant existed in multiple splits of the

data. The networks are trained using a batch size of 50 over 50 epochs.

7.4 Results

We report the results by each of the separate outputs of the network and then the

overall combined results of the network.

The first output is the standard 2D landmarks, which are the image coor-

dinates of the facial features. As shown in Fig 7.2, The network quickly learned

the relevant features for accurate facial landmarking. The networks additionally

perform notably better than previous work [24]. The increased accuracy allows

improved reliability in the tracking of facial features, thus better inference of emo-

tion. The second is an extension of the 2D landmarks, which moves to 3D. It
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Figure 7.2: The MSE and MAE loss for the 2D landmark output

Figure 7.3: The MSE and MAE loss for the 3D landmark output

also learns similarly to the 2D landmarks as shown in Fig 7.3 and again performs

better than previous work [24].

For the gender prediction, during the training stage, the method converged

rapidly on the training set. However, this section has the highest deviation between

the training and validation. The validation during training is shown in Fig 7.4 and

shows the difficulty in classification is over a coin flip chance. This is due to lack of

large participants in the data, but a solution could be provided through extended
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Figure 7.4: The MSE and MAE loss for the gender output

Figure 7.5: The MSE and MAE loss for the expression output

training on additional datasets. However, as shown by Hassner et al. [172], even

with a large network trained with a diverse dataset, the state-of-the-art method

still struggles to retrieve high accuracy results. An unexpected result is the effect

of expressions on gender prediction, where males were more likely to be predicted

wrong on data with expressions.

For the expression intensity prediction, the network performs well, with a low

loss in both training and validation, as illustrated in Fig 7.5. The trained network
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Figure 7.6: The MSE and MAE loss for the combined outputs

allows universal expressions to be tracked with ease, and with the system trained

on the onset and offset of expression allows precise tracking of expressions.

Overall, the network achieves a low combined loss showing a deep under-

standing of the facial features required for tracking, as illustrated in Fig 7.6. The

network gains a thorough understanding of the facial features using the convolu-

tions, as shown in Fig 7.7, where:

• The method learns feature-based kernels shown by the full-face images.

• Key focus sections, such as the eyes and nostrils in the fourth row.

• Points based kernels, such as the bottom row kernels.

• Region-specific kernels, such as the first row kernel activates more on the

lower face, but the sixth row focuses on the upper face regions.

These are the features learnt by the network. The testing scores, shown in table

7.1, showed the network manages to score low loss on the testing set. The low

loss scores are highlighted with both the XYZ landmarks and the expression.

These results directly compare with the 2D landmarks in table A.1, which allows
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Figure 7.7: Outputs of the final convolution layer

Table 7.1: The results of the network on the testing set.

Metric Combined 2D landmarks 3D landmarks Expression Gender
MAE 1.1919 0.9695 0.0422 0.0631 0.1170
MSE 2.4609 2.3323 0.0053 0.0433 0.0800

comparison of how adding gender and expression predictions directly affected the

networks understanding of landmarks.

By extending how the results are predicted in the MLP of the network, as

illustrated in Fig 7.8, there is a difference in the activations when discriminating

between male and female. The female neurons activation is usually significantly

higher than the male counterparts, indicating that the features for female are

more visible than for males. However, where the males have higher activations, the

female neurons do not activate, indicating that males have features identifiable that

female don’t, such as beards or the use of make-up could be covering the features
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Figure 7.8: A comparison of a definite male and female prediction.

Figure 7.9: A comparison of definite expression predictions. This figure illus-
trates a subsection of the graph, a full version is available in the Appendix B

Fig B.1

the system uses for males. Furthermore, key differences are identifiable when

predicting various expressions as illustrated in Fig 7.9, where spikes in neurons can

clearly define the predicted expression. The similarities between activations for

multiple expression can be linked to the network registration similar movements,

such as the mouth in fear and happiness.
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7.5 Discussion

We have shown the results that a deep learning network is capable of regressing

accurate facial expressions. The universal expressions use a wide array of muscle

on the face and demonstrate these movements are track-able, along with the 2D

and 3D landmark coordinates. By using landmarks and gender as auxiliary fea-

tures, the network is trained to focus on crucial movement points in the face when

determining the types of expression.

In future work, we would expand the system to a categorise movement for

methods, such as FACS or MPEG-4, as the current system is restricted to the

universal emotion. However, by expanding into more specific muscle and facial

movements, could prove difficult for a network or in-contrast could help the net-

work more deeply understand the face. Also, by using MPEG-4 and FACS, the

system would allow integration with existing facial animation systems intuitively.

However, for MPEG-4 and FACS based systems, specialist annotators are required.

