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ABSTRACT 

 

Oral diseases such as periodontal diseases and oral candidiasis are significant 

health problems in humans. Periodontal disease is a common disease of the oral 

cavity and the major cause of tooth loss in adults. Four clinical forms of primary 

oral candidiasis are recognised, and the management of such infections is limited 

due to the low number of antifungal drugs available, their relatively high toxicity 

and the emergence of antifungal resistance. The use of hydrogels in delivery of 

biocides has been explored due to their biocompatibility, ease with which they 

can be charged with drugs, and potential to confer mechanical and structural 

properties similar to biological tissue. This can be used both for anaerobic 

bacteria and fungal (i.e. Candida) infections to treat a wider spectrum of oral 

diseases.  
 

The aim of this study was to develop a novel antimicrobial therapy for oral 

diseases by utilising a hydrogel in combination with Melissa officinalis essential 

oil. 

 

A range of essential oils and biocides has been tested for their antifungal 

properties mainly against Candida albicans in a planktonic and biofilm growth 

form and against bacterial species associated with periodontal disease (in the 

planktonic growth form). The cytotoxicity of the compounds that showed the best 

antimicrobial properties were tested and the chosen essential oil was 

incorporated into a methylcellulose hydrogel. Finally, an ex vivo rodent mandible 

model to mimic oral candidiasis was developed.  

 

Antimicrobial screening showed Melissa officinalis to be the most successful 

essential oil relating to antimicrobial properties and cytotoxicity.  

The infection of the rodent mandible showed C. albicans invasion of the gingiva 

and the release of pro-inflammatory cytokines. The application of Melissa 

officinalis oil significantly decreased the CFU/ml and the pro-inflammatory 

response. One percent (1% (v/v)) and 2% (v/v) Melissa officinalis oil was 

successfully incorporated into 10% (w/w) and 12% (w/w) methylcellulose 

hydrogel. Rheology revealed that the hydrogel was injectable and gellified in two 

minutes at 37 °C. The drug release was a function of the Melissa officinalis 

concentration and the loaded hydrogel successfully inhibited Candida growth in 

vitro.  

 

A 3D ex vivo rodent mandible model to mimic oral candidiasis was developed 

and used to test the antifungal properties of Melissa officinalis oil. Moreover, a 

potentially injectable methylcellulose hydrogel loaded with Melissa officinalis oil 

was synthesised. This hydrogel was shown to elicit antifungal properties in vitro.  

 

In conclusion, the study showed that essential oils were antimicrobial and that 
methylcellulose hydrogels could be used as drug delivery systems.  
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OVERVIEW OF THE THESIS STRUCTURE  
 

The focus of the present study was to develop a novel antimicrobial therapy for 

oral diseases by utilising a hydrogel in combination with Melissa officinalis 

essential oil. 

 

In the first instance, a range of essential oils and biocides has been tested for 

their antimicrobial properties against Candida albicans (2 strains) in planktonic 

and biofilm growth form and against four bacterial species associated with 

periodontal disease (in planktonic form). A simple microtiter plate assay was used 

to determine the antimicrobial properties of the tested agents (Chapter 2).  

 

The cytotoxicity of the compounds that showed the best antimicrobial properties 

was tested on mouse fibroblasts (Chapter 3). Having established the most 

suitable antimicrobial agent (Melissa officinalis essential oil), the pro- and anti-

inflammatory host response to Melissa officinalis was evaluated using human 

blood cells harvested from three healthy individuals (Chapter 3).  

 

The second part of this thesis focused on the development of a methylcellulose 

hydrogel with Melissa officinalis essential oil (Chapter 4). A 10% (w/w) or 12% 

(w/w) methylcellulose hydrogel loaded with 1% (v/v) and 2% (v/v) Melissa 

officinalis oil was synthesised, then the rheological properties, the essential oil 

leaching and the antimicrobial potential against a C. albicans strain were 

evaluated (Chapter 4).  

 

In the final part of the study, an ex vivo mandible rodent model to mimic oral 

candidiasis was developed. This approach involved dissecting the mandible of 

28-day-old male Wistar rats and infecting it with C. albicans. Candida growth was 

monitored through histological examination after incubation for 24 and 48 hours 

with and without 1% (v/v) Melissa officinalis oil (Chapter 5).  

 
 



  

 

Chapter 1  
 

Literature review 
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1.1 Biofilms 

Biofilms are three-dimensional structures attached to a surface, a human tissue 

or an artificial surface (e.g. denture), in which communities of bacteria and/or 

fungi are embedded in an extracellular matrix (Figure 1.1) (Cortés et al., 2011). 

The extracellular matrix is mainly composed of polysaccharides, proteins, nucleic 

acids and lipids synthesised by the bacteria, as well as molecules taken up from 

the oral environment. The extracellular matrix acts as a scaffold allowing the 

adhesion and the cohesion of microorganisms and promotes cell-cell signalling 

(Flemming and Wingender, 2010). Cell-cell signalling is based on the production 

of small molecules, such as acyl-homoserine and peptides by Gram-negative and 

Gram-positive bacteria, respectively. These small molecules allow bacteria to 

adapt to various environments and to regulate and co-ordinate their gene 

expression (Davies, 2003). In addition, the close proximity of bacteria promotes 

horizontal gene transfer, which is one of the mechanisms involved in biofilm 

antibiotic resistance (Davies, 2003). The extracellular matrix also acts as a 

nutrient source, providing carbon, nitrogen and phosphorous compounds. In 

addition, it is highly hydrated allowing the survival of bacteria even in water-

deficient environments (Flemming and Wingender, 2010). Moreover, it is a 

physical barrier that limits the efficacy of phagocytosis during the immune 

response (Flemming and Wingender, 2010). 
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Figure 1.1 - Scanning electron microscope (SEM) image of a C. albicans biofilm. 

Orange arrow indicates the yeast form, blue arrow indicates the hyphal element 

(Ramage et al., 2005) 

 
Significant knowledge on biofilms was acquired with the use of micro-electrodes, 

chemical probes and confocal laser scanning microscopy (CLSM). The latter 

allows the biofilm structure to be studied without manipulating the sample. In the 

past it was thought that biofilms were compact structures, however CLSM 

highlighted the presence of an open architecture with channels and voids that 

allow nutrient diffusion. Moreover, a horizontal and vertical gradient in key 

parameters (e.g. oxygen, pH, redox potential) was observed, explaining the 

coexistence of micro-colonies within the biofilm that need different conditions to 

survive (Davies, 2003; Flemming et al., 2016). 

 

1.1.1 Dental plaque 
 
The oral microflora is composed by a wide range of bacteria, yeasts, viruses and 

mycoplasmas. More than 772 microbial species have been identified in the 

mouth, but only 70% were successfully cultured outside the oral environment 

(Verma et al., 2018). The vast oral microbial population reflects the complexity of 

the oral environment, which is characterised by species with different features. 

Physiologically, a harmonious relationship exists between the oral microflora and 

10 µm 
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the host. Oral microorganisms naturally form oral biofilms, also named dental 

plaques, in areas such as stagnant regions of the teeth and areas between the 

teeth and gingival crevice. Even if the dental plaque is part of the host defences 

protecting the sites from pathogenic colonisers, the harmonious relationship can 

become pathogenic and lead to oral diseases, such as dental caries and 

periodontal diseases (Marsh and Lewis, 2009; Seneviratne et al., 2011). Several 

causes can shift this relationship to become pathogenic such as the presence of 

bacteria at sites normally not accessible to them (e.g. blood stream), poor oral 

hygiene, the prescription of antibiotics or a carbohydrate rich diet (Marsh, 1994; 

Marsh and Lewis, 2009).  

 
 

1.1.2 Mechanisms of dental plaque formation 
 
Biofilm formation is a multistage process that can be subdivided into several 

phases (Figure 1.2): 

I. Acquired pellicle formation 
 
A few seconds after a clean tooth comes in contact with the oral environment, 

proteins, glycoproteins and lipids contained in saliva are adsorbed onto the 

enamel. After a few hours, the adsorption and de-adsorption processes reach 

an equilibrium. The conditioning of the tooth surface is a crucial step in the 

formation of the biofilm because bacteria do not interact directly with the 

naked surface. Once molecules bind to the surface they can undergo 

conformational modifications, such as the exposure of some receptors, 

allowing the binding of primary colonisers (Liljemark and Bloomquist, 1996; 

Marsh and Lewis, 2009). 
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II. Primary bacterial adhesion 

Planktonic microorganisms contained in saliva move to the surface randomly 

(e.g. flow) or directly (e.g. chemotaxis and motility). Once the microorganisms 

are close enough to the surface (<1 nm), physical forces develop between the 

acquired pellicle and the cell membrane. These interactions are weak, long 

range and non-specific and include i) attractive forces such as hydrophobic 

and van der Waals forces and ii) electrostatic forces which are mainly 

repulsive since both the pellicle and the membrane are negatively charged. 

Once the sum of the attractive forces exceeds the repulsive charges, 

microorganisms adhere to the surface (Dunne, 2002; Marsh and Lewis, 2009; 

Gupta et al., 2016). 

III. Secondary bacterial adhesion 

The specific binding between adhesins present on the membrane and 

complementary receptors on the tooth allow the formation of strong and short-

range interactions. Once bacteria are covalently attached to the surface, they 

can only be removed physically or chemically. Early colonisers are aerobic 

bacteria, mainly streptococci (e.g. Streptococcus sanguinis, Streptococcus 

oralis and Streptococcus mitis) and Actinomyces spp., while anaerobic 

bacteria are rarely detected at this stage (Marsh and Lewis, 2009; Silva et al., 

2012). Once attached, bacteria proliferate and form micro-colonies embedded 

in an extracellular matrix composed of proteins and glycoproteins produced 

by bacteria or taken up from the saliva.  
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IV. Biofilm maturation 

Over time a shift in the microflora plaque is observed and an increased 

evidence of Gram-positive bacilli is present. These bacteria can interact with 

microorganisms present in the oral cavity that cannot directly bind to the 

pellicle. Moreover, their fermentation products can be a primary nutrient 

source for other bacteria (Marsh and Lewis, 2009). In parallel, they cause 

changes in the oral environment (e.g. redox potential, pH and oxygen level) 

creating the ideal conditions for the recruitment of anaerobic bacteria 

(Seneviratne et al., 2011).  

Anaerobic bacteria would not naturally co-aggregate with the pioneers, but 

Fusobacterium nucleatum acts as a “bridge” between early colonisers and 

later ones. Once the mature plaque is formed, a heterogeneity in terms of 

bacteria species and environmental conditions is observed. Gradients in 

nutrients, toxic products, oxygen and pH are present both vertically and 

horizontally, allowing the presence of microenvironments mainly composed 

by certain species into the same plaque (Sbordone and Bortolaia, 2003; 

Marsh and Lewis, 2009). 

V. Detachment from the surface 

The last stage of the biofilm formation is the detachment of bacteria from the 

surface. This process can be either active (e.g. enzymes synthesised by 

bacteria break the bindings) or caused by the shear stress. Once detached 

bacteria can colonise other sites in the body (Marsh and Lewis, 2009). 
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Figure 1.2 - Schematic representation of the stages involved in dental plaque 

formation. The pellicle forms on the tooth surface and primary colonisers adhere to it. 

Once the attachment becomes irreversible, secondary colonisers can attach to early 

colonisers. The biofilm grows, and a mature biofilm is formed. Lastly, bacteria can 

detach and colonise new surfaces. Figure adapted from Stoodley and Dirckx (2003) 

 
 

1.1.3 Biofilm resistance to antimicrobials 
 
Bacteria in biofilms are between 10 to 1000 times more resistant to antibiotics 

than in the planktonic form (Davies, 2003; Macià et al., 2014). The mechanisms 

responsible for this resistance may be one or more of the following:  

I. Reduced penetration of the antimicrobial agents into the biofilm matrix 

For a long time, the extracellular matrix was thought to prevent the penetration 

of drugs into the biofilm. More recently it was shown that it is not a physical 

barrier, however it can still act as a chemical barrier against certain antibiotics. 

Indeed, being negatively charged it can interact with the positively charged 

antibiotics delaying their penetration or inactivating them (Olsen, 2015). 
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II. Slow growth rate and metabolism 

As mentioned above, biofilms are characterised by a heterogeneous 

population and a gradient of oxygen and nutrients. The lack of nutrients leads 

to the presence of a population of dormant or slow-growing cells that are less 

susceptible to antibiotics (Olsen, 2015). 

Indeed, antibiotics generally act against bacteria in growth phase, targeting 

some crucial processes such as the replication, transcription, translation and 

the cell wall synthesis (Olsen, 2015). These dormant bacteria which are less 

susceptible to antibiotics are called ‘persister cells’ and are usually found in 

the deepest layers of the biofilm, in which the nutrients and gas exchanges 

are limited. Being able to resist antibiotics, “persistent cells” guarantee the 

continuous progression of the infection (Harrison et al., 2005; Roberts and 

Stewart, 2005). 

III. Expression of a biofilm phenotype to resist antibiotics  

Bacteria within biofilms show a different phenotype, named by Costerton et 

al. (1999) as the “biofilm phenotype”. Because of different gene expression, 

the target or the efficiency of the antibiotics can be altered (Marsh and Lewis, 

2009). In parallel, bacteria can overexpress genes associated with antibiotic 

resistance, such as the multidrug efflux pump (MDR) (Davies, 2003). 

 

1.2 Oral diseases 

Despite the latter part of the 20th century experiencing an improvement in both 

general and oral health, dental caries and periodontal diseases still remain the 

major global oral health problem (Petersen, 2003). Besides significant effects on 

individual and social life due to pain, difficultly in eating and chewing and 

damaged teeth, oral diseases have an economic impact. It has been estimated 
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that the expenditure on oral diseases amounted to $422 billion in 2010. Direct 

treatment costs were estimated at $298 billion yearly, corresponding to 4.6% of 

the global health expenditure, while indirect costs such as those due to sick-days 

were $144 billion yearly (Listl et al., 2015). Taking into account the 27 states of 

the European Union, the direct costs were estimated at €72.96 billion while the 

indirect ones at €37.56 billion (Patel, 2012). In addition, without an efficient 

prevention and solution to the burden of oral diseases, the direct costs are 

expected to increase up to €93 billion in 2020, exceeding those for cancer, heart 

diseases, stroke and dementia (Patel, 2012). Concerning the economic impact of 

dental care in the UK, the NHS spends around £3.4 billion per year, while the 

private market is around £2.3 billion per year. As in the rest of Europe, these 

costs are expected to increase (NHS England, 2014; Claxton et al., 2016).  

 

The distribution of oral diseases varies both intercountry and intracountry. Oral 

diseases are a function of socio-economic status, educational level and the 

environment. Generally, people with a lower income and education, and living in 

rural areas show a poorer periodontal status. Reports also highlighted the 

influence of the ethnicity and religion on periodontal health, such as in the US 

where black people have a risk of periodontal destruction three times higher than 

white people (Petersen and Ogawa, 2012). 

The intercountry variations are mainly due to the different incomes that increase 

accessibility to the health care system for habitants from high-income countries 

compared to those from low- and middle-income countries. For example, the 

dentist population ratio in Africa is 1:150000 or more, whilst it is estimated at 

1:2000 in high-income countries. Besides the accessibility to the health care 
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system, oral diseases are also related to the lifestyle and the presence of 

systemic chronic diseases (Petersen and Ogawa, 2012). 

 

Despite a recent positive trend largely due to an improvement of self-care practise 

and behavioural changes, dental caries is still the most common chronic disease 

affecting from 60 to 90% of children and almost 100% of adults (Udina and 

Gulenko, 2018). Concerning periodontal diseases, the percentage of people 

affected by severe periodontal diseases accounts for 10-15% of the global 

population, whilst half suffers from gingivitis bleeding, gingivitis bleeding with 

calculus or shallow periodontal pocket. However, the increase of life expectancy 

(i.e. teeth are retained for longer) and of diabetes (a recognised risk factor) are 

expected to add to the burden of periodontal diseases (Burt, 2005; Petersen and 

Ogawa, 2012). 

 

1.2.1 Dental caries 
 
Dental caries is a multifactorial disease that is caused by the concomitant 

presence of cariogenic bacteria, fermentable carbohydrates and a tooth surface. 

In addition, other factors such as the oral hygiene, the shape of the tooth, the diet 

and the saliva can contribute to the development of the disease (Figure 1.3) 

(Mathur and Dhillon, 2018).  

 



 11 

 

Figure 1.3 - Aetiology of dental caries. Figure adapted from Mathur and Dhillon (2018) 

 

Dental caries is caused by an ecological imbalance within dental plaque that 

leads to the destruction of the hard tissues of the teeth. In physiological 

conditions, the surface of the teeth is covered by dental plaque. The consortium 

of bacteria present in the dental plaque comprises cariogenic bacteria which are 

weakly competitive and represent only a small portion of the total population. 

However, if the production of acid products due to the fermentation of 

carbohydrates increases, a decrease in pH is observed. The fall of the pH below 

5.5 causes the release of calcium and phosphate from the tooth surface and the 

promotion of the growth of carcinogenic bacteria, such as lactobacilli and 

Streptococci mutans, that further increase the production of acid compounds. The 

result is a disequilibrium between remineralisation and demineralisation that 

leads to the demineralisation of the enamel subsurface (Figure 1.4). If the process 

is not arrested, small lesions called “white spots” can be clinically detected and 

at the last stage the cavitation occurs (Moynihan and Petersen, 2004; Marsh and 

Lewis, 2009).  
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Figure 1.4 - Schematic representation of the “ecological plaque hypothesis” for dental 

caries. The fermentation of carbohydrates causes the production of acid products that 

decrease the pH. Low pH favours the growth of acid-tolerating bacteria, such as 

Streptococci mutans and lactobacilli, that further increase the production of acid 

compounds. This results in the demineralisation of the tooth (Marsh and Lewis, 2009) 

 

The progression of the disease can be delayed by fluoride, which promotes the 

diffusion of calcium and phosphate into the tooth, and by saliva that deposits 

minerals where the demineralisation process occurred (Selwitz et al., 2007).  

Since teeth are more susceptible during eruption, dental caries mainly affect the 

deciduous dentition of young children and the permanent dentition of 

adolescents. However, increased life expectancy and the consequently longer 

retention of the teeth in the mouth are causing a burden of the disease even 

among elderly. Indeed, in the presence of gum recession the tooth root, which is 

less mineralised than the crown, is exposed and susceptible to decay. This form 

of caries, named root caries, is characterised by the penetration of bacteria into 

the deepest tissues even at the early stage of the infection (Moynihan and 

Petersen, 2004). 

 

1.2.1.1 Pathogenic mechanisms in dental caries 
 
Pathogenic determinants include the ability of cariogenic bacteria to adhere to 

the teeth surfaces and form dental plaque. The adhesion of Streptococcus 
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mutans can be both sucrose-independent or sucrose-dependent. The sucrose-

independent mechanism seems to be responsible for the initial adhesion to the 

acquired enamel pellicle, while the sucrose-dependent mechanism is responsible 

for the formation of mature dental plaque (Krzysciak et al., 2014; Banas, 2017). 

In addition, the ability of S. mutans to synthesise glucans from sucrose increases 

the efficacy of colonisation and adhesion (Banas, 2017). Moreover, cariogenic 

bacteria, especially S. mutans, are acidogenic and produce acid products (e.g. 

formate, acetate, ethanol and lactate) (Marsh and Lewis, 2009; Banas, 2017). 

Acid products cause a further reduction of the pH in the dental plaque promoting 

both the demineralisation process and the increase of the proportion of S. mutans 

or acid-tolerant and acid-genic bacteria (Banas, 2017). 

Furthermore, cariogenic bacteria are acid-tolerant, so both the glycolytic activities 

and growth are preserved in inhibitory conditions (i.e. low pH). The ability to 

survive in extreme environmental conditions is due to their capacity to maintain 

the intracellular pH to a healthy level by retaining protons intracellularly and by 

increasing the activity of the F-ATPase pump and the membrane permeability to 

acid products (Marsh and Lewis, 2009; Banas, 2017). 

 

1.2.2 Periodontal diseases 
 
Periodontal diseases can be divided into gingivitis and periodontitis. Gingivitis is 

an inflammation of the gingiva caused by the bacterial plaque populating the 

tissues, while periodontitis is an advanced inflammation process that causes the 

destruction of one or more supporting structures of the tooth (i.e. alveolar bone, 

periodontal ligament, root cementum and gingiva), eventually leading to tooth 

loss (Figure 1.5) (The American Academy of Periodontology, 1999; Tonetti et al., 

2013). Periodontitis develops from previous gingivitis, although not all gingivitis 
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turns into periodontitis. In addition to these two chronic forms, periodontal 

diseases include an aggressive form named juvenile periodontitis that mainly 

affects young people. Acute forms include the necrotising ulcerative gingivitis, 

which destroys the gingival tissue, and the necrotising ulcerative periodontitis in 

which the bone around the teeth is infected or exposed (Petersen and Ogawa, 

2012).  

 

 
 

Figure 1.5 - Progression of periodontal disease from healthy to severe periodontitis 

(Gromadzkim, 2017) 

 

The main aetiology of periodontal diseases is the oral microflora and in particular 

the pathogenic dental plaque associated with it. The application of new 

technologies such as DNA sequencing within the field of oral microbiology 

allowed the identification of more than 770 species in the oral cavity (Verma et 

al., 2018). Although it is commonly accepted that periodontal diseases are an 

inflammatory process, several hypothesis concerning the aetiology have been 

formulated over time. Between the 1930s and 1970s, a “nonspecific plaque 

hypothesis” according to which periodontal diseases are due to the overall mass 

of the bacteria accumulated on the tissues and specific bacteria do not have a 

leading role was accepted (Theilade, 1986; Marsh, 1994).  
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This theory was surpassed in the following years by a “specific plaque 

hypothesis” (Loesche, 1976; Marsh, 1994). The specific plaque hypothesis was 

based on the observation that some bacteria (e.g. Aggregatibacter 

actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, 

Tannerella forsythia, Campylobacter rectus, Eubacterium nodatum, 

Peptostreptococcus micros, Staphylococcus intermedius and Treponema spp.) 

seem to play a pivotal role in the initiation and progression of the disease. 

However, it did not explain how it was possible to have periodontitis in the 

absence of these bacteria and how their presence did not necessarily lead to 

periodontal diseases.  

To overcome these limitations , “an ecological plaque hypothesis” that includes 

both, the “nonspecific plaque hypothesis” and the “specific plaque hypothesis”, is 

mainly accepted (Marsh, 1991). According to this hypothesis (the “ecological 

plaque hypothesis”), periodontal diseases are due to a perturbation of the oral 

environment that causes a shift from a commensal to a pathogenic relationship 

with the host. Therefore, pathogenic organisms can be part of the oral microbiota 

without causing the disease because at physiological conditions they are weakly 

competitive and represent only a small portion of the total community. However, 

once a perturbation occurs (e.g. increase in the pH and oxygen tension), these 

bacteria become prevalent and stronger and play a key role in the development 

of periodontal diseases (Figure 1.6) (Marsh, 1991; Marsh, 1994; Marsh and 

Lewis, 2009). 
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Figure 1.6 - Schematic representation of the “ecological plaque hypothesis” for 

periodontal diseases. Plaque accumulation causes host inflammatory responses. This 

leads to changes in the environmental conditions (e.g. redox potential (Eh) and gingival 

crevicular flow (GCF)) that promote the growth of anaerobic Gram-negative bacteria 

(Marsh and Lewis, 2009) 

 

1.2.2.1 Pathogenic mechanisms in periodontal diseases 

The main feature of periodontal diseases is the damage of the supporting tissues 

of the teeth. Tissues can be damaged directly by virulence factors produced by 

pathogenic bacteria or indirectly by the host inflammatory response (Figure 1.7).  

 

Mechanisms of direct pathogenicity include: 

 Colonisation  

The adhesins present on the membrane of periodontal pathogens interact with 

complementary receptors allowing the binding of bacteria to the host tissues. 

Receptors can be located on the gingival epithelial cells, on the root surface or 

on early colonisers (Marsh and Lewis, 2009). 
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 Evasion and inactivation of the host defences 

Bacteria can interfere with phagocytosis by decreasing the number of neutrophils 

or by interfering with host mechanisms involved with the opsonisation, 

phagocytosis and bacterial killing (The American Academy of Periodontology, 

1999; Hajishengallis, 2015). Aggregatibacter actinomycetemcomitans and 

Campylobacter rectus produce leukotoxins that lyse neutrophils, monocytes and 

a sub-population of lymphocytes (Marsh and Lewis, 2009; Gholizadeh et al., 

2017). Porphyromonas gingivalis secretes proteolytic enzymes that can degrade 

antibodies or complement proteins, preventing the accumulation of these 

molecules on the bacterial surface and, as a consequence, delaying the 

recruitment of neutrophils and the onset of phagocytosis (The American 

Academy of Periodontology, 1999; Sochalska and Potempa, 2017). In addition, 

bacteria can synthesise factors that suppress the host immune response avoiding 

the production of protective antibodies. Lastly, bacteria can penetrate into the 

tissues to evade the action of neutrophils or can resist host defences thanks to a 

polysaccharidic capsule, such as the one of P. gingivalis (The American 

Academy of Periodontology, 1999).  

 

 Tissue-damaging enzymes and metabolites 

The supporting tissues of the teeth can be directly damaged by some enzymes 

and metabolites produced by bacteria. For example, P. gingivalis can produce 

collagenase, hyaluronidase, chondroitin sulphatase and glycylprolyl peptidase 

that degrade the tissue matrix molecules (The American Academy of 

Periodontology, 1999; Eley and Cox, 2003). In addition, cytotoxic metabolic by-

products such as ammonia, amines and butyric and propionic acids, can be 

released in the oral environment. Lastly, some molecules synthesised by 
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periodontal pathogens (e.g. lipopolysaccharides (LPS) and lipoteichoic acid) can 

cause bone resorption (Marsh and Lewis, 2009; Hienz et al., 2015).  

 

Indirect pathogenicity is due to the host inflammatory processes that begin 

immediately after the bacterial infection and can cause tissue damage and bone 

resorption. In particular, during the cell mediated response the activated 

macrophages release cytokines (e.g. IL-1, IL-6, TNF) that cause collagenase 

release, bone resorption and tissue damage (The American Academy of 

Periodontology, 1999; Hasan and Palmer, 2014), whilst in the humoral immunity 

the immunoglobulins activate the complement cascade resulting in the release of 

prostaglandins that cause bone resorption (Marsh and Lewis, 2009; Hasan and 

Palmer, 2014).  

 

 
 
Figure 1.7 - Diagram that illustrates the direct and indirect mechanisms by which dental 

plaque damages the host tissues (Marsh and Lewis, 2009)  
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1.2.3 Oral candidiasis 

Candida species are commensal microorganisms of the oral cavity, mainly found 

on the posterior part of the tongue and on the oral mucosa. Candida is an 

opportunistic pathogen and can cause diseases due to alterations of the oral 

environment, leading to the most common human fungal infection, named oral 

candidiasis. Even though more than 17 Candida species can cause human 

infections, oral candidiasis is mainly caused by C. albicans (Sardi et al., 2013). 

Candida exists in the planktonic and biofilm form. Oral candidiasis identifies four 

main oral diseases associated with Candida: pseudomembranous candidiasis, 

acute atrophic candidiasis, chronic hyperplastic candidiasis, and chronic atrophic 

candidiasis 

 

1.2.3.1 Pseudomembranous candidiasis 
 
Pseudomembranous candidiasis is characterised by the formation of a white 

pseudomembrane on the mucosa, on hard and soft palate, and on periodontal 

tissues (Figure 1.8-A). The pseudomembrane composed by Candida species, 

fibrin and desquamated epithelial cells can be removed by gentle scraping 

(Akpan and Morgan, 2002). This infection is acute and caused by host 

predisposition: it is mainly diffused in babies because their immune system is not 

fully developed, and among the elderly because of a poor diet or 

immunosuppression (e.g. human immunodeficiency virus (HIV) and acquired 

immune deficiency syndrome (AIDS)). Furthermore, it is found in people that use 

steroid inhalers against asthma. It is postulated that steroids supress the cellular 

immunity and phagocytosis, promoting Candida growth (Muzyka, 2005). 

In general, it is sufficient to elicit the predisposing host factors to go back to the 

healthy condition. Immunosuppressed patients can also show a more severe 
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form of pseudomembranous candidiasis, named chronic pseudomembranous 

candidiasis. In this pathogenic status, antifungal therapies successfully eradicate 

pseudomembranes for a limited amount of time. In worst cases, chronic 

pseudomembranous candidiasis causes the colonisation of the oesophagus 

inducing chest pain and difficulties in swallowing (Williams and Lewis, 2011). 

 

1.2.3.2 Acute atrophic candidiasis 
 
Acute atrophic candidiasis is characterised by the presence of painful reddened 

patches on the oral mucosal, typically on the dorsum of the tongue (Figure 1.8-

B) (Marsh and Lewis, 2009). This form is associated with the prescription of 

antibiotics that, being active against bacteria, decrease the competitive pressure 

promoting Candida growth. Generally, it is sufficient to interrupt the antibiotic 

treatment to go back to the healthy level of Candida. Even in this form, the 

concomitant presence of immunosuppression can lead to a chronic status 

(Williams and Lewis, 2011).  

 

1.2.3.3 Chronic hyperplastic candidiasis 
 
Chronic hyperplastic candidiasis is an asymptomatic form generally associated 

with smoking. It is characterised by the formation of white bilateral patches in the 

buccal commissure regions (Figure 1.8-C). In this form, Candida hyphae are able 

to penetrate into the epithelial layer and inflammatory cells within the lamina. For 

this reason, it is generally characterised by changes in the thickness of the 

epithelial layer (Williams & Lewis 2011). Because Candida invades the deepest 

tissues, it cannot be removed simply by scraping, and a biopsy is necessary to 

detect it. Moreover, some studies highlighted a possible link between chronic 
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hyperplastic candidiasis and oral cancer (Williams et al. 2001.; Sitheeque 2003; 

Ramirez-garcia et al. 2014) 

 

1.2.3.4 Chronic atrophic candidiasis 
 
Chronic atrophic candidiasis, also known as denture stomatitis, is the most 

common oral disease associated with Candida and affects up to 65% of people 

wearing dentures (Figure 1.8-D) (Williams & Lewis 2011). The main cause of 

chronic atrophic candidiasis is the denture that creates an ideal environment for 

Candida growth in the upper fitting surface (Salerno et al., 2011a). Indeed, 

Candida is able to adhere to the acrylic of the denture and, even if poorly 

attached, is retained at the site because of the limited saliva flow. It has been 

observed that more colonies are present if the surface is rough and that denture 

base cracks are ideal sites for colonisation, protecting the microorganisms from 

shear stresses even during the denture cleaning (Williams & Lewis 2011). 

Moreover, if dentures do not properly fit, the friction between the prosthesis and 

the epithelium causes damage to the mucosal barrier, facilitating the invasion of 

Candida into the deeper tissues. 
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Figure 1.8 - Oral candidiasis infections: (A) pseudomembranous candidiasis, (B) acute 

atrophic candidiasis, (C) chronic hyperplastic candidiasis and (D) chronic atrophic 

candidiasis. Images courtesy of the School of Dentistry, Cardiff University 

 

1.2.3.5 C. albicans virulence factors 

Even if C. albicans is a commensal microorganism of the oral cavity, changes in 

the environment can induce the expression of virulence genes (Figure 1.9). 

Candida albicans pathogenic factors include the presence of adhesins on the cell 

membrane that allow the binding to the host tissues or to an artificial surface. 

Several adhesins (e.g. Als1p, Ala1p, Hwp1p, Int1p and Mnt1p) can bind to 

complementary receptors present on the host cells or to extracellular matrix 

proteins (e.g. fibronectin, laminin, collagen and fibrinogen). Once Candida 

adheres, it cannot be removed by the salivary flow or swallowing (Calderone and 

Fonzi, 2001; Mayer et al., 2013). Another virulence factor of Candida is its 

morphogenesis, which is its ability to transform from the unicellular yeast form to 
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the pseudohyphal and hyphal form. The filamentous form promotes the invasion 

of the epithelium and increases the resistance to phagocytosis by host immune 

cells (Marsh and Lewis, 2009; Huang, 2012).  

In addition, C. albicans is able to respond to stimuli by phenotypic switching which 

causes a change in gene expression affecting the adhesive properties, the drug 

susceptibly and the resistance to phagocytosis (Calderone and Fonzi, 2001; 

Marsh and Lewis, 2009; Huang, 2012). For example, in the so-called “white-

opaque transition cells”, C. albicans switches from a smooth, white colony 

phenotype containing round budding cells to an opaque colony phenotype 

containing large, elongated, asymmetrical budding cells which show a different 

virulence (Soll, 2002).  

Lastly, C. albicans secretes hydrolytic enzymes, such as the secreted aspartyl 

proteinases (SAP) and the phospholipases (PL), that destruct the host tissues. 

Phospholipases are enzymes that hydrolyse phospholipids into fatty acids and 

contribute to the host cellular lysis and to the exposure of adhesive receptors 

(Haynes, 2001; Marsh and Lewis, 2009). Four classes of phospholipases have 

been identified (PLA, PLB, PLC and PLD), even if the only one required for 

virulence in an animal model was found to be PLB (Calderone and Fonzi, 2001). 

The secreted aspartyl proteinases (SAP) include at least nine proteins that are 

characterised by activity in an acid environment (Marsh and Lewis, 2009). The 

role of SAP as virulence factors needs further investigation. To date it is believed 

they degrade the host extracellular matrix proteins and it was shown that deletion 

of genes encoding for these proteins attenuated the virulence (Calderone and 

Fonzi, 2001; Sardi et al., 2013). 
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Figure 1.9 - Illustration of the pathogenicity mechanisms of C. albicans. Figure adapted 

from Mayer et al. (2013) 

 

1.3 Risk factors  
 

1.3.1 Dental caries 
 
Several factors have been related to the formation of dental caries. The main 

ones can be grouped into physical and biological, behavioural and 

socioenvironmental. 

The most important physical and biological risk factors include: 

 Salivary composition and flow: saliva allows the removal of bacterial by-

products produced during the fermentation and acts as a natural buffer. 

Moreover, it contains antimicrobials and prevents bacterial adhesion to the 

enamel surface (Krol, 2003)  

 High count of Streptococcus mutans: Streptococcus mutans has a crucial role 

in the development of dental caries because of its ability to adhere to the tooth 

surface and to survive at low pH (Krol, 2003; Harris et al., 2004)  
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 Gingival recession: gingival recession causes the retention of the plaque in the 

area and the exposure of the root canal which is more sensitive to 

demineralisation (Selwitz et al., 2007) 

 Variation in tooth enamel: hypoplasia of the enamel can promote the retention 

and colonisation of bacteria increasing the risk of dental caries (Krol, 2003; 

Harris et al., 2004)  

Behavioural factors include: 

 Poor oral hygiene: a good oral hygiene is fundamental to control the formation 

of dental plaque 

 Diet: the greater and more frequent the uptake of carbohydrates, the greater 

the risk of dental caries,  although the use of fluoride toothpaste can limit this 

correlation (Anderson, 2002). The British Nutrition Foundation defined 

extrinsic sugars as the most important dietary cause of dental caries (Arens, 

1999) 

 Low exposure to fluorides: fluorides increase the resistance of the enamel to 

demineralisation and promote remineralisation, inhibiting the fall of the pH 

below the critical value (Moynihan and Petersen, 2004).  

Socioenvironmental factors show a higher incidence of dental caries among 

poor and less educated people, ethnic minority groups and people with 

several risky lifestyle factors (Selwitz et al., 2007)  

 

1.3.2 Periodontal diseases 

Besides the oral microflora, the main risk factors for periodontal diseases include 

tobacco use, alcohol consumption, oral hygiene and systemic diseases (Petersen 

and Ogawa, 2012). In terms of oral hygiene, a major awareness of the importance 

of regular tooth brushing and of the use of fluorinate toothpastes is present. 
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However, as mentioned in Section 1.2, oral hygiene is still strongly related to the 

educational level (i.e. practical hygiene is more frequent among educated people) 

and varies between developed countries and middle- low- income countries. 

Smoking is an important risk factor for chronic diseases, especially when it is 

combined with alcohol consumption. A correlation between number of cigarettes 

and the extent and severity of periodontal diseases has been found (AlJehani, 

2014). Besides causing attachment loss, smoking affects the healing process and 

causes a higher reabsorption of alveolar bone. In addition, the vasoconstriction 

caused by cigarettes decreases the oxygen tension and creates suitable 

conditions for the growth of anaerobic bacteria (Petersen and Ogawa, 2012). 

These main risks factors are shared with the most important chronic diseases 

such as cardiovascular diseases, cancer, chronic obstructive pulmonary disease 

and type 2 diabetes (Genco and Borgnakke, 2013). The strongest correlation 

between periodontal diseases and chronic diseases has been observed with 

diabetes mellitus of whom periodontal diseases are the sixth complication. This 

relation is particularly important considering that diabetes is expected to increase 

by 50% by 2030 (Petersen and Ogawa, 2012). 

 

1.3.3 Oral candidiasis 
 
The shift from a commensal to a pathogenic form of Candida can be due to 

systemic or local factors. Generally, local factors alter the oral environment 

promoting the overgrowth of Candida, while systemic factors have an impact on 

the host defence system (Vasconcellos et al., 2014). 
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The most important local factors are: 

 Diet: since carbohydrates are the primary energy source of Candida, a 

carbohydrate-rich diet favours proliferation and formation of biofilms (Santana 

et al., 2013)  

 Trauma: tissue damage can promote the penetration of Candida into the oral 

epithelium and increase its permeability to toxins and soluble factors (Salerno 

et al., 2011b) 

 Saliva: both a low and a high saliva flow have been identified as risk factors. 

On one hand, a high flow is desirable because it cleans the surface and being 

rich in antimicrobial and anticandidal molecules controls Candida growth. On 

the other, saliva contains some proteins such as mucines that act as adhesion 

receptors for proteins present on the cell membrane (Salerno et al., 2011b)  

 pH and oxygen level: low pH and high oxygen tension reduces the growth of 

some bacteria promoting proliferation of Candida species (Webb, 1998; 

Gleiznys et al., 2015)  

 Smoking: cigarettes affect the oral microbiota and decrease saliva flow 

promoting Candida overgrowth (Vasconcellos et al., 2014)  

 Dentures and permeability of the acrylic resins: dentures are the main cause 

of chronic atrophic candidiasis. The reduced salivary flow and the 

environmental conditions following implantation (e.g. low pH and oxygen 

level), create the ideal scenario for Candida growth. The irregular surface of 

the acrylic promotes a strong adhesion of Candida and bacteria. Once 

attached, they are difficult to eliminate both mechanically and chemically. 

Moreover, denture’s age can lead to a poor fit, plaque accumulation and 

increased surface roughness (Williams and Lewis, 2011) 
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Systemic factors include: 

 Diabetes mellitus: high glucose levels and low salivary flow are typically 

observed in diabetic patients. As previously discussed, these parameters 

create the ideal conditions for the overgrowth of Candida. Indeed, it has been 

observed that dentures of diabetic patients show more colonies than those of 

healthy patients (Soysa et al., 2008; Salerno et al., 2011b; Sanjeeta, 2014)  

 Drugs: drugs such as broad-spectrum antibiotics and immunosuppressive 

therapy change the oral microbiota decreasing the competitive pressure and 

promoting Candida growth. In general, once the treatment is suspended 

Candida shifts to a commensal form (Akpan and Morgan, 2002)  

 Immunological disorders: patients with an altered immunological system are 

more susceptible to infections (Gleiznys et al., 2015)  

 Lack of nutritional factors: deficiency of vitamin B12 and vitamin C reduces 

host defences and causes the disintegration of the oral mucosa, facilitating the 

migration and colonisation of Candida (Gleiznys et al., 2015)  

 

1.4 Current therapies  

1.4.1 Prevention and treatment for dental caries 
 
Treatments for dental caries depend on the severity of the infection and aim to 

restore the tooth. In early stage, dental caries can be removed, and the tooth 

filled with adhesive materials, while if the infection spreads into the pulp it is 

necessary to extract the tooth. However, restoration without prevention has a 

limited durability, so it is also important to prevent the formation of caries. 

Prevention treatments target the risk factors and include a good oral hygiene that 

allows early biofilms to be removed, the use of fluorides (self-administered 

through toothpaste or clinically administered by the application of gels), the 
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application of dental sealants, a low sugar diet and the control of the saliva flow  

(Krol, 2003; Selwitz et al., 2007). 

 

1.4.2 Prevention and treatment for periodontal diseases 
 
Both the prevention of periodontal diseases and the long-term efficacy of 

periodontal therapies depend on the ability of patients to maintain a good plaque 

removal. In most of the cases, tooth brushing combined with monthly dental 

control is sufficient to control the formation of the plaque and avoid the generation 

and progression of periodontal diseases (Watt and Petersen, 2012). Recently, a 

major awareness of the importance of oral hygiene rose with school-health 

programs and educating patients on proper tooth brushing (Watt and Petersen, 

2012). At the same time, improvements on both the tooth brushings and the 

toothpastes have been achieved by the introduction of power tooth brushings and 

fluoride toothpastes to the market (Plessas, 2014). Moreover, new formulations 

containing some chemical compounds, such as triclosan and chlorhexidine, or 

natural compounds have been created to further reduce the plaque formation 

(Drisko, 2001).  

However, a good oral hygiene is not always sufficient to control periodontal 

diseases because some risk factors, many of which are shared with chronic 

diseases, make some people more predisposed than others. Therefore, 

prevention programs should also work on patients’ behaviour by reducing alcohol 

consumption and smoking and promoting a healthy diet (Petersen, 2003). 

 

Current periodontal therapies aim to mechanically eliminate the source of 

inflammation. This goal is obtained firstly by controlling the oral health through 

oral hygiene, and secondly by removing the bacterial plaque and the infected 
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tissues (Plessas, 2014). The plaque elimination can be accomplished 

mechanically, eventually combining the procedure with an antimicrobial treatment 

(Drisko, 2001). Non-surgical mechanical procedures consist on the elimination of 

bacteria and endotoxins using a manual or power-driven scaler and include 

scaling, which eliminates the supragingival plaque, and root debridement that 

eliminates the subgingival calculus (Drisko, 2001). Most of the time scaling and 

root planing are sufficient to arrest gingival infections and, together with oral 

hygiene, restore and maintain a healthy periodontum. However, in some cases 

these procedures are not efficient. Non-surgical procedures show low efficacy in 

diabetic patients and smokers and in the presence of severe periodontitis 

because they do not reach the bacteria in the deepest layers (Labriola et al., 

2005; Plessas, 2014). For this reason, in case of severe periodontitis (i.e. pocket 

deeper than 6 mm), surgical therapies are preferred. These include i) 

gingivectomy in which the suprabony pocket is excised, ii) flap debridement and 

iii) modified Widman flap that remove the inflamed pocket wall and expose the 

alveolar bone and root tooth allowing a better access for scaling and root planing, 

and iv) the excisional new attachment procedure that aims to promote new 

connective tissue attachment to root surfaces (Figure 1.10) (Wang and 

Greenwell, 2001; Deas et al., 2016).  
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Figure 1.10 - Surgical procedure for severe periodontitis (Deas et al., 2016) 

 

Other therapies, such as the local delivery of antimicrobial compounds, have 

been investigated to enhance the efficacy of the mechanical treatments. Some 

studies reported modest depth reduction of the pocket when the mechanical 

treatment was accompanied by the delivery of antimicrobials such as tetracycline 

and chlorhexidine (Aurer and Plančak, 2004). In case of aggressive and severe 

periodontitis that do not have benefits of the non-surgical mechanical treatments, 

systemic antibiotics have also been used. The main advantage of systemic 

antibiotics is their ability to act against bacteria that colonise the deepest tissues, 

which cannot be reached by other therapies. However, the use of systemic 

antibiotics has to take into account the side effect of antibiotics (i.e. the spreading 

of resistance) and the fact that periodontal diseases involve a consortium of 

bacteria, so it is not possible to target all the bacteria with a single compound 

(Aurer and Plančak, 2004). Other therapies that can be used in addition to 

mechanical treatments include photodynamic therapy, based on the use of a low-

power laser that targets the bacteria treated with a photosensitiser at a specific 

wavelength, and pocket irrigation with antimicrobials. However, the efficacy of 



 32 

these therapies alone and in combination with the root planing and scaling is still 

debated (Plessas, 2014). 

Despite all reported therapies eliminating bacterial plaques and repairing tissues, 

they do not restore the periodontium to a normal functional state (Laurenti and 

Abdallah, 2015). For this reason, periodontal regenerative procedures to restore 

the normal functionality of the periodontum have recently been developed. These 

therapies include i) hard and soft tissue grafts that act as scaffolds promoting 

bone regeneration (osteoconductive potential) and can contain bone-forming 

cells (osteogenic potential) or bone-inductive molecules (osteoinduction 

potential), ii) biomodifications of the root tooth surface with matrix protein, iii) 

guided tissue regeneration with the use of a physical barrier that promotes the 

repopulation of the damaged root tooth by cells, and iv) the delivery of growth 

factors such as bone morphogenetic proteins and platelet-derived growth factors 

(Figure 1.11). However, the success of these procedures is still variable and 

unpredictable (Ramseier et al., 2012). 
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Figure 1.11 - Periodontal regenerative procedures. A) Application of a graft material 

and growth factors into the intrabony defect covered by a bioresorbable membrane. B) 

Application of gene vectors for the transduction of growth factors producing target cells 

(Deas et al., 2016) 

 

1.4.3 Prevention and treatment for oral candidiasis 

Treatments for oral candidiasis involve the use of topical or systemic antifungals, 

and denture cleansers in case of denture stomatitis. Concerning the latter aspect, 

patients should clean the denture both chemically and physically. Indeed, even if 

the physical cleaning (i.e. brushing) can limit the biofilm formation on the 

prosthesis, it can be difficult to properly remove the plaque in the presence of 

cracks or roughness. For this reason, it is important to accomplish a chemical 

treatment of the denture, soaking the prosthesis in a chemical denture cleaner 

such as a disinfectant (Gleiznys et al., 2015).  

Antifungal agents against Candida can be grouped according to the target. The 

most common are the polyenes and the azoles. The former includes nystatin and 

amphotericin B, which are fungicidal: they are able to bind the sterol ergosterol 

causing leakages in the cell membrane. The latter include fluconazole and 
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miconazole which are fungistatic and inhibit the enzyme lanosterol demethylase 

involved in the synthesis of the ergosterol (Williams and Lewis, 2011).  

 

1.4.4 Challenges: antibiotic and antifungal resistance 

The production of penicillin in 1941 marked the beginning of the “golden age” of 

antibiotic discovery. However, since 1980s the development of new antibiotics 

has dramatically decreased, and those recently introduced on the market belong 

to pre-existing classes (Oldfield and Feng, 2014). The lack of new antibiotics, 

together with the inappropriate and extensive exposure to these drugs, led to the 

problem of antibiotic resistance, classified by the World Health Organisation 

(WHO) as a major public health threat for the future. Dentists’ prescriptions of 

antibiotics account for 7% and in the recent years an increase in resistance within 

the periodontal microbiota has been recorded (Sweeney et al., 2004).  

Amoxicillin resistance has been found in Veillonella spp. and Prevotella denticola 

isolated from root canals (Lana et al., 2001; Sweeney et al., 2004) and at least 

one Prevotella spp. strain producing β-lactamase was found in 53.2% of patients 

and 39.4% of the periodontal pockets investigated by Fosse et al. (1999).  

High levels of resistance of α-haemolytic streptococci to penicillin have been also 

recorded. Moreover, interspecies gene resistant transfer between Streptococcus 

pneumoniae and other α-haemolytic streptococci was found (Reichmann et al., 

1997; Sweeney et al., 2004). 

Resistance to metronidazole can be conferred by mutations to the enzymes that 

reduce metronidazole to its active form, or by mutations that decrease the uptake 

of the drug. All the anaerobic strains tested by Roche and Yoshimori (1997) did 

not show resistance to metronidazole. However, Madinier et al. (1999) 
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investigated 50 strains of A. actinomycetemcomitans showing that 76% were not 

sensitive to the drug (Sweeney et al., 2004). 

Regarding antifungal resistance, fluconazole-resistance species were mainly 

found in HIV-AIDS patients with oropharyngeal or oesophageal candidiasis 

(Kanafani and Perfect, 2008). In a study of Law et al. (1994) up to one-third of 

patients with advanced AIDS showed fluconazole-resistant C. albicans strains. 

However, the introduction of antiretroviral therapies decreased the frequency of 

fluconazole resistance species in patients with HIV (Masiá and Gutiérrez, 2002). 

In general, the rate of azole-resistance is low (1-2% in C. albicans), even if 

resistance of Candida glabrata increased from 7% in 2001 to 12% in 2004 (Pfaller 

et al., 2006; Kanafani and Perfect, 2008).  

Concerning resistance to amphotericin B, it is rare among Candida species even 

if some Candida spp. (e.g. C. glabrata and Candida krusei) show a lower 

susceptibility to the antifungal than C. albicans (Sanglard and Odds, 2002). 

 

Compared to antibiotics, antifungals on the market are limited because the 

interest in Candida infections is recent and Candida is a eukaryotic organism with 

some features common with human cells (Williams and Lewis, 2011). Therefore, 

it is more difficult to discover compounds that are fungicidal but not cytotoxic. For 

this reason, antifungals commercially available show a relatively high toxicity 

(Boros-Majewska et al., 2014). In parallel, the rise of resistance of Candida to the 

antifungals available on the market led to a new interest in the antifungal 

properties of natural and chemical compounds.  
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1.5 Biocides 
 

1.5.1 Chlorhexidine  
 
Chlorhexidine (CHX) is an antiseptic agent commonly used in hospitals for hand 

sanitation, disinfection of surgical environments, instrumental sterilisation and 

wounds and skin disinfection (Cordenonsi et al., 2013). Besides these 

applications, CHX has an antimicrobial activity against a wide range of oral 

pathogens since it is able to bind to the negatively charged cell membrane and 

alter the osmotic equilibrium (Greenstein et al., 1986). Typical MICs values range 

from 0.003% (v/v) to 0.025% (v/v) and from 0.003% (v/v) to 0.005% (v/v) against 

C. albicans and periodontal bacteria, respectively (Barkvoll and Attramadal, 

1989; Oosterwaal et al., 1989; Amorim et al., 2004; Solmaz and Korachi, 2013). 

Schiott et al. (1970) observed that twice daily brushing with 0.2% CHX caused a 

reduction of up to 95% in the number of bacteria counted in the saliva. Since 

then, interest in CHX as a topical antiseptic to be used in oral therapy increased 

and different local delivery systems (e.g. gel, mouthwash and varnish) were 

studied. Pietruska et al. (2006) compared the efficacy of mechanical scaling 

combined with 0.2% of CHX rinse twice a day, 1% CHX gel applied to the 

periodontal pocket at one-week intervals with surgical dressing, or 1% CHX gel 

applied to the periodontal pocket at one-week intervals without surgical dressing. 

A significant improvement in clinical parameters (e.g. plaque index (PI), sulcus 

bleeding index (SBI) and gingival index (GI)) was found in all the groups and the 

greatest difference between the baseline and the follow-up examination was 

observed in the group with the surgical dressing. In particular, the scaling could 

be a sufficient treatment for periodontal diseases and the efficacy of the gel 

depends on the achievement at the site of the inhibitory concentration and on the 

ability to keep this concentration over time (Pietruska et al., 2006).  
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A xanthan hydrogel containing 0.1% chlorhexidine digluconate, delivered in the 

first day, and 1.5% of chlorhexidine dihydrochloride, delivered in the following 6-

9 days, was investigated by Matesanz et al. (2013). Although the antimicrobial 

potential of this hydrogel was limited, significant achievements in the bleeding on 

probing (BOP) and in the proportion of shallow pockets (1-3 mm) were observed 

compared to the scaling procedure alone. Ji et al. (2010) studied the potential of 

a CS-HTCC/GP-0.1% CHX thermosensitive hydrogel and were able to control 

the concentration of drug delivery and release rate adjusting the initial 

concentration of CHX and the concentration of the ,-glycerophosphate (GP), 

respectively.  

Besides some well-known advantages of gel use, such as the possibility to keep 

the CHX concentration for a longer period and the possibility to reach the remote 

sites, gels could also limit the side effects of CHX such as the discoloration on 

the tooth surface and the bitter taste (Pietruska et al., 2006). Concerning the use 

of CHX as a treatment for denture stomatitis, CHX was added to denture lining 

materials and denture acrylic resin. Bertolini et al. (2014) investigated two 

different resins-based denture soft lining materials charged with chlorhexidine 

diacetate (CDA) and chlorhexidine hydrochloride (CHC). Both the release and 

the diameter of the zone inhibition of CDA were a function of the initial 

concentration, while CHC did not show any antifungal activity once incorporated 

into the resins, meaning that it was disabled during the preparation or it was not 

able to diffuse through the resin. Salim et al. (2012) examined the suitability of a 

self-cured poly(ethyl methacrylate)/tetrahydro-furfuryl methacrylate (PEM/THFM) 

as CHX delivery system. They found that the leaching kinetic was characterised 

by a high initial elution followed by a slower and constant release that lasted up 

to 28 days. Even if CHX is still considered as the gold standard antiseptic 
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treatment and it is one of the most used agents for mouth irrigation, there is an 

important issue regarding toxicity and staining. Indeed, brown staining of the oral 

mucosal, teeth and acrylic dentures have been reported and several studies have 

shown a toxic effect even at low concentrations (Ellepola and Samaranayake, 

2001). Tu et al. (2015) demonstrated that CHX has a cytotoxic effect on stem 

cells from exfoliated deciduous teeth (SHED cells) in a dose and time manner: 

0.1% CHX inhibited the 90% of the viable cells and only concentrations lower 

than 0.001% (v/v) did not affect proliferation. Cabral and Fernandes (2007) 

investigated toxicity for human alveolar bone cells, reporting that concentrations 

higher than 0.005% (v/v) changed the cell shape and the cells’ attachment to the 

substrate.  

 

1.5.2 Triclosan 
 
Triclosan is an organic compound that shows in vitro and in vivo antimicrobial 

properties against a wide range of bacteria and certain fungi (Dann and Hontela, 

2011). It inhibits the enzyme enoyl-acyl carrier protein reductase, that has a 

fundamental role in the fatty acids synthase cycle, causing growth inhibition or 

bacterial lysis (Saunders et al., 2000). Being non-ionic, it can be easily added to 

toothpastes to increase the antimicrobial properties. The risk of resistance that 

can follow the widespread use of products containing triclosan has been 

investigated in a 5 year study by Cullinan et al. (2014). Similar MIC values were 

reported between samples from the group brushing with 0.3% (w/v) triclosan-

dentifrice and the control, meaning that a long exposure to triclosan did not affect 

the MICs. Moreover, no growth was observed in both groups at a concentration 

of 0.3% (w/v) of triclosan, normally used within dentifrices. Different solutions 

have been proposed to enhance the antimicrobial properties of triclosan such as 
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the combination with other antimicrobial dentifrice-compatible agents (e.g. zinc) 

or the combination with copolymers to increase its permanence in the mouth 

(Finney et al., 2003). Several clinical trials and in vitro studies have been 

performed to investigate the efficacy of a triclosan/copolymer toothpaste 

compared to a negative control toothpaste. Rosling et al. (1997) in a 36 months 

study found that the addition of triclosan decreased the total number of bacteria 

counted in adults susceptible to destructive periodontitis. Interestingly, the 

number of samples containing bacteria associated with periodontal diseases (e.g. 

P. gingivalis, P. intermedia and A. actinomycetemcomitans) decreased, while the 

number of bacterial species associated with oral health (e.g. Actinomyces 

naeslundii, Capnocytophaga and different streptococci) was constant or 

increased. In addition, the frequency of deep periodontal pockets and the number 

of sites exhibiting additional probing attachment and bone loss improved, 

meaning that besides its antimicrobial properties the triclosan/copolymer 

toothpaste could self-prevent recurrent periodontitis. Similar results were 

obtained in a 5 year study by Cullinan et al. (2003) that showed that the use of a 

triclosan/copolymer dentifrice slowed down the formation of the periodontal 

pocket in subjects with pre-existing attachment loss (probing pocket depth (PDD) 

> 3.5 mm), while it did not have a significant effect in those with PDD > 2mm. The 

antimicrobial properties of a triclosan/copolymer dentifrice were also tested by 

Fine et al. (2006) that found that brushing with triclosan resulted in a 90% 

reduction of anaerobes at the site. Besides proven antimicrobial efficacy, 

triclosan has anti-inflammatory properties. Gaffar et al. (1995) found that triclosan 

inhibited the cyclo-oxygenase and lipoxygenase, decreasing the ability of 

fibroblasts to produce inflammatory cytokines and inflammatory mediators. In a 

recent work, Wallet et al. (2012) investigated how triclosan altered the 
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inflammatory response in different cells of the oral mucosal: human monocytic 

cells (THP1), human periodontal ligament fibroblasts (HPFL) and human oral 

epithelial cells. They discovered that the treatment with triclosan caused a dose 

dependent inhibition of LPS-induced cytokines of THP1 and HPFL, while it did 

not affect the LPS-induced cytokines of the epithelial cells. However, the pre-

treatment of the oral epithelial cells with triclosan inhibited the secretion of LPS-

induced cytokines (Wallet et al., 2012). 

While several studies reported on the use of triclosan as treatment for periodontal 

diseases (Cullinan et al., 2003), a limited knowledge on its activity against C. 

albicans is available. Higgins et al. (2012) found that triclosan was fungicidal 

against azole-susceptible C. albicans at a concentration of 16 mg/l but it had an 

antagonistic activity with fluconazole at sub-inhibitory concentrations.  

Besides being used as an ingredient in dental products, triclosan is found in 

antibacterial soaps, deodorant soaps, dishwashing liquids, cosmetics products 

kitchen utensils, toys, bedding, clothes, fabrics, and rubbish bags. This wide 

spectrum of application led to an accumulation of triclosan in the environment 

(e.g. in the soil and water) that can cause microbial resistance and effect the 

ecosystem and the human health (Dhillon et al., 2015).  

 

1.6 Essential oils  

Essential oils are natural products produced by aromatic plants and mainly 

composed of terpenes and terpenoids and other molecules (e.g. acids, alcohols, 

aldehydes, aliphatic hydrocarbons, acyclic esters or lactones) (Nazzaro et al., 

2013). The composition and the ratio of the components depend on the plant’s 

origins and influence the antimicrobial properties of the essential oils. Being 

hydrophobic, they interact with the cell membrane changing its permeability and 
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causing leaching of intracellular components (e.g. radicals, proteins, calcium 

ions) and the inactivation of enzymatic mechanisms (Bakkali et al., 2008). 

Moreover, they can penetrate into the cell and interact with the mitochondrial 

membrane causing cell death (Nazzaro et al., 2013).  

Several essential oils have been reported to have an antifungal or antibacterial 

activity. Among these, twelve essential oils that showed an activity against oral 

pathogens, C. albicans or periodontal bacteria, were selected. The 

characteristics of each oil are described in detail in the following sections. In 

addition, linalool, a compound commonly found in the essential oils and approved 

by the Food and Drug Administration (FDA), and E-cinnamaldehyde, a terpene 

with good antimicrobial activity, are discussed. 

 

1.6.1 Basil 
 
Basil (Ocimum basilicum) is a culinary and medicinal herb used in folk medicine 

against headaches, intestinal worms, kidney disorders and as an antispasmodic 

agent. Its antimicrobial activity is associated with the two main compounds, 

linalool and methyl chavicol (Cardoso et al., 2016). Basil affects the production of 

ergosterol, the capsule size of Candida and the biofilm formation (Cardoso et al., 

2016). Typical minimum inhibitory concentrations (MICs) for C. albicans reported 

are 0.5% (v/v) (Hammer et al., 1999), 0.312% (v/v) (Szweda et al., 2015) and 

0.14% (v/v) (Cardoso et al., 2016). In addition, Kraivaphan et al. (2013) reported 

an antibacterial activity against P. gingivalis with minimum bactericidal 

concentrations (MBCs) of 0.4% (v/v) and 1.6% (v/v) against planktonic and 

biofilm growth mode, respectively. 
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1.6.2 Bergamot 
 
Bergamot (Citrus bergamia) is obtained from the peel of the fruit and is mainly 

composed of a volatile fraction (93–96%), whose principal components are 

limonene (40%), linalool (8%) and linalyl acetate (28%) (Romano et al., 2005). It 

has anti-inflammatory properties and an antifungal activity with MICs ranging 

from 1% (v/v) to 10% (v/v) (Hammer et al., 1999; Romano et al., 2005).  

 

1.6.3 Cinnamon  
 
Cinnamon (Cinnamomum zeylanicum) is a tropical evergreen tree that grows in 

Sri Lanka, India and Madagascar (Unlu et al., 2010). Several studies reported 

antimicrobial and antioxidant properties of both the essential oil and the single 

compounds (e.g. E-cinnamaldehyde). However, the chemical composition of the 

oil obtained from the bark, leaf, root and fruit of cinnamon can be significantly 

different (Paranagama et al., 2002). Unlu et al. (2010) studied the antimicrobial 

potential of the essential oil from the bark against 21 bacteria and four Candida 

species and found a strong antimicrobial activity against all the microorganisms 

tested with MICs between 0.004% (v/v) and 0.1% (v/v). Concerning the 

antimicrobial potential against oral bacteria, cinnamon oil was shown to be active 

against two cariogenic bacteria, S. mutans and Lactobacillus plantarum, both in 

the planktonic and in the biofilm form (Filoche et al., 2005). Moreover, a non-

antagonistic antimicrobial effect was observed when cinnamon was added to 

CHX. The blend resulted in a 10-fold reduction in the CHX concentration needed 

to achieve the same level of inhibition of CHX alone (Filoche et al., 2005). 

Concerning the cytotoxicity of the bark oil, experiments on fibroblasts highlighted 

a toxicity at concentrations higher than 0.001% (v/v) (Unlu et al., 2010).  
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1.6.4 Citronella  
 
Citronella oil (Cymbopogon nardus) is mainly composed of citronellal, geraniol 

and citronellol which are well known for their antiseptic properties. Besides being 

an antiseptic, it is reported to have anti-candidal properties at concentrations of 

0.25% (v/v) (Hammer et al., 1998) and between 0.004% (v/v) and 0.014% (v/v) 

(Trindade et al., 2015). In addition, it inhibited the attachment of C. albicans to 

dental implants and cover screws with results similar to Nystatin (Trindade et al., 

2015). Moreover, Ocheng et al. (2015) found that citronella oil inhibited the 

growth of A. actinomycetemcomitans and P. gingivalis at a concentration of 

0.01% (v/v). 

 

1.6.5 Geranium 
 
Geranium oil (Pelargonium graveolens) is used in aromatherapy for the treatment 

of acne, eczema, haemorrhoids, inflammation and for improving circulation (Zore 

et al., 2010). The main compounds are geraniol, geranyl acetate and citronellol. 

Zore et al. (2010) explored the antifungal activity of these components against 

sensitive and non-sensitive fluconazole C. albicans strains. Geraniol and geranyl 

acetate were fungicidal at 0.064% (v/v), while citronellol was fungistatic at 

0.256% (v/v). Cytotoxicity evaluation on HeLa cells revealed that the MICs of 

geraniol and geranyl acetate were not toxic, while the MIC of citronellol killed 4% 

of cells. Budzyńska et al. (2014) examined the mechanisms of action of geranium 

in term of expression of virulence factors, germ tube formation, morphology and 

cell attachment. Both a one hour pre-treatment at MIC (0.097% (v/v)) or a 

constant exposure at sub-MICs reduced the expression of virulence factors, the 

formation of germ tubes, the penetration of Candida into the agar and the 
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attachment to epithelial cells. To the best of the author’s knowledge, no data on 

the antibacterial activity against periodontal pathogens is available. 

 

1.6.6 Lavender 
 
Lavender oil (Lavender angustifolia) is mostly produced in the Balkans. The main 

components are non-terpenes, oxides and linalyl. Besides being an anti-

depressant, anti-stress, anti-inflammatory and antiseptic, it showed antimicrobial 

properties against fungi and bacteria (Thosar et al., 2013). Typical MICs against 

Candida were 1.12% (v/v) (Giordani et al., 2004), 0.8% (v/v) (Thosar et al., 2013), 

0.25% (v/v) and 0.5% (v/v) (Hammer et al., 1999). Concerning the activity of 

lavender against oral pathogens, Takarada et al. (2004) observed that lavender 

inhibited the growth of Gram-negative bacteria with MIC ranging from 0.25% (v/v) 

to 0.5% (v/v), while it did not affect the growth of oral streptococci. Moreover, it 

did not kill bacteria meaning that it is bacteriostatic. Low MICs (0.4% (v/v)) against 

oral anaerobic bacteria were reported by Gursoy et al. (2009). Concerning the 

cytotoxicity, experiments conducted on human umbilical vein endothelial cells 

demonstrated that the viability was almost not affected by the presence of the oil, 

even at high concentrations (0.5% (v/v)) (Takarada et al., 2004). 

 

1.6.7 Melissa 
 
Melissa (Melissa officinalis) is a herb used to give fragrance to food and beverage 

products. It is utilised as a medical plant since different therapeutic effects (e.g. 

energiser, anticonvulsant, tranquiliser and digestive) have been attributed to the 

essential oil (Babpour et al., 2009). Besides these functions, it has antimicrobial 

and antioxidant properties. Concerning its efficacy against oral bacteria, melissa 

was found to inhibit six out of nine strains of P. gingivalis and Prevotella spp. at 
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concentration lower than 0.2% (v/v) (Iauk et al., 2003). Abdellatif et al. (2014) 

reported an antifungal activity of the oil at concentration of 0.3% (v/v). By contrast, 

Mimica-Dukic et al. (2004) found that melissa inhibited Candida growth at 

concentrations of 3% (v/v), while it was fungicidal at 6% (v/v). 

 

1.6.8 Myrtle 
 
Myrtle oil (Myrtus communis) has anti-inflammatory, antioxidant and antimicrobial 

properties against both Gram-negative and Gram-positive bacteria. Sulieman 

(2009) investigated its potential use as a root irrigant finding that concentrations 

of 35% (v/v) of Myrtus communis alcoholic extract solution had an antimicrobial 

efficacy comparable to that of 0.2% of CHX or 5.25% sodium hypochlorite 

(NaOCl). Moreover, clinical trials showed that the bacterial count after 3 weeks 

was not significantly different from the one found with common irrigants (CHX 

and NaOCl), while it was significant lower from the one obtained with a saline 

solution. Considering the efficacy of myrtle against bacteria involved with 

periodontal diseases, Hedayati et al. (2013) reported a MIC50 value and MIC90 

against P. gingivalis of 0.1% (v/v) and 0.8% (v/v) respectively. Lower values were 

obtained in another study in which the MICs were calculated using the agar 

dilution method that gave values ranging from 0.025% (v/v) to 0.2% (v/v) (Gursoy 

et al., 2009). Concerning antifungal activity, Fani et al. (2014) examined the 

potential of the oil against oral pathogens, including C. albicans, isolated from 

patients with denture stomatitis. They found that C. albicans was sensitive to 

Turkish myrtle at concentrations of 0.004% (v/v). Mahboubi and Bidgoli (2010) 

reported a synergistic activity with amphotericin and MICs and minimal lethal 

concentrations (MLCs) of 0.8% (v/v) - 1.6% (v/v) and 1.6% (v/v) - 3.2% (v/v) 
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respectively. Cannas et al. (2013) analysed the essential oil obtained from an 

Italian myrtle and found a higher antifungal activity with MIC of 0.0002% (v/v).  

 

1.6.9 Peppermint 
 
Peppermint oil (Mentha piperita) is obtained by distillation of mint leaves. The 

main components are menthol (38-48%) and menthones (20-30%). It is widely 

used in food and pharmaceutical industries because of its antiseptic, antibacterial 

and antiviral properties. It has been reported to inhibit the growth of C. albicans 

at a concentration of 0.05% (v/v) (Thosar et al., 2013) and it showed an anti-

biofilm activity, although the inhibition was lower than 50% (Sandasi et al., 2011). 

Concerning its efficacy against bacteria involved with periodontal diseases, 

Shapiro et al. (1994) obtained MICs lower than 0.2% (v/v) on obligate anaerobes 

and lower than 0.6% (v/v) on facultative anaerobes. In addition Shapiro et al. 

(1994) observed a synergetic effect between peppermint and tea tree oil against 

A. actinomycetemcomitans and P. gingivalis. 

 

1.6.10 Sage 
 
Sage oil (Salvia officinalis) is widely used in folk medicine and as flavouring of 

food products. In a study carried out by Shapiro et al. (1994) the MICs of several 

essential oils against anaerobic oral bacteria were investigated and sage showed 

the highest antimicrobial properties together with tea tree oil and peppermint oil. 

Gursoy et al. (2009) reported MICs of 0.8% (v/v) against oral pathogens, which 

were higher than those found for Satureja hortenis and Juniperus communis. In 

addition, sage essential oil had antifungal properties with typical MICs of 0.3% 

(v/v) (Sookto et al., 2013) and 1.45% (v/v) (Nacsa-farkas et al., 2014). As stated 
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by Sookto et al. (2013), sage oil has also anti-adhesive properties inhibiting the 

adherence of C. albicans on poly(methyl methacrylate) (PMMA) resin surface. 

 

1.6.11 Spearmint 
 
Spearmint oil (Mentha piperita) has been investigated mostly as a food protective 

but it also has anti-candidal activity at a concentration of 0.12% (v/v) (Hammer et 

al., 1999). 

 

1.6.12 Tea tree oil 
 
Tea tree oil (TTO; Melaleuca alternifolia) is derived from the paper bark tea tree. 

It is utilised by Aborigines to treat abrasions, cuts, colds and influenza. 

Nowadays, it is used as a natural additive in cosmetics and medicine (Soukoulis 

and Hirsch, 2004). Concerning oral health, TTO is one of the components 

commonly added to toothpastes to enhance its antimicrobial properties (Hammer 

et al., 1998). The main components of TTO are terpinen-4-ol and 1,8-cineole. 

The former has anti-inflammatory and anti-bacterial properties and the latter is 

also able to penetrate into the human skin becoming an undesirable allergen 

(Pazyar et al., 2013). For this reason, TTO can cause adverse reactions such as 

skin irritation, systemic hypersensitivity reaction, allergic contact or systemic 

dermatitis. Soukoulis and Hirsch (2004) in an eight week study investigated the 

effect on clinically relevant parameters (i.e. gingival index (GI), papillary bleeding 

index (PBI) and plaque staining score (PSS)) of a 2.5% TTO-gel compared to a 

positive control (0.2% CHX-gel) and a negative control (placebo gel). They 

observed that the 2.5% TTO-gel caused both a reduction of the GI and of the 

PBI. However, these improvements were not associated with a decrease of the 

PSS, meaning that the mode of action of the TTOs was more anti-inflammatory 
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than anti-bacterial. Similar results in terms of GI were obtained in a 6 months 

study by Kolambkar et al. (2012) that investigated the use of a TTO-gel as a 

treatment in combination with mechanical debriment. The authors also observed 

an improvement in the plaque index (PI) similar to that obtained with the placebo 

gel, meaning that in this case a good oral hygiene was sufficient to avoid 

formation of the plaque after the scaling and root planing (SRP). By contrast, 

significant differences were observed on the clinical attachment level (CAL) and 

on the concentration of Pentraxin-3, a protein produced during the inflammatory 

process, confirming the anti-inflammatory properties of TTO. Concerning 

antifungal activity against C. albicans, typical MICs range from 0.04% (v/v) to 

0.5% (v/v) (Hammer et al., 1999). de Campos Rasteiro et al. (2014) stated a 

minimum biofilm eradication concentration (MBEC) value of 12.5% (v/v) and 

evaluated its efficacy as treatment for oral candidiasis in infected mice. They 

observed that 12.5% (v/v) of TTO caused a reduction in colony forming unit (CFU) 

of 5.33 log10 compared to a reduction of 0.24 log10 in the control, and they noticed 

significantly fewer epithelial lesions. 

 

1.6.13 E-cinnamaldehyde  
 
E-cinnamaldehyde is an organic compound found in different species of the 

genus of Cinnamomum and the major compound of the essential oil of cinnamon 

bark. E-cinnamaldehyde has antifungal properties being able to interact with the 

fungal membrane. Taguchi et al. (2013) found that at concentrations lower than 

0.001% (v/v) E-cinnamaldehyde did not affect the viability and the metabolic 

activity of C. albicans but it inhibited mycelial growth. By contrast, concentrations 

higher than 0.004% (v/v) were fungicidal causing changes in the cell membrane. 
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Quale et al. (1996) reported an antifungal activity against fluconazole resistant 

Candida species at concentrations between 0.003% (v/v) and 0.02% (v/v). 

 

1.6.14 Linalool 
 
Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a terpene alcohol and one of the main 

components of most essential oils. It is commonly used in hygiene products and 

as a disinfectant and food additive, since it is recognised as safe by the FDA (Hsu 

et al., 2013). It has anti-candidal activity at concentrations from 0.09% (v/v) to 

0.29% (v/v) (Khan et al., 2010) and between 0.14% (v/v) and 0.5% (v/v) (Hsu et 

al., 2013). In particular, it is able to inhibit ergosterol synthesis causing changes 

in the membrane conformation and the leakage of internal components (Khan et 

al., 2010). Moreover, it interferes with both the formation of biofilms and pre-

formed biofilms. Indeed, it inhibits the formation of germ tubes of hyphae which 

are fundamental for obtaining a strongly attached and compact biofilm (Hsu et 

al., 2013). Besides its antifungal potential, linalool showed an antibacterial activity 

against periodontal pathogens with MICs and MBECs between 0.01% (v/v) and 

0.2% (v/v) (Park et al., 2012). Concerning the cytotoxicity, Prashar et al. (2004) 

showed that concentrations lower than 0.044% (v/v) did not affect the viability of 

endothelial cells and fibroblasts. 

 

Table 1.1 summarises some MICs of essential oils against C. albicans reported 

in the literature. 