A solution to improving the work comes from the inherent ability to train

separate sections of a neural network. The inputs and outputs of our network

were directly affected by the availability of data. However, we can “freeze” sections

of a neural network; this allows users to pre-train a network on our dataset and

then refine sections of our network. For example, since gender classification in

our network performed the worst and there are many available datasets, that only

include gender we could freeze all convolutions and only train the fully connected

layers that deal with gender improving the system. By freezing and retraining

sections, the network it allows the use of multiple datasets that does not cover all

parts of the network.

7.6 Summary

This chapter has introduced a neural network for processing single images and

providing essential information for animation purposes. The network is refined
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from the previous piece of work and inspired by the current state of the art that

allows a wide range of facial details to be acquired.

The network manages to achieve high accuracy results for the desired outputs,

such as landmarking in 2D and 3D. In-which, aids the system to correctly predict

and expressions intensity. By using the expression intensity, a natural interpolation

of and actors motion can be realistic synthesised to a 3D model. Furthermore,

the network successfully regresses a series of universal expressions, allowing for

a smooth transition of expressions. We have demonstrated the feature sets the

network has learnt and will use to predict the outputs, showing that the system

uses a wide range of features in its predictions. We also illustrate and compared

the MLP sections of the network and how they are affected by the different genders

and predictions.
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Chapter 8

Conclusion

The final chapter of the thesis contains a summary of the contributions discussed

throughout the previous chapters. Furthermore, it performs critical analysis of

the limitations of the work and the improvements it has made. The final section

illustrates the future paths of research and improvements in this field.

8.1 Introduction

Facial landmarking and animation is a vast area of research with much research

being performed. The use of computer vision methods, such as 3DMM to generate

3D facial models is a common practice. However, there are alternative methods

to identify the facial landmarks and build expression models. There are many

challenges and limitations to overcome to ensure the accurate 3D structure of the

face is captured and correctly landmarked. The use 3D depth sensing devices al-

low for multiple frames to be integrated and create a full expression model and a

blend-shape library of individual users, which allow for accurate facial represen-

tation. Other methods employ the use of 3DMM models to build a statistical 3D

representation of an individual’s features from a single image.

This thesis proposed a series of methods to improve the use of 3D data to

advance the fields of 3D landmarking with ToF data and expression recognition.
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The first being an investigation into the accuracy of retrieving accurate 3D land-

marks for ground truth comparison. Secondly, an investigation of the ability of

neural network performance for landmarking on low power devices available and

the effectiveness of the networks. We then extend the work to 3D landmarking and

the capabilities to predict landmarks with auxiliary information and prediction of

3D landmarks, with standard images. As the work focused on the unique aspect

of facial landmarking with depth data, a new KOED dataset was made and used,

that allowed synchronous information from RGBD data for training. Finally, we

provide an aspect of future work in the form of improving the depth data quality

and showing a working system capable of predicting facial expression with the

inference of 3D landmarks.

8.2 Research Findings

A summary of the research findings is given in this section of the thesis and how

they relate to the objectives shown in chapter 1 of the thesis. The findings will

give why the objective was set and how it was achieved, a summary can be seen

in Table 8.1.

The first objective was to analyse the ability to retrieve ground truth 3D

landmarks via annotation. The ground truth is necessary, as without this a sys-

tem cannot be trained to predict the landmarks. Retrieving the ground truth was

achieved by a creating an in-house tool that used a novel alignment algorithm to

align 3D geometry with a 2D reference image. By merging RGB reference images,

it allowed the identification of facial features throughout a series of movements.

For this work, we used the D3DFACS dataset, as it avoids bias towards the an-

notator rather than the traditional method. Also, it provides a clean model and

requires alignment at extreme poses. Additionally the objective was to collect a

new synchronous dataset that collects both RGB and depth data. As the merging

of RGB and depth data in a neural network is a crucial aspect of our work. KOED

dataset is used in the majority of the work.
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Table 8.1: The research objectives against the actual outcomes.

No. Objective Outcome

1 Identify the research gap and cre-
ate resources for ground truth for
validation.

A gap was discovered in the acquisi-
tion of 3D ground truth landmarks,
through the use of the 3D annota-
tor. A new dataset, namely KOED,
was created that addressed the lack
of synchronous RGBD facial data
that contains a full expression per-
formance.

2 Propose new methods to detect 2D
and 3D facial landmarks in real-
time, with a demonstration of use
on low powered devices.

An investigation showed the effec-
tiveness of available streams in neu-
ral networks for the prediction of
2D and 3D data. We also demon-
strate neural networks running on
mobile devices.

3 Investigate the ability of current
RGB image depth noising tech-
niques and review the effectiveness
for depth data.

The state-of-the-art methods of de-
noising images are applied onto a
realistically generated depth image
dataset. We demonstrate the ef-
fectiveness of using uncommon loss
functions to improve denoiser out-
put.