  



 

 

Table 1.1 - MICs of essential oils against C. albicans 

Common name Plant species MIC [% (v/v)] References 

Basil Ocimum basilicum 0.5, 0.312, 0.14 (Hammer et al., 1999; Szweda et al., 2015; Cardoso et al., 2016) 

Bergamot Citrus bergamia 1 - 10 (Hammer et al., 1999; Romano et al., 2005) 

Cinnamon Cinnamomum zeylanicum 0.04 - 0.1, 0.03 (Ferhout et al., 1999; Unlu et al., 2010) 

Citronella Cymbopogon nardus 0.25, 0.004 - 0.014 (Hammer et al., 1999; Trindade et al., 2015) 

Geranium Pelargonium graveolese 0.097 (Budzyńska et al., 2014) 

Lavandula Lavandula angustifolia 1.12, 0.8, 0.25, 0.5 (Hammer et al., 1999; Giordani et al., 2004; Thosar et al., 2013) 

Melissa Melissa officinalis 0.3, 3 (Mimica-Dukic et al., 2004; Abdellatif et al., 2014) 

Myrtus Myrtus communis 
0.8 - 1.6, 0.005, 

0.0002 
(Mahboubi and Bidgoli, 2010; Cannas et al., 2013; Fani et al., 2014) 

Peppermint Mentha piperita 0.05 (Thosar et al., 2013) 

Sage Salvia officinalis 0.3, 1.4 (Sookto et al., 2013; Nacsa-farkas et al., 2014) 

Spearmint Mentha spicata 0.12 (Chao et al.) 

Tee tree oil Melaleuca alternifolia 0.04 - 0.5 (Hammer et al., 1999) 
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1.7 Hydrogels 

As stated by Langer and Vacanti (1993) “Tissue engineering is an 

interdisciplinary field that applies the principles of engineering and life sciences 

toward the development of biological substitutes that restore, maintain, or 

improve tissue function”. Therefore, the aim of periodontal disease treatment is 

to restore the alveolar bone, the tooth-associated cementum and the periodontal 

ligament. Tissue restoration is obtained with scaffolds combined with cells and 

eventually growth factors (Laurenti and Abdallah, 2015). Cells modulated by 

growth factors synthesise new extracellular matrix and differentiate, while the 

scaffold acts as a support and guides the regeneration. Scaffolds should be 

biocompatible to avoid an immune host reaction and biodegradable to avoid the 

need for a second surgical intervention to remove it. Moreover, it should allow 

cell attachment and proliferation and have mechanical and structural properties 

similar to the biological tissues (Laurenti and Abdallah, 2015). Therefore, a 

suitable candidate to be used in tissue engineering is a hydrogel. Hydrogels are 

a 3D-network composed of cross-linked polymeric chains that form an insoluble 

polymer (Slaughter et al., 2009). Because of the high affinity with water and of 

the chemical and physical bonds between polymeric chains, hydrogels swell in 

water without dissolving. Swollen hydrogels have some properties in common 

with living tissues such as the rubbery consistency and the low interfacial tension 

that minimises the adsorption of proteins and cells and the consequent risk of 

immune reactions (Bhattarai et al., 2010). Hydrogels have been widely used in 

tissue and regenerative medicine, mainly as drug and/or cell delivery systems 

and as pre-formed or injectable scaffolds (Lee and Mooney, 2001; Slaughter et 

al., 2009; Kim et al., 2014; Pal et al., 2017). Natural and synthetic polymers can 
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be used in hydrogel production. The advantages and disadvantages of these 

types of hydrogels are summarised in Table 1.2. 

 
 

Table 1.2 - Advantages and disadvantages of natural and synthetic polymers used in 

tissue engineering applications (Tanzi, 2010; O'Brien, 2011) 

 Natural polymers Synthetic polymers 

A
d

v
a

n
ta

g
e

s
 

Structure similar to the 
natural extracellular matrix 

Control of kinetics of 
degradation 

Biocompatible 
Good mechanical 

properties 

Biologically active Tailored architecture 

Promotion cell adhesion and 
growth 

No risk of disease 
transmission 

Biodegradable  

D
is

a
d

v
a

n
ta

g
e

s
 

Variability depending on the 
source 

Risk of tissue necrosis 
because of a decrease 

in local pH during 
degradation 

Poor mechanical properties 
Reduced biological 

activity 

Risk of disease transmission Risk of rejection 

Difficulties in sterilisation and 
processing 

 

Rapid enzymatic degradation  

 

 

1.7.1 Synthetic polymers 

Synthetic biomaterials are used in scaffold production for their biocompatibility 

and biodegradability. Compared to natural polymers, synthetics can be fabricated 

in large scale with a tailored architecture and have higher mechanical stretch that 

generally results in low degradation rates. The main drawback is the risk of 
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rejection and of tissue necrosis due to the lowering of the local pH during the 

degradation process (O'Brien, 2011). Synthetic polymers used in hydrogel 

production include: poly(lactic acid), poly(glycolic acid), poly(ethylene oxide), 

poly(ethylene glycol), poly(2-hydroxyethyl methacrylate), and poly(vinyl alcohol). 

 

1.7.1.1 Poly(lactic acid) and poly(glycolic acid) and their copolymers 
 
Poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) are among the most studied 

polymers because of their biocompatibility (Figure 1.12).  

 

 

Figure 1.12 - Repetitive unit of poly(lactic acid) (A) and poly(glycolic acid) (B) 

 

Their clinical use has been approved by the US FDA. Because of their 

mechanical strength and biodegradability, they are mainly used for bone and 

cartilage regeneration and nervous and cardiovascular tissue engineering (Figure 

1.13) (Wang et al., 2010; Narayanan et al., 2016; Santoro et al., 2016). The 

degradation primarily occurs by hydrolysis but even an enzymatic degradation 

can take place in vivo. The hydrolytic degradation releases carbon dioxide near 

the site of implantation resulting in a pH decrease. The lowering of the local pH 

is the main drawback of these polymers causing both an inflammation process 

and an increased rate of degradation that can lead to the loss of the mechanical 

properties before the tissue is regenerated. Copolymers PLA-PGA have been 
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shown to slow down the degradation process (Felix Lanao et al., 2013; Naahidi 

et al., 2017; Sun et al., 2017).  

 

 

Figure 1.13 - Small diameter elastic blood vessel obtained by culturing PGA and 

smooth muscle cells in a pulsatile bioreactor for 8 days. Scale in centimetres (Wang et 

al., 2010)  

 

1.7.1.2 Poly(ethylene oxide) and poly(ethylene glycol) 
 
Poly(ethylene oxide) (PEO) is a hydrophilic, biocompatible polymer approved by 

the FDA (Figure 1.14)(Naahidi et al., 2017).  

 

Figure 1.14 - Repetitive unit of poly(ethylene oxide) 

 

Being inert, it has a low immunogenicity and does not interact with proteins and 

cells (Lee and Mooney, 2001; Naahidi et al., 2017). For these reasons, it has 

been successfully used to encapsulate cells that do not have to interact with the 

polymer (Elisseeff et al., 2000; Bryant and Anseth, 2001), but if necessary it could 
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be modified with the arginylglycylaspartic acid (RGD) sequence to promote cell 

adhesion (Slaughter et al., 2009). The short version of PEO (i.e. low molecular 

weight) is poly(ethylene glycol) (PEG) which has the same main features of PEO. 

Both these polymers can photopolymerise and have adjustable architecture and 

mechanical properties (Naahidi et al., 2017).  

Pluronic, a series of triblock copolymer of PEO and PPO (PEO–PPO–PEO) 

(poloxamer), is one of the most studied copolymers. Pluronic forms a thermo-

reversible gel without cross-linking reagents and is widely used for drug delivery 

(Park et al., 2009; Diniz et al., 2015).  Pluronic’s lack of degradability limits its 

clinical application,  therefore copolymers such as PLA-PEO-PLA that degrade 

and have a temperature dependent reversible sol-gel transition at body 

temperature have also been synthesised (Kim et al., 2014).  

 

1.7.1.3 Poly(2-hydroxyethyl methacrylate) 
 
Poly(2-hydroxyethyl methacrylate) (PHEMA) is obtained by free radical 

polymerisation from hydroxyethyl methacrylate (HEMA) (Figure 1.15).  

 

Figure 1.15 - Repetitive unit of poly(2-hydroxyethyl methacrylate) 

 

It is biologically inert and therefore prevents protein adsorption and cell adhesion. 

It is mainly used in ophthalmology (e.g. artificial cornea of keratoprothesis) and 

as a drug delivery system (Figure 1.16) (Gulsen and Chauhan, 2005; Slaughter 
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et al., 2009; Longitudinal et al., 2015; Maity et al., 2016). PHEMA is not 

degradable at physiological conditions but a dextran-modified PHEMA hydrogel 

that undergoes enzymatic degradation was successfully synthesised (Meyvis et 

al., 2000; Lee and Mooney, 2001).  

 

 

Figure 1.16 - SEM image of a HEMA hydrogel loaded with nanoparticles formulated 

with an ophthalmic drug. The drug was released from the hydrogel for a period of over 

8 days (Gulsen and Chauhan, 2005) 

 

1.7.1.4 Poly(vinyl alcohol) 
 
Poly(vinyl alcohol) (PVA) is obtained by hydrolysis of poly(vinyl acetate) (Figure 

1.17).  

 

Figure 1.17 - Repetitive unit of poly(vinyl alcohol) 
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The degree of hydrolysis and the molecular weight determine the hydrophilicity 

and solubility of PVA. PVA hydrogels can be crosslinked physically, or chemically 

with glutaraldehyde. Being elastic, PVA can induce cell orientation and matrix 

synthesis by transmitting the mechanical stimuli to cells. Moreover, it is stronger 

than other synthetic polymers and it has a low coefficient fraction and structural 

properties similar to natural cartilage (Figure 1.18) (Oka et al., 2000; Slaughter et 

al., 2009; Ng et al., 2014). Being non-degradable at physiologically conditions, 

PVA hydrogels are mainly used as long-term scaffolds (Lee and Mooney, 2001), 

even if biodegradable copolymers such as the PEG-PVA have also been 

produced. 

 

 

Figure 1.18 - Chondrocytes seeded throughout the PVA scaffold. Cells were viable and 

proliferate (arrows, BrdU immunohistochemistry) over 1 week in culture (Ng et al., 

2014) 

 

1.7.2 Natural polymers 

Natural biomaterials are widely used in scaffold production because of their high 

biocompatibility and degradability. Their degradation can occur enzymatically and 

by acid-hydrolysis and is a function of the weight and degree of crosslinking of 

the polymer. Being natural, they interact well with cells allowing their attachment 

and proliferation. The main disadvantages are a high variability in the properties 

even within the same batch, a risk of transmission of infections and difficulties in 
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the production and sterilisation processes (O'Brien, 2011). Natural polymers used 

in the hydrogel synthesis include: collagen, hyaluronate, fibrin, alginate, chitosan, 

and methylcellulose. 

 

1.7.2.1 Collagen 
 
Collagen is the main constituent of the extracellular matrix and the most widely 

used natural polymer. Although it can be physically crosslinked, it is mainly used 

in the chemically crosslinked form which increases the mechanical properties and 

reduces degradation (Lee and Mooney, 2001). Collagen is used as a delivery 

device for cells and growth factors and in tissue engineering applications such as 

the regeneration of the spinal and vocal cord, cartilage, wound skin, 

ophthalmology and artificial blood vessel (Rho et al., 2006; Glowacki and Mizuno, 

2008; Slaughter et al., 2009; Hesse et al., 2011; Kontturi et al., 2014; Yuan et al., 

2014). Copolymers such as collagen-hyaluronate that increase the deposition of 

the extracellular matrix have also been synthesised (Slaughter et al., 2009). 

 

1.7.2.2 Hyaluronate 
 
Hyaluronate is one of the glycosaminoglycans constituting the extracellular 

matrix. Hyaluronate hydrogels can be formed by covalent crosslinking of 

hydrazide derivatives or by radical polymerisation of glycidyl methacrylate. It is 

naturally and rapidly degraded by hyaluronidase, an enzyme contained in cells 

and serum (Lee and Mooney, 2001). Besides the fast degradation, the main 

disadvantages are the low mechanical properties, the risk of a host immune 

response and the risk of disease transmission (Lee and Mooney, 2001). Because 

of its high viscoelasticity and space filling properties, it is used in ophthalmic 
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surgery, soft tissue augmentation, wound healing, artificial skin and osteoarthritis 

treatment (Slaughter et al., 2009; Tripodo et al., 2015; Kim et al., 2017). 

 

1.7.2.3 Fibrin 
 
Fibrin is a protein present in the blood and can be used to produce autologous 

scaffolds (i.e. scaffold obtained from the cells of the patient) by enzymatic 

polymerisation in the presence of thrombin. Fibrin is degraded enzymatically, and 

the by-products are nontoxic and do not elicit an inflammatory reaction. The 

degradation process can be controlled by apronitin, a proteinase inhibitor (Lee 

and Mooney, 2001). Fibrin hydrogels are used to deliver growth factors and cells, 

whereas copolymers with hyaluronate have been used to deliver chondrocytes, 

smooth muscle cells and skeletal cells (Figure 1.19) (Linnes et al., 2007; Ahmed 

et al., 2008; Slaughter et al., 2009). The main limitation of a fibrin hydrogel is the 

low mechanical properties.  

 

Figure 1.19 - SEM image of NIH 3T3 cells cultured on fibrin scaffold at 1000X 

magnification. Cells are attached and spread on the fibrin matrix (Linnes et al., 2007). 

Scale bar = 20μm  
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1.7.2.4 Alginate 
 
Alginate is obtained from brown algae and is biocompatible, has low toxicity and 

is cheap. Since it gelifies in the presence of divalent cations, alginate hydrogels 

can be simply obtained by injecting alginate with an ionic solution. The properties 

of the resultant hydrogel are a function of the reaction temperature and of the 

multivalent ions (Slaughter et al., 2009). Applications of alginate hydrogels 

include wound dressing and cell and drug delivery (Figure 1.20) (Tan and 

Takeuchi, 2007; Kolambkar et al., 2012; Lee and Mooney, 2012). The main 

limitations are that its degradation is unpredictable and uncontrollable without a 

chemical crosslinker, and that it only has weak interactions with cells and protein. 

Therefore, the surface needs to be functionalised with sequences that promote 

adhesion (e.g. RGD) (Lee and Mooney, 2001). 

 
 

Figure 1.20 - Jurkat cells encapsulated into alginate hydrogel beads (Tan and 

Takeuchi, 2007) 

 

1.7.2.5 Chitosan 
 
Chitosan is a natural polymer with a structure similar to glycosaminoglycans. It is 

biocompatible with low toxicity and is enzymatically degraded in vivo by 

chitosanase and lysozyme. Being insoluble, it is difficult to create a chitosan 

hydrogel at natural conditions and therefore, derivatives have been synthesised 
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to enhance its solubility. The addition of sugar (e.g. fructose and galactose) 

showed an improvement of interaction with cells, while proteins such as collagen, 

albumin and gelatin showed an improvement in neural regeneration (Lee and 

Mooney, 2001). Chitosan is used in a wide range of tissue engineering 

applications from wound dressing to orthopaedic application and as a drug 

delivery system (Khor and Lim, 2003). In addition, chitosan has shown 

antimicrobial properties against a wide range of microorganisms, including 

Candida and P. gingivalis (Ikinci et al., 2002; Peña et al., 2013; Costa et al., 

2014). 

 

1.7.2.6 Methylcellulose 
 
Cellulose is the most abundant polysaccharide in nature. It consists of linear 

chains of (1 -> 4) linked D-glucose units. The crystalline structure created by the 

intramolecular hydrogen bonds determines the insolubility of cellulose in water. 

For this reason, derivatives of water soluble cellulose (e.g. methylcellulose, 

carboxymethylcellulose and hydroxypropylmethylcellulose) have been 

synthesised (Nasatto et al., 2015b). Because of its reversible thermal behaviour 

that made it suitable for tissue engineering and cell sheet engineering, 

methylcellulose is one of the most widely used derivatives (Thirumala et al., 2013; 

Nasatto et al., 2015b). Indeed, by increasing the temperature, a decrease in 

viscosity is observed, until a critical temperature is reached and a 

thermoreversibile hydrogel is formed. Two phases characterise the gelation 

process: a “clear loose gel” is formed at relative low temperatures (around 50°C) 

because of the hydrophobic interaction between the methylated glucose zone, 

whilst when the temperature is increased above 60°C phase separation leads to 

the formation of a “turbid strong gel” (Li et al., 2001; Nasatto et al., 2015b). In 
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addition, the thermal behaviour of methylcellulose can be controlled by polymer 

concentration, molecular weight and the use of additives such as salts, alcohols 

and surfactants (Nasatto et al., 2015b). Further details on methylcellulose are 

provided in Chapter 4. 

 

1.7.3 Hydrogel characterisation  

1.7.3.1 Morphology 

SEM provides information on the morphology of the hydrogel surface. The 

hydrogel is scanned with an electron beam and the secondary electrons, 

produced by the interaction between the beam and the atoms, give information 

about the surface. The sample is required to be dry and conductive so, after being 

frozen in liquid nitrogen and lyophilised, has to be coated with a conductive 

material (e.g. platinum, palladium, gold). SEM also allows the study of the 

adhesion, proliferation and organisation of the cells seeded or encapsulated in 

the hydrogel (Gulrez et al., 2011). 

 

1.7.3.2 Molecular characterisation 

The chemical composition of a hydrogel can be identified using Fourier transform 

infrared spectroscopy (FTIR). This analytic technique is based on the principle 

that chemical bonds, excited at a certain wavelength, absorb at a frequency that 

is typical of the type of chemical bound (Gulrez et al., 2011). 

 

1.7.3.3 Gelation 

Thermosensitive hydrogels gellify with an increase in temperature. The gelation 

kinetics can be investigated by the test tube inverting method or by the rheological 
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properties of the hydrogel. In the test tube inverting method the solution is kept 

for one minute at the desired temperature and then inverted for 30 seconds (Ji et 

al., 2010). The gelation point is defined as the condition in which no flow occurs 

over 30 seconds. In rheological analysis the gel point is defined as the 

temperature in which the storage modulus (G’) and the loss modulus (G’’) 

crossover (Zuidema et al., 2014).  

 

1.7.3.4 Swelling 

The swelling kinetic is measured by monitoring the changes in weight of the 

hydrogel over time. The hydrogel is firstly dried and weighed and then immersed 

into a phosphate buffered saline (PBS) solution and removed at specific time 

intervals. The PBS in excess is removed from the surface with a filter paper and 

the hydrogel is weighed. The swelling is expressed by the following formula (1.1): 

 

 
𝑆 =

𝑊𝑡 − 𝑊0

𝑊𝑡
∗ 100 

(1.1) 

 

where 𝑆 is the swelling and 𝑊0 and 𝑊𝑡 are the weights of the hydrogel in the dried 

state and in a swelled state after a specific time (t), respectively (Gulrez et al., 

2011). 

 

1.7.3.5 Degradation  

The degradation kinetic is measured by monitoring weight loss overtime. After 

weighing the sample in the dry state, the hydrogel is incubated in PBS. At specific 
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time intervals, the hydrogel is removed from the solution, washed with distilled 

water and dried. The degradation is measured by the following equation (1.2):  

 

 
𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 (%) =

𝑊0 − 𝑊𝑑

𝑊0
∗ 100 

(1.2) 

 

where 𝑊0 and 𝑊𝑑 are the weights of the hydrogel in the dried state and after a 

specific time (t), respectively (Moshaverinia et al., 2012). 

 

1.7.3.6 Porosity and pore size 

Porosity and pore size are important parameters that should be taken into 

account to allow both cell penetration and diffusion of nutrients and metabolic 

waste. The porosity can be evaluated with different techniques such as gas 

adsorption, liquid displacement and mercury porosimetry (Lawrence and Jiang, 

2017). For example, in the liquid displacement method the porosity is 

quantitatively determined after having immersed the hydrogel for 48 hours in 

ethanol with the following equation (1.3): 

 

 
𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =

𝑊2 − 𝑊1

𝜌𝑉1
 

(1.3) 

 

with 𝑉1: initial volume of the scaffold, 𝑊1 and 𝑊2: weights of the scaffold before 

and after the immersion in ethanol, and 𝜌: density of the ethanol (Sindhura Reddy 

et al., 2014).  

The pore size can be investigated by imaging methods such as SEM and x-ray 

computed tomography (XRCT) that provide information not only on the pore size 
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but also on the porosity, number of open pores and interconnectivity (Lawrence 

and Jiang, 2017).  

 

1.7.3.7 In vitro drug release  

The drug release is monitored by tracking the concentration of the drug realised 

from the hydrogel over time. The concentration of drug in the withdrawn sample 

is analysed by ultraviolet (UV) spectroscopy, absorbance or gas 

chromatography–mass spectrometry (GC-MS). Once the drug concentration is 

calculated, different models (e.g. Zero-Order Model, First-Order Model, Higuchi 

Model and Korsmeyer-Peppas Model) can be used to evaluate the drug release 

kinetic (Lobo and Costa, 2001; Ranjha and Qureshi, 2014).  

 

1.8 Ex vivo models  

When a new treatment is developed, a crucial step is the evaluation of the therapy 

on a cell model. In vitro cell models or human and animal in vivo models can be 

used. In vitro cell models use a single cell type or two cell types in case of co-

cultures and 3D-organoid cultures (Sloan and Lynch, 2012). Despite being cheap 

and relatively easy, these models have an important limitation due to the inability 

to reproduce the in vivo cellular organisation. To overcome this limit, in vivo 

models were introduced. They are a gold standard, but they still have some 

drawbacks: the experiments are expensive, and some ethical issues might arise 

from the number of animals required. Moreover, clear data are difficult to obtain 

because of the intrinsic systemic influences (Sloan and Lynch, 2012). For these 

reasons, ex vivo models were also developed. These models maintain the natural 

arrangement of cells and tissues, while removing systemic influences. 
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Furthermore, more than one experiment can be carried out on the same animal, 

reducing the number of animals needed and costs (Sloan et al., 2016). 

In 1998 Sloan et al. developed an ex vivo culture of incisor rat slices that was 

used to investigate a wide range of dental tissues infections and repair processes 

(Sloan and Smith, 1999; Sloan et al., 2000; Ayre et al., 2018). This model was 

further developed to understand processes involved in bone tissue repair (Sloan 

et al., 2000; Smith et al., 2010) and to access the biocompatibility and cytotoxicity 

of drugs (Turner et al., 2002; Waddington et al., 2004). Further details on the ex 

vivo models are provided in Chapter 5.  

 

1.9 Aims and objectives 

The aim of this study is to develop a new therapy for oral diseases by utilising a 

hydrogel as a drug delivery vehicle in combination with an antimicrobial.  

 

Due to the emergence of antimicrobial resistance, the antibacterial and antifungal 

properties of natural compounds (i.e. essential oils) will be evaluated. Given the 

in vivo application of the novel therapy, the cytotoxicity of the compounds that 

show the best antimicrobial properties will be investigated. The results obtained 

by the antimicrobial screening and the cytotoxicity assessment will allow the 

identification of the best compound to be used in combination with the hydrogel.  

Lastly, because of the limits of in vitro experiments, an ex vivo rodent mandible 

model to mimic oral candidiasis will be developed. This model will allow the 

evaluation of the essential oil in an environment that better mimics the in vivo 

conditions. 

As mentioned above, the target of the novel therapy is oral diseases and in 

particular oral candidiasis and periodontal diseases. Oral candidiasis is caused 
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by C. albicans, while periodontal disease is a polymicrobial infection that involves 

anaerobic bacteria and bone damage. For this reason, the therapy is developed 

on C. albicans and as proof of concept the antimicrobial activity of essential oils 

is evaluated on a range of periodontal bacteria.  

 

Specific objectives are:  

a) To evaluate the antifungal activity of a range of essential oils (12 in total), two 

terpenes (E-cinnamaldehyde and linalool) and two biocides (chlorhexidine 

and triclosan) against two C. albicans strains in the planktonic and biofilm 

growth mode 

b) To evaluate the antibacterial activity of 5 essential oils, E- cinnamaldehyde 

and chlorhexidine against two F. nucleatum strains, P. gingivalis and P. 

intermedia, in the planktonic growth mode 

c) To evaluate the cytotoxicity of selected essential oils and chlorhexidine on 

mouse fibroblasts 

d) To evaluate the pro- and anti-inflammatory response of Melissa officinalis 

essential oil on human blood cells 

e) To evaluate the antifungal properties of a methylcellulose hydrogel with 

Melissa officinalis essential oil 

f) To develop an ex vivo rodent mandible model to mimic oral candidiasis 



 
 

 

Chapter 2  
 

Antimicrobial properties of 
essential oils and biocides 
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2.1 Oral candidiasis 

  

2.1.1 Candida 

The genus Candida comprises over 150 species of ‘yeast-like’ fungi. Candida 

infections have been reported at most body sites, but they are most frequently 

encountered on the oral and vaginal mucosa. Although Candida albicans is 

generally isolated from 80% of all oral candidiasis, this organism is also prevalent 

as a harmless member of the oral microbiota. It is estimated that commensal 

carriage rate in humans is between 30 and 50% (Singh et al., 2015).  

As already mentioned, four main oral diseases named oral candidiasis are 

associated with Candida: pseudomembranous candidiasis, acute atrophic 

candidiasis, chronic hyperplastic candidiasis, and chronic atrophic candidiasis. 

 

2.1.1.1 Pseudomembranous candidiasis 

Pseudomembranous candidiasis is an acute infection characterised by the 

presence of non-adherent white pseudomembranes on the oral mucosa. The 

white pseudomembranes, consisting of desquamated epithelial cells, fibrin and 

fungal hyphae, can be scraped off with a swab to expose the underlying 

erythematous mucosa. Diagnosis is usually straightforward and can be confirmed 

microbiologically either by staining a smear from the affected area or by culturing 

a swab or an oral rinse (Akpan and Morgan, 2002; Williams and Lewis, 2011). 

Pseudomembranous candidiasis is mainly found in immunosuppressed patients 

(e.g. HIV and AIDS) and can be associated with use of steroid inhalers that 

decrease local immunity, promoting Candida growth (Fukushima et al., 2003; 

Muzyka, 2005; Williams and Lewis, 2011). 

  



70 
 

2.1.1.2 Acute atrophic candidiasis 

Acute atrophic candidiasis is most frequently seen on the dorsum of the tongue 

and is associated with the prescription of antibiotics. The antibiotic therapy 

reduces the normal numbers of the oral bacterial community allowing C. albicans 

to overgrow in the mouth (Farah et al., 2000). Acute atrophic candidiasis presents 

as a red, painful area of the mucosa and may also be seen with patients in 

conjunction with low serum vitamin B12, low folate and low ferritin concentrations 

(Akpan and Morgan, 2002). Generally, it is sufficient to interrupt the antibiotic 

treatment to go back to the healthy level of Candida (Williams and Lewis, 2011).  

 

2.1.1.3 Chronic hyperplastic candidiasis 

Chronic hyperplastic candidiasis is characterised by hyphal penetration of the 

oral epithelium (Sitheeque and Samaranayake, 2003) and the presence of an 

inflammatory cell infiltrate (Williams and Lewis, 2011). Because Candida invades 

the deepest tissues, it cannot be removed simply by scraping. Of particular 

concern with chronic hyperplastic candidiasis is the potential risk of squamous 

cell carcinoma (SCC) development at the lesioned site (Krogh et al., 1987; 

Williams et al., 2001). The exact role of Candida in the development of oral cancer 

is unclear but might be related to the organism’s ability to generate carcinogenic 

nitrosamines from salivary precursor molecules (Williams et al., 2001; Sitheeque 

and Samaranayake, 2003; Bakri et al., 2010; Ramirez-Garcia et al., 2016) and 

induce metastasis through a pro-inflammatory response (Ramirez-Garcia et al., 

2016).  
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2.1.1.4 Chronic atrophic candidiasis 

Chronic atrophic candidiasis, also known as denture stomatitis, is the most 

frequently occurring form of oral candidiasis and is present in up to 65% of 

denture wearers (Williams and Lewis, 2011). This form of oral candidiasis is 

believed to be promoted through the occurrence of tissue damage caused by 

frictional irritation of the palatal mucosa by the denture (Williams and Lewis, 

2011). 

 

2.1.1.5 Candida virulence factors 
 

 Adherence  
 
To colonise, infect and invade the tissues, Candida albicans needs first to adhere 

to the epithelium (Williams and Lewis, 2011). Attachment of Candida cells can be 

mediated by both non-specific and specific factors. Non-specific factors include 

cell surface hydrophobicity and electrostatic forces (Ramage et al., 2005), whilst 

specific factors include adhesins (e.g. Als1p, Ala1p, Hwp1p, Int1p, Mnt1p) that 

bind to complementary receptors present on the host cells or  the extracellular 

matrix proteins (e.g. fibronectin, laminin, collagen, fibrinogen) (Calderone and 

Fonzi, 2001).  

 

 Morphology 

Candida albicans has the ability to grow in different morphological forms including 

yeast cells, pseudohyphae and true filamentous hyphae. When C. albicans 

attaches to host surfaces, it can switch from a yeast morphology to a filamentous 

form. The filamentous form can promote adhesion and penetration of the 

epithelium and increase resistance to phagocytosis by host immune cells. It is 
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generally believed that the yeast form is predominant in commensal carriage, 

whilst the hyphal form predominates in tissue penetration, although others have 

demonstrated that both forms can be associated with commensalism and disease 

(Calderone and Fonzi, 2001; Soll, 2002; Huang, 2012). 

 

 Phenotypic switching 

Candida albicans has the ability to switch spontaneously, reversibly and at high 

frequencies between different phenotypic forms (Anderson et al., 1990; Gow, 

1997; Huang, 2012). Phenotypic switching is characterised by an altered gene 

expression that causes changes in the antigenicity (Anderson et al., 1990), 

adhesion (Kennedy et al., 1988; Vargas et al., 1994), sensitivity to neutrophils 

and oxidants (Kolotila and Diamond, 1990), secretion of proteinases and drug 

susceptibility (Soll et al., 1989; Vargas et al., 2000; Antony et al., 2009).  

 

 Production of hydrolytic enzymes 

Candida albicans secretes hydrolytic enzymes, such as the secreted aspartyl 

proteinases (SAP) and phospholipases (PL) that destruct the host tissues. 

Phospholipases are enzymes that hydrolyse phospholipids into fatty acids and 

contribute to the host cellular lysis and to the exposure of adhesive receptors 

(Hube and Naglik, 2001; Naglik et al., 2004). Hydrolytic enzymes contribute to 

host tissue invasion by digesting or destroying cell membranes and by degrading 

host surface molecules. There is some evidence that hydrolytic enzymes are able 

to damage cells and molecules of the host immune system, thereby avoiding or 

resisting antimicrobial activity (Schaller et al., 2005a). Phospholipases (PLs) 
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contribute to the pathogenicity of C. albicans by damaging host-cell membranes, 

facilitating host-tissue invasion (Borst and Fluit, 2003).  

 

2.2 Periodontal diseases 
 
Periodontal diseases identify an inflammation state of the gingiva and supporting 

structures of the periodontum (i.e. alveolar bone, periodontal ligament, root 

cementum) that in the most severe cases lead to tooth loss. Periodontal diseases 

can be grouped into gingivitis and periodontitis. Gingivitis is an inflammation of 

the gingiva that results in redness, swelling and bleeding of the tissue (Tonetti et 

al., 2013; The American Academy of Periodontology, 1999). Since the 

periodontal ligament and alveolar bone are unaffected, tooth attachment is not 

compromised. However, gingivitis can turn into periodontitis, a more severe form 

characterised by the destruction of periodontal ligament and alveolar bone and 

the migration of the epithelial ligament cells (How et al., 2016). Periodontal 

diseases also include an aggressive form, named acute periodontitis that mainly 

affects young people. Other acute forms are classified as necrotising ulcerative 

gingivitis, which destroys the gingival tissue, and necrotising ulcerative 

periodontitis in which the bone around the teeth is infected or exposed (Petersen 

and Ogawa, 2012).  

 

2.2.1 Microbial complexes in the subgingival plaque 
 
As mentioned in Section 1.2.2, the main aetiology of periodontal diseases is the 

oral microflora and in particular the pathogenic dental plaque associated with it. 

The “ecological plaque hypothesis” is commonly accepted to describe the 

development of this pathogenic status (Marsh, 1991). According to this 
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hypothesis, periodontal diseases are due to a perturbation of the oral 

environment that causes a shift in the balance of the oral microflora. When the 

perturbation occurs, pathogenic organisms that in physiological conditions are 

weakly competitive and present only in a small portion, become prevalent and 

stronger, leading to periodontal diseases (Marsh, 1991; Marsh, 1994; Marsh and 

Lewis, 2009).  

 

Socransky et al. (1998) identified the presence of microbial complexes in the 

subgingival plaque that can be linked to the development of periodontal diseases. 

Analysing subgingival plaque samples from 185 subjects, the study recognised 

five different clusters (Figure 2.1). The “red complex” composed by 

Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia is 

strongly related to pocket depth. Indeed, its presence increases with pocket depth 

and bleeding on probing. Similarly, the “orange complex” is found in the deeper 

pockets and precedes the colonisation of the “red complex”, since bacteria of the 

“red complex” are rarely found in the absence of the “orange complex”. By 

contrast, bacteria of the “green”, “yellow” and “purple complex” are poorly 

associated with the “orange” and “red complex” and are supposed to be host 

compatible and distinctive of a healthy periodontum status (Socransky et al., 

1998). 
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Figure 2.1 - Representation of the relationships of species within microbial complexes 

and between the microbial complexes. “Red” and “orange complex” are commonly 

found in the presence of periodontal diseases (Socransky et al., 1998) 

 

2.2.1.1 Porphyromonas gingivalis 
 
Porphyromonas gingivalis is a Gram-negative and obligate anaerobic bacterium. 

It is rod shaped and forms black-pigmented colonies on blood agar plates. 

Porphyromonas gingivalis is one of the main etiological agents implicated in 

periodontal diseases. How et al. (2016) showed that it was almost non-detectable 

in subgingival healthy sites or plaque-associated gingivitis, while it was present 

in 85.7% of subgingival samples collected from individuals suffering from chronic 

periodontitis. Porphyromonas gingivalis is a later coloniser of dental plaque, 

adhering to the earlier ones. It belongs to the “red complex” and resides mainly 

in the deepest layers of the periodontal pocket, being able to produce energy 
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from amino acids in an environment that typically lacks sugar (Bostanci and 

Belibasakis, 2012; How et al., 2016). 

 

2.2.1.1.1  Porphyromonas gingivalis virulence factors  
 
Porphyromonas gingivalis produces a wide range of virulence factors that allow 

the penetration and as well direct and indirect destruction of the host tissues 

(Section 1.2.2.1). 

The main virulence factors include:  

 

 Capsule 

The colonisation of the host environment is due to the ability of bacteria to adhere 

to a surface and resist to salivary flow. Adhesion is regulated by adhesins that 

can both be found on the cell wall and on other bacterial structures, such as the 

capsule and the fimbriae (Marcotte and Lavoie, 1998). In addition, the capsule 

regulates co-aggregation to other bacteria (Rosen and Sela, 2006; How et al., 

2016). Moreover, it can increase bacterial resistance to phagocytosis and 

antimicrobial peptides, allowing a prolonged presence of bacteria within host 

sites. For these reasons, the presence and the type of capsule determine the 

different virulence of P. gingivalis strains: capsulated P. gingivalis strains are 

more virulent and cause more invasive infections compared to non-capsulated P. 

gingivalis strains, that are less resistant and quickly phagocytised (Lainel et al., 

1997; How et al., 2016). 
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 Fimbriae 

Fimbriae are protrusions of the outer membrane of the bacterial wall. Two 

fimbriae are present on the P. gingivalis membrane encoded by the fimA and 

mfa1 genes (Amano, 2010). They are involved in the progression of periodontal 

diseases, being able to interact with host cells, bacteria and molecules present 

in the extracellular matrix. Moreover, they increase the host response by 

stimulating the macrophage production of interleukins (Amano, 2010). 

 

 Proteases 

Porphyromonas gingivalis proteases are involved in periodontal tissue 

destruction. Secreted proteases both degrade extracellular proteins (e.g. 

collagen, immunoglobulin and complement factors) and downregulate the innate 

immune response (Curtis et al., 2001; Bao et al., 2014). 

 

 Lipopolysaccharide  

Lipopolysaccharides are found on the outer bacterial membrane and are 

composed of a glycan polymer named O-antigen, a core that contains 

oligosaccharides and a hydrophobic domain named lipid A, which is the virulence 

factor. The lipopolysaccharide interferes both with the innate immune system, 

increasing the resistance and the number of bacteria at the site, and with the 

osteogenic differentiation and mineralisation processes, causing bone disruption 

(Herath et al., 2011; Kato et al., 2013; How et al., 2016). 

 

 Outer membrane proteins 

The outer membrane is an asymmetrical bilayer composed by phospholipids and 

lipopolysaccharides. Being the external part of the bacteria, it is involved in the 
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interactions with other bacteria, such as in the formation of oral biofilms, and it 

acts as a barrier, regulating the movement of molecules through the membrane 

(Nikaido, 2003; How et al., 2016).  

 

2.2.1.2 Fusobacterium nucleatum 
 
Fusobacterium nucleatum is a non-motile Gram-negative bacterium. Despite 

being anaerobic, it can grow in the presence of up to 6% of oxygen (Bolstad and 

Jensen, 1996). Fusubacterium nucleatum has a crucial role in the development 

of periodontal diseases, acting as a bridge between early and late colonisers. 

Early colonisers, mainly the mitis-group of streptococci (e.g. Streptococcus oralis, 

Streptococcus sanguinis and Streptococcus gordonii) and Actinomyces spp., can 

specifically adhere to the coated tooth surface and co-aggregate with other 

primary colonisers and F. nucleatum. By contrast, secondary colonisers can only 

co-aggregate with late colonisers and F. nucleatum. Therefore, F. nucleatum acts 

as a bridge allowing the co-aggregation between primary and secondary 

colonisers (Figure 2.2) (Marsh and Lewis, 2009; Seneviratne et al., 2011).  

Besides its crucial role in the progression of periodontal diseases, F. nucleatum 

is the periodontal bacterium which is most frequently involved with non-oral 

infection (e.g. skin ulcers, lung and urinary infections) (Bolstad and Jensen, 1996; 

Han, 2015). 
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Figure 2.2 - Schematic representation of the patterns of coaggregation/coadhesion in 

human dental plaque. Fusobacterium nucleatum acts as a bridge between early and 

late colonisers (Marsh and Lewis, 2009) 

 

2.2.1.2.1  Fusobacterium nucleatum virulence factors   
 
Virulence factors of F. nucleatum are related to its ability to colonise host tissues 

and to induce a host response. Fusobacterium nucleatum can bind to both 

mammalian cells (e.g. epithelial and endothelial cells, polymorphonuclear 

leukocytes, monocytes, erythrocytes, fibroblasts) and salivary macromolecules 

(extracellular matrix proteins and human IgG) (Winkler et al., 1987; Bolstad and 

Jensen, 1996; Han et al., 2000). A crucial role in the adhesion and subsequent 

invasion of the host tissues is played by the surface adhesin FadA, which is a 

surface adhesin unique to oral F. nucleatum strains (Han and Wang, 2013). In 
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addition, F. nucleatum can interfere with the host immune system by promoting 

the secretion of pro-inflammatory molecules (e.g. TNF and IL-1) or by 

suppressing the T-cell response (Bolstad and Jensen, 1996; Han et al., 2000; 

Han and Wang, 2013). 

 

2.2.1.3 Prevotella intermedia  
 
Prevotella intermedia is a black-pigmented Gram-negative anaerobic bacillus, 

frequently found in the deep pockets of patients that suffer from periodontal 

diseases (Dahlen, 1993). Similarly, to P. gingivalis, P. intermedia binds to 

proteins of the extracellular matrix and co-aggregate with other bacteria.  

 

2.2.1.3.1 Prevotella intermedia virulence factors  

 
Prevotella intermedia can both invade host cells, such as gingival fibroblasts, and 

degrade the extracellular matrix by synthesising proteinases and activating the 

matrix metalloproteinases (Eley and Cox, 2003; Bao et al., 2008; Alauzet et al., 

2010). Prevotella intermedia interferes with the host immune system by 

degrading the complement factor C3 (Potempa et al., 2009). On the other hand, 

P. intermedia’s lipopolysaccharides increase the host inflammatory response by 

promoting the release of pro-inflammatory mediators (Iki et al., 1997; Tokuda et 

al., 2001). Moreover, lipopolysaccharides inhibit bone formation by interfering 

with mineralisation and alkaline phosphatase activity (Alauzet et al., 2010). 
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2.3 Essential oils: mode of action  

Essential oils are natural products produced by aromatic plants and are mainly 

composed of terpenes and terpenoids (Nazzaro et al., 2013). Antimicrobial, 

antiseptic, anti-inflammation and anti-oxidant activity of essential oils, alone and 

in combination with commercial agents, are well known (Bakkali et al., 2008; 

Santos et al., 2012; Gyawali and Ibrahim, 2014; Morais-braga et al., 2016). 

However, limited knowledge exists regarding essential oil activity against biofilms 

and also host cell cytotoxicity. Being lipophilic, essential oils typically integrate 

into membrane structures causing increased cell permeability, leaching of 

intracellular components and inactivation of enzymes (Sikkematb and Bontt, 

1994; Bakkali et al., 2008).  

Concerning the antifungal potential of the selected essential oils, Cardoso et al. 

(2016) found that basil essential oil and linalool were able to inhibit ergosterol 

synthesis, which is a sterol that controls the membrane fluidity and integrity. In 

addition, they observed irregularities in the membrane, presence of vesicles, and 

cell wall thickening that increase the sensitivity of Candida to antimicrobial 

treatments (Cardoso et al., 2016). Similarly, cinnamon essential oil caused 

changes in Candida’s morphology and damaged the wall, the organelles and the 

cytoplasm (Castro and Lima, 2013; Wang et al., 2018). Singh et al. (2016) 

observed that when C. albicans was treated with citronellal, which is one of the 

main compounds of geranium and citronellol essential oil, ergosterol levels were 

reduced and the homeostasis of the Candida membrane changed, increasing 

Candida’s sensitivity to treatments. In addition, the production of oxygen reactive 

species caused oxidative and genotoxic stresses (Singh et al., 2016). E-

cinnamaldehyde interfered with the ergosterol synthesis and changed the 

membrane permeability, causing the leaching of intracellular compounds (e.g. 
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ATP, K+ and H+ ions) (Ultee and Kets, 1999; Rajput and Karuppayil, 2013; 

Shreaz et al., 2013; Shreaz et al., 2016). Moreover, E-cinnamaldehyde altered 

the lipid profile of C. albicans wall (Wendakoon and Sakaguchi, 1995; Shreaz et 

al., 2016). Rajkowska et al. (2016) investigated the mode of action of tea tree and 

peppermint oil and found that despite different chemical compositions these oils 

altered the permeability of the Candida wall without inhibiting its synthesis. In 

addition, Samber et al. (2015) observed that peppermint reduced ergosterol 

levels and inhibited the PM-ATPase causing intracellular acidification and cell 

death. Furthermore, essential oils can also interact with the mitochondrial 

membrane leading to cidal effects (Nazzaro et al., 2013). The modes of action of 

the selected essential oils and two terpenes (E-cinnamaldehyde and Linalool) 

against Candida are summarised in Table 2.1 
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Table 2.1 - Mode of action of selected essential oils and terpenes against Candida 

Antimicrobial Mode of action Reference 

Basil Ergosterol inhibition 
Reduction in capsule size 

Irregularities in the membrane 
Cell wall thickening 

Presence of vesicles 
 

Cardoso et al. 
2016 

Cinnamon Organelles and cytoplasm destruction  
Cell wall damage 

 

Castro and Lima 
2013 

Wang et al. 2018 

Citronella Reduction in ergosterol level 
Increased production of reactive 

oxygen species 
Interference with membrane 

homeostasis 
 

Singh, Fatima 
and Hameed 

2016 

Geranium Reduction in ergosterol level 
Increased production of reactive 

oxygen species 
Interference with membrane 

homeostasis 
 

Singh, Fatima 
and Hameed 

2016 

Peppermint Alteration in wall permeability 
Inhibition of the PM-ATPase 

Intracellular acidification 
Reduction in ergosterol level 

 

Rajkowska et al. 
2016 

Samber et al. 
2015 

Tea tree oil Altered wall permeability 
 

Rajkowska et al. 
2016 

E-cinnamaldehyde Inhibition of cell wall synthesis 
Altered regulation of intracellular  

ATP and ions 
Alteration in cell morphology 

Alteration in lipid profile 
Reduction in ergosterol level 

 

Rajput and 
Karuppayil 2013 

Shreaz et al. 
2013, 2016 

Ultee and Kets 
1999 

Linalool Ergosterol inhibition 
Reduction in capsule size 

Irregularities in the membrane 
Cell wall thickening 

Presence of vesicles 

Cardoso et al. 
2016 

 
 

Currently, knowledge is limited regarding the mode of action of essential oils 

against periodontal pathogens. Recently, Wang et al. (2018) investigated the 

effect of cinnamon oil on P. gingivalis and observed that bacteria treated with the 
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essential oil showed a loss of membrane integrity and an enhanced permeability 

that led to cell death. Overall, the modes of action of essential oils on bacteria 

are similar to those reported on C. albicans and mainly linked to the 

hydrophobicity of essential oils. Changes in membrane permeability result in 

leaching of intracellular components. Moreover, the destruction of the cell 

membrane causes changes in some vital functions, such as the production of 

ATP, synthesis of macromolecules, secretion of enzymes and nutrient 

processing. In addition, essential oils can interfere with protein synthesis and pH 

homeostasis (Faleiro, 2011). Besides changes in the morphology, essential oils 

can modify the periplasmic spaces and the presence of fimbriae. Lastly, natural 

compounds can inhibit quorum sensing, a cell-cell communication system based 

on the production of small molecules (Faleiro, 2011).  

 

2.4 Biocides: mode of action 

Chlorhexidine is an antiseptic agent commonly used in hospitals for sanitation 

and disinfection, and in oral products such as mouthwashes (Cordenonsi et al., 

2013). Chlorhexidine shows antimicrobial properties against a wide range of 

microorganisms, such as Gram-positive and Gram-negative bacteria and fungi. 

The antimicrobial properties of CHX are mainly due to the leakage of intracellular 

constituents. CHX interacting with the outer cell layers changes the permeability, 

without causing lysis or cell death. However, the uptake of CHX by passive 

diffusion causes attack of the bacterial cytoplasmic or inner membrane or the 

yeast plasma membrane that results in the leaching of intracellular constituents 

(Donnell and Russell, 1999). The uptake of CHX is very rapid, within 20 seconds 

(Fitzgerald et al., 1989; Donnell and Russell, 1999). Interestingly, the leakage of 
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the internal constituents is only partially a function of the CHX concentrations. 

Indeed, by increasing the CHX concentration, the release of intracellular 

compounds increases, but higher concentrations of CHX cause the coagulation 

of intracellular compounds resulting in a decrease in leakage rate (Hugo and 

Longworth, 1964; Hugo and Longworth, 1965; Donnell and Russell, 1999).  

 

Triclosan is a biocide commonly found in personal care products (e.g. shampoos, 

hand soap, deodorants), in medical devices (e.g. surgical sutures and catheters) 

and in oral formulations (e.g. toothpastes and mouthwashes) (Yueh and Tukey, 

2016) . It exhibits bacteriostatic and fungistatic activity at low concentrations (0.1 

to 10 μg/ml) and bactericidal and fungicidal activity at higher dosages (World 

Health Organization, 2006). The uptake of triclosan interferes with lipid synthesis, 

by inhibiting the NADH-dependent enoyl-acyl carrier protein (ACP) reductase, 

and RNA and proteins synthesis. In addition, at lethal concentrations triclosan 

causes K+ leakage (Donnell and Russell, 1999; Ikinci et al., 2002; Russell, 2004; 

Russell, 2018).  

 

2.5 Synergistic activity   

The low rate of discovery of new antibiotics and antifungals and the concomitant 

increase of resistance led to an interest in investigating the potential of blending 

antimicrobials. Drug combinations could both delay the emergence of 

antimicrobial resistance and enhance the antimicrobial properties allowing the 

use of lower doses of each drug. In particular, the combination of two agents can 

be synergistic if the effect is much stronger than an additive effect, or indifferent 

if it is weaker. When the blend shows much lower antimicrobial properties than 
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those observed by the use of the single drug, the effect is antagonistic. In this 

case, one of the drugs inhibits the effect of the other (Cuenca-Estrella, 2004; 

Bollenbach, 2015) (Figure 2.3). 

 

Figure 2.3 - Synergistic, additive, indifferent and antagonistic effect obtained by the 

combination of drug X and Y 

 

The “checkerboard” method is used to investigate the synergy between two 

compounds (X and Y). The microorganism is cultured in the presence of 4-5 

double serial dilutions below the minimum inhibitory concentration of the 

compound X combined with 4-5 double serial dilutions below the minimum 

inhibitory concentration of the compound Y. The fraction inhibitory concentration 

(FIC) index is the mathematical expression used to represent the interaction 

between the compounds X and Y. The FIC is expressed as (2.1):  

 

𝐹𝐼𝐶 = 𝐴 + 𝐵 (2.1) 

 

with 𝐴 =
𝑀𝐼𝐶 𝑋 𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑌

𝑀𝐼𝐶 𝑋 𝑎𝑙𝑜𝑛𝑒
  and  𝐵 =

𝑀𝐼𝐶 𝑌  𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑋

𝑀𝐼𝐶 𝑌 𝑎𝑙𝑜𝑛𝑒
     

where 𝑋 is the first antimicrobial and 𝑌 the second antimicrobial. 
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A FIC index < 0.5 implies synergy, 0.5 < FIC index < 1 implies additivity, 1 < FIC 

index < 4 implies indifference and a FIC index > 4 implies antagonism (Hsieh et 

al., 1993).  

 

Several studies evaluated the synergistic activity of essential oils in combination 

with antifungal agents, revealing that essential oils can be a complementary 

therapy in the treatment of antifungal infections. Citronellol, geraniol, geranyl 

acetate, linalool, basil and peppermint combined with fluconazole showed a 

synergistic effect against C. albicans, decreasing the MIC of fluconazole up to 

64-fold (Zore et al., 2010; Zore et al., 2011; Samber et al., 2015; Cardoso et al., 

2016). Similarly, the combination of myrtle with amphotericin B showed a marked 

synergism against C. albicans (Cannas et al., 2013). In addition, CHX combined 

with eucalyptus or tea tree oil had a synergistic effect against both C. albicans 

and S. epidermidis biofilm (Karpanen et al., 2008; Hendry et al., 2009). Even if a 

synergistic effect of blends of essential oils was not found, an additive effect such 

as with clove and cinnamon oil may be present against C. albicans (Horváth et 

al., 2016). Few data on the synergistic effect of essential oils against periodontal 

pathogens are available. Didry et al. (1994) found an additive effect between 

some terpenes commonly found in the essential oils (cinnamaldehyde, thymol, 

carvacrol and eugenol), and Shapiro et al. (1994) observed a synergetic effect 

between peppermint and tea tree oil against A. actinomycetemcomitans and P. 

gingivalis. 
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2.6 Aims and objectives 
 
The aim is to develop a novel antimicrobial therapy for oral diseases, focusing on 

oral candidiasis and periodontal diseases. Due to the emergence of antimicrobial 

resistance, the antibacterial and antifungal properties of natural compounds (i.e. 

essential oils) are evaluated. The specific objectives are: 

a) To evaluate the antifungal activity of a range of essential oils (12 in total), two 

terpenes (E-cinnamaldehyde and linalool), and two biocides, namely 

chlorhexidine and triclosan, against two C. albicans strains in the planktonic 

growth mode 

b) To evaluate the antibacterial activity of 5 essential oils, E- cinnamaldehyde 

and chlorhexidine against a range of anaerobic bacteria involved with 

periodontal diseases (two Fusobacterium nucleatum strains, Porphyromonas 

gingivalis and Prevotella intermedia) in the planktonic growth mode 

c) To evaluate the antifungal activity of a range of essential oils (12 in total), two 

terpenes (E-cinnamaldehyde and linalool), and two biocides, namely 

chlorhexidine and triclosan, against two C. albicans strains in the biofilm 

growth mode 

d) To investigate the synergistic effect between the compounds that showed the 

best antifungal activity  
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2.7 Materials and methods 
 

2.7.1 Essential oils and biocides preparation 

Twelve commercial essential oils (Essential Oils Direct Ltd., Oldham, UK) (Table 

2.2), two terpenes (E-cinnamaldehyde and linalool) (Sigma-Aldrich, Gillingham, 

UK)), two biocides, chlorhexidine digluconate (CHX) (Sigma-Aldrich, Gillingham, 

UK) and triclosan (Irgasan from Sigma-Aldrich, Gillingham, UK) were evaluated. 

 
Table 2.2 - List of commercial essential oils tested 

Plant Species Essential Oil Origin 

Ocimum basilicum Basil oil Leaves 

Citrus bergamia Bergamot FCF oil Peel 

Cinnamomum zeylanicum Cinnamon leaf oil Leaves 

Cymbopogon winterianus Citronella oil Aerial parts 

Pelargonium graveolens Geranium oil Flowering herb 

Lavandula angustifolia Lavender oil Flowering herb 

Melissa officinalis Melissa oil Leaves and tops 

Myrtus communis Myrtle oil Leaves 

Mentha piperita Peppermint oil Whole plant 

Salvia officinalis Sage oil Leaves 

Mentha spicata Spearmint oil Aerial parts 

Melaleuca alternifolia Tea tree oil Leaves and twigs 

 

The commercial essential oils were tested at a range of concentrations against 

planktonic growth (0.007% (v/v) to 2% (v/v)) and biofilms (0.125% (v/v) to 8% 

(v/v)). All agents were prepared in Sabouraud dextrose broth (SDB; Oxoid Ltd, 

Basingstoke, UK) for Candida or fastidious anaerobe broth (FAB, Lab M, 

Lancashire, UK) for periodontal pathogens, respectively. To enhance dispersion 

of essential oils in the medium, 1% (v/v) Tween 80 (Sigma-Aldrich, Gillingham, 

UK) was added. Since the concentrations of essential oils in biofilm studies were 
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higher, 0.015% (w/v) Agar Bacteriological (LP0011; Oxoid Ltd, Basingstoke, UK) 

was also added to the culture medium (Mann and Markham, 1998). Serial 

doubling dilutions of CHX were prepared in water at concentrations between 3.1 

 10−4 % (v/v) and 0.04% (v/v), and from 6.2 × 10−4 % (v/v) to 0.08% (v/v) for 

planktonic and biofilm growth experiments, respectively. A 20% (w/v) stock 

solution of triclosan was prepared in Dimethyl Sulphoxide (DMSO) (Fisher 

Scientific, Loughborough, UK). Serial doubling dilutions of the stock solution were 

prepared in SDB yielding final concentrations from 5.2 × 10−6 % (v/v) to 6.7 × 10−4 

% (v/v) and from 1.7 × 10−4 % (v/v) to 5 × 10−3% (v/v) for planktonic and biofilm 

experiments, respectively.  

 

2.7.2 Microorganisms 

Candida albicans NYCY 1363 and C. albicans 135BM2/94 were used to test the 

antifungal properties of essential oils and biocides. Candida albicans 135BM2/94 

is a clinical strain from the School of Dentistry (Cardiff University), which has been 

described as a high invader using an in vitro tissue model (Malic et al., 2007). 

Strains were subcultured onto Sabouraud dextrose agar (SDA) (CM0041; Oxoid 

Ltd, Basingstoke, UK) and grown at 37 °C in an aerobic incubator for 24 hours. 

A colony of C. albicans was inoculated in 20 ml of SDB and incubated aerobically 

with shaking (200 rpm) overnight at 37 °C. The overnight culture was prepared in 

SDB to a turbidity equivalent to a 0.5 McFarland Standard (105 CFU/ml) and used 

for further experiments.  

Periodontal pathogens, namely, Fusobacterium nucleatum KS 515, 

Fusobacterium nucleatum THOWN, Porphyromonas gingivalis and Prevotella 

intermedia were used to investigate the antibacterial properties of the above-
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mentioned antimicrobials. Strains were subcultured onto fastidious anaerobe 

agar (FAA, Lab M, Lancashire, UK) supplemented with 10% (v/v) horse blood 

defibrinated (TCS Biosciences Ltd, Buckingham, UK) and grown at 37 °C in an 

anaerobic incubator for 24 hours (Fusobacterium nucleatum), 48 hours 

(Prevotella intermedia) or 72 hours (Porphyromonas gingivalis). A colony was 

inoculated in 10 ml of FAB and incubated anaerobically for 24 - 72 hours at 37 

°C. The overnight culture was prepared to a turbidity equivalent to 108 CFU/ml 

and used for further experiments. 

 

2.7.3 Minimum inhibitory concentration (MIC) and minimal lethal 
concentration (MLC) 

 
The minimum inhibitory concentration (MIC) and the minimal lethal concentration 

(MLC) were determined using a broth microdilution assay. The method was 

adapted from that previously reported by Malic et al. (2013). Briefly, 100 µl of 

antimicrobial and 100 µl of the overnight culture diluted to 1 × 105 CFU/ml 

(Candida) or 1 × 108 CFU/ml (anaerobic bacteria) were added to the wells of 96-

well microtitre plates (Thermo Fisher Scientific, Hemel Hempstead, UK). Controls 

included microorganism suspension cultured in SDB/FAB, with or without 0.5% 

(v/v) of Tween 80. In addition, when triclosan was tested, SDB containing 1% 

(v/v) DMSO was used as a control. The plates were covered with the lids supplied 

by the manufacturer which were sprayed with 3% (v/v) of Triton 100-X (Sigma-

Aldrich, Gillingham, UK) in pure ethanol to reduce condensation. The plates 

inoculated with Candida were incubated aerobically at 37 °C with shaking at 130 

rpm, for 24 hours. The plates containing anaerobic bacteria were incubated 

anaerobically at 37 °C with shaking at 130 rpm, for 24 - 72 hours. Growth was 

estimated by measuring turbidity of each well by spectrophotometric absorbance 
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at 600 nm (Thermo Scientific™ Multiskan™ GO Microplate Spectrophotometer), 

shaking for 3 seconds before the reading. The absorbance readings were 

standardised against microbial-free controls. The minimal inhibitory 

concentration 80 (MIC80) was defined as the lowest concentration of the 

antimicrobial agent that showed at least 80% reduction in absorbance compared 

to the control. The minimal lethal concentration (MLC) was determined by plating 

content of selected wells (where no visible growth was evident) onto SDA and 

incubating for 24 hours at 37 °C. The MLC was defined as the lowest 

concentration of antimicrobial agent that killed the Candida as shown by no 

colony growth on SDA. All concentrations were tested in quadruplicate and on 

three separate occasions. 

 

2.7.4 Minimal biofilm eradication concentration (MBEC)  
 
The minimal biofilm eradication concentration (MBEC) method was adapted from 

Malic et al. (2013). Briefly, a 96-well microtitre plate containing 200 µl of an 

overnight culture diluted to 1 × 105 CFU/ml was incubated for 48 hours at 37 °C 

without agitation to allow biofilm formation. Controls included Candida 

suspension cultured in SDB, with or without 1% (v/v) of Tween 80 and 0.015% 

(w/v) agar bacteriological. When triclosan was tested, SDB containing 8% (v/v) 

DMSO was also used as a control. After 48 hours, the SDB was removed and 

the microtitre plate inverted onto tissue paper to remove residual medium. The 

biofilm was washed three times with 100 µl of PBS. One hundred microlitres (100 

µl) of test agent was added to the biofilm and the plate incubated statically for 24 

hours at 37 °C. After incubation, test agent was removed, and the biofilm washed 

twice with 100 µl of PBS. Two hundred microlitres (200 µl) of SDB was added to 

each well and the biofilm disrupted by repeated pipetting. The three replicates 
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were then pooled by pipetting into an eppendorf tube which was then centrifuged 

for 3 minutes at 3000 rpm (Hettich Universal Mikro 12-24, Hettich, Tuttlingen, 

Germany). The supernatant containing the residual test agent was discarded and 

the microorganisms re-suspended in fresh SDB and added to three wells of a 

fresh 96-well plate. The turbidity of the suspension was measured by 

spectrophotometer absorbance at 600 nm prior to and after incubation for 24 

hours at 37 °C with shaking at 130 rpm. The minimal biofilm eradication 

concentration 80 (MBEC80) was defined as the lowest antimicrobial 

concentration that prevented at least 80% regrowth of Candida. All experiments 

were conducted on three separate occasions. 

 

2.7.5 Checkerboard method: essential oils and biocides synergy  

The checkerboard method was used to investigate the synergistic activity of 

essential oils and biocides against Candida. Table 2.3 summarises the blends of 

essential oils and biocides screened.  

 

Table 2.3 -The blends of essential oils and biocides tested are highlighted in green 
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Four two-folds dilutions of the MICs were prepared (i.e. MIC/2, MIC/4, MIC/8 and 

MIC/16). Since the final concentrations in the 96-well plates were diluted 1:4, 

stock solutions were four times more concentrated. Fifty microlitres (50 µl) of 

compound X and 50 µl of compound Y were added to a 96-well plate and mixed 

gently by pipetting up and down. Each well was inoculated with 100 µl of a 

standardised culture of C. albicans at a concentration of 1 × 105 CFU/ml (see 

Section 2.7.2). The 96-well plate was incubated for 24 hours at 37 °C and the 

growth was assessed by measuring the turbidity of each well by 

spectrophotometric absorbance at 600 nm as described in Section 2.7.3. The 

experiments were carried out in triplicates and the relative growth was measured 

by averaging three replicate wells. The synergy was evaluated when the 

combinations of compounds X and Y caused a reduction in growth of at least 

80% (i.e. MIC80). 

The fractional inhibitory concentration (FIC) index was used to assess the 

interaction between two compounds (see Section 2.5).  

 

2.7.6 Statistical analysis 

Statistical analysis was performed using GraphPad Prism Version 7.0 (GraphPad 

Software, La Jolla, CA, USA). Data were presented as arithmetic mean ± SD. 

The difference between treatments was statistically analysed using one-way 

analysis of variance (ANOVA) followed by Tukey multiple comparisons test. 

Statistically significant differences were set at p < 0.05. 
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2.8 Results 

 

2.8.1 Minimum inhibitory concentration (MIC) and minimal lethal 

concentration (MLC) for Candida albicans 

 
The antifungal activities of the essential oils and biocides against C. albicans in 

planktonic form was investigated using the microdilution assay. Both C. albicans 

strains were susceptible to all biocides and essential oils tested (Figure 2.4). 

Indeed, a drop in C. albicans growth was observed with increasing concentrations 

of the compounds. The MIC80 (the concentration that leads to 80% reduction in 

growth) is represented by the intersection between the blue line (i.e. 80% 

reduction compared to the control) and the C. albicans growth curves. 
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Figure 2.4 - Relative growth of C. albicans NYCY 1363 (black) and C. albicans 

135BM2/94 (grey) in the planktonic growth mode in the presence of basil (A), bergamot 

(B), cinnamon (C), citronella (D), geranium (E), lavender (F), melissa (G), myrtle (H), 

peppermint (I), sage (J), spearmint (K), tea tree oil (L), E-cinnamaldehyde (M), linalool 

(N), chlorhexidine (O) and triclosan (P). Data represent the mean of three independent 

experiments, each performed in quadruplicate  

 
 
The minimum inhibitory concentration 80 of the test agents against C. albicans 

NCYC 1363 and C. albicans 135BM2/94 are summarised in Table 2.4. The 

commercial essential oils that inhibited the growth at the lowest concentrations 

were melissa and geraniol, while myrtle and sage had the lowest fungistatic 

potential (p < 0.001). 
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Table 2.4 - Minimum inhibitory concentration 80 of essential oils and biocides against 

C. albicans NYCY 1363 and C. albicans 135BM2/94 in the planktonic form 

Antimicrobial 
Minimum Inhibitory Concentration 80 [% (v/v)] [(g/l)] 

C. albicans NYCY 1363 C. albicans 135BM2/94 

Basil 0.1 (0.9) 0.1 (0.9) 
Bergamot 0.3 (2.6) 0.3 (2.6) 
Cinnamon 0.1 (1.0) 0.1 (1.0) 
Citronella 0.1 (0.9) 0.1 (0.9) 
Geranium 0.07 (0.6) 0.06 (0.5) 
Lavender 0.2 (1.8) 0.1 (0.9) 
Melissa 0.06 (0.5) 0.06 (0.5) 
Myrtle 0.4 (3.5) 0.3 (2.7) 

Peppermint 0.1 (0.9) 0.1 (0.9) 
Sage 0.4 (3.7) 0.3 (2.7) 

Spearmint 0.2 (1.6) 0.1 (1.1) 
Tea tree oil 0.2 (1.8) 0.2 (1.8) 

E-cinnamaldehyde 0.03 (0.3) 0.01 (0.1) 
Linalool 0.1 (0.9) 0.1 (0.9) 

CHX 2 × 10−3 (2.1 × 10−2) 5 × 10−3 (5.3 × 10−2) 
Triclosan 5.66 × 10−4 (8.4 × 10−3) 5.89 × 10−4 (8.8 × 10−3) 

 
Minimal inhibitory concentration 80 (MIC80) defined as the lowest concentration of the 

antimicrobial agent that led to 80% reduction in absorbance compared to controls 
without agent. MIC values are in % (v/v) and in brackets are the equivalent MIC values 

in (g/l). 

 

Fungicidal activity was also expressed as the lowest concentration of 

antimicrobial agent that killed the microorganism (minimal lethal concentration) 

(Table 2.5). All tested compounds, with exception of triclosan, had minimal lethal 

concentrations against C. albicans at concentrations tested. These lethal 

concentrations were generally higher than the previously established MICs. 
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Table 2.5 - Minimal lethal concentration of essential oils and biocides against C. 

albicans NYCY 1363 and C. albicans 135BM2/94 in the planktonic growth mode 

Antimicrobial 
Minimal Lethal Concentration [% (v/v)] [(g/l)] 

C. albicans NCYC 1363 C. albicans 135BM2/94 

Basil 0.5 (4.5) 0.5 (4.5) 
Bergamot 0.5 (4.4) 0.5 (4.4) 
Cinnamon 0.1 (1.0) 0.1 (1.0) 
Citronella 0.1 (0.9) 0.1 (2.7) 
Geranium 0.1 (0.9) 0.1 (0.9) 
Lavender 0.5 (4.4) 0.3 (2.6) 
Melissa 0.1 (0.9) 0.1 (0.9) 
Myrtle 1 (8.8) 1 (8.8) 

Peppermint 0.3 (2.7) 0.1 (0.9) 
Sage 1 (9.2) 1 (9.2) 

Spearmint 1 (9.2) 1 (9.2) 
Tea tree oil 0.5 (4.5) 0.3 (2.7) 

E-cinnamaldehyde 0.03 (0.3) 0.03 (0.3) 
Linalool 0.3 (2.6) 0.3 (2.6) 

CHX 2.5 × 10−3 (2.7 × 10−2) 5 × 10−3 (5.3 × 10−2) 
Triclosan NA NA 

 
Minimal lethal concentration was defined as the lowest concentration of the 

antimicrobial agent that killed C. albicans. Minimal lethal concentration (MLC) 
values are in % (v/v) and in brackets are the equivalent MLC values in (g/l). 

NA = no antimicrobial activity at tested concentrations. 

 

 

2.8.2 Minimum inhibitory concentration (MIC) for periodontal pathogens 
 
The antibacterial activity of five essential oils, E-cinnamaldehyde, and CHX 

against periodontal bacteria was investigated using the microdilution assay. F. 

nucleatum KS 515, F. nucleatum THOWN, P. intermedia and P. gingivalis strains 

were susceptible to all biocides and essential oils tested (Figure 2.5). 

The minimum inhibitory concentration 80 of the selected agents against 

periodontal anaerobic bacteria are shown in Table 2.6.  
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Figure 2.5 - Relative growth of F. nucleatum KS 515 (A), F. nucleatum THOWN (B), P. 

intermedia (C) and P. gingivalis (D) in the planktonic growth mode in the presence of 

cinnamon (green), geranium (orange), lavender (purple), melissa (lilac), E-

cinnamaldehyde (ochre) and peppermint (purple). Data represent the mean of three 

independent experiments, each performed in quadruplicate 
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Table 2.6 - Minimum inhibitory concentration 80 of essential oils and biocides against 

periodontal pathogens in the planktonic form 

Antimicrobial 

Minimum inhibitory concentration 80 [% (v/v)] [(g/l)] 

F. nucleatum 
KS 515 

F. nucleatum 
THOWN 

P. gingivalis P. intermedia 

Cinnamon 0.08 (0.9) 0.1 (1.0) 0.06 (0.5) 0.05 (0.5) 

Geranium 0.05 (0.4) 0.05 (0.5) 0.03 (0.2) 0.05 (0.5) 

Lavender 0.06 (0.5) 0.1 (0.8) 0.05 (0.4) 0.1 (0.8) 

Melissa 0.02 (0.2) 0.03 (0.2) 0.01 (0.1) 0.05 (0.5) 

Peppermint 0.04 (0.4) 0.07 (0.6) 0.05 (0.5) 0.08 (0.7) 

E-cinnamaldehyde 0.03 (0.3) 0.01 (0.1) 0.004 (0.05) 0.01 (0.1) 

CHX 2 × 10−3  
(2 × 10−2) 

2 × 10−3  
(2 × 10−2) 

3 × 10−3  
(3 × 10−2) 

0.5 × 10−3  
(0.5 × 10−2) 

 
Minimal inhibitory concentration 80 (MIC80) defined as the lowest concentration of the 

antimicrobial agent that led to 80% reduction in absorbance compared to controls 
without agent. MIC values are in % (v/v) and in brackets are the equivalent MIC values 

in (g/l). 

 

 

2.8.3 Minimal biofilm eradication concentration (MBEC)  
 
The antifungal activity of biocides and commercial essential oils against C. 

albicans biofilms was expressed as the minimal biofilm eradication concentration 

(MBEC) (Malic et al., 2013). Most test agents were not active against biofilms at 

concentrations tested and did not prevent regrowth after removal of the 

antimicrobial (Figure 2.6). The antimicrobials that exhibited an MBEC against 

both tested C. albicans strains were melissa, geranium, E-cinnamaldehyde and 

linalool (Table 2.7). 
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Figure 2.6 - Relative re-growth of C. albicans NYCY 1363 after the application on 

preformed biofilms of 12 essential oils and two terpenes (A), chlorhexidine (B) and 

triclosan (C). After application of the antimicrobials on pre-formed biofilms for 24 hours, 

cells were resuspended in a free-antimicrobial medium and re-growth was measured 

after 24 hours. The minimal biofilm eradication concentration 80 (MBEC80) was 

defined as the lowest antimicrobial concentration that prevented at least 80% regrowth 

of Candida (blue dotted line). Data represent the mean of three independent 

experiments, each performed in triplicate 
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Table 2.7 - Minimal biofilm eradication concentration 80 of essential oils and biocides 

against C. albicans NCYC 1363 and C. albicans 135BM2/94 

Antimicrobial 
Minimal Biofilm Eradication Concentration 80 [% 

(v/v)] [(g/l)] 

C. albicans NYCY 1363 C. albicans 135BM2/94 

Basil NA NA 
Bergamot NA NA 
Cinnamon NA NA 
Citronella NA NA 
Geranium 2.5 (22.3) 2 (17.9) 
Lavender NA NA 
Melissa 1.5 (13.3) 1.5 (13.3) 
Myrtle NA NA 

Peppermint NA NA 
Sage NA NA 

Spearmint NA NA 
Tea tree oil NA NA 

E-cinnamaldehyde 0.8 (8.4) 0.8 (8.4) 
Linalool 1 (8.7) 1.5 (13.1) 

CHX 0.07 NA 
Triclosan NA NA 

 
Minimal biofilm eradication concentration 80 (MBEC80) defined as the lowest 
antimicrobial concentration that prevented at least 80% regrowth of Candida, 

after the biofilm was treated with antimicrobials for 24 hours. MBEC values are 
in % (v/v) and in brackets are the equivalent MBEC values in (g/l). NA = no 

antimicrobial activity at tested concentrations. 

 

 

2.8.4 Essential oils and biocides synergy 
 
Table 2.8 summarises the FIC index of the blends screened. None of the 

combinations tested showed a synergistic activity but most of them had an 

additive effect. Some of the blends had a FIC of 0.6. The lowest concentration of 

CHX (3.75 × 10−4 % (v/v)) that inhibited C. albicans growth was obtained by 

combining CHX with E-cinnamaldehyde at a concentration of 7.5 × 10−3 % (v/v) 

and 0.015% (v/v) for C. albicans NYCY 1363 and C. albicans 135BM2/94, 

respectively. When cinnamon essential oil was used in combination with 0.0075% 

(v/v) E-cinnamaldehyde, it was possible to decrease its concentration by 13 times 

(from 0.105% (v/v) to 7.7 × 10−3 % (v/v)) to obtain the same level of inhibition. A 
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concentration of geranium essential oil 10 times lower than the MIC (7.5 × 10−4 

% (v/v)) effectively inhibited C. albicans growth when it was combined with 

0.015% (v/v) E-cinnamaldehyde or 0.031% (v/v) cinnamon essential oil. A 

concentration of peppermint essential oil of 9.3 × 10−3 % (v/v)) was sufficient to 

inhibit C. albicans growth blended with 0.015% (v/v) or 7.5 × 10−3 %(v/v) of E-

cinnamaldehyde for C. albicans NYCY 1363 and C. albicans 135BM2/94, 

respectively. Moreover, the addition of peppermint essential oil to spearmint 

essential oil decreased the spearmint essential oil concentration between 13 and 

15 times below the MIC value. Lavender essential oil exhibited an additive effect 

only when it was combined with cinnamon essential oil against C. albicans 

135BM2/94.  