4 Investigate the potential of low-cost
depth sensors for facial landmark-
ing and animation in real-time.

We refine the knowledge gained
from the previous objects to create
a neuron network that can predict
3D landmarks, and the intensity of
an expression.

The Second objective was to combine the available data streams to predict 3D

landmarks. Our method deviates from the more traditional method that employs

full generated 3D models for their prediction, or the use of 3D statistical model

prediction for retrieving the landmarks. However, instead of just predicting the

landmarks by combining the data streams in a neural network, we perform a criti-

cal analysis on the effect of merging compared to tradition landmarking networks.

In which, we showed results against depth data, owing to the instability from the

noise, whereas, the traditional single-stream network had increased performance.

Furthermore, the objective was also to illustrate the effectiveness of lightweight

150



neural networks for mobile devices. The result showed that networks could work

on mobile device effectively. However, network size is a crucial factor both for pro-

cessing time and the limitation of available memory. To achieve the performance,

we had to employ methods similarly used in landmarking, such as Zhang et al.

[63], where pooling is key to allowing the network to run efficiently. Also, we note

the accuracy and how this impacts the network. A key factor with this work is

the real-time implementation of a neural network on devices with servilely limited

or no GPU and demonstrated an effective system that is in contrast to the vast

belief networks require large GPU machine for both training and inference.

The third objective relates to the issue with noisy depth data and the lack of

ground truth. As chapter 6 showed, we have managed to generate a large dataset of

realistic clean and noisy depth data. We extended the work with an additional loss

function that helps improve the performance of some RGB denoisers. However,

although statistically we “cleaned” the depth images, in reality, the networks could

not learn and understand the depth data enough to remove the noise and generate

a 3D model. The issue of denoising depth data has shown to be difficult compared

to 2D images, but we have provided solutions to this in future work.

The final section is built upon the work performed and knowledge gained

from the prior sections. A network that targets explicitly the purpose of retrieving

expression intensity that could be used for expression synthesis. The network uses

auxiliary information as landmark and gender. The use of landmarks gives the

option to add further personalised expressions over just the given universal. In

this work, we also sought out how the network interprets expressions. Thus, we

visualise both the convolutions, showing the features being highlighted, and the

activation of the neurons, to show how they affect the results.

8.3 Future Work

This section of the thesis will highlight and examine prospects of future work.
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8.3.1 Neural Network with Object Detection Integration

Neural networks appeal to research as they can provide high-accuracy end-to-end

results. The end-to-end for our work cannot be fully implemented; As for facial

landmarking it is naturally required for faces to be cropped and reshaped and

sometimes aligned as a pre-processing step. The pre-processing steps mean the

system is not fully end-to-end, and the results can be directly affected by the

pre-processing methods.

In image segmentation, the issue of pre-processing has been resolved, through

the implementation of mask-RCNN. Mask-RCNN uses ResNet [111] architecture

to pre-process input images, and generate “heat maps” of possible object locations

in an image. The network then implements a unique layer, that identifies the high-

light areas and proceeds to segment and resizes the highlighted areas. However,

a limitation of this method is that during the resizing, each possible prediction is

placed into a new layer and all possible predictions are processed at the same time,

not individually. The stacking of the possible predictions increases the memory

requirements and means a hard limit is set on the total identifiable objects in a

single image is done by the network.

For our work this would allow a system to fully process a facial image, having

complete control over its ability to detect and what features to highlight. However,

designing and training a system to do this is not a simple task. An additional

extension would be to additional show the effect on mobile devices as newer phone

begin to integrate specialised neural network processors.

8.3.2 General Adversarial Networks based networks

General Adversarial Networks (GAN) [176] use competing neural networks, one to

generate data that can be used as input. The second network acts as a discrim-

inator try to identify if the image received is fake, from the generator, or a real

input image. The networks during training compete against each other, allowing

152



the generator to produce realistic training data that is not identical to previous

training data.

By using GAN, datasets can be effectively grown substantially, adding more

diversity into the training of the network. This method has been shown to dras-

tically improve the performance of neural networks in many areas [177, 178, 179].

By including this methodology with ours, a drastic improvement in accuracy could

be made.

8.3.3 Dataset Expansion and Improvement

The KOED dataset has provided a significant amount of data that has been used

throughout the thesis. The dataset contains fewer participants than some of the

more popular datasets as they only use key pose images, but we follow a similar

path to the D3DFACS dataset, where we focus on the full expression from neutral

to peak and back to neutral. By focusing on the full expression, a small number of

participants can match the size of many full-size datasets. However, the dataset

requires expansion to add more participants, we have a large number of training,

testing and validation images, but requires more participants to ensure the network

is diverse.