 
 



 
 

Table 2.8 - Fractional inhibitory concentration (FIC) index 

  C. albicans NYCY 1363 C. albicans 135BM2/94 

Compound X Compound Y FIC 
MIC_Xc (MIC_X)  

% (v/v) 
MIC_Yc (MIC_Y) 

% (v/v) 
FIC 

MIC_Xc (MIC_X) 
% (v/v) 

MIC_Yc (MIC_Y) 
% (v/v) 

CHX Cinnamon 1.34 0.0015 (0.002) 0.062 (0.105) 0.69 0.000375 (0.005) 0.062 (0.082) 

CHX E-cinnamaldehyde 0.72 0.000375 (0.002) 0.015 (0.028) 0.61 0.000375 (0.005) 0.0075 (0.0139) 

CHX Geranium N/A - - 1.72 0.003 (0.005) 0.062 (0.055) 

CHX Lavender N/A - - N/A - - 

Peppermint CHX N/A - - N/A - - 

Spearmint CHX N/A - - N/A - - 

Cinnamon E-cinnamaldehyde 0.61 0.0077 (0.105) 0.0075 (0.028) 1.15 0.0077 (0.082) 0.0075 (0.0139) 

Cinnamon Geranium 0.7 0.031 (0.105) 0.0077 (0.071) 0.76 0.031 (0.082) 0.0077 (0.055) 

Cinnamon Lavender N/A - - 1.45   
Cinnamon Peppermint 1.22 0.062 (0.105) 0.0375 (0.134) 0.99 0.031 (0.082) 0.0375 (0.108) 

Cinnamon Spearmint 0.73 0.062 (0.105) 0.025 (0.167) 0.99 0.062 (0.082) 0.025 (0.115) 

E-cinnamaldehyde Geranium 0.65 0.015 (0.028) 0.0077 (0.071) 0.71 0.0075 (0.0139) 0.031 (0.055) 

E-cinnamaldehyde Lavender 0.6 0.015 (0.028) 0.0125 (0.190) 1.17 0.015 (0.0139) 0.0125 (0.118) 

Peppermint E-cinnamaldehyde 0.61 0.0093 (0.134) 0.015 (0.028) 0.62 0.0093 (0.108) 0.0075 (0.0139) 

E-cinnamaldehyde Spearmint 0.61 0.015 (0.028) 0.1 (0.167) 0.64 0.0075 (0.0139) 0.05 (0.115) 

Geranium Lavender N/A - - N/A - - 

Geranium Peppermint N/A - - N/A - - 

Geranium Spearmint N/A - - 1.33   
Lavender Spearmint N/A - - 0.94 0.0125 (0.118) 0.1 (0.115) 

Lavender Peppermint N/A - - N/A - - 
Peppermint Spearmint 0.72 0.0187 (0.134) 0.1 (0.167) 0.92 0.0093 (0.108) 0.1 (0.115) 

 
Fractional inhibitory concentration (FIC) of the blends of Compound X and Compound Y against C. albicans NYCY 1363 and C. 

albicans 135BM2/94. MIC_Xc and MIC_Yc represent the MIC of the compound X and Y in combination, while MIC_X and MIC_Y 
the MICs of the compound X and Y alone. NA = no antimicrobial activity at tested concentrations. 
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2.9 Discussion 

Essential oils are natural products often extracted from plants and they frequently 

exhibit antimicrobial, antiseptic, anti-inflammatory and anti-oxidant activities 

(Bakkali et al., 2008). The primary aim of this research was to evaluate the 

antifungal activity of 12 commercial essential oils against C. albicans. All tested 

commercial essential oils demonstrated antifungal activity against planktonic C. 

albicans, with MICs ranging from 0.06% (v/v) to 0.4% (v/v) and MLCs from 0.1% 

(v/v) to 1% (v/v). Comparison of results with those of other studies is problematic 

given differences in assay techniques (Janssen et al., 1986; Hammer et al., 

1999). In addition, the botanical source, climate and environmental conditions, 

time of harvesting and extraction method can affect both composition and 

antimicrobial activity of commercial essential oils (Janssen et al., 1986; 

Carvalhinho et al., 2012; Szweda et al., 2015). The effect of plant origin on 

antimicrobial properties can be appreciated by comparing the activity of 

cinnamon oil extracted from Cinnamomum zeylanicum leaves and Cinnamomum 

aromaticum leaves. Both types of cinnamon oils are from the evergreen 

cinnamomum plant but Cinnamomum aromaticum extract contains a higher 

amount of E-cinnamaldehyde, which could explain the higher antifungal activity 

(MICs 0.0006% (v/v) - 0.0096% (v/v)) (Szweda et al., 2015) compared to the 

present study using Cinnamomum zeylanicum (MIC 0.1% (v/v)) extract. The 

impact that the amount of E-cinnamaldehyde has on antifungal properties of an 

essential oil was also evident in this study (MICs of 0.03% (v/v) and 0.01% (v/v)). 

Geranium and melissa oils exhibited the highest antifungal potential. Both 

commercial oils contain geraniol and citronellol, which are antifungal (Zore et al., 

2010) and likely responsible for the similar antifungal activity of these two oils 
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(geranium and melissa essential oil) (p > 0.90). However, the MIC of melissa oil 

was lower than that previously reported (Mimica-Dukic et al., 2004; Abdellatif et 

al., 2014). This present study revealed antifungal effects for bergamot oil (MIC of 

0.3% (v/v) and MLC of 0.5% (v/v)) which previously only had limited attention. 

The MIC of basil oil 0.1% (v/v) (0.9 g/l) was lower than previously reported, 

namely 0.5% (v/v) (Hammer et al., 1999) and 0.312% (v/v) (Szweda et al., 2015) 

but comparable to the MIC (1250 μg/ml) found against a fluconazole resistant C. 

albicans strain (Cardoso et al., 2016). The main compound of basil and lavender 

oils is linalool, which previously has had MICs described ranging from 0.06% (v/v) 

to 0.12% (v/v) (Marcos-arias et al., 2011). Comparing activity of pure linalool to 

those of basil and lavender oils, the anticandidal activity of terpene was not 

significantly higher than that of basil (p > 0.99). Tea tree oil had a MIC of 0.2% 

(v/v) similar to a study recorded by Hammer et al. (1998) against C. albicans.  

Sage oil exhibited MICs of 0.3% (v/v) (2.7 g/l) and 0.4% (v/v) (3.7 g/l), which were 

comparable to the MIC of 2.78 g/l reported using a disk diffusion method (Sookto 

et al., 2013), but lower than the MIC of 1.32 mg/ml measured by broth 

microdilution assay (Nacsa-farkas et al., 2014). Despite their differences in 

composition, peppermint and spearmint oils had similar antifungal activities with 

MICs of 0.1% (v/v) and 0.1% (v/v) - 0.2% (v/v), respectively (p > 0.07). However, 

while the MICs of spearmint oil were similar to those reported by Hammer et al. 

(1999), the MIC of peppermint oil was higher than that found by Thosar et al. 

(2013). Myrtle oil had the lowest antifungal potential, even though its MICs were 

lower than those previously reported by Mahboubi and Bidgoli (2010) (MIC of 0.8 

- 1.6% (v/v)). CHX and triclosan, two biocides whose antimicrobial properties are 

widely recognised, and both commonly added to mouthwashes and toothpastes, 

were also evaluated in this study. Triclosan exhibited fungistatic activity at 
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concentrations lower than those used in toothpaste formulations (0.3% (w/v) 

(Brading et al., 2004)), but did not exhibit fungicidal effects at tested 

concentrations. 

 

The majority of agents had limited antibiofilm activity. Bacteria in biofilms can be 

between 10 and 1000 times more tolerant to antibiotics than their planktonic 

counterparts and similar findings have been reported for Candida (Hawser and 

Douglas, 1995). The mechanisms by which biofilm cells have elevated 

antimicrobial tolerance are complex and likely multifactorial. These include 

altered gene expression following surface attachment, reduced growth rates in 

biofilms, variable nutrient availability that induces changes in phenotype and the 

presence of extracellular polymeric substances that impedes penetration of 

agents into the biofilm (Douglas, 2003; Stewart and Franklin, 2008; Singh et al., 

2017). Few studies have previously reported activity of commercial essential oils 

or biocides against C. albicans biofilms (de Campos Rasteiro et al., 2014; 

Almeida et al., 2016). In the present study, melissa oil, geranium oil, E-

cinnamaldehyde and linalool had anti-biofilm activity, whilst CHX only had anti-

biofilm activity against C. albicans NCYC 1363 but not C. albicans 135BM2/94. A 

3 minutes application of cinnamon (1 mg/ml) and citronella (1 mg/ml) oils has 

been found to reduce biofilm cell numbers immediately after treatment but this 

effect was not evident 48 hours post treatment (Almeida et al., 2016). These 

results concur with the current study, where no antibiofilm activity was noted for 

cinnamon and citronella oils after 24 hours. A MBEC of tea tree oil of 12.5% (v/v) 

had previously been reported (de Campos Rasteiro et al., 2014), which is a higher 

concentration than tested in this study (8% (v/v)); difficulties in forming a stable 

suspension of the oil-medium using 1% (v/v) Tween 80 were encountered.  
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To investigate the potential use of the novel oral therapy developed in the current 

study as treatment for both oral candidiasis and periodontal diseases, 5 essential 

oils out of the 12 investigated against Candida were also evaluated against 

periodontal pathogens (two F. nucleatum strains, P. gingivalis and P. intermedia). 

It is well-known that the growth of anaerobic bacteria takes longer and is more 

challenging compared to that of aerobic bacteria or fungi. Hence, the oils tested 

were those that exhibited the highest antifungal potential against Candida. 

Comparing the MICs for Candida and periodontal pathogens, it can be observed 

that periodontal bacteria were less resistant to the treatments, with the 

concentrations needed to inhibit periodontal bacteria lower than those needed to 

inhibit Candida growth.  

Few studies focused on the antibacterial properties of the essential oils tested in 

the current project. Iauk et al. (2003) investigated the antibacterial potential of 

melissa and found MICs higher than 0.2% (v/v) against oral anaerobic pathogens. 

These values were greater than those observed in the current study that showed 

that concentrations of 0.05% (v/v) were sufficient to inhibit the growth of the 4 

strains tested. The MICs of peppermint, cinnamon and lavender were 

approximately 10 times lower than those reported by Shapiro et al. (1994), Bardaji 

et al. (2016) and Takarada et al. (2004). To the best of the author’s knowledge, 

the antibacterial properties of geranium essential oil against periodontal bacteria 

has not been previously evaluated, but this study showed an antibacterial 

potential at concentrations lower than 0.05% (v/v).  

 

The antimicrobial activity of essential oils against periodontal biofilms was not 

evaluated. The biofilm formation obtained in 96-well plates was not sufficient to 

apply the method described in Section 2.7.4. Coating of plates with saliva or more 
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sophisticated biofilm models, such as the constant depth film fermenter (CDFF), 

could be applied for this purpose (Walker and Sedlacek, 2007; Mcbain, 2009). In 

particular, the CDFF was originally developed to model dental plaque biofilms 

and allows the control of key parameters such as the nutrient source, the 

temperature, the gas mixture and the substratum (Wilson, 1999). 

 

The potential synergy between essential oils and biocides was evaluated on C. 

albicans with the checkerboard method (Section 2.7.5). The combinations tested 

were decided according to the composition of the essential oils and their MICs. 

Firstly, the oils that showed a greater antifungal activity were selected, secondly 

among these essential oils those with a different main composition were chosen. 

Indeed, it was supposed to be more probable to find a synergistic effect between 

compounds with a different composition than with a similar one. The 

checkerboard method showed that a synergistic activity was not present between 

the blends of essential oils and biocides. Despite the lack of synergy, there was 

an additive activity between some of the compounds with FICs ranging between 

0.6 and 1.72. In particular, some of the blends had a FIC of 0.6, close enough to 

the FIC of 0.5 necessary to claim a synergistic effect (Hsieh et al., 1993). This 

means that it was possible to achieve the same growth inhibition by blending two 

compounds at lower concentrations than the MICs of the single compounds. 

These results were in accordance with those reported by Horváth et al. (2016), 

who found an additive effect by blending essential oils. By contrast, several 

authors reported a synergistic effect when the essential oils were combined with 

antifungal agents such as fluconazole and amphotericin B (Zore et al., 2010; Zore 

et al., 2011; Cannas et al., 2013; Samber et al., 2015; Cardoso et al., 2016). In 

conclusion, even though a synergistic relationship between the essential oils and 
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the biocides was not found, the blends decreased the concentrations. Future 

work should focus on evaluating the FIC index of essential oils in combination 

with antifungal agents to possibly get a synergistic relationship that would 

decrease the use of commercial antifungals. 
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2.10 Conclusions 

This study showed that all twelve essential oils, two terpenes and two biocides 

(triclosan and CHX) had antifungal activity against C. albicans in planktonic form. 

Five compounds (CHX, E-cinnamaldehyde, linalool, geranium and melissa) were 

also active against biofilms, which are usually a challenge to effectively inhibit. 

The antifungal potential of these essential oils could be a future therapeutic for 

topical candidiasis as an option to overcome emerging antifungal drug resistance. 

In addition, the essential oils tested were also active against bacteria commonly 

associated with periodontal diseases in planktonic form, showing that they might 

be used not only against oral candidiasis but also as treatment for periodontal 

diseases.  

Although the checkerboard method did not show a synergistic effect in the blends 

of essential oils and CHX, an additive effect between the compounds decreased 

the concentrations needed to inhibit C. albicans growth. 



 
 

 

Chapter 3  
 

Evaluation of the cytotoxicity 

and immune response to 

antimicrobials  
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3.1 Introduction 

Management of oral candidiasis, most frequently caused by Candida albicans, is 

limited due to the relatively low number of antifungal drugs and the emergence of 

antifungal resistance (Williams and Lewis, 2011). For these reasons, an interest 

in the antimicrobial properties of essential oils and biocides has developed. In 

Chapter 2 a range of essential oils and biocides have been screened for 

antimicrobial properties. However, the evaluation of the host response to a 

treatment is a crucial step in the development of a new therapy. Both the 

cytotoxicity and the host inflammatory response need to be assessed.  

 

3.1.1 Evaluation of the cytotoxicity  

A range of different methods to evaluate the cytotoxicity is available. The 

following sections describe some commonly used methods and highlight their 

advantages and disadvantages. 

 

3.1.1.1 Dye exclusion method 

The dye exclusion method (e.g. Trypan blue exclusion method) is used to 

determine the number of viable cells in a suspension. This method is based on 

the differing permeability of cells to a dye: live cells are impermeable to the dye, 

while dead cells are stained. Like this, it is possible to count the number of viable 

cells. Despite being simple and cost effective, the dye exclusion method has 

some limitations. Firstly, the counting can be performed manually or 

automatically. In the former case, it is time-consuming and subject to operator 

error, while in the latter case expensive instruments are required. In addition, 

since the viability is assessed by cellular membrane integrity, it is possible to have 
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false positive or false negative results. Indeed, cells might be able to repair an 

abnormal membrane and become fully healthy or vice-versa, cells with an integral 

membrane might have their functions compromised (Posimo et al., 2014; Strober, 

2015). 

 

3.1.1.2 Metabolic assays 

Metabolic assays evaluate the cytotoxicity by investigating the cellular metabolic 

activity. Metabolic tests can target viable or dead cells.  

The viability assays include:  

 Tetrazolium reduction assay 

Tetrazolium reduction assays are based on the conversion of a substrate to a 

colour product. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) tetrazolium reduction assay was the first developed cell viability assay 

(Riss et al., 2013). MTT is a soluble salt that in the presence of nicotinamide 

adenine dinucleotide (NADH) is converted into purple formazan. Dead cells 

cannot convert the MTT into formazan. Hence, it is possible to correlate the 

purple colour to the number of metabolically active cells. In particular, the intensity 

of the colour is a function of the concentration of MTT, the time of incubation, the 

number of cells and their metabolic activity. The main disadvantages are the 

incubation time that introduces an additional step and cell handling, and 

importantly the toxicity of the MTT. In addition, being a metabolic assay, the 

intensity of the purple does not always correlate linearly with the cell numbers. 

Indeed, when cells are in the growth phase they are metabolically active but when 

they reach the stationary phase the metabolism slows down and decreases the 

conversion into formazan (Riss et al., 2003; Fotakis and Timbrell, 2006; Riss et 

al., 2013).  
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 Resazurin reduction assay  

Resazurin is a permeable redox indicator that is reduced by viable cells into 

resorufin. Resorufin is pink coloured and fluoresces red. Therefore, it is possible 

to correlate the fluorescence to metabolically active cells. The main advantages 

are the higher sensitivity compared to the MTT assay and the low costs 

associated with it. However, resazurin is toxic, and cells have to be incubated 

between 1 to 4 hours. In addition, the fluorescent signal can interfere with the 

compound tested (Riss et al., 2003; Riss et al., 2013). 

 

 Protease viability marker assay  

The viability of cells can be investigated from the activity of the proteases that are 

specific to viable cells. Therefore, when a fluorogenic protease substrate 

penetrates into the membrane, a fluorescent signal proportional to the viable cells 

is generated. The main advantages of this assay are the short incubation time 

(0.5 to 1 hour) and the absence of cytotoxicity that allows usage in combination 

with other metabolic tests (Riss et al., 2013). 

 

 Adenosine triphosphate (ATP) assay 

Dead cells lose the ability to produce ATP. Therefore, it is possible to evaluate 

the cell viability by measuring the content of ATP. In this assay, cells are lysed to 

release the ATP, and ATP reacts with a luciferin substrate by generating light. 

Therefore, by measuring the luminescence, it is possible to assess the number 

of viable cells. The main advantages are the high sensitivity, the absence of 

interference with the compound tested and the short incubation time. The main 

drawback is the high cost associated with this particular assay (Riss et al., 2013). 
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Table 3.1 summarises the main characteristics of some commercially available 

viability assays. 

 
Table 3.1 - Comparison of some commercially available cell viability assays  

Metabolic 
assay 

Parameter 
measured 

Detection 
method 

Incubation 
time 

Advantages 
 

Disadvantages 
 

MTT Tetrazolium Colorimetric 
1 to 4 
hours 

Easy 
Cost effective 

Toxic 
Long 

incubation 

AlamarBlue Resauzurin 
Fluorometric 
Colorimetric 

1 to 4 
hours 

Easy 
Cost effective 
More sensitive 

Interferences 
Toxic 
Long 

incubation 

CellTiter-
Fluor 

Protease Fluorometric 
0.5 to 1 

hour 

Non-toxic 
Short 

incubation 
Expensive 

CellTiter-
Glo 

ATP Bioluminescent 
10 

minutes 

Most sensitive 
No artefacts 

Fastest 
 

Most 
expensive 

 

Cytotoxicity assays evaluate the number of dead cells or the mechanisms of 

death. Cytotoxicity assays include:  

 Lactate dehydrogenase (LDH) assay 

The damaged membranes of dead cells cause the leaching of LDH. In the LDH 

colorimetric assay, LDH produces NADH that converts iodonitrotetrazolium (INT) 

into formazan (a red colour). In the LDH fluorometric assay, the NADH converts 

the resazurin into a fluorescent compound named resorufin. For both assays, the 

LDH quantified in the medium can be related to the number of dead cells. The 

main advantages of this assay are the reproducibility and the simplicity (Riss et 

al., 2003; Fotakis and Timbrell, 2006) 
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 Caspase assay 

Caspase is an enzyme activated during apoptosis. When the enzyme cleaves a 

fluorogenic substrate, a fluorescent signal is produced and can be correlated to 

the number of apoptotic cells. The caspase assay can be used in combination 

with metabolic assays to investigate if the mechanism that causes a decreased 

metabolic activity is due to necrosis or apoptosis (Riss et al., 2003).  

 

3.1.2 Immune response to Candida infection 

Once the relationship with Candida switches from a commensal to a pathogenic 

form, the host responds with a series of mechanisms to protect itself from the 

infection. The host immune response is characterised by two phases: an acute 

response and a specific response, driven by the innate and adaptive immune 

system (Deorukhkar, 2017).  

The innate immunity is the first line of defence against any invasion of the human 

body and comprises of a set of physical barriers (e.g. the epithelium and the skin), 

production of non-specific antimicrobial factors (e.g. histatin, calprotectin and 

lactoferrin), secretion of cytokines and chemokines that inhibit Candida growth 

and the presence of phagocytic cells (Antachopoulos and Roilides, 2005; Kiyoura 

and Tamai, 2015).  

C. albicans cell wall is composed of an outer layer of mannoproteins, an inner 

layer of -1,3 and -1,6-glucans and an innermost layer of chitin (Qin et al., 2016). 

Receptors present on the host cell membrane, named pattern recognition 

receptors (PRRs), are able to recognise microbial patterns, named pathogen-

associated molecular patterns (PAMPs), and initiate the immune response. 

Pattern recognition receptors (PRRs) include Toll-like receptors (TLRs) (e.g. 
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TLR1, TLR2, TL4, TLR6) and C-type lectin receptors (CLRs) (e.g. dectin-1, 

dectin-2, dectin-3) that through different pathways produce cytokines and 

chemokines (Qin et al., 2016) (Figure 3.1). 

The recognition of C. albicans leads to the recruitment of phagocytic cells. 

Polymorphonuclear neutrophils (PMNs) are the main phagocytic cell of the innate 

immune system and are activated by several cytokines (e.g. IL-6, IL-8, IL-17, and 

TNF). Polymorphonuclear neutrophils internalise and inactivate C. albicans by 

the production of reactive oxygen species (ROS) and lysosomal enzymes (Qin et 

al., 2016). In addition, PMNs recruit monocytes that differentiate into 

macrophages and continue the immune response. Besides phagocytosis, 

monocytes produce immune-regulatory cytokines, such as IL-10 and IL-12, that 

are crucial to the development of an adaptive immune response (Xiong et al., 

2000).  
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Figure 3.1- Simplified representation of the innate immune response after Candida 

infection. Once Candida is recognised by cell receptors, chemokines and cytokines are 

released and phagocytic cells activated 

 

Dendritic cells are part of the innate immunity and play a crucial role in the 

activation of the adaptive immune response. Pattern recognition receptors 

present on the membrane of dendritic cells recognise C. albicans and orchestrate 

phagocytosis (Patin et al., 2018). After phagocytosis, fungal peptide antigens are 

exposed to the surface of dendritic cells and are recognised by T-cells (Qin et al., 

2016). Activated T-cells generate a T-helper response according to the cytokines 

present in the environment that can be protective (Th1 and Th17), non-protective 

(Th2) or regulative (Treg) (Richardson and Moyes, 2015) (Figure 3.2). Th1 

phenotype is mainly associated with the secretion of interferon IFN and IL-12, 

while Th17 is characterised by the presence of IL-1, IL-6, IL-23 and TGF (Table 
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3.2). These protective responses lead to macrophage activation, neutrophil 

migration, generation of cytotoxic CD4+ T-cells, and production of opsonising 

antibodies (Antachopoulos and Roilides, 2005; Conti et al., 2009; Gozalbo et al., 

2014). Whereas, Th2 downregulates the inflammatory response and is 

characterised by the presence of IL-4 and IL-10, that inhibit the production of 

interferon IFN and IL-12 (Xiong et al., 2000). Treg regulates the inflammatory 

response by secreting TGF, crucial for Th17, or by inhibiting the function of 

dendritic cell and Th1 cells (Josefowicz et al., 2012; Shachar and Karin, 2013; 

Rogers et al., 2103).  

 

 
 

Figure 3.2 - Simplified representation of the adaptive T-cell response to Candida 
infection. Fungal antigens are recognised by T-cells. According to the cytokines 

present in the environment, T-cells generate an immune response that can protect the 
host from invasion or promote infection   
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Table 3.2 summarises the main functions of some cytokines involved in the 

immune response. 

 
Table 3.2 - Main functions of some cytokines involved in the immune response 

 Main functions References 

IL-1 

- Induction of Th17 

- Induction of pro-inflammatory cytokines 

- Regulation of cell proliferation, differentiation, 
and function of many innate and specific 

immunocompetent cells 

(Akdis et al., 
2011; Akdis et 

al., 2016) 

IL-6 

- Promotion of Th17 response 

- Promotion of T-cell proliferation 

- Promotion of neutrophil migration and leukocyte 
activation 

(Dongari-

Bagtzoglou et 

al., 1999; Akdis 

et al., 2016) 

IL-10 

- Affection of dendritic cells 

- Inhibition of IL-12 and IFN 

- Inhibition of macrophage and monocyte 

activation 

- Inhibition of pro-inflammatory cytokines and 

chemokines 

(Shachar and 

Karin, 2013; 

Akdis et al., 

2016) 

IL-12 
- Induction of IFN and Th1 

- Promotion of cytolytic activity of NK cells 
- Promotion of activity of macrophages 

(Akdis et al., 
2011; Akdis et 

al., 2016) 

IL-18 

- Induction of IFN 

- Promotion of Th1 or Th2 

- Recruitment of phagocytes 

(Akdis et al., 
2016; Qin et al., 

2016) 

IL-23 

- Induction of Th17 

- Enhancement of T-cell proliferation 

- Regulation of antibody production 

(Akdis et al., 
2016) 

TNF 

- Induction of a strong inflammatory response (e.g. 

migration of neutrophils and leukocytes, 

production of ROS) 

- Control of the extent and duration of the 
inflammatory processes 

(Akdis et al., 
2016) 
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3.2 Aims and objectives 

A crucial step in the development of a new treatment is the assessment of the 

host response to that particular treatment and/or intervention. Therefore, the aim 

of this chapter is to evaluate both the cytotoxicity and inflammatory response to 

some of the essential oils outlined in Chapter 2.  

The specific objectives are: 

a) To assess the cytotoxicity on mouse fibroblasts of some essential oils that 

showed the best antifungal activity against C. albicans (i.e. lowest MICs and 

MBECs), E-cinnamaldehyde and chlorhexidine (as discussed in Chapter 2) 

b) To evaluate the immune response using human blood cells with and without 

Melissa officinalis (the best essential oil in terms of antifungal activity and 

cytotoxicity). 

c) To evaluate the immune response using human blood cells infected with C. 

albicans with and without Melissa officinalis 
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3.3 Materials and methods 

3.3.1 Half maximal inhibitory concentration on mouse fibroblasts  

Mouse fibroblasts NIH 3T3 (Sigma-Aldrich, Gillingham, UK) were cultured in 

dulbecco modified eagle medium (DMEM) (Sigma-Aldrich, Gillingham, UK) 

supplemented with 10% (v/v) fetal bovine serum (FBS) (Gibco, Paisley, UK), 1% 

(v/v) penicillin/streptomycin (Sigma-Aldrich, Gillingham, UK) and 1% (v/v) L-

glutamine (Sigma-Aldrich, Gillingham, UK).  

Serial double dilutions of commercial essential oils, E-cinnamaldehyde and 

chlorhexidine were prepared in the fibroblast culture medium at final 

concentrations ranging from 0.007% to 0.25% (v/v) for the commercial essential 

oils and the terpene, and from 3 × 10-4 % (v/v) to 0.04% (v/v) for chlorhexidine. 

Fibroblasts were harvested using trypsin EDTA (EDTA 0.25% (w/v), Trypsin 0.53 

mM; Thermo Fisher Scientific, Hemel Hempstead, UK) and diluted to a density of 

5 × 105 cells/ml. One hundred microlitres (100 µl) of the cell suspension was used 

to inoculate a 96-well plate (5 × 104 cells per well) which was then incubated at 

37 °C and 5% CO2 for 1.5 hours. After the incubation step, a 100 µl volume of the 

antimicrobial was added. After 1 and 24 hours, the medium was removed, and 

the cells were washed twice with 100 µl of PBS. Three hundred µl (300 µl) of 

DMEM containing 10% (v/v) of AlamarBlue (AlamarBlue Cell Viability Reagent, 

Invitrogen) were added to each well and the plate was incubated for 1.5 hours at 

37 °C and 5% CO2. The fluorescence was read with a Synergy HT plate reader 

(BioTek® Instruments, Winooski, VT, USA) with excitation and emission 

wavelengths of 545 nm and 590 nm, respectively. The half maximal inhibitory 

concentration (IC50) was defined as the antimicrobial concentration that inhibited 

50% cell proliferation compared to the control (i.e. DMEM without antimicrobial 

agent). Each condition was studied in triplicates and on three separate occasions.  
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In addition, the morphology of cells in the presence of the essential oils, E-

cinnamaldehyde, and chlorhexidine was analysed by microscopy (Leica Live cell 

imaging 6000, Heidelberg, Germany) 

 

3.3.2 Inflammatory response to Melissa officinalis essential oil  

3.3.2.1 Preparation of Melissa officinalis essential oil, chlorhexidine and 

zymosan  

Double serial dilutions of Melissa officinalis essential oil (Essential Oils Direct 

Ltd., Oldham, UK) from 1.5% (v/v) to 12% (v/v) were prepared in PBS. A 0.5% 

(v/v) chlorhexidine digluconate (Sigma-Aldrich, Gillingham, UK) solution was 

prepared in PBS. A stock solution of 100 µg/ml zymosan (Sigma-Aldrich, 

Gillingham, UK) was prepared in PBS. 

 

3.3.2.2 Candida albicans 

Candida albicans 135BM2/94, a clinical strain from the School of Dentistry 

(Cardiff University), was subcultured onto Sabouraud dextrose agar (SDA) 

(CM0041 Oxoid) and incubated at 37 °C under aerobic conditions overnight. After 

successful growth on SDA plates, a colony of C. albicans was inoculated in 20 

ml of SDB and incubated overnight at 37 °C in an aerobic chamber under shaking 

conditions at 200 rpm. The overnight culture was prepared in SDB culture 

medium at 2 × 106 CFU/ml and used for further experiments. 

 

3.3.2.3 Ex vivo model of whole blood 

Blood was collected from 3 healthy volunteers on the day of the experiment. 

Ethical approval and informed written consent was previously obtained from 
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healthy volunteers attending Swansea University (UK), College of Medicine. The 

following experiments were undertaken at Swansea University, adapting a 

method described by Al-ishaq et al. (2015).  

Five hundred microlitres (500 µl) of blood were added to a 24-well plate. Blood 

was infected with 5 µl of 2 × 106 CFU/ml C. albicans, equivalent to a final 

concentration of 104 CFU/ml in each well. Following, blood was treated with 5 µl 

Melissa officinalis essential oil at a range of concentrations from 0.015% (v/v) to 

0.12% (v/v), or 5 µl CHX, equivalent to a CHX concentration of 0.005% (v/v). The 

24-well plates were incubated for 2 and 4 hours at 37 °C under shaking at 200 

rpm.  

After incubation, whole blood was collected in an Eppendorf tube and centrifuged 

for 5 minutes at 8000 rpm at 4 °C (Eppendorf 5415R, Eppendorf UK Limited, 

Stevenage, UK). Following the centrifugation step, serum was collected and 

stored at -20 °C for further analysis.  

Controls included untreated and uninfected blood, treated and uninfected blood, 

untreated and infected blood and blood cultured in the presence of 5 µl of PBS 

and/or SDB. Zymosan (1 µg/ml), a polysaccharide prepared from the cell wall of 

Saccharomyces cerevisiae, was used as a positive control for the host immune 

response to C. albicans. Each experiment was run in triplicate.  

Controls on healthy donors included serum isolated on the day of the experiment 

and immediately centrifuged for 10 minutes at 3000 rpm (Eppendorf 5810R, 

Eppendorf UK Limited, Stevenage, UK) and stored at -20 °C. 
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3.3.2.4 ELISA 

Duoset ELISAs (R&D systems, Abingdon, UK) for human IL-6 and IL-10 were 

carried out according to the manufacturers’ instructions. Healthy volunteer’s 

sera were diluted 1:10 in PBS. Each condition was run in duplicate. 

 

3.3.3 Statistical analysis 

Statistical analysis was performed using GraphPad Prism Version 7.0 (GraphPad 

Software, La Jolla, CA, USA). All the data were presented as arithmetic mean ± 

SEM. The difference between treatments was statistically analysed using the 

one-way analysis of variance (ANOVA) followed by Tukey multiple comparisons 

test. Statistically significant differences were set at p < 0.05. 
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3.4 Results 

3.4.1 Half maximal inhibitory concentration  

The half maximal inhibitory concentration (IC50) of CHX, cinnamon, E-

cinnamaldehyde, geranium and melissa on fibroblast proliferation after a 1 hour 

and 24 hour exposure was determined (Figure 3.3 and Table 3.3). The highest 

cytotoxicity occurred with E-cinnamaldehyde, followed by geranium (p < 0.0001), 

which halved proliferation even at the lowest concentration tested. Indeed, a 

concentration of 0.003% (v/v) E-cinnamaldehyde and 0.01% (v/v) geranium 

inhibited 50% of cell proliferation (Table 3.3). Melissa was the least cytotoxic 

commercial essential oil, halving proliferation at 0.03% (v/v) (p < 0.0001). A 1 

hour exposure of fibroblasts to cinnamon resulted in similar cytotoxicity as 

melissa, but prolonged exposure led to higher cytotoxicity (p < 0.0001). A 1 hour 

application of CHX was cytotoxic only at the highest concentration tested (IC50 

of 0.01% (v/v)) which was higher than the MIC, while a 24 hour exposure at 7 × 

10−4 % (v/v) was sufficient to halve fibroblast proliferation. 
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Figure 3.3 - Cytotoxicity of selected antimicrobials against murine fibroblasts. 

Fibroblast numbers (normalised by the control (0% (v/v) antimicrobial)) after a 1 hour 

(black) and 24 hour application (green) of cinnamon (A), geranium (B), melissa (C), E-

cinnamaldehyde (D) and chlorhexidine (E). Data represent the mean of three 

independent experiments, each performed in triplicate 
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Table 3.3 - Half maximal inhibitory concentration (IC50) against fibroblasts after 1 hour 

and 24 hour application of the antimicrobial 

 Half maximal inhibitory concentration [% (v/v)] [g/l] 

Antimicrobial 1 hour 24 hours 

Cinnamon 0.03 (0.36) 0.01 (0.11) 

Geranium 0.01 (0.08) 0.01 (0.07) 

Melissa 0.03 (0.3) 0.03 (0.3) 

E-cinnamaldehyde 0.003 (0.03) 0.002 (0.02) 

CHX 0.01 (0.15) 7.32  10-4 (0.008) 
 

Half maximal inhibitory concentration (IC50) defined as the antimicrobial concentration 
that inhibits 50% of cell proliferation compared to controls without agent. Values are 

given in percentages and g/l in brackets. 
 

Figure 3.4 shows the morphology of mouse fibroblasts cultured in the presence 

of essential oils (Figure 3.4-A/C), E-cinnamaldehyde (Figure 3.4-D), and CHX 

(Figure 3.4-E) for 1 hour. As can be observed, by increasing the concentrations 

of the essential oils and terpene, the formation of round shaped cells increased. 

By contrast, cells cultured in the presence of 0.1% (v/v) CHX still showed the 

spindle shape, which is typical of healthy fibroblasts, as can be observed from 

the control.  
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Cinnamon (A) 
 

      
 

      
 

      
  

0% (v/v) 0.003% (v/v) 

0.007% (v/v) 0.015% (v/v) 

0.031% (v/v) 0.062% (v/v) 
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Geranium (B) 
 

      
 

      
 

      
 
 
 

  

0% (v/v) 0.003% (v/v) 

0.007% (v/v) 0.015% (v/v) 

0.031% (v/v) 0.062% (v/v) 
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Melissa (C) 
 

      
 

      
 

      
  

0% (v/v) 0.003% (v/v) 

0.007% (v/v) 0.015% (v/v) 

0.031% (v/v) 0.062% (v/v) 
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E-cinnamaldehyde (D)  
 

      
 

      
 

      
 
  

0% (v/v) 0.003% (v/v) 

0.007% (v/v) 0.015% (v/v) 

0.031% (v/v) 0.062% (v/v) 
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Chlorhexidine (E)  
 

      
 

      
 

      
  

0% (v/v) 0.0001% (v/v) 

0.0003% (v/v) 0.0006% (v/v) 

0.0013% (v/v) 0.0025% (v/v) 
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Chlorhexidine (E)  
 

      
 

 
  

Figure 3.4 - Mouse fibroblasts cultured for 1 hour in the presence of different 

concentrations of cinnamon (A), geranium (B), melissa (C), E-cinnamaldehyde (D) and 

chlorhexidine (E). Scale bar = 100 µm 

 
  

0.005% (v/v) 0.01% (v/v) 

0.02% (v/v) 
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3.4.2 Inflammatory response of whole blood  

The inflammatory response to C. albicans infection and Melissa officinalis 

essential oil was evaluated on human whole blood. Blood was obtained by three 

healthy donors and two cytokines were targeted: IL-6, a pro-inflammatory marker, 

and IL-10, an anti-inflammatory interleukin.  

Concerning the production of IL-6, it was observed that 2 out of 3 donors did not 

show an inflammatory response. Indeed, the production of IL-6 was not 

detectable with C. albicans and/or Melissa officinalis but it was only trackable 

when the whole blood was cultured in the presence of the positive control 

(zymosan) (Figure 3.5-C/D/E/F).  

Concerning the inflammatory response of “Donor 1”, when the blood was infected 

for 2 and 4 hours with C. albicans, there was not a significant pro-inflammatory 

response (Figure 3.5-A/B). In particular, after 4 hours the inflammatory response 

decreased and a significant production of IL-10 was observed (Figure 3.6-B). 

Similarly, a 4 hour addition of Melissa officinalis showed an anti-inflammatory 

response by decreasing the production of IL-6 (Figure 3.5-B).  

When the whole blood was both infected with C. albicans and treated with the 

essential oil, a significant pro-inflammatory response was observed compared to 

the control (Figure 3.5-B). Concerning the effect of CHX, a significantly higher 

production of IL-6 compared to Melissa officinalis was observed after 4 hours, 

while a significant decrease in IL-6 was observed when CHX was combined with 

Candida (Figure 3.5-B). When CHX was applied for 2 hours, no differences were 

detected in the production of IL-10 compared to Melissa officinalis (Figure 3.6-A). 