The dataset is also limited in that it is only annotated for the universal

emotion, but for the target of our work, this is not ideal. To improve upon the

annotation, external collaboration for MPEG-4 coding would improve the usability

of the dataset significantly. Another improvement would be to add in real dynamic

expressions rather than just the posed expression we currently employ.

8.3.4 Denoising Expansion

Denoising ToF data even with a newer sensor with high-speed capabilities and

greater resolution capture details are still noisy and miss key details. When sim-

ulating the Kinect depth data which is at a lower resolution, could capture and
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been used to generate 3D models with the subtle details of the face. With the

production of neural network chips [180] training a neural network to perform

denoise is a useful task. The improvements can be performed in a wide array on

methods:

• Use inception based architecture

• Train on a larger dataset, with more diverse objects

The work would help in areas that implement consumer based depth sensors.

Also, it would help extend the area of de-noising with a neural network as well as

synthetic data generation.

8.3.5 Integration of Improved Depth Sensing Technology

The Kinect was, and still largely, a drastic improvement in consumer use of depth

sensing devices. The Kinect allows cheap access to high-accuracy, real-time and

at a useful resolution, which is still largely comparable to more recent sensors, re-

sulting in its diverse application from just a device for gaming. However, modern

sensors employ newer technology and theories that can improve upon the resolu-

tion, capture rate and reduce the noise from the IR sensor, such as the realsense.

The intel realsense D435 [56], implements duel IR blaster and projector that

allow improved accuracy over the Kinect. The sensor can also work at up to 90

FPS vs the Kinects maximum 30 FPS. An improved sensor would drastically

change the work performed by:

• Improved 3D landmarks: As the depth data will be cleaner the landmarks

acquired will fit the real structure of the face. Clean 3D landmark detec-

tion, would improve the reliability of the system and help to ensure fewer

movements are missed or falsely predicted due to noise.
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• Higher-resolution models: As the sensor allows for higher resolution captures

of the face, the output model would be able to capture significantly more

detail of the face and its structure.

• Easier denoising: As shown in chapter 6, the noise produced by the Kinect

in capture is complex and on a frame-by-frame basis intense. The intensity

of the noise makes denoising a difficult task, but although the theory behind

the capture is the same, by having a sensor with less noise could allow an

easier learning curve for neural networks.

8.4 Concluding Remarks

The work presented in this thesis forms contributions in facial landmarking detec-

tion and animation expression prediction using regression. We expand the work of

landmarking using RGBD depth sensors; we developed a series of the network over

the work performed in the thesis in which we show in the appendix outperforms

state of the art. We also move away from the black-box nature of deep learning,

by demonstrating the features the network uses for its predictions. This field is

extensive in work done and still has much more possibilities for expansion into 3D

using into depth data. As technology continues to improve, we see an increase

in consumer-based RGBD sensor-enabled device. In-which means depth based or

assisted landmarking could soon become standard.
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Appendix A

Comparison of 3D landmarks

We perform a competitive analysis of the network described in chapter 5. Although

the works focus on a competitive comparison of the different streams and the effect

of auxiliary information, it is vital to allow a comparison to other state of the art

methods. We compare against to landmark dedicated networks.

As illustrated in Fig A.1 the most recent work of Zhang et al. [41], performs

significantly better than previously done work, when evaluating on MSE. The

result is due to the reduction in the amount of pooling and larger images, that

Figure A.1: The MSE scores of the network during training
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Appendix A. Comparison of 3D landmarks

Figure A.2: The MAE scores of the network during training

allow the network to retain more information on the face. Furthermore, these

improvements are demonstrated in the evaluation of MAE as illustrated in Fig

A.2.

Table A.1, Show the results of the testing set on the trained models. The

results show similar to Figs A.2, and A.1 as Zhang et al. [41] auxiliary network

performs the best. However, on MAE the networks score very similarly. Also, in

both MSE and MAE our network outperforms the other networks significantly.

Table A.1: A comparison of the test score of the networks and ours.

Wu Vanilla Zhang First Zhang Aux (no transfer) Our RGB UV

MSE 6.15 6.13 0.88 1.75

MAE 1.84 1.84 1.84 0.96
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Appendix B

Expression Network Activation

As shown in Fig B.1, each definite expression triggers multiple neurons. How-

ever, some of the expression share neuron activations indicating that some on the

movement detected by the system could indicate multiple expressions, such as the

mouth widening could mean fear, anger or contempt. Also, some of the expres-

sions, are clearly more defined, such as surprise which contains the highest of all

the activation indexes. Some of the activations do only focus on single expres-

sion, which could be more weight to the decision then neurons that have multiple

activations.

Figure B.1: The full graph of the expression networks activation
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