Concerning the anti-inflammatory response of “Donor 2” and “Donor 3”, IL-10 of 

“Donor 3” was not detectable. The anti-inflammatory response of “Donor 2” is 

outlined in Figure 3.6-C/D. Infection with Candida caused a significant production
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of IL-10 (Fig. 3.6-A/B). 
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Figure 3.5 – Production of IL-6 from whole blood cultured for 2 and 4 hours in the presence 

of 0.01% Melissa officinalis, 0.1% Melissa officinalis and 0.005% CHX with or without C. 

albicans. Control included untreated and uninfected blood and zymosan. A1 and B1) IL-6 

from “Donor 1” plotted without Zymosan.  

Data represent the mean of three independent experiments, each performed in duplicate. 

* equivalent to p< 0.05, ** equivalent to p< 0.01, *** equivalent to p< 0.001, **** equivalent 

to p< 0.0001  
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Figure 3.6 - Production of IL-10 from whole blood cultured for 2 and 4 hours in the presence 

of 0.01% Melissa officinalis, 0.1% Melissa officinalis and 0.005% CHX with or without C. 

albicans. Control included untreated and uninfected blood, and zymosan.  

Data represent the mean of three independent experiments, each performed in duplicate. 

* equivalent to p< 0.05, ** equivalent to p< 0.01, *** equivalent to p< 0.001, **** equivalent 

to p< 0.0001
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3.5 Discussion 

Essential oils have been used for centuries in traditional medicine. Antimicrobial, 

anti-aseptic, anti-inflammation and anti-oxidant activity of essential oils is well 

known (Nazzaro et al., 2013), but limited knowledge exists regarding their 

cytotoxicity. 

The screening of the cytotoxicity of essential oils was performed against mouse 

fibroblasts. Essential oils that showed the best antifungal activity against C. 

albicans (cinnamon, geranium and melissa) and the best terpene (E-

cinnamaldehyde) were selected (see Chapter 2). In addition, chlorhexidine was 

used as control. Few studies have investigated the cytotoxic effects of these oils. 

Cytotoxicity of CHX, cinnamon, E-cinnamaldehyde, geranium and melissa oils 

was a dose- and time-dependent. Overall, the commercial essential oils halved 

fibroblast proliferation at concentrations lower than their MICs. The IC50 values 

for E-cinnamaldehyde, geranium and cinnamon oils were actually 10-fold lower 

than their MIC, while melissa oil had an MIC80 of 0.06% (v/v) and an IC50 of 

0.03% (v/v). Although a different assay and cell type was used, the melissa oil 

results (IC50 0.3 g/L) were in accordance with those of Paul et al. (2013), who 

did not see a significant change in leukocytes viability after 3 hour treatment with 

150 µg/ml melissa oil. Several studies have used E-cinnamaldehyde to inhibit 

proliferation of cancer cells and reported IC50s ranging from 45.8 to 129.4 mM 

(Ka et al., 2003), higher concentrations than those obtained in this study with 

fibroblasts (0.16–0.26 mM). Barros et al. (2016) found that at concentrations 

lower than those evaluated in this study (5 µg/ml), Cinnamomum zeylanicum oil 

had cytotoxicity towards erythrocytes. A 1 hour exposure of fibroblasts to CHX 

(0.01% (v/v)) halved cell proliferation compared to controls. However, this 
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concentration was lower than the MICs (2.5 × 10−3 % (v/v) and 5 × 10−3 % (v/v)) 

found in the current study. This finding was similar to the cytotoxic effect of CHX 

previously reported using macrophages and human alveolar bone cells (Cabral 

and Fernandes, 2007; Li et al., 2012).  

 

In conclusion, the results of the cytotoxic screening combined with the antifungal 

activity showed that the essential oil with the lowest cytotoxicity and the best 

antimicrobial properties was melissa essential oil. Therefore, melissa (Melissa 

officinalis) was used for further experiments.  

 

The pro and anti-inflammatory host response to Melissa officinalis essential oil 

was evaluated on human blood cells harvested from three healthy individuals. 

The whole blood model was developed by Al-ishaq et al. (2015) to investigate the 

role of polysaccharide intercellular adhesin (PIA) in prosthetic joint infection (PJI). 

The ex vivo model of human whole blood allowed to better mimic the in vivo 

conditions. However, the use of human blood led to a high variability according 

to the donors and their general health (e.g. maybe one of the donors had a cold). 

Importantly 2 out of 3 donors did not show a significant pro-inflammatory 

response, except for the culture of whole blood with zymosan. Zymosan has been 

widely used to generate an immune response (e.g. stimulation of the production 

of cytokines and chemokines, and of the mechanisms of phagocytosis) 

(Underhill, 2003; Nohmi et al., 2015).  

Concerning the anti-inflammatory response of “Donor 2”, even when the IL-10 

production was detectable, the levels were not within the range of the standard 

curve, which was prepared according to the manufacturer’s protocol. 

Consequently, the results were shown but due to the low expression, they are 
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not discussed in more details. The low values could be due to the volunteer’s 

sera being diluted too much, maybe a 1:3 dilution would be more sensitive and 

should be considered for future experiments. 

“Donor 1” showed both a pro and anti-inflammatory response to the infection and 

treatment. IL-6 is a pro-inflammatory cytokine that it is commonly associated with 

C. albicans infection and with the Th17 cell-mediated response. Several studies 

reported a high expression of IL-6 in vitro, ex vivo, and in vivo in the presence of 

Candida (Steinshamn and Waage, 1992; Dongari-Bagtzoglou et al., 1999; Xiong 

et al., 2000; Kim et al., 2005). In general, an increased IL-6 production over time 

was detected, and Mostefaoui et al. (2004) reported no significant difference in 

comparison with the control after a 2 hour infection. This was in accordance with 

the kinetic release of IL-6 found in this study. However, after 4 hours a decrease 

in the IL-6 production was observed. The decrease of IL-6 was concomitant with 

an IL-10 increase. IL-10 is an anti-inflammatory cytokine that inhibits the 

production of IL-12 and the formation of Th1 cells, promoting a Th2 response that 

inhibits the activity of macrophages. IL-10 is one of the mechanisms used by C. 

albicans to evade the immune system (Xiong et al., 2000; Netea et al., 2004; Luo 

et al., 2013).  

The addition of Melissa officinalis essential oil to the whole blood did not cause a 

significant immune response, except at a 4 hour treatment with 0.1% (v/v) that 

led to an anti-inflammatory response. Bounihi et al. (2013) showed that Melissa 

officinalis had an anti-inflammatory activity by inhibiting or decreasing oedema in 

rats. To the best of the author’s knowledge, no data on the in vitro anti-

inflammatory activity of Melissa officinalis are available. In any case, essential 

oils that have some of the main compounds in common with Melissa officinalis 

(e.g. citral, geraniol and citronellol) showed inhibition of IL-1 and IL-6 in mouse 
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macrophages stimulated with LPS, and suppression of the adherence reaction of 

neutrophils induced by TNF (Abe et al., 2003; Sforcin et al., 2009).  

When Melissa officinalis essential oil and Candida were added to the whole blood 

for 4 hours, the capacity of evading the immune system of Candida seemed to 

fail and a pro-inflammatory response was observed. 

Chlorhexidine, a biocide commonly found in oral products, was used as a control. 

It was observed that chlorhexidine did not cause an immune response. Indeed, 

no significant differences were noticed with the untreated blood. This was in 

contrast with the anti-inflammatory properties that were reported in other studies, 

such as the inhibition of the production of IL-6 or the prevention of neutrophil 

inactivation (Montecucco et al., 2009; Vitt et al., 2017).  
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3.6 Conclusion 

Cytotoxicity screening revealed that the commercial essential oils halved 

fibroblast proliferation at concentrations lower than those required to inhibit C. 

albicans growth. In particular, Melissa officinalis was the essential oil that 

exhibited the lowest cytotoxicity and best antimicrobial properties. The evaluation 

of the inflammatory response to Melissa officinalis on whole blood highlighted 

that the essential oil had an anti-inflammatory potential and inhibited the immune 

system’s evasion of C. albicans.  

Further investigation of the inflammatory response on the ex vivo whole blood 

model should be performed to increase the number of donors and expectantly 

decrease the variability in the response.  

In general, even if these results showed that commercial essential oils were 

cytotoxic, it should be taken into account that cytotoxicity was conducted in a 2D-

culture, which is notably different from in vivo conditions. Further investigation on 

mammalian cells could be performed in 3D-culture or ex/in vivo models to better 

mimic the biological structure of the tissues. In addition, the potential use of the 

essential oils in synergy with antifungals, as discussed in Chapter 2, would allow 

decreasing the concentrations needed to kill C. albicans, avoiding the cytotoxic 

effect.  

 



 

 

Chapter 4  
 

Development of a 

methylcellulose hydrogel 

with Melissa officinalis 

essential oil 
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4.1 Introduction 

4.1.1 Hydrogels 

Hydrogels are 3D-networks obtained from natural and/or synthetic polymers that 

once crosslinked form an insoluble structure (Slaughter et al., 2009). The 

peculiarity of hydrogels is their ability to absorb and retain a significant amount of 

water without dissolving. Swollen hydrogels have some properties in common 

with living tissues (e.g. consistency, low interfacial tension, water content) and 

are biocompatible (Bhattarai et al., 2010). Therefore, they have been widely used 

in tissue and regenerative medicine, mainly as drug and/or cell delivery systems 

and as pre-formed or injectable cell scaffolds (Slaughter et al., 2009).  

According to the gelation process, they can be classified into physical and 

chemical hydrogels. Chemical hydrogels are formed by covalent bonds between 

the polymeric chains that result in strong and stable gels. Chemical crosslinking 

can be obtained by crosslinking with aldehydes or enzymes, by free radical 

polymerisation, by condensation or addition reactions, and by high energy 

radiation (e.g. gamma rays and electron beams) (Akhtar et al., 2016).  

Physical hydrogels are characterised by physical interactions, such as hydrogen 

bonds, ionic interactions, hydrophobic association and entangled chains (Maitra 

and Shukla, 2014). Among the different types of hydrogels, it is worth mentioning 

the stimuli-responsive ones. These hydrogels gellify after the application of an 

external stimulus (e.g. temperature, pH, electric field and light) (Gulrez et al., 

2011). In particular, the thermosensitive gels can crosslink at body temperature, 

allowing their injection at room temperature and the gelation in situ. 
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4.1.1.1 Methylcellulose hydrogel 

Methylcellulose is a cellulose ether obtained by the substitution of the hydroxyls 

group (-OH) at C2, C3 and/or C6 of anhydro-D-glucose with a methyl group (-

CH3) (Figure 4.1) 

 

 

Figure 4.1 - Repetitive unit of methylcellulose 

 

Methylcellulose is water-soluble and forms thermosensitive hydrogels. The 

gelation process is characterised by two phases: the hydrophobic interactions 

between the methylated zone form a “clear loose gel” at relatively low 

temperatures, while further increasing the temperature the phase separation 

leads to the formation of a “turbid strong gel” (Figure 4.2).  

 

 
 

Figure 4.2 - Schematic representation of the gelation process of methylcellulose. At low 

temperatures, hydrophobic forces develop between the hydrophobic units of 

methylcellulose. By increasing the temperature, the “turbid strong gel” forms with 

hydrophobic junctions characterised by hydrophobic association and a constant mean 

length (Me) between two junctions. Figure adapted from Li et al. (2001)  
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The gelation process of methylcellulose can be investigated by evaluating the 

storage (G’) and loss (G’’) modulus at different temperatures (see Section 

4.1.2.1). At low temperatures, the storage modulus crosses the loss modulus and 

the gel is formed. However, by further increasing the temperature, the storage 

modulus reaches a plateau and a stronger gel is obtained (Figure 4.3).  

 
Figure 4.3 - Temperature dependence of dynamic viscoelasticity for methylcellulose 

(10 g/l) in aqueous solution. Constant frequency of 0.5 Hz, strain 1%, and temperature 

rate of 0.5°C/min. ■, □ on heating; ▲, △ on cooling. G′, solid symbols, and G″, open 

symbols (Nasatto et al., 2015a)  

 

In general, the rheological properties of methylcellulose (e.g. gelation time) can 

be tailored by changing the polymer concentration, the molecular weight and by 

using additives such as salts, alcohols and surfactants (Nasatto et al., 2015a).  

 

4.1.1.2 Applications and antifungal activity of methylcellulose hydrogels 

Methylcellulose is widely used in food packaging. Formulations of methylcellulose 

films containing essential oils have been developed. Campos et al. (2014) 

synthesised methylcellulose films containing Ginja cherry extract and evaluated 

the antimicrobial properties by using a zone inhibition method and time-kill assay, 
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observing the inhibition of a range of Gram-positive and Gram-negative 

organisms. Similarly, Ashman et al. (2011) developed a methylcellulose film 

containing olive leaf extract, while Otoni et al. (2014) investigated the potential of 

a methylcellulose film loaded with clove bud (Syzygium aromaticum) and oregano 

(Origanum vulgare) essential oil. 

Concerning the use of methylcellulose as a drug delivery system, methylcellulose 

is a bioadhesive polymer that shows adhesion to mucosal surfaces (Klouda, 

2015). This characteristic prolongs the retention of the drug delivery system at 

the site (Gafitanu et al., 2017). Formulations of methylcellulose hydrogel 

containing silver oxide nanoparticles (Kim et al., 2018) and of hydroxypropyl 

methylcellulose hydrogel loaded with fluconazole (Gafitanu et al., 2017) have 

been successfully synthesised as treatment for burn wound healing and vaginal 

fungal infection, respectively.  

Kong et al. (2016) developed a hydroxypropyl methylcellulose hydrogel for use 

against oral candidiasis. A 4% (w/w) hydroxypropyl methylcellulose hydrogel was 

formulated with 2 mg/ml of Histatin-5, a peptide with antimicrobial properties. The 

authors tested the antifungal activity of the hydrogel against C. albicans standard 

strain SC5314, observing Histatin-5 release from the hydrogel within 2 hours and 

a significant decrease in CFU/ml compared to the control (i.e. hydroxypropyl 

methylcellulose hydrogel without antimicrobial). In addition, the novel formulation 

was tested in vivo. The tongues of mice were infected with C. albicans and the 

hydrogel was applied for 1 hour. Untreated mice developed oral candidiasis with 

tissue damage and C. albicans was recovered from the site. By contrast, most of 

the mice treated with the hydrogel showed less fungal adherence, hyphal 

penetration and tissue damage (Kong et al., 2016).  
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4.1.2 Rheology  

Rheology is the study of the deformation and flow of matter (Barnes et al., 1989). 

Elastic solid materials are materials in which a linear relationship between the 

shear stress and strain exists. When a constant shear stress is applied, an 

immediate and constant deformation is observed. Since there is no energy 

dissipation, once the shear stress is removed the material goes back to its original 

shape. The elastic behaviour can be described by Hooke’s law (4.1):  

  

𝜎 = 𝐸 ∗  𝜀 (4.1) 

 

where 𝜎 is the shear stress applied, 𝜀 the deformation and 𝐸 the Young’s 

modulus, representative of the material stiffness (Schramm, 1998; Morton and 

Hearle, 2008; Murata, 2012).  

Newtonian fluids are fluids in which a linear relationship between the shear stress 

and shear rate exists. Once the shear stress is removed, the material does not 

return to its original shape because all the energy applied is dissipated by friction 

during the deformation. The behaviour of ideal fluids is described by Newton’s 

law (4.2):   

 

𝜎 = 𝜂 ∗ �̇� (4.2) 

 

where 𝜎 is the shear stress applied, �̇� the shear rate and 𝜂 the viscosity, 

representative of the material flow resistance (Schramm, 1998; Morton and 

Hearle, 2008; Murata, 2012).  

In fact, materials do not show a viscous or elastic behaviour but a combination of 

both, named viscoelasticity. If the deformation is proportional to the shear (i.e. 
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linear viscoelastic region), the viscoelastic behaviour can be described by 

combining Hooke’s and Newton’s law.  

The viscoelasticity of a material can be studied by a dynamic rheological analysis: 

a sinusoidal strain is applied to the material and the resulting sinusoidal stress is 

measured. Elastic solid materials show a stress and strain in phase, purely 

viscous materials are characterised by a 90° phase lag, while viscoelastic 

materials exhibit a phase lag ranging from 0° to 90° (Figure 4.4) (Schramm, 1998; 

Morton and Hearle, 2008; Murata, 2012).  

 
Figure 4.4 - Representative image of a dynamic rheological analysis. A sinusoidal 

strain (green) is applied to the sample and the resulting shear is measured. Elastic 

solid materials (orange) show a stress and strain in phase, purely viscous materials 

(blue) have a 90° phase lag, and viscoelastic materials (red) exhibit a phase lag () 

ranging from 0° to 90° 

𝜹 = 0° 
 

𝜹 = 90° 
 

0°< 𝜹 <90° 
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Therefore, the viscoelastic materials can be described as a combination of an 

elastic component (in phase) and a viscous component (out of phase) (4.3).  

 

𝜎 =  𝜎0  sin(𝜔𝑡 + 𝛿) =  𝜎0  sin 𝜔𝑡 +  𝜎0 cos(𝜔𝑡) (4.3) 

 

where 𝜎 is the shear stress, 𝜎0 is the amplitude, 𝜔 is the angular frequency, and 

𝛿 is the phase lag. 

 

Equation 4.3 can be rewritten as: 

𝜎 =  𝐺′ 𝜀0  sin 𝜔𝑡 +  𝐺′′ 𝜀0 cos(𝜔𝑡) (4.4) 

 

where 𝐺′ is the storage modulus, linked to the ability of the material to store 

energy and 𝐺′′ is the loss modulus representing the energy dissipation. In other 

words, the storage modulus is the elastic component of the material while the 

loss modulus is the viscous component.  

When 𝐺′′ > 𝐺′ the material behaves as a liquid-like material, while when 𝐺′ > 𝐺′′ 

it behaves as a solid-like material (e.g. hydrogel) (Schramm, 1998; Morton and 

Hearle, 2008; Murata, 2012).  

 

4.1.2.1 Rheological analysis 

Rheological analysis investigates the rheological properties of a material. The 

synthesis of a novel hydrogel to be used in vivo should involve the investigation 

of the storage and loss modulus, which influence the drug release, the 

mechanical properties, the gelation time at body temperature and the injectability 

(i.e. viscosity). Rheological analysis commonly involves: 
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 Strain sweep 

A sinusoidal strain with increasing amplitudes is applied to the material (Figure 

4.5). The response of the material is monitored at constant frequencies and 

temperatures. This experiment is usually run to identify the linear viscoelastic 

region (LVR) (Schramm, 1998; Zuidema et al., 2014).  

 
Figure 4.5 - Sinusoidal strain with increasing amplitudes 

 

 Frequency sweep 

The response of the material to increasing frequencies of deformation is 

evaluated at constant temperature and strain amplitude (Figure 4.6) (Schramm, 

1998; Zuidema et al., 2014).  

 
Figure 4.6 - Sinusoidal strain with increasing frequencies 
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 Temperature sweep 

The rheological properties of the material are evaluated at increasing 

temperatures at a constant strain. This experiment can be run to determine the 

gelation temperature, that is the temperature at which the storage modulus 

exceeds the loss modulus (Figure 4.3) (Schramm, 1998; Zuidema et al., 2014).  

 

 Time sweep 

The rheological properties of the material are evaluated over time at a constant 

frequency, amplitude and temperature. This experiment is performed to 

investigate the gelation time at a certain temperature (e.g. body temperature) 

(Figure 4.7) (Schramm, 1998; Zuidema et al., 2014).  

 

 
Figure 4.7 - Representative plot of the gelation time. Initially the material is liquid (G’’ > 

G’) while during time the storage modulus increases, and the gel is formed (G’> G’’) 
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4.2 Aims and objectives 

The aim is to develop a methylcellulose hydrogel with Melissa officinalis essential 

oil as treatment for oral candidiasis. The hydrogel is intended to be used as a 

vehicle to deliver the antimicrobial at the site of infection or as a denture coating.  

The specific objectives are: 

a) To evaluate the rheological properties and gelation time of 4 methylcellulose 

hydrogels: i) 10% (w/w) methylcellulose with 1% (v/v) Melissa officinalis, ii) 

10% (w/w) methylcellulose with 2% (v/v) Melissa officinalis, ii) 12% (w/w) 

methylcellulose with 1% (v/v) Melissa officinalis, and iv) 12% (w/w) 

methylcellulose with 2% (v/v) Melissa officinalis 

b) To evaluate the release of Melissa officinalis essential oil from the 

methylcellulose hydrogels synthesised  

c) To evaluate the antifungal activity in terms of zone of inhibition and time-kill 

assay of the most promising hydrogels synthesised 
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4.3 Material and methods 

4.3.1 Hydrogel preparation 

Methylcellulose was purchased from Sigma-Aldrich (M7140, Sigma-Aldrich, 

Gillingham, UK). Table 4.1 lists the hydrogel formulations prepared according to 

the manufacturing protocol, adjusted to allow addition of Melissa officinalis 

essential oil. Briefly, sterile distilled water, with or without 1% or 2% (v/v) Melissa 

officinalis and Tween 80 in equal amounts, was heated to 80 °C for 10 minutes. 

Ten percent (10% w/w) or 12% (w/w) methylcellulose were gently added into the 

solvent. Once the powder was fully wet, the temperature was reduced by placing 

the solution on ice. As the temperature lowered, methylcellulose became water-

soluble and a clear viscous solution was formed. The solution was carefully 

vortexed until the powder was not visible anymore, and then incubated overnight 

at 4 °C shaking at 200 rpm. Prior to use, the solution was vortexed and 

equilibrated at room temperature for 1 hour to allow bubble dispersion. The 

equilibrated solution was transferred to a petri dish and incubated at 37 °C until 

a stable hydrogel was formed, within 30 minutes. Once a stable hydrogel was 

formed discs were cut with a sterile cork-borer at the different sized (0.75, 10 or 

11.25 mm in diameter) and used for further experiments (Sections 4.3.4, 4.3.5, 

4.3.6). 

 

Table 4.1 - List of the methylcellulose hydrogels synthesised 

 Methylcellulose % (w/w) Melissa officinalis % (v/v) 

Hydrogel A 10 1 

Hydrogel B 10 2 

Hydrogel C 12 1 

Hydrogel D 12 2 
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4.3.2 Rheology  

The rheological characterisation was performed with a Discovery Hybrid 

Rheometer DHR-2 (TA Instruments, New Castle, DE) equipped with a 20 mm 

diameter plate. One hundred and eighty microlitres (180 µl) of the equilibrated 

solution was placed on the rheometer and the plate was lowered to the gap height 

used during the experiments (500 µm). To avoid solvent evaporation a Solvent 

Trap (TA Instruments, New Castle, DE) was used as well. Table 2 summarises 

the testing parameters set to evaluate the rheological properties of the 4 

hydrogels (Table 4.2). The method was adapted from that previously reported by 

Zuidema et al. (2014). Before analysing the strain and frequency sweep, the 

solution was kept at 37 °C for 8 minutes to allow the formation of a stable 

hydrogel. Each sample was used for one experiment and each test was 

performed in triplicate.  

 

Table 4.2 - Temperatures, gap sizes, equilibrium times, frequencies, percent strains 

and running times set for all rheological tests 

Hydrogel Parameters 
Strain 
Sweep 

Frequency 
Sweep 

Time 
Sweep 

H
y
d
ro

g
e

l 
A

 

H
y
d
ro

g
e

l 
B

 

H
y
d
ro

g
e

l 
C

 

H
y
d
ro

g
e

l 
D

 

Temperature 37 °C 37 °C 37 °C 

Gap size 500 µm 500 µm 500 µm 

Equilibrium 
time 

8 min 8 min - 

Frequency 1 Hz 0.01 - 100 Hz 1 Hz 

% Strain 0.1% - 100% 1% 1% 

Running time - - 10 minutes 
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4.3.3 Melissa officinalis composition  

Essential oils are natural products mainly composed of terpenes and terpenoids 

and other molecules (Nazzaro et al., 2013). Prior to evaluating the release of 

Melissa officinalis from the methylcellulose hydrogels, the composition of the 

essential oil was analysed by gas chromatography (Agilent Technologies 7890B, 

Cheadle, UK) coupled to a mass spectrometer (Agilent Technologies 5977B, 

Cheadle, UK). The gas chromatograph was equipped with a capillary column 

Agilent J&W HP-5ms (30 m × 0.25 mm, 0.25 µm film thickness) (Agilent 

Technologies, Cheadle, UK).  

The method was adapted from that previously reported by Rajkowska et al. 

(2016). The initial temperature was set to 50 °C and held for 3 minutes, followed 

by a linear increase up to 300 °C (40 °C/min) and held for 2 minutes. A 5:1 split 

ratio with an injection volume of 2 μl was set. Inlet and transfer line temperatures 

were kept at 275 °C and 300 °C, respectively. Helium, CP grade, was used as a 

carrier gas at a flow rate of 1 ml/min. Quadrupole temperature was fixed to 150 

°C. The mass spectra were obtained by scanning a range of masses from 45 to 

550 atomic mass unit (AMU). The ion source temperature was 230 °C and the 

ionisation was obtained by electron impact at 70 eV. All samples were prepared 

in dichloromethane (DCM) and the composition of the oil was analysed by 

comparing the mass spectra with those of the computer library (NIST14 MS 

Search library).  

Once the compounds were identified, abundance was determined using standard 

curves of each compound. Briefly, analytical standards of citronellol, citronellal, 

geraniol, and linalool (Sigma-Aldrich, Gillingham, UK) were purchased. Double 

serial dilutions of each compound from 20 ppm to 2.5 ppm were prepared in DCM 

and analysed by GC-MS. The correlation between peak areas and 
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concentrations was obtained and used to evaluate the abundance of each 

compound. 

 

4.3.4 Melissa officinalis release 

Ten percent (10% w/w) and 12% (w/w) methylcellulose hydrogels containing 1% 

and 2% (v/v) Melissa officinalis essential oil were prepared as described in 

Section 4.3.1. Once gellified at 37 °C, 1 g of hydrogel was cut with a 11.25 mm 

diameter sterile cork-borer and incubated in 20 ml distilled water in a sterile glass 

universal at 37 °C under shaking conditions at 150 rpm (New Brunswick™ I26, 

Eppendorf UK Limited, Stevenage, UK). Two millilitres (2 ml) of liquid were 

collected at 1, 2, 3, 4, 5, 6, 7, 8, 24, 30 and 48 hours and replaced by 2 ml of 

distilled water, to keep the volume constant throughout the experiment.  

To evaluate the Melissa officinalis oil release, 1 ml of each liquid sample was 

added to 5 ml DCM and vortexed briefly before incubation overnight at 4 °C with 

shaking at 200 rpm to allow dispersion of Melissa officinalis oil into DCM. After 

incubation, the sample was centrifuged at 3000 rpm (SIGMA 3-16 Centrifuge, 

Sigma Centrifuges, Newtown, UK) for 5 minutes and the DCM, containing the 

essential oil, was collected in a 1 ml vial and analysed by GC-MS (Section 4.3.3).  

 

Controls included the initial composition of the hydrogels. To extract the oil within 

the hydrogel, 1 g of hydrogel was placed into 10 ml DCM, vortexed briefly and 

incubated overnight at 4 °C with shaking at 200 rpm. After incubation, the 

hydrogel within the DCM was centrifuged at 3000 rpm for 10 minutes and the 

DCM was collected in a vial and run in the GC-MS. All experiments were 

completed in triplicate and drug release was expressed as percentage cumulative 

release and milligrams released.  
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4.3.5 Disc diffusion method 

The antifungal activity of 10% (w/w) methylcellulose hydrogels containing Melissa 

officinalis was evaluated by agar disc diffusion method. The method was adapted 

from that previously reported by Campos et al. (2014). Briefly, 100 µl of an 

overnight C. albicans 135BM2/94 diluted to 107 CFU/ml (for details see Section 

2.7.2) was uniformly spread onto SAB agar plates. Ten percent methylcellulose 

(10% (w/w)) hydrogels with 1 or 2% (v/v) Melissa officinalis were prepared as 

described in Section 4.3.1. Once the solution gellified, 10 mm discs in diameter 

were cut with a sterile cork-borer, placed onto the agar and incubated overnight 

at 37 °C. After overnight incubation the diameter of the resulting zone of inhibition 

was measured. Control included 10% (w/w) methylcellulose hydrogel without 

essential oil. All tests were performed in duplicate on three separate occasions. 

 

4.3.6 Time-kill assay 

One hundred and fifty microlitres (150 µl) of an overnight C. albicans 135BM2/94 

culture diluted to a turbidity equivalent to 0.5 McFarland Standard (see Section 

2.7.2) was added with 150 µl of SDB to a sterile 1.5 ml Eppendorf tube. A disc 

0.75 mm in diameter (equivalent to 0.15 g) of 10% (w/w) methylcellulose 

hydrogels with 1 or 2% (v/v) Melissa officinalis essential oil was added to the 

tube. The cultures were incubated at 37 °C with shaking at 150 rpm. At 2, 4, 6 

and 24 hours the suspension containing C. albicans 135BM2/94 was collected, 

and viable cell numbers were counted. Samples were serially diluted in PBS and 

50 µl was spread onto SAB agar plates with a Whitley Automated Spiral Plate 

(WASP, Don Whitley Scientific Limited, Shipley, UK). Agar plates were incubated 

overnight at 37 °C, and CFUs/ml were counted. Each experiment was performed 

in duplicate on three separate occasions. Controls included C. albicans cultured 
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in SDB with or without 10% (w/w) methylcellulose hydrogel. The method was 

adapted from that previously reported by Kong et al. (2016). 

 

4.3.7 Statistical analyses 

Statistical analysis was performed using GraphPad Prism Version 7.0 (GraphPad 

Software, La Jolla, CA, USA). Data were presented as arithmetic mean ± SD or 

mean ± SEM. The difference between treatments was statistically analysed using 

one-way analysis of variance (ANOVA) followed by Tukey multiple comparisons 

test. Statistically significant differences were set at p < 0.05. 
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4.4 Results 

4.4.1  Rheology  

The viscoelastic properties of a hydrogel are independent of the strain and 

frequency applied up to a certain critical level. Beyond this point, the viscoelastic 

behaviour is not linear. Hence prior to study the gelation time, it is crucial to 

identify the test parameters (i.e. frequency and strain) in which the hydrogel 

responds linearly.  

 

4.4.1.1 Strain sweep 

The strain amplitude dependence of the storage and loss modulus was measured 

stimulating the hydrogel with strains between 0.1% and 100% at a constant 

frequency of 1 Hz. The storage modulus was constant at strains below 10%, while 

it increased for strains above 10%, leading to the network destruction and loss of 

mechanical properties (Figure 4.8). Figure 4.9 compares the storage modulus, 

representative of the solid behaviour of the material, of the four hydrogels tested. 

As can be observed, increasing the percentage of methylcellulose led to an 

increase in the storage modulus, while the presence of Melissa officinalis 

essential oils did not affect the rheological behaviour.  
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Figure 4.8 - Strain sweep for 10% (w/w) methylcellulose and 1% (v/v) Melissa officinalis (A), 

10% (w/w) methylcellulose and 2% (v/v) Melissa officinalis (B), 12% (w/w) methylcellulose 

and 1% (v/v) Melissa officinalis (C), 12% (w/w) methylcellulose and 2% (v/v) Melissa 

officinalis (D). The linear viscoelastic limit was determined with respect to the percentage of 

strain. G’ (black circle) and G’’ (grey square) were determined at strains ranging from 0.1 to 

100%. Data represent the mean of three independent experiments 
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Figure 4.9 - Storage modulus (G’) with respect to the strain of 10% (w/w) 

methylcellulose and 1% (v/v) Melissa officinalis (orange), 10% (w/w) methylcellulose 

and 2% (v/v) Melissa officinalis (violet), 12% (w/w) methylcellulose and 1% (v/v) 

Melissa officinalis (green), 12% (w/w) methylcellulose and 2% (v/v) Melissa officinalis 

(blue). Data represent the mean of three independent experiments 

 
 

4.4.1.2 Frequency sweep 

The frequency amplitude dependence of the storage and loss modulus was 

measured by stimulating the hydrogel with frequencies ranging from 0.01 Hz to 

100 Hz at a constant strain amplitude of 1%. The storage modulus was constant 

at frequencies lower than 10 Hz, while at frequencies above 10 Hz the loss 

modulus exceeded the storage modulus (data not presented) leading to the 

destruction of the hydrogel (Figure 4.10). Twelve percent (12% (w/w)) 

methylcellulose hydrogel showed higher mechanical properties, while the 

presence of Melissa officinalis essential oils did not affect the rheological 

behaviour (Figure 4.11).
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Figure 4.10 - Frequency sweep for 10% (w/w) methylcellulose and 1% (v/v) Melissa 

officinalis (A), 10% (w/w) methylcellulose and 2% (v/v) Melissa officinalis (B), 12% (w/w) 

methylcellulose and 1% (v/v) Melissa officinalis (C), 12% (w/w) methylcellulose and 2% 

(v/v) Melissa officinalis (D). The linear viscoelastic limit was determined with respect to the 

frequencies. G’ (black circle) and G’’ (grey square) were determined at angular frequencies 

ranging from 0.01 Hz to 100 Hz. Data represent the mean of three independent 

experiments
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Figure 4.11 - Storage modulus (G’) with respect to the angular frequencies of 10% 

(w/w) methylcellulose and 1% (v/v) Melissa officinalis (orange), 10% (w/w) 

methylcellulose and 2% (v/v) Melissa officinalis (violet), 12% (w/w) methylcellulose and 

1% (v/v) Melissa officinalis (green), 12% (w/w) methylcellulose (w/w) and 2% (v/v) 

Melissa officinalis (blue). Data represent the mean of three independent experiments 

 

4.4.1.3 Time sweep - Gelation time 

The gelation time, that is the time needed to form the hydrogel at 37 °C, was 

studied by applying to the hydrogel a 1% strain at 1 Hz frequency. In this range, 

the viscoelastic properties of the hydrogel were independent of the strain and 

frequency applied, as seen in the previous experiments. Figure 4.12 shows the 

storage and loss modulus as a function of time. Initially, the solution was liquid 

(the loss modulus exceeded the storage modulus), while over time the storage 

modulus increased. At a certain point, the storage and loss modulus crosslinked 

and at this point the hydrogel was formed. Figure 4.13 shows tan(), which is the 

ratio between the loss and storage modulus. When tan(delta) is equal to 1, the
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 hydrogel is formed. Twelve percent (12% (w/w)) methylcellulose gellified more 

quickly at 37 °C (p<0.001) (Table 4.3).  

 

 
 
 

 
 

 
 

Figure 4.12 - Time sweep for 10% (w/w) methylcellulose and 1% (v/v) Melissa officinalis 

(A), 10% (w/w) methylcellulose and 2% (v/v) Melissa officinalis (B), 12% (w/w) 

methylcellulose and 1% (v/v) Melissa officinalis (C), 12% (w/w) methylcellulose and 2% 

(v/v) Melissa officinalis (D). G’ (black) and G’’ (grey) were determined at an amplitude strain 

of 1% and angular frequency of 1 Hz. Data represent the mean of three independent 

experiments
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Figure 4.13 - Tanδ at an amplitude strain of 1% and frequency of 1 Hz of 10% (w/w) 

methylcellulose and 1% (v/v) Melissa officinalis (orange), 10% (w/w) methylcellulose 

and 2% (v/v) Melissa officinalis (violet), 12% (w/w) methylcellulose and 1% (v/v) 

Melissa officinalis (green), 12% (w/w) methylcellulose (w/w) and 2% (v/v) Melissa 

officinalis (blue). Data represent the mean of three independent experiments 

 

 

Table 4.3 - Gelation time at 37 °C of 10% (w/w) methylcellulose with 1 or 2% (v/v) 

Melissa officinalis, and 12% (w/w) methylcellulose with 1 or 2% (v/v) Melissa officinalis. 

*** equivalent to p< 0.001 

 Gelation time at 37 °C [sec] 

10% (w/w) methylcellulose +  
1% (v/v) Melissa officinalis 

167  14 

10% (w/w) methylcellulose +  
2% (v/v) Melissa officinalis 

188  7 

12% (w/w) methylcellulose +  
1% (v/v) Melissa officinalis 

117  6 (***) 

12% (w/w) methylcellulose +  
2% (v/v) Melissa officinalis 

122  2 (***) 
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4.4.2 Melissa officinalis composition  

The Melissa officinalis essential oil chromatogram is shown in figure 4.14. Peaks 

were qualitatively identified by matching the mass spectra with those found in the 

NIST14 MS Search library. Once the main compounds (i.e. citronellal, citronellol 

and geraniol) and linalool were identified, quantification was carried out using a 

standard curve that correlated the peak areas to the concentrations (data not 

shown).  

 

 
 

Figure 4.14 - GC-MS chromatogram of Melissa officinalis essential oil. The compounds 

and their abundance are reported as well 

 

4.4.3 Melissa officinalis release 

Four Melissa officinalis compounds were tracked: citronellol, citronellal, geraniol 

and linalool. Figure 4.15 shows the drug release profile from 10% (w/w) and 12% 

(w/w) methylcellulose hydrogels with 1 or 2% (v/v) Melissa officinalis essential oil 

over 48 hours. Release was maintained for the duration of the experiment. After 

8 hours 50% of the compounds was released, while within 48 hours between 88% 

and 100% of each compound leached out (Figure 4.15). As expected, by 

increasing the initial concentration of Melissa officinalis into the hydrogel, the 
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amount of lixiviate increased (Figure 4.16). By contrast, the amount of 

methylcellulose did not have an impact on the drug release, with the difference 

in amount released from 10% (w/w) and 12% (w/w) methylcellulose hydrogels 

not being significant after 48 hours of incubation (Figure 4.16).  
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Figure 4.15 - Percentage cumulative release of citronellal (violet), citronellol (orange), 

geraniol (blue), and linalool (green) 10% (w/w) methylcellulose and 1% (v/v) Melissa 

officinalis (A), 10% (w/w) methylcellulose and 2% (v/v) Melissa officinalis (B), 12% 

(w/w) methylcellulose and 1% (v/v) Melissa officinalis (C), 12% (w/w) methylcellulose 

(w/w) and 2% (v/v) Melissa officinalis (D). A zoom of the percentage cumulative release 

between 0 and 8 hours is also shown in the dashed rectangles. Data represent the 

mean of three independent experiments 
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Figure 4.16 - Cumulative release in milligrams of citronellal (A), citronellol (B), geraniol 

(C) and linalool (D) from 10% (w/w) methylcellulose and 1% (v/v) Melissa officinalis 

(orange), 10% (w/w) methylcellulose and 2% (v/v) Melissa officinalis (violet), 12% (w/w) 

methylcellulose and 1% (v/v) Melissa officinalis (green), 12% (w/w) methylcellulose 

(w/w) and 2% (v/v) Melissa officinalis (blue). A zoom of the cumulative release between 

0 and 8 hours is also shown in the dashed rectangles. Data represent the mean of 

three independent experiments 
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4.4.4 Disk diffusion method  

Firstly, the antifungal activity of the methylcellulose hydrogels was determined by 

the disc diffusion method. The inhibitory zone was measured, and the diameters 

are reported in Table 4.4. The 10% (w/w) methylcellulose hydrogels with 1 or 2% 

(v/v) Melissa officinalis essential oil had an antifungal activity, while 

methylcellulose itself was not able to prevent C. albicans growth (Figure 4.17).  

 
Table 4.4 - Inhibitory zone diameters of 10% (w/w) methylcellulose hydrogels with or 

without 1 or 2% (v/v) Melissa officinalis. **** = p < 0.0001 

 Inhibitory zone diameter 

(mm) 

10% (w/w) methylcellulose 0 

10% (w/w) methylcellulose + 

1% (v/v) Melissa officinalis 
10.2 ± 0.4 

10% (w/w) methylcellulose + 

2% (v/v) Melissa officinalis 
17.5 ± 2.6 (****) 

 
 

 
 

Figure 4.17 - Antimicrobial activity against C. albicans. A) 10% (w/w) methylcellulose + 

2% (v/v) Melissa officinalis, B) 10% (w/w) methylcellulose + 1% (v/v) Melissa officinalis, 

C) 10% (w/w) methylcellulose. Red line – indicates the diameter across the zone of 

inhibition. Data represent the mean of three independent experiments, each performed 

in duplicate 

A 

B 
C 
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4.4.5 Time-kill assay 

The antifungal activity was evaluated with a time-kill assay. The amount of C. 

albicans recovered within 2 hours was significantly decreased (p<0.001) by 15% 

and 30% in the presence of 10% (w/w) methylcellulose hydrogel with 1% (v/v) 

Melissa officinalis and 10% (w/w) methylcellulose hydrogel with 2% (v/v) Melissa 

officinalis, respectively (Figure 4.18). After 4 hours of application of 10% (w/w) 

methylcellulose hydrogels with 2% (v/v) Melissa officinalis no viable cells were 

recovered, while it took 24 hours to completely kill C. albicans when it was 

cultured in the presence of 10% (w/w) methylcellulose hydrogels with 1% (v/v) 

Melissa officinalis. The data presented in figure 4.18 were normalised using the 

control (i.e. C. albicans without hydrogel). It was observed that the presence of 

10% (w/w) methylcellulose promoted C. albicans growth. This difference was 

significant until 6 hour incubation (p < 0.003), but not after 24 hour incubation (p 

> 0.33) 

 

 
 

Figure 4.18 - In vitro time-kill assay after 2, 4, 6 and 24 hours of exposure of C. 

albicans to 10% (w/w) methylcellulose hydrogels with or without 1 or 2% (v/v) Melissa 

officinalis. CFUs/ml were normalised by the CFUs/ml of the control (C. albicans 

cultured without hydrogel). Data represent the mean of three independent experiments, 

each performed in duplicate. **** equivalent to p< 0.0001  
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4.5 Discussion 

Four hydrogels with different amounts of methylcellulose (10 or 12% (w/w)) and 

Melissa officinalis essential oil (1 or 2% (v/v)) were successfully synthesised. 

Rheological analysis was carried out to evaluate the gelation time at body 

temperature. Preliminary experiments were run to identify the amplitude and 

frequency strain that enabled analysis in the viscoelastic linear region. The 

essential oil content did not influence the rheological properties, and no 

significant differences in the loss and storage modulus were observed. By 

contrast, increasing the amount of methylcellulose led to an increase of the 

storage modulus. This can be explained by taking into account that a higher 

amount of methylcellulose (12% (w/w) compared to 10% (w/w)) led to a larger 

number of crosslinking sites into solution. Therefore, a tighter mesh was formed 

in the 12% (w/w) methylcellulose hydrogels. For the same reason, it was noticed 

that 12% (w/w) methylcellulose hydrogels were formed more quickly than 10% 

(w/w) ones (p<0.001). 

The synthesised hydrogels are intended to eventually be used as vehicles for 

drug delivery. Accordingly, it was important that once injected into the mouth, 

they gellified at 37 °C within an appropriate time. For this reason, the viscoelastic 

properties of the hydrogel were evaluated only for investigating the gelation time 

in the viscous linear region. Indeed, the hydrogels were not supposed to be 

solicited or to resist to a certain deformation such as in load-bearing applications 

(e.g. cartilage and bone regeneration) (Liu et al., 2017). Therefore, the absolute 

values of the storage modulus were not further taken into account. Considering 

the gelation time, both the 10% (w/w) and 12% (w/w) methylcellulose hydrogels 

were considered suitable for an oral application, being able to gellify in less than 

three minutes. Consequently, both were examined in terms of drug release.  
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Before investigating the essential oil release from the hydrogels, the composition 

of Melissa officinalis essential oil was analysed by GC-MS. The main component 

of the oil was citronellal (50% (v/v)) followed by geraniol (14% (v/v)) and citronellol 

(10% (v/v)). Linalool (2.5% (v/v)), a terpene with antimicrobial properties (see 

Section 2.8.1), was also contained in Melissa officinalis essential oil. Therefore, 

it was decided to evaluate the release of the three main compounds as well as of 

linalool.  

 

Hydrogels are characterised by a 3D-polymeric network that allows liquid and 

molecules to diffuse. The diffusion of the drug depends on the mesh size: if the 

mesh size is larger than the drug then molecules are free to migrate through the 

network, while if the drug size is comparable to the mesh size then the drug is 

physically entrapped inside the hydrogel (Li and Mooney, 2016). However, the 

mesh size can change over time allowing the release of the drug. Two main 

phenomena can lead to changes in the 3D-polymeric network, namely, 

degradation and swelling. Degradation, a loss of polymer mass, can be mediated 

by enzyme activity or by hydrolysis. Degradation results in an increase of mesh 

size that allows drug diffusion. Similarly, swelling due to water absorption, 

increases the mesh size and allows drug release (Li and Mooney, 2016). 

In general, diffusion and drug release are affected by different parameters such 

as the hydrophilicity/hydrophobicity of the drug, the surface area and geometry 

of the hydrogel, the type and volume of solvent, the degradation of the hydrogel, 

the mesh size and the swelling rate (Zarzycki et al., 2010). Different volumes, 

solvents, ratios of hydrogel to solvent, flasks (e.g. universal, conical flasks), the 

presence of dialysis membranes and different shaking rate were found to be 

variable in a review of the literature (Senel et al., 2000; Ji et al., 2010; Kodadova 
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et al., 2014; Kong et al., 2016; Low et al., 2016). As a result, it was difficult to 

compare the outcomes obtained within this study with those found by other 

authors. 

 

The drug release was evaluated over 48 hours and the experiments were carried 

out by placing 1 g of hydrogel in 20 ml of distilled water. It was observed that the 

4 hydrogels showed a similar behaviour in term of percentage cumulative 

release. After 8 hours 50% of the compounds were released in the solvent, while 

almost all the oil diffused in water in 2 days. As expected, the milligrams of 

compounds released were a function of the initial content of oil. Indeed, the 

amount released from the hydrogel containing 2% (v/v) of Melissa officinalis 

essential oil was significantly greater than that released from the hydrogels 

synthesised with 1% (v/v) of Melissa officinalis essential oil. Interestingly, no 

significant differences were observed in term of release between the 10 and 12% 

(w/w) methylcellulose hydrogels. This was in contrast with the observations of 

Low et al. (2016) and Ikinci et al. (2002) who found that the release of tea tree oil 

and chlorhexidine from chitosan hydrogels was a function of the crosslinking.  

 

Taking into account that all the hydrogels evaluated gellified at 37 °C and no 

significant differences were observed in term of percentage cumulative release, 

it was decided to further evaluate the antifungal activity only of the hydrogels 

synthesised with 10% (w/w) methylcellulose and 1 or 2% (v/v) Melissa officinalis 

essential oil. This decision was made because it was more complex to prepare 

12% (w/w) methylcellulose hydrogels. 

Firstly, antifungal activity was screened by the disc diffusion method. It was 

observed that methylcellulose itself did not inhibit Candida growth since a zone 
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of inhibition was not visible. By contrast, when the methylcellulose hydrogel 

contained Melissa officinalis essential oil a zone of inhibition was observed. In 

particular, the zone of inhibition was proportional to the amount of Melissa 

officinalis contained in the hydrogel. The hydrogel with 2% (v/v) of Melissa 

officinalis essential oil had higher antifungal activity than that with 1% (v/v) 

Melissa officinalis (p<0.0001). These results were in accordance with those 

stated by Campos et al. (2014) and Ayana and Turhan (2009) who observed a 

zone of inhibition when methylcellulose hydrogel was loaded with Ginja cherry 

and olive oil extracts, respectively.  

In addition, the antifungal potential of the hydrogels was evaluated with a time-

kill assay. It was observed that after 2 hours the presence of 1 or 2% (v/v) Melissa 

officinalis essential oil into the hydrogel significantly decreased the viable cell 

number compared to the control (10% (w/w) methylcellulose). By comparing the 

hydrogel with 1 and 2% (v/v) Melissa officinalis essential oil, it was noticed that 

after 4 hours no C. albicans was recovered in the presence of 2% (v/v) Melissa 

officinalis. However, it took 24 hours to kill C. albicans when it was cultured in the 

presence of 10% (w/w) methylcellulose + 1% (v/v) Melissa officinalis essential oil. 

Besides evaluating the antifungal potential of the drug released from the 

hydrogel, the antifungal potential of methylcellulose itself was investigated by 

comparing the viable cell count with that obtained culturing C. albicans in broth 

without the hydrogel. As already confirmed by the zone inhibition assay, 

methylcellulose did not show antifungal potential. However, this experiment 

further highlighted that methylcellulose seemed to promote C. albicans growth. 

The lack of antifungal potential of methylcellulose was also described by 

Kavanaugh et al. (2014) who used 0.5% methylcellulose to mimic the viscosity of 
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the mucus environment. They observed that C. albicans cultured in the presence 

of methylcellulose produced hyphal cells. 
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4.6 Conclusions 

Chapter 2 and 3 highlighted that the best essential oil in term of antifungal activity 

and cytotoxicity was Melissa officinalis. The aim of this chapter was to develop a 

hydrogel to be used as drug delivery system to release Melissa officinalis 

essential oil at the site of infection. 

Four hydrogels were successfully synthesised: 10% (w/w) methylcellulose with 

1% (v/v) Melissa officinalis, 10% (w/w) methylcellulose with 2% (v/v) Melissa 

officinalis, 12% (w/w) methylcellulose with 1% (v/v) Melissa officinalis and 12% 

(w/w) methylcellulose with 2% (v/v) Melissa officinalis.  

The rheological analysis highlighted that all the hydrogels gellified at body 

temperature in less than 3 minutes, which was considered to be an appropriate 

time for a potential gelation in the mouth. Melissa officinalis was released over a 

period of 48 hours meaning that the hydrogels were suitable to be used as drug 

delivery vehicles. Lastly, the antifungal properties of the hydrogels were 

confirmed by both the zone of inhibition method and time-kill assay. 

 



 

 

Chapter 5  
 

Development of an ex vivo 

mandible rodent model  

to mimic oral candidiasis 
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5.1 Introduction 

5.1.1 In vitro, in vivo and ex vivo models 

A crucial step in the development of a novel antimicrobial treatment is the 

evaluation of the therapy in a cell model. Because of their simplicity, in vitro 

models are commonly used as a first screening. The main advantage of these 

models is that they only involve the culture of a single cell type or two cell types 

in case of co-cultures and 3D-organoid cultures (Sloan et al., 2016). However, 

their simplicity leads to some important limitations due to the inability to reproduce 

the in vivo spatial cellular organisation and to take into account the cellular 

interactions that might occur in vivo. In addition, the outcome of in vitro 

experiments can be affected by the plastic or glass of the tissue culture plates 

(Sloan et al., 2016). To overcome these limits, in vivo models can be utilised. In 

vivo models are considered as the gold standard for studying the efficacy of a 

treatment or a regenerative process. Drawbacks associated with in vivo models 

are high costs and ethical issues, as large numbers of animals are required to be 

used in the experiments. Moreover, flawless data are difficult to obtain because 

of the intrinsic systemic influences (Sloan & Lynch 2012). Therefore, ex vivo 

models have been recently introduced. These models maintain the natural 

arrangement of cells and tissues, while removing systemic influences. 

Furthermore, they limit the costs and the ethical issues as more than one 

experiment can be carried out on the same animal (Sloan & Lynch 2012). 

 

5.1.2 In vitro and ex vivo models for oral candidiasis 

In vitro and ex vivo models have been developed to study oral candidiasis.  

Reconstituted human epithelium (RHE) is an in vitro commercially available 

model. SkinEthic Laboratories cultivate epithelial cells on a polycarbonate filter at 
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the air-liquid interface in a chemically defined medium lacking antibiotics for 5 

days. The result is a stratified epithelium, similar to the human one, that 

expresses markers typical of the natural epithelium (Schaller and Weindl, 2009). 

This model has been widely used to investigate the pathogenicity of Candida, the 

host immune response to infection and the antifungal potential of antimicrobials 

(Hernandez and Rupp, 2009). Jayatilake et al. (2006) highlighted the role of SAP 

and hyphae as virulence factors of C. albicans, by observing a decreased tissue 

invasion in hyphal and SAP mutant. Similarly, Schaller et al. (2005b) reported a 

diminished host inflammatory response in the presence of SAP inhibitors. Zhao 

et al. (2005) used the RHE model to show the role of Als2p adhesin in tissue 

adhesion and invasion. In addition, RHE models allowed evaluating the host 

inflammatory response. In particular, the production of pro and anti-inflammatory 

cytokines in the presence of C. albicans strains with a different virulence has 

been investigated (Schaller et al., 2002; Whiley et al., 2012). Reconstituted 

human epithelium models have also been used to study new antimicrobial 

treatments, by evaluating the antifungal potential in term of C. albicans viability 

and tissue invasion, and the cytotoxicity of the treatment in term of cellular viability 

and loss of tissue structure (Bonowitz et al., 2001; Silva et al., 2009; Boros-

Majewska et al., 2014). 

 

Ex vivo models used to study C. albicans infections have been obtained from pigs 

and mice. Ohnemus et al. (2008) developed an ex vivo porcine oral mucosal 

infection model. After an infection of 48 hours with C. albicans, they observed 

massive invasion and formation of hyphae. By contrast, when the infection was 

treated with different doses of Nystatin for 24 hours, only little pseudohyphae 

formation and tissue invasion were present (Ohnemus et al., 2008). Campos et 
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al. (2011) evaluated a Nystatin-loaded nanoemulsion formulation on a porcine 

buccal mucosa reporting a harmless effect of the treatment on cells and the 

permeation of the drug into the tissue. Peters et al. (2011) used a murine model 

to evaluate the anticandidal potential of Histatin-5, a peptide contained in saliva. 

They infected the excised tongues with different concentration of C. albicans and 

they applied the treatment (pure Histain-5 or saliva containing Histain-5). 

 

5.1.3 Ex vivo rodent model for oral diseases 

Sloan et al. (1998) developed an ex vivo culture model of dentine-pulp complex 

from 28-day-old Wistar rat incisor teeth. The tooth slices were successfully 

cultured for up to 14 days, a good cell viability was observed, and the tissue 

organisation was preserved. Since then, tooth slices have been extensively used 

to investigate dental pulp infection (Ayre et al., 2018), tissue repair processes 

(Sloan & Smith 1999; Sloan et al. 2000) and to evaluate the biocompatibility and 

cytotoxicity of dental materials (Murray et al., 2000; Turner et al., 2002; 

Waddington et al., 2004). Recently, mandibular slice cultures were also 

established (Smith et al., 2010). Mandible slice cultures were developed to 

understand processes associated with periodontal diseases and bone tissue 

repair and to investigate the biocompatibility and cytotoxicity of drugs. Smith et 

al. (2010) cultured fractured mandible slices to investigate bone repair. The 

authors maintained a healthy culture for 14 days and observed that the addition 

of the transforming growth factor beta 1 (TGF-1) increased the migration and 

proliferation of osteoblasts and the expression of bone morphogenic proteins. 

Sloan et al. (2013) developed an ex vivo mandible model to study the 

inflammatory bone destruction. Following P. gingivalis LPS administration, an 

increase in osteoclasts, a decreased viability of ligament fibroblasts and a loss in 
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the tissue architecture were observed. In addition, increase of monocytes and 

neutrophils and expression of pro-inflammatory cytokines were evident (Sloan et 

al., 2013). 
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5.2 Aims and objectives 

In vitro experiments have some limitations mainly due to the impossibility to 

reproduce the in vivo spatial tissue-specific architecture. The ex vivo rodent 

mandible model provides a 3D-environment closer to that of the in vivo situation 

than previously used approaches (e.g. 2D-monolayer cell cultures). The aim of 

this chapter is to develop an ex vivo rodent mandible model to mimic oral 

candidiasis. The hypothesis of this study is that the ex vivo rodent mandible 

model provides a tissue scaffold and allows the observation of Candida growth 

within this 3D-environment, and the evaluation of Melissa officinalis essential oil 

as a treatment.  

To test this hypothesis, the specific objectives are: 

a) To monitor the growth of C. albicans in a tissue environment through 

histological examination after 24 and 48 hours of infection 

b) To assess the host inflammatory tissue response after infection through real 

time-polymerase chain reaction (RT-PCR) 

c) To investigate the antifungal potential of Melissa officinalis essential oil on the 

ex vivo model through histological examination. After infection with C. 

albicans, the mandible is treated with Melissa officinalis essential oil and the 

effect on C. albicans viability is determined by viable counts 

d) To determine the host inflammatory tissue response after treatment with 

Melissa officinalis by RT-PCR 
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5.3 Materials and methods 

5.3.1 Cell culture medium 

Dulbecco’s modified eagle medium nutrient mixture F-12 (DMEM/F12) with L-

glutamine and phenol red was purchased from Gibco (Paisley, UK). DMEM/F12 

was supplemented with 10% (v/v) fetal calf serum (Biosera, East Sussex, UK), 

1% (v/v) penicillin/streptomycin (Sigma Aldrich, Dorset, UK), 0.025 mg/ml 

adenine (Sigma Aldrich, Dorset, UK), 5 μg/ml insulin (Sigma Aldrich, Dorset, UK), 

1.36 ng/ml 3,3,5-tri-iodothyronine (Sigma Aldrich, Dorset, UK), 5 μg/ml apo-

transferrin (Sigma Aldrich, Dorset, UK), 0.4 μg/ml hydrocortisone (Sigma Aldrich, 

Dorset, UK), 5 ng/ml epidermal growth factor (Sigma Aldrich, Dorset, UK) and 

8.47 ng/ml cholera toxin (Sigma Aldrich, Dorset, UK). The medium composition 

was adapted from the study of Rheinwald and Green (1975) and Smith et al. 

(2010).  

 

5.3.2 Microorganisms 

Candida albicans 135BM2/94, a clinical strain from the School of Dentistry 

(Cardiff University), was subcultured onto Sabouraud dextrose agar (SDA) 

(CM0041 Oxoid) and grown at 37 °C in an aerobic incubator overnight. A colony 

of C. albicans was inoculated in 20 ml of SDB and incubated overnight at 37 °C 

in an aerobic chamber under shaking conditions at 200 rpm. The overnight 

culture was prepared in DMEM/F12 culture medium to a turbidity equivalent to 

0.5 McFarland Standard (105 CFU/ml) and used for further experiments. 
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5.3.3 Diffusion of Melissa officinalis essential oil into agar 

Preliminary experiments were carried out to investigate the diffusion of Melissa 

officinalis essential oil from the DMEM/F12 medium to the semi-solid agar that 

was used to embed the mandible (see Section 5.3.4).  

The method was adapted from that previously reported by Smith et al. (2010). 

Briefly, two percent (2% (w/w)) low melting point agar (agarose type VII; Sigma, 

Gillingham, UK) was 1:1 mixed with DMEM/F12 culture medium containing C. 

albicans (Section 5.3.2). Three millilitres (3 ml) of the prepared agar/culture 

medium solution were added to a 24-well plate. Once semi-solid, the agar was 

transferred to a 0.22 µm-diameter sterile Millipore filter (Millipore, Watford, UK). 

With the aid of a plastic support, the filter was placed on the surface of DMEM/F12 

culture medium (4.5 ml) in a Trowel-type culture in a 6-well plate (Trowell, 1959). 

The 6 well plate was incubated for 6 hours at 37 °C and 5% CO2. After the 

incubation, DMEM/F12 was replaced with DMEM/F12 containing 1% (v/v) 

Melissa officinalis essential oil and 0.5% (v/v) Tween 80 (Sigma-Aldrich, UK), and 

the plates were incubated for a further 4 hours (10 hours in total), and 24 hours 

(30 hours in total) at 37 °C and 5% CO2 (Figure 5.1). Controls included untreated 

semi-solid agars (i.e. inoculated semi-solid agar cultured without Melissa 

officinalis essential oil for 6, 10 and 30 hours). 
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Figure 5.1 - Representation of a 6-well plate containing a plastic support, a 0.22 µl 

filter, and a 1% (w/w) semi-solidi agar infected with C. albicans and treated with 1% 

(v/v) Melissa officinalis 

 

After incubation, 350 µl of semi-solid agar containing C. albicans was collected 

and resuspended in 500 µl of SBD. Samples were serially diluted in PBS and 50 

µl were spread onto SAB agar plates with a Whitley Automated Spiral Plate 

(WASP, Don Whitley Scientific Limited, Shipley, UK). Agar plates were incubated 

overnight at 37 °C, and the CFUs/ml were counted. Each experiment was 

performed in duplicates on three separate occasions.  

 

5.3.4 Culture of rodent mandibles  

Mandibles were dissected from 28-day-old male Wistar rats, freshly sacrificed by 

CO2 asphyxiation. The soft tissues, except for the gingiva, were removed with a 

scalpel. The condyle, ramus and incisor tooth were cut with a segmented 

diamond-edged rotary saw cooled with PBS (Figure 5.2).  
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Figure 5.2 - Schematic representation of the dissected mandible preparation.  

The condyle, ramus, and incisor tooth were cut through the red line using a segmented 

diamond-edged rotary saw and discarded. Figure adapted from Smith et al. (2010) 

 

The mandibles obtained at the end of the cutting process were collected in 

DMEM/F12 culture medium and cultured following a protocol slightly adapted 

from Smith et al. (2010). Mandibles were cultured using the Trowel-type culture 

(Figure 5.3) (Trowell, 1959). Briefly, 2% (w/w) low melting point agar (agarose 

type VII; Sigma Gillingham) was prepared in PBS and 1:1 mixed with DMEM/F12. 

Three millilitres (3 ml) of the solution were pipetted into a 24-well plate and the 

mandible was added during the solidification process. Once semisolid, the 

embedded mandibles were transferred to a 0.22 µm-diameter sterile Millipore 

filter. With the aid of a plastic support, the filter floated on the surface of 4.5 ml 

DMEM/F12 culture medium in a Trowel-type culture in a 6-well plate. Mandibles 

were cultured for 24 hours at 37 °C and 5% CO2 before infection with C. albicans 

and treatment with essential oil.  
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Figure 5.3 - Representation of the Trowel-type culture for the mandible with the 

attached gingiva  

 

5.3.5 Gingiva infection  

After 24 hour incubation (Section 5.3.4), gingiva was infected with C. albicans 

135BM2/94.  

Three infection methods were evaluated by histological analysis (Section 5.3.7):  

i. Addition of C. albicans into the semi-solid agar by pipetting: 

20 µl of an overnight C. albicans 135BM2/94 culture diluted to 105 CFU/ml 

(Section 5.3.2) was pipetted into the semi-solid agar containing the 

mandible, in the proximity of the gingiva (see Section 5.3.4). The Trowel-

type culture was incubated for 24 hours at 37 °C and 5% CO2 

 

ii. Direct contact of the gingiva with C. albicans grown onto SAB agar: 

100 µl of an overnight C. albicans 135BM2/94 culture diluted to 105 

CFU/ml (Section 5.3.2) was uniformly spread onto SAB agar plates and 

grown at 37 °C in an aerobic incubator overnight. The gingiva was placed 

onto the agar plate, in contact with C. albicans for 5 minutes. The infected 

gingiva and mandible were embedded in semi-solid agar as described in 

Section 5.3.4 and incubated for 24 hours at 37 °C and 5% CO2 
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iii. Embedment of the mandible into semi-solid agar containing C. albicans: 

2% (w/w) low melting point agar (agarose type VII; Sigma Gillingham) was 

mixed 1:1 with the DMEM/F12 culture medium containing 105 CFU/ml of 

C. albicans (Section 5.3.2). Three millilitres (3 ml) of the culture were 

pipetted into a 24-well plate and the mandible was added during the 

solidification process. Once semisolid, the embedded mandibles were 

transferred to a sterile 0.22 µm-diameter Millipore filter (Millipore, Watford, 

UK) supported by a plastic ring. Each well of the 6-well plate was filled with 

4.5 ml DMEM/F12 to the filter level to allow the perfusion of the cell culture 

medium into the semi-solid agar and into the mandible (Figure 5.4). The 

mandibles were incubated at 37 °C and 5% CO2 for 6, 24 and 48 hours. 

Controls included uninfected mandibles. This was the method chosen and 

used in the further experiments.  

 
 

Figure 5.4 - Representation of the Trowel-type culture for the infected gingiva 

 

5.3.6 Melissa officinalis essential oil treatment  

One percent (1% (v/v)) Melissa officinalis essential oil was prepared in 

DMEM/F12 culture medium. To enhance the dispersion of the essential oil into 
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the medium, 0.5% (v/v) Tween 80 (Sigma-Aldrich, UK) was added. After infection 

with C. albicans for 6 and 24 hours (Section 5.3.5), the embedded mandibles 

were treated with 1% (v/v) Melissa officinalis. Two methods to treat the mandibles 

were evaluated by histological analysis.  

i. Addition of 1% (v/v) Melissa officinalis into the semi-solid agar by pipetting: 

20 µl of 1% (v/v) Melissa officinalis were pipetted into the semi-solid agar 

containing the infected mandible, in the proximity of the gingiva (see 

Section 5.3.5). Therefore, the Trowel-type culture was incubated for 24 

hours at 37 °C and 5% CO2 

 

ii. Addition of 1% (v/v) Melissa officinalis into the DMEM/F12 that diffused 

into the semi-solid agarose: 

The embedded infected mandibles (Section 5.3.5) were transferred to a 

0.22 µm-diameter sterile Millipore filter. With the aid of a plastic support, 

the filter was placed on the surface of 1% (v/v) Melissa officinalis (4.5 ml) 

in a 6-well plate. The mandibles were incubated for 24 hours at 37 °C and 

5% CO2 (Figure 5.5). Controls included uninfected mandibles treated with 

1% (v/v) Melissa officinalis essential oil. This method was chosen and 

used for further experiments.  
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Figure 5.5 - Representation of the application of 1% (v/v) Melissa officinalis essential 

oil to the infected mandibles cultured in a Trowel-type culture  

 

5.3.7 Histological examination 

After 6, 24 and 48 hours of culture with or without C. albicans and 1% (v/v) 

Melissa officinalis, mandibles were washed briefly in PBS and fixed in 10% (w/v) 

neutral buffered formalin (Sigma-Aldrich, Gillingham, UK) for 24 hours. Mandibles 

were demineralised in 15% (w/v) formic acid (Sigma-Aldrich, Gillingham, UK) at 

room temperature for 72 hours, dehydrated through a series of 70% (v/v), 90% 

(v/v), and 100% (v/v) graded Ethanol (Sigma-Aldrich, Gillingham, UK), cleared 

through xylene, and embedded in paraffin wax. Sections (5 µm) were cut on a 

rotary microtome (Leica Biosystems, Linford Wood, UK), mounted onto super 

frost microscope slides (Fisher Scientific, Loughborough, UK), and incubated for 

1 hour at 60 °C. Lastly, sections were stained with haematoxylin and eosin (H&E, 

Leica Biosystems, Linford Wood, UK) or periodic acid schiff (PAS, Millipore, 

Watford, UK) and visualised with the Zeiss AxioImager M1 micrscope (Zeiss, 

Cambridge, UK). The method was adapted from that previously reported by Ayre 

et al. (2018).   
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5.3.8 Colony forming units (CFUs) from C. albicans-infected mandibles 

Colony forming units (CFUs) of C. albicans recovered from infected mandibles 

were counted adapting a method previously reported by Hayama et al. (2012). 

After 6, 24 and 48 hours of infection with C. albicans and treatment with 1% (v/v) 

Melissa officinalis, mandibles were washed briefly in PBS and homogenised in 

10 ml of PBS for 1 minute with a conventional rotor-stator homogeniser (Scilogex, 

Bedfordshire, UK). The suspension was ultrasonically agitated at 40 Hz for 30 

seconds (Branson Ultrasonic Bath 1501, Slough, UK) and spun down for 5 

minutes at 2000 rpm (SIGMA 3-16 Centrifuge, Sigma Centrifuges, Newtown, 

UK). The supernatant was removed. The pellet was suspended in 3 ml of 0.25% 

(v/v) trypsin EDTA (EDTA 0.25% w/v Tryp 0.53mM) in SDB, and incubated for 15 

minutes at 37 °C. After incubation, the suspension was centrifuged (2000 rpm, 4 

°C rpm, 5 minutes) two times and the pellet resuspended in 2 ml of PBS. Samples 

were serially diluted in PBS and 50 µl were spread onto SAB agar plates with a 

Whitley Automated Spiral Plate (WASP, Don Whitley Scientific Limited, Shipley, 

UK). Agar plates were incubated overnight at 37 °C, and the CFUs/ml were 

counted. Each experiment was performed in duplicate on three separate 

occasions. 

 

All methods described in Sections 5.3.3 - 5.3.8 relating to the preparation and 

development of the ex vivo model were carried out solely by the author in the 

School Dentistry, Cardiff University. 
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5.3.9 RT-PCR 

5.3.9.1 Primer optimisation  

Primers were designed using the NCBI primers design tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and purchased from Sigma-

Aldrich (Gillingham, UK). The primer sequences and cycling conditions are 

described in Table 5.1. Primers efficiency was evaluated by running each primer 

in the presence of 1:5 serial dilutions of cDNA, equivalent to10 ng/µl, 2 ng/µl, 0.4 

ng/µl, and 0.08 ng/µl. The efficiency was calculated from the slope of the standard 

curve.  

RT-PCR reactions were run on the StepOnePlus™ Real-Time PCR System 

(Thermo Fisher Scientific, Hemel Hempstead, UK). The amplification was carried 

out firstly with an activation step at 95 °C (10 minutes), followed by a denaturation 

step at 95 °C (40 cycles for 15 seconds), and an annealing and elongation step 

at 60 °C (1 minute). Melt curves were obtained at the end of the cycling process 

by increasing the temperature by 0.3 °C from 60 to 95 °C (Al-Shanti et al., 2009). 

A typical reaction mix contained 2 µl of cDNA (equivalent to 20 ng, 4 ng, 0.8 ng, 

and 0.16 ng), 5 µl of SyberGreen (SensiFAST™ SYBR Lo-ROX Kit, Bioline, 

London, UK), 0.4 µl of 10 mM forward primer, 0.4 µl of 10 mM reverse primer, 

and 2.2 µl of DNAse-free water (Promega, Southampton, UK) given a final 

volume per well of 10 µl. DNAse-free water replaced the primers and served as 

a negative control. All PCR conditions were run in duplicate.  

 

The most stable reference housekeeping gene, UBC (Ubiquitin C), was chosen 

according to the NormFinder software (https://moma.dk/normfinder-software) 

and was used as a reference housekeeping gene for all the experiments.  
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Table 5.1 - Characteristics of the primers designed. Upper section: reference housekeeping genes, bottom section: cytokines 

Gene marker Primer sequence Annealing temperature (C°) Product (bp) NCBI sequence 

-actin F: 5'-AGATCAAGATCATTGCTCCTCCT-3' 59.02 174 NM_031144.3 
 R: 5'-ACGCAGCTCAGTAACAGTCC-3' 60.04   

B2M F: 5'-ACTGAATTCACACCCACCGA-3' 59.24 100 NM_012512.2 
 R: 5'-ATTACATGTCTCGGTCCCAGG-3' 59.24   

CYC1 F: 5'-GACGATGGTACCCCAGCTAC-3' 59.61 101 NM_001277194.1 
 R: 5'-CCCATGCGTTTTCGATGGTC-3' 59.90   

GAPDH F: 5'-AGTGCCAGCCTCGTCTCATA-3' 60.68 189 NM_017008.4  
 R: 5'-TGAACTTGCCGTGGGTAGAG-3' 59.68   

UBC F: 5'-ACACCAAGAAGGTCAAACAGG-3' 58.35 103 NM_017314.1 
 R: 5'-AGACACCTCCCCATCAAACC-3' 59.30    

         

IL-1 F: 5'-GCTTCCTTGTGCAAGTGTCT-3' 58.69 160 NM_031512.2 
 R: 5'-TCTGGACAGCCCAAGTCAAG-3' 59.60   

IL-6 F: 5'-CTCTCCGCAAGAGACTTCCA-3' 59.11 122 NM_012589.2  
 R: 5'-GGTCTGTTGTGGGTGGTATCC-3' 60.34   

IL-10 F: 5'-TGCGACGCTGTCATCGATTT-3' 60.74 186 NM_012854.2 
 R: 5'-GTAGATGCCGGGTGGTTCAA-3' 60.04   

IL-18 F: 5'-GATTCGTTGGCTGTTCGGTC-3' 59.07 106 NM_019165.1 
 R: 5'-GATTCGTTGGCTGTTCGGTC-3' 59.56   

IL-12 F: 5'-TGGAGCACTCCCCATTCCTA-3' 59.96 106  NM_022611.1 
 R: 5'-ACGCACCTTTCTGGTTACACT-3' 59.86   

IL-23 F: 5'-CACACACACCAGTGGGACAA-3' 60.39 140 NM_130410.2 
 R: 5'-CCTTTGCAAACAGAACTGGCT-3' 59.59   

TNF F: 5'-ACTGAACTTCGGGGTGATCG-3' 59.75 150 NM_012675.3 

  R: 5'-TGGTGGTTTGCTACGACGTG-3' 60.88     
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5.3.9.2 RNA extraction from the gingiva and RT-PCR 

At designated time-points, mandibles were removed from the semi-solid agar and 

washed briefly in PBS. The gingiva was collected with a scalpel and immediately 

freeze-dried for 1 hour. RNA was extracted by homogenisation (Scilogex, 

Bedfordshire, UK) in Trizol reagent (Invitrogen, Loughborough, UK) for 5 minutes, 

following manufacturer’s instruction. RNA was stored at -80 °C and 1 µg of RNA 

was converted into cDNA with a Promega kit (Southampton, UK) and stored at    

-20 °C.  

RT-PCR reactions were run on the StepOnePlus™ Real-Time PCR System 

(Thermo Fisher Scientific, Hemel Hempstead, UK) as described in Section 

5.3.9.1. A typical reaction mix contained 2 µl of cDNA (equivalent to 20 ng), 5 µl 

of SyberGreen (SensiFAST™ SYBR Lo-ROX Kit, Bioline, London, UK), 0.4 µl of 

10 mM forward primer, 0.4 µl of 10 mM reverse primer, and 2.2 µl of DNAse-free 

water (Promega, Southampton, UK) given a final volume per well of 10 µl. 

DNAse-free water replaced the primers and served as a negative control.  

Ubiquitin C (UBC) served as the reference housekeeping gene in all cases. All 

RT-PCR conditions were run in duplicate on three separate mandibles. Results 

were expressed as fold change compared to the control (i.e. uninfected and 

untreated gingiva cultured for 24 hours). 

 

5.3.10 Statistical analyses  

Statistical analysis was performed using GraphPad Prism Version 7.0 (GraphPad 

Software, La Jolla, CA, USA). Data were presented as arithmetic mean ± SD or 

mean ± SEM. The difference between treatments was statistically analysed using 

one-way analysis of variance (ANOVA) followed by Tukey multiple comparisons 

test. Statistically significant differences were set at p < 0.05.  
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5.4 Results 

5.4.1 Diffusion of Melissa officinalis essential oil into semi-solid agar 

Prior to the development of the ex vivo model, preliminary experiments were 

carried out to evaluate the time needed for Melissa officinalis to both diffuse into 

the semi-solid agar and kill C. albicans.  

After a 6 hour infection, the semi-solid agar was treated with 1% (v/v) Melissa 

officinalis essential oil for 4 and 24 hours, equivalent to a total incubation period 

of 10 and 30 hours, respectively (Section 5.3.3). Both a treatment for 4 and 24 

hours decreased the CFUs/ml recovered from the semi-solid agar compared to 

the untreated samples (10 and 30 hours infection with Candida) (p<0.0001) 

(Figure 5.6). The 4 hour treatment inhibited the growth of C. albicans compared 

to the 10 hour infection, but it was not sufficient to kill the microorganism. Indeed, 

no significant differences were observed between the sample infected for 6 hours 

and that infected for 6 hours and treated for 4 hours with the essential oil. By 

contrast, when the essential oil was applied for 24 hours, the CFUs/ml recovered 

were significant less than the 6 hours of infection. For this reason, for subsequent 

experiments Melissa officinalis was applied for 24 hours, which inhibited and 

importantly killed C. albicans. 
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Figure 5.6 – Log10 of CFUs/ml recovered from semi-solid agar inoculated with C. 

albicans for 6 hours and treated with 1% (v/v) Melissa officinalis essential oil for 4 or 24 

hours. Data were normalised by the control (i.e. CFU/ml at 0 hours). Data represent the 

mean of three independent experiments, each performed in duplicate. *** equivalent to 

p< 0.001, **** equivalent to p< 0.0001 

 
 

5.4.2 Trowel-type culture of the gingiva 

The mandibles were cultured with the Trowel-type culture (Figure 5.7). Mandibles 

were embedded in 1% (w/w) semi-solid agar and nutrients were supplied by 

diffusion of the cell culture medium through the 0.22 µl Millipore filter into the 

agar. The uninoculated mandibles appeared clear, while those inoculated were 

cloudy (Figure 5.7). In accordance with the results in figure 5.6, the 24 hour 

addition of Melissa officinalis inhibited the growth of C. albicans (Figure 5.7-D). 
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Figure 5.7 – Trowel-type cell culture of A) 24 hour control, B) 24 hour 1% (v/v) Melissa 

officinalis, C) 24 hour C. albicans, and D) 6 hour C. albicans + 24 hours 1% (v/v) 
Melissa officinalis 

 

5.4.3 Histological examination 

Tissue invasion was monitored by histological examination. Haematoxylin and 

eosin (H&E) were used to stain cells and PAS to visualise C. albicans. Healthy 

gingiva is characterised by three layers: keratinised layer (k), epithelium layer (e) 

and the basal layer (b) attached to the connective tissue (c) (Figure 5.8-A).  

The healthy structure of the gingiva was maintained in all the conditions tested 

(Figure 5.8). The gingiva was infected with C. albicans for 6, 24 and 48 hours. 

After 6 hours of infection, C. albicans was not visible (Figure 5.8-C). By contrast, 

when the mandible was infected for 24 hours, C. albicans was detectable as 
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unicellular yeast and hyphal form (Figure 5.8-D). Interestingly, when the infection 

was prolonged for additional 24 hours (48 hours in total), the number of hyphae 

and the penetration of C. albicans in the deepest layers did not increase, while a 

uniform layer appeared on the top of the keratinocytes (Figure 5.8-E). After 6 and 

24 hour infection, mandibles were treated with 1% (v/v) Melissa officinalis 

essential oil. Figure 5.8-B revealed that the essential oil did not have an impact 

on the gingival structure. Concerning the antifungal potential of Melissa officinalis, 

it was interesting to note that after 24 hours of infection and addition of Melissa 

officinalis, only few colonies were still detectable (Figure 5.8-F). 
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24 hours control  
(A) 

1% (v/v) Melissa officinalis  

(B) 

6 hours C. albicans  
(C) 

24 hours C. albicans  
(D) 
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Figure 5.8 - Histological examination of the gingiva stained with H&E (left, scale bar 

100 µm) and PAS (right, scale bar 50 µm). A) 24 hour control, B) 24 hour 1% (v/v) 

Melissa officinalis, C) 6 hour C. albicans, D) 24 hour C. albicans, E) 48 hour C. 

albicans, F) 24 hour C. albicans + 1% (v/v) Melissa officinalis. 

k) indicates the keratinised layer, e) the epithelium layer, b) the basal layer and c) the 

connective tissue. Arrows point the hyphal form of C. albicans  

 
  

48 hours C. albicans  
(E) 

24 hours C. albicans 

+ 1% (v/v) Melissa officinalis 

 (F) 
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5.4.4 Colony forming units (CFUs) 

The antifungal potential of Melissa officinalis essential oil was estimated by viable 

counts of C. albicans, which were recovered after Melissa officinalis treatment on 

the infected mandibles. As already observed by histological examination (Section 

5.4.3), Melissa officinalis prevented C. albicans growth. Indeed, the application 

of Melissa officinalis treatment after 6 and 24 hours significantly decreased the 

CFUs/ml compared to the untreated mandibles (p<0.01) (Figure 5.9). In addition, 

a CFU/ml decrease from the 24 to 48 hour infection was observed, although this 

difference was not statistically significant.  

 

 
 

Figure 5.9 - Colony Forming Units (CFUs/ml) recovered from the gingiva after infection 

with C. albicans followed by the application of 1% (v/v) Melissa officinalis essential oil. 

Controls included untreated samples. Data represent the mean of three independent 

experiments, each performed in duplicate. ** equivalent to p< 0.01, **** equivalent to 

p< 0.0001 
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5.4.5 Primer optimisation 

The primers were optimised by running serial dilutions of cDNA as described in 

Section 5.3.9.1. Figure 5.10 reports the cycle threshold (Ct) values as a function 

of the content of cDNA, for both the reference housekeeping genes and the gene 

markers. Table 5.2 shows the efficiency of each primer, calculated from the 

slopes of the curves reported in Figure 5.10. The best reference housekeeping 

gene was selected according to the NormFinder software. Ubiquitin C (UBC) was 

found to be the most stable housekeeping gene and was used as reference gene 

in the subsequent experiments (Table 5.3). 

 

 
 
    

 
 

Figure 5.10- Efficiency curves for the reference housekeeping genes (A) and the 

cytokines (B). Each gene was run in the presence of 1:5 serial dilutions of cDNA 
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Table 5.2 - Primer efficiency calculated from the slope of the serial dilution curves 

Gene marker Efficiency 

actin 105% 

B2M 99% 

CYC1 116% 

GAPDH 91% 

UBC 103% 

IL-1 106% 

IL-6 99% 

IL-10 86% 

IL-18 104% 

IL-12 113% 

IL-23 93% 

TNF 102% 

 

 

Table 5.3 - Stability value for each housekeeping gene calculated with the NormFinder 

software. The smaller the value, the more stable the gene is 

Gene marker Stability value 

actin 1.129 

B2M 0.779 

CYC1 1.076 

GAPDH 0.927 

UBC 0.422 

 

5.4.6 RT-PCR  

Pro and anti-inflammatory responses to C. albicans infection and treatment with 

Melissa officinalis essential oil were evaluated by RT-PCR. Four interleukins (IL-

1, IL-6, IL-10 and IL-18) were targeted ( 

 

Figure 5.11). No significant differences were observed by culturing the mandibles 

for 24 or 48 hours. An infection of 6 hours with C. albicans did not cause a 

significant inflammatory response, except for a spike in the IL-10 production, 

even if this difference was not statistically significant. An infection of 24 hours 
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caused an acute pro-inflammatory response with a high production of IL-1, IL-

6, IL-18, while the secretion of the anti-inflammatory marker (IL-10) was the 

lowest. When the mandible was infected for 48 hours, the production of 

interleukins decreased and only the secretion of IL-1 was significantly higher 

than the control (p<0.001).  

Concerning the effect of the essential oil on host cells, except for the high levels 

of IL-6, no significant differences were observed compared to the untreated 

samples. The application of Melissa officinalis essential oil to the infected 

samples allowed a significant decrease in the pro-inflammatory response 

compared to the 24 hours infection with C. albicans. However, by comparing this 

response with that obtained after a 48 hour infection with C. albicans, the 

decrease was significant only in the IL-1 expression.
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Figure 5.11 - Expression of IL-1 (A), IL-6 (B), IL-10 (C) and IL-18 (D) recovered from the 
gingiva. Gingiva was infected for 6, 24 and 48 hours with C. albicans. After 24 hour 

infection, 1% (v/v) Melissa officinalis essential oil was applied. Controls included untreated 
and uninfected samples. Data were calculated as fold change compared to the 24 hours 

culture without Candida and Melissa officinalis. Data (mean ± SEM) represent the mean of 
three independent experiments, each performed in duplicate * equivalent to p< 0.05, ** 

equivalent to p< 0.01, *** equivalent to p<0.001 and **** equivalent to p<0.00
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5.5 Discussion 

In vitro models are unable to reproduce the in vivo spatial cellular organisation 

and to take into account the cellular interaction that might occur in vivo (Sloan et 

al., 2016). For these reasons, an ex vivo model was established with the aim to 

test the antifungal potential of Melissa officinalis essential oil against C. albicans.  

The mandible and the attached gingiva were cultured using the Trowel-type 

culture (Trowell, 1959), in which the tissue is embedded in a semi-solid agar and 

cultured at the gas-liquid interface. The Trowel-type culture has been previously 

reported to be the ideal method for culturing 3D-tissues and has been 

successfully used to culture mandibles and tooth slices (Sloan et al., 1998; Sloan 

and Smith, 1999; Waddington et al., 2004; Smith et al., 2010). This is because 

the more effective nutrient perfusion and oxygen supplementation maintain better 

tissue morphology and a healthy culture (Smith, 2009).  

 

One percent (1% (v/v)) Melissa officinalis essential oil was used because 

previous experiments showed that this concentration killed C. albicans even in a 

biofilm growth mode (see Section 2.8.3). Two different methods were evaluated 

for the treatment of the gingiva: addition of the essential oil to the cell culture 

medium that perfused into the semi-solid agar and direct application of the 

treatment to the gingiva. It was observed that by pipetting small amount of the 

treatment (20 µl) into the semi-solid agar, the amount effectively released into the 

agar was not the same each time the experiment was repeated. This caused a 

lack of reproducibility, which was also confirmed by histological analysis and 

showed that the treatment was not always able to kill C. albicans (data not 

shown). For this reason, it was decided to treat the mandible by applying the 

essential oil in the culture medium.  
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Since the cell culture medium containing the treatment diffused into the semi-

solid agar, the time needed to allow the oil diffusion into the semi-solid agar and 

to kill C. albicans was investigated. It was found that an application of 24 hours 

of the treatment was necessary to kill Candida. Therefore, a 24 hour application 

was used for all subsequent experiments. 

 

Concerning the infection of the gingiva, three different approaches were 

evaluated: addition of C. albicans into the agar by pipetting, direct contact of the 

gingiva with C. albicans grown onto SAB agar, and embedment of the mandible 

into semi-solid agar containing C. albicans. As mentioned earlier, the pipetting 

technique was not reproducible, while the direct contact of the mandible with C. 

albicans did not allow the evaluation of the initial inoculum (CFU/ml). Therefore, 

it was decided to embed the mandibles in previous infected semi-solid agar.  

 

The mandibles were infected for 6 and 24 hours with C. albicans, and 1% (v/v) 

Melissa officinalis essential oil was used as a treatment. The histological analysis 

showed that the structure of the gingiva was maintained over 48 hours and was 

not altered by the application of Melissa officinalis essential oil. It was not possible 

to quantify the viability of the cells within the gingiva. Therefore, the toxicity of the 

oil was only investigated qualitatively from histological analysis.  

 

Concerning the inflammatory response, 4 interleukins (IL-1, IL-6, IL-10 and IL-

18) were targeted. Briefly, IL-10 is an anti-inflammatory cytokine that inhibits the 

production of IL-12 and the formation of Th1 cells, promoting a Th2 response that 

inhibits the activity of macrophages. The production of IL-10 is one of the 

virulence factors that Candida uses to evade the host immune system (Xiong et 
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al., 2000; Netea et al., 2004; Luo et al., 2013). IL-1 and IL-6 are pro-inflammatory 

cytokines involved in the differentiation of T-cells in Th17, in the induction of pro-

inflammatory cytokines, in the expression of antimicrobial peptides, and in the 

migration of neutrophils and the activation of macrophages (Akdis et al., 2011; 

Richardson and Moyes, 2015; Akdis et al., 2016). IL-18 is a pro-inflammatory 

cytokine that promotes the recruitment of phagocytic cells and the production of 

IFN, crucial to the development of a Th1 response (Akdis et al., 2016; Qin et al., 

2016) . Further details on the immune response are provided in Chapter 3, 

Section 3.1.2. 

 

The inflammatory response was evaluated using RT-PCR. Significant differences 

in the inflammatory response to Melissa officinalis and the control (i.e. untreated 

sample) were observed only in the production of IL-6. At the author’s knowledge, 

no data are available on the inflammatory responses generated by the application 

of Melissa officinalis essential oil on the ex vivo model. Previous studies reported 

that geraniol and citronellal, which are the two main compounds of Melissa 

officinalis, had an anti-inflammatory response (de Cássia da Silveira e Sá et al., 

2013). In addition, essential oils that have some of the main compounds in 

common with Melissa officinalis (e.g. citral, geraniol and citronellol) inhibited IL-1 

and IL-6 in mouse macrophages stimulated with LPS, and suppressed the 

adherence reaction of neutrophils induced by TNF (Abe et al., 2003; Sforcin et 

al., 2009). However, it should be taken into account that different cells or 

interleukins were targeted in these studies. 

 

The infection of the mandible with C. albicans showed that a 6 hour infection was 

not sufficient to promote adhesion and invasion of C. albicans. However, the PCR 
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analysis highlighted that even if C. albicans was not detectable, it caused a host 

immune response. Indeed, a spike in the IL-10 expression was observed.  

A 24 hour infection allowed C. albicans to adhere to and invade the gingiva. In 

particular, the hyphae morphology form, one of the virulence factors of C. 

albicans, was visible. Hyphae are related to greater resistance to phagocytosis 

compared to the yeast form, as well as a higher invasion ability that causes tissue 

damage and a down-regulation of pro-inflammatory cytokines (e.g. IFN) 

(Williams and Lewis, 2011; Luo et al., 2013).  

When the mandibles were infected for 48 hours, penetration of Candida into the 

gingiva was not evident anymore but a uniform Candida layer composed of yeast 

and hyphae was formed on the surface.  

The absence of invasion when the culture was prolonged could be due to the 

culture medium used. Indeed, mandibles were cultured in DMEM/F12, which is a 

medium specific for cells. Moreover, Candida growth was not supported by the 

addition of SBD to the cell culture medium. Therefore, it could be possible that 

the ideal conditions to support the growth and the invasion were not present in 

the ex vivo model, and this was evident in the prolonged culture.  

This was also confirmed by determining the CFU/ml after 24 and 48 hours. Even 

if the difference was not significant, less CFUs/ml were recovered after a 48 hours 

infection.  

Despite this decline in viability and invasive potential, the histological analysis 

showed tissue damage after 48 hour infection with the detachment of the basal 

layer from the connective tissue, even if it is possible that the gaps formed during 

the cutting process. The tissue damage could also be confirmed by the 

inflammatory responses. Indeed, no significant differences were observed in the 
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expression of IL-6 and IL-18 between the controls and the infected samples. This 

could be due to the fact the cytokine-producing cells were killed by Candida. 

In general, it was observed that during Candida infection, there was a similar 

trend in the expression of the pro-inflammatory cytokines (IL-1, IL-6 and IL-18), 

opposed to IL-10, characterised by a spike after 24 hour infection. A similar trend 

for IL-6 was reported by Steinshamn and Waage (1992) that infected 

granulocytopenic mice with C. albicans.  

 

When the mandibles were treated with Melissa officinalis essential oil, C. albicans 

was killed as confirmed both by the PAS staining and the CFUs/ml recovered 

from the mandibles. Taking into account the inflammatory responses to the 

treatment, no significant differences were observed between treated and 

untreated samples. However, it was not possible to speculate if this was due to 

the antifungal potential of the essential oil or to the toxic effect of the essential oil 

on the cells that inactivated the immune response. 

Therefore, further work should focus on the evaluation of the cell viability in the 

mandible. Truly, only in this way it would be possible to claim an anti-inflammatory 

and anti-candidal potential of Melissa officinalis essential oil. 

  



 218 

5.6 Conclusions 

An ex vivo rodent mandible model was developed. The gingiva was successfully 

infected, and Melissa officinalis essential oil was used as a treatment. The 

infection and treatment were evaluated by histological examination and by 

counting the CFUs/ml. Preliminary experiments to investigate the inflammatory 

responses were carried out by RT-PCR. Results showed a spike in the pro-

inflammatory response after an infection of 24 hours. In addition, the application 

of Melissa officinalis essential oil decreased the host response. However, further 

experiments should be carried out to evaluate the cytotoxicity of the essential oil. 

Once the optimisation of the model with C. albicans is completed, it will be 

possible to infect the model with periodontal bacteria and evaluate the potential 

use of Melissa officinalis essential oil as a treatment for periodontal diseases. 

 



 

 

Chapter 6  
 

General discussion  

and future work 
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Candida albicans is a commensal fungus found in 30 - 50% of healthy humans 

(Singh et al., 2015). However, alterations of the oral environment can lead to the 

most common human fungal infection, named oral candidiasis. Oral candidiasis 

comprises four different forms associated with i) the prescription of antibiotics 

(acute atrophic candidiasis), ii) immunosuppression (pseudomembranous 

candidiasis), iii) the presence of a denture (denture stomatitis), and iv) the 

invasion of the oral epithelium (chronic hyperplastic candidiasis) (Williams and 

Lewis, 2011). Importantly, a possible link between chronic hyperplastic 

candidiasis and oral cancer has been reported.  

Recently, it has also been highlighted that even if oral candidiasis is mainly 

associated with C. albicans, the presence of bacteria at the site plays an 

important role in the progression of the disease. In particular, higher tissue 

invasion and production of hyphae were observed when C. albicans was co-

cultured with Streptococci and Actinomyces species, meaning that the success 

of the antifungal therapy can be connected to the concomitant control of the 

bacteria present at the site (Cavalcanti et al., 2015).  

 

Treatments for oral candidiasis include the use of antifungal agents such as 

nystatin, amphotericin B, metronidazole and fluconazole. Compared to 

antibiotics, antifungals on the market are limited and the rise of resistance of 

Candida to these antifungals has been observed. Therefore, an interest in the 

discovery of new antifungals has developed (Williams and Lewis, 2011; Boros-

Majewska et al., 2014). 

 

Essential oils are natural products produced by aromatic plants mainly composed 

by terpenes and terpenoids. Essential oils interact with the cell membrane 
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changing its permeability and causing leaching of intracellular components (e.g. 

radicals, proteins, calcium ions) and the inactivation of enzymatic mechanisms 

(Bakkali et al., 2008). Moreover, they can penetrate into the cell and interact with 

the mitochondrial membrane causing cell death (Nazzaro et al., 2013).  

 

In this study, twelve essential oils, two terpenes and two biocides (triclosan and 

CHX) were evaluated for their antifungal activity against two C. albicans strains, 

a reference strain (C. albicans NYCY 1363), and a clinical strain described as a 

high invader (Candida albicans 135BM2/94). The clinical strain was isolated from 

a patient, who was diagnosed with chronic hyperplastic candidiasis and 

squamous cell carcinoma (Malic et al., 2007).  

This current study confirmed the antifungal potential of essential oils. Indeed, all 

tested commercial essential oils demonstrated anticandidal activity (MICs from 

0.06% (v/v) to 0.4% (v/v)) against planktonic cultures, with a noticeable increase 

in resistance exhibited by biofilms (MBECs > 1.5% (v/v)).  

Since the antimicrobials were applied for 24 hours, future work could investigate 

the time needed to kill C. albicans. In addition, the evaluation of the MBECs could 

be performed on polymicrobial biofilms or on biofilms in the presence of a 

conditioning film (e.g. saliva). 

 

Candida albicans, being a eukaryotic organism, shares some features with 

mammalian cells. Therefore, the development of a treatment that is antifungal but 

not cytotoxic is crucial. For this reason, the cytotoxicity of the essential oils was 

evaluated as well. Firstly, a preliminary screening was performed on NIH 3T3 

cells, a mouse fibroblast cell line available in-house (Serra et al. 2018). The 

cytotoxicity of the six compounds active against biofilm growth (cinnamon, 
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linalool, geranium and melissa, E-cinnamaldehyde, and CHX) was evaluated with 

an alamarBlue assay. It was observed that the essential oils halved fibroblast 

proliferation at concentrations lower than their MICs and that melissa was the 

essential oil that showed the lowest cytotoxicity (MIC80 of 0.06% (v/v) and IC50 

of 0.03% (v/v)).  

In addition, the cytotoxicity was evaluated on a human cell line to better mimic 

the in vivo response. The cytotoxicity was evaluated on human dental pulp stem 

cells with a CellTiter-Glo assay. The experiment confirmed that the 

concentrations needed to kill C. albicans were higher than those that inhibited 

cell proliferation. However, as discussed in Chapter 3, the main disadvantage of 

this assay is the high cost. For this reason, only one repetition of the experiment 

was carried out and the data were not shown in this thesis.  

 

It was concluded from analysis of the cytotoxicity that melissa (Melissa officinalis) 

was the essential oil that showed the best compromise between antifungal 

activity and low cytotoxicity. Hence, Melissa officinalis was used in all further 

experiments.  

 

Even though the screening of the cytotoxicity revealed that the essential oils were 

generally toxic to cells, some experimental limitations should be taken into 

account. Indeed, even though the 2D-model was simple and inexpensive, it did 

not reproduce the in vivo spatial organisation. In particular, the treatment was 

applied to a cellular monolayer. For instance, de Campos Rasteiro et al. (2014) 

evaluated the potential of 12.5% (v/v) tea tree oil as a treatment for oral 

candidiasis in a mouse model. They did not report a cytotoxic effect at this 
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concentration, which was significantly greater than the MIC found in this study 

and the IC50 of the essential oils screened.  

In addition, in the case of oral application, it should be considered that the saliva 

would dilute the concentration of the essential oil and decrease the contact-time 

between treatment and cells. This could determine an increase in the resistance 

of cells to the essential oil. Therefore, it would be ideal to evaluate the effect on 

cells on a short-time application (e.g. 5 minutes). 

Moreover, it should be considered that a synergy between essential oil and 

antifungals present on the market had been reported (Zore et al., 2010; Zore et 

al., 2011; Samber et al., 2015; Cardoso et al., 2016). The synergy allows the 

same antifungal activity by decreasing the doses of both the antifungal and the 

essential oil, potentially avoiding the cytotoxic effect. Since the aim of the present 

study was not to use antifungals available on the market, the evaluation of the 

synergy with essential oils was not screened. However, future work might focus 

on the investigation of the cytotoxicity of blends essential oil-antifungal on a 

human cell line.  

In general, it is also important to highlight that the essential oils are composed of 

several terpenes and terpenoids, and not all of them could show an antifungal 

activity or a cytotoxic effect. Therefore, the evaluation of the MICs and ICs50 of 

the single compounds would allow the synthesis ex novo of an antimicrobial 

containing the compounds that are antifungal but not those that have an effect 

on cells. Besides being used as an alternative to commercially available 

treatments, the best compounds could be used in combination with antimicrobials 

available to potentiate their action. Therefore, the synergy between the 

antifungals and the single components of the essential oil could be also evaluated 

(Abreu et al., 2012).  
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Besides the cytotoxicity, it is important to evaluate the host response to the 

treatment. Therefore, the inflammatory response to Melissa officinalis in 

combination with and without C. albicans was evaluated. The inflammatory 

response was investigated on an ex vivo whole blood model developed at 

Swansea University (Al-ishaq et al., 2015). It was observed that Melissa officinalis 

essential oil did not cause a significant inflammatory response, except for a 4 

hour addition of 0.1% (v/v) Melissa officinalis that caused an anti-inflammatory 

response. The potential anti-inflammatory activity of essential oils or their main 

compounds has been previously reported (Abe et al., 2003; Sforcin et al., 2009; 

Bounihi et al., 2013). In addition, it was observed that the infection of the blood 

with C. albicans in the presence of the essential oil led to a pro-inflammatory 

response. This could mean that the oil eliminated the capacity of Candida to 

evade the immune system. Indeed, when the blood was infected with Candida 

without the treatment, an anti-inflammatory response was observed.  

Despite these observations, it should be considered that only one out of three 

donors showed an inflammatory response. Therefore, it was not possible to claim 

a statistical significance of these results. Moreover, the donor that had an 

inflammatory response showed high levels of IL-10 even in the untreated blood. 

This could be due to the presence of an infection in the body that was not 

communicated by the donor when the blood was collected. Future work should 

be done to include more donors. In addition, the haemolysis caused by the 

application of the essential oil should be analysed to verify that the cells producing 

interleukins are still alive.  

 

Once the antimicrobial properties of a new compound have been investigated, a 

vehicle to deliver the compound at the site of infection has to be synthesised. 
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Hydrogels are 3D-networks obtained from natural and/or synthetic polymers that 

have been widely used as drug delivery systems (Slaughter et al., 2009). The 

thermosensitive hydrogels can crosslink at body temperature, allowing their 

injection at room temperature and the gelation in situ.  

Among the different types of hydrogels, it was decided to use a methylcellulose 

polymer. The decision was established on the low cost of the powder, and on the 

simple preparation that did not involve the use of a possible cytotoxic crosslinker. 

In the present study, a methylcellulose hydrogel containing 1 and 2% (v/v) 

Melissa officinalis was successfully developed. In particular, the drug release was 

maintained for 48 hours, allowing the increase of the retention time of the 

essential oil at the site of infection. In addition, the synthesised hydrogel had an 

antifungal activity as shown by the time-kill assay and the zone inhibition method.  

Future work on the hydrogel should be undertaken to evaluate its potential 

application as a treatment for oral candidiasis.  

Methylcellulose hydrogels have been reported to have mucoadhesive properties 

(Klouda, 2015). Therefore, it could be injected directly at the infection site. 

Moreover, in case of denture stomatitis, the hydrogel might be used to coat the 

denture. In the latter case, further experiments to evaluate the interactions of the 

hydrogel with Candida need to be conducted. In particular, retention assays will 

allow understanding if the presence of the hydrogel containing the essential oil 

acts as an additional surface to which Candida can adhere, or inhibits the 

attachment of Candida to the denture acrylic (Taylor et al., 1998).  

In addition, the efficacy of the hydrogel against biofilms needs to be evaluated. 

Finally, even if methylcellulose is a biocompatible polymer, it would be interesting 

to evaluate the cytotoxicity of the hydrogel in combination with the essential oil. 

Indeed, even if the hydrogel contained 1 or 2% (v/v) Melissa officinalis essential 
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oil, greater than the IC50, the current study has determined that the oil was 

released over 48 hours. Consequently, the cells would not be exposed to the high 

concentrations added into the hydrogel but only to the fraction released, that 

might not exceed the toxic threshold.  

 

As previously mentioned, in vitro models have some limitations such as the 

impossibility  to reproduce the in vivo spatial cellular organisation (Sloan et al., 

2016). For this reason, the final part of the present study was dedicated to the 

development of an ex vivo mandible rodent model. The ex vivo rodent mandible 

model provided a tissue scaffold that allowed observation of Candida invasion 

and adhesion and evaluation of the antifungal potential of Melissa officinalis. In 

particular, it was possible to infect the gingiva with Candida and observe the 

formation of hyphae and penetration over 48 hours. In addition, the application of 

the essential oil successfully decreased the CFUs/ml recovered compared to the 

untreated samples. Preliminary RT-PCR experiments highlighted that the 

presence of Candida for 24 hours caused a pro-inflammatory response, while the 

application of the essential oil decreased the host response.  

The main limitation of this model was the impracticality of quantifying cell viability. 

It was impossible to speculate if the decreased host response in the presence of 

the treatment was due to the effect of the essential oil on Candida or to its 

cytotoxicity.  

In particular, the use of cytotoxicity assays on the model is challenging. Since the 

mandible was cultured in the Trowel-type culture, it was embedded into the semi-

solid agar. This meant that the LDH was not released into the cell culture medium. 

Similarly, the use of the MTT or alamarBlue assay was not applicable because of 

the variability of the cell number in each mandible, depending on the rat and the 
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cutting process. Basically, it would not allow comparison of the colour intensity of 

the assay between the mandibles (regarding colour intensity, more details in 

Chapter 3). Therefore, imaging methods such as the counting of the nuclei could 

be utilised.  

 

Considering that the aim of the project was to develop a novel therapy for oral 

diseases, the experiments were designed to assess the antimicrobial properties 

of a range of compounds, to test the cytotoxicity of these compounds, to 

synthesise and evaluate a delivery vehicle and to develop an ex vivo model.  

In the first instance, it was decided to target oral candidiasis, which is mainly 

caused by Candida. However, in the future, the hydrogel and the ex vivo model 

could be used for other clinical applications. In particular, these technologies and 

methodologies could be transferred to other oral diseases, such as periodontal 

diseases. Periodontal diseases are a polymicrobial infection that involves 

anaerobic bacteria and bone damage, and are of particular concern, being a risk 

factor for cardiovascular diseases, the leading cause of death worldwide (Tonetti 

et al., 2013).  

Indeed, once the activity of the essential oil is investigated in vitro against 

periodontal pathogens, as shown in Chapter 1, the hydrogel containing the 

essential oil can be synthesised as described in Chapter 4 and applied to 

periodontal bacteria. In addition, once the ex vivo model is optimised in term of 

infection and treatment procedures, measurement of the viability, and extraction 

of the RNA, it will be possible to adapt the methodology to an infection with 

periodontal pathogens. 
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In conclusion, this study attempted to develop a novel antimicrobial therapy for 

oral diseases by utilising a hydrogel in combination with an essential oil.  

The main findings of this study were:  

 Essential oils showed antifungal activity against planktonic C. albicans, and 

six of the compounds tested were also active against biofilms 

 Cytotoxicity screening revealed that the essential oils halved fibroblast 

proliferation at concentrations lower than those required to inhibit C. albicans 

growth 

 Melissa officinalis was the essential oil that exhibited the best antifungal 

activity and lowest cytotoxicity, and had an anti-inflammatory potential 

 The methylcellulose hydrogel containing Melissa officinalis was successfully 

synthesised. The hydrogel gellified at body temperature in less than three 

minutes and the release of Melissa officinalis was maintained over a period of 

48 hours. The antifungal potential of the hydrogel with Melissa officinalis was 

confirmed by both zone of inhibition method and time-kill assay 

 The ex vivo rodent mandible model to better mimic the in vivo situation was 

developed. The gingiva was successfully infected with C. albicans and the 

treatment with Melissa officinalis decreased the CFU/ml recovered from the 

tissue. RT-PCR showed that the application of the essential oil decreased the 

host inflammatory response 
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Abstract: Management of oral candidosis, most frequently caused by Candida albicans, is limited 

due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. 

In this study, the antifungal activity of a range of commercial essential oils, two terpenes, 

chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In 

addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts 

and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was 

determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) 

was established against planktonic cells cultured in a range of concentrations of the test agents. 

The minimal biofilm eradication concentration (MBEC) was determined by measuring re-

growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested 

commercial essential oils demonstrated anticandidal activity (MICs from 0.06% (v/v) to 0.4% 

(v/v)) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms 

(MBECs > 1.5% (v/v)). The IC50s of the commercial essential oils were lower than the MICs, 

while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than 

the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic 

agents against C. albicans, although host cell cytotoxicity is a consideration when developing 

these new treatments. 

Keywords: Candida albicans; oral candidosis; commercial essential oils; biocides; antifungal 

activity; minimum inhibitory concentration; minimal biofilm eradication concentration; 

cytotoxicity 

 

1. Introduction 

Candida are commensal fungal microorganisms that can colonise the oral cavity, where they 

are mainly found on the posterior part of the tongue and the oral mucosa. Changes in the oral 

environment that lead to increased Candida growth can instigate oral candidosis [1]. The rising 

number of immunocompromised and immunodeficient patients has resulted in an increased 

incidence of fungal infections. To highlight this, Candida-related infections affect 65% of HIV 

positive individuals and over 80% of AIDS patients [2–4]. The higher life expectancy of the 

general population has also led to a rise in denture wearing, with a concomitant increase in 

Candida-associated stomatitis [5–7]. Even though more than 17 Candida species can cause human 

infection, oral candidosis are mainly caused by C. albicans [8]. In the mouth, Candida typically 



  

 

grows as biofilms, which are three-dimensional structures attached to surfaces including human 

tissue or abiotic substrates (e.g. a denture). Biofilm cells are embedded in a self-produced 

extracellular polymeric matrix and importantly often exhibit an elevated tolerance to 

antimicrobial agents and host defences [5]. 

Current therapies for oral candidosis include use of topical or systemic antifungal agents, 

such as polyenes and azoles. Polyenes (e.g. nystatin and amphotericin B) are fungicidal through 

binding to ergosterol in the fungal cell membrane and inducing cell membrane damage. Azoles, 

such as fluconazole and miconazole, are fungistatic by inhibiting the enzyme lanosterol 

demethylase, involved in ergosterol biosynthesis [9]. Importantly, the range of available 

antifungals are limited compared to antibiotics [9] and coupled with the rise of Candida resistance, 

especially within biofilms, this has led to an interest in the discovery of new antifungal 

compounds [10]. 

Essential oils are natural products produced by aromatic plants and are mainly composed 

by terpenes and terpenoids [11]. Being lipophilic, these oils typically integrate into membrane 

structures causing increased cell permeability, leaching of intracellular components and 

inactivation of enzymes [12,13]. Essential oils can act against Candida by inhibiting ergosterol 

synthesis [14–18], altering cell wall morphology [15,17–19], inhibiting enzymes involved in cell 

wall synthesis [18,20], changing cell membrane permeability [21,22] and producing oxygen 

reactive species [23]. Furthermore, essential oils can also interact with the mitochondrial 

membrane leading to cidal effects [11]. Antimicrobial, anti-aseptic, anti-inflammation and anti-

oxidant activity of essential oils, alone and in combination with commercial agents is well known 

[13,24–26]. However, limited knowledge exists regarding essential oil activity against biofilms 

and also host cell cytotoxicity. 

The aim of this study was therefore to investigate the antifungal potential of twelve 

commercial essential oils and two terpenes (E-cinnamaldehyde and linalool) against C. albicans 

planktonic and biofilm growth. The cytotoxicity of the most active commercial essential oils was 

established against mouse fibroblasts. Antifungal activity of commercial essential oils was 

compared to chlorhexidine (CHX) and triclosan. These two biocides have previously shown 

antimicrobial properties against a wide range of oral pathogens and are frequent components in 

mouthwashes and toothpastes [27,28]. 

2. Results 

2.1. Minimum Inhibitory Concentration (MIC) 80 and Minimal Lethal Concentration 

The minimum inhibitory concentration (MIC) 80 of the test agents against C. albicans NCYC 

1363 and C. albicans 135BM2/94 are shown in Table 1. The commercial essential oils that inhibited 

the growth at the lowest concentrations were melissa and geraniol, while myrtle and sage had 

the lowest fungistatic potential (p < 0.001). 

Fungicidal activity was also expressed as the lowest concentration of antimicrobial agent 

that killed the microorganism (minimal lethal concentration) (Table 2). All tested compounds, 

with exception of triclosan, had minimal lethal concentrations against C. albicans at tested 

concentrations. However, these lethal concentrations were generally higher than the previously 

established MICs. 

Table 1. Minimum inhibitory concentration 80 of commercial essential oils and biocides against 

C. albicans NYCY 1363 and C. albicans 135BM2/94 in the planktonic form. 

Antimicrobial 
Minimum Inhibitory Concentration 80 [% (v/v)] [(g/L)] 

C. albicans NYCY 1363 C. albicans 135BM2/94 

Basil 0.1 (0.9) 0.1 (0.9) 

Bergamot 0.3 (2.6) 0.3 (2.6) 

Cinnamon 0.1 (1.0) 0.1 (1.0) 

Citronella 0.1 (0.9) 0.1 (0.9) 



  

 

Geranium 0.07 (0.6) 0.06 (0.5) 

Lavender 0.2 (1.8) 0.1 (0.9) 

Melissa 0.06 (0.5) 0.06 (0.5) 

Myrtle 0.4 (3.5) 0.3 (2.7) 

Peppermint 0.1 (0.9) 0.1 (0.9) 

Sage 0.4 (3.7) 0.3 (2.7) 

Spearmint 0.2 (1.6) 0.1 (1.1) 

Tea tree oil 0.2 (1.8) 0.2 (1.8) 

E-cinnamaldehyde 0.03 (0.3) 0.01 (0.1) 

Linalool 0.1 (0.9) 0.1 (0.9) 

CHX 2 × 10−3 (2.1 × 10−2) 5 × 10−3 (5.3 × 10−2) 

Triclosan 5.66 × 10−4 (8.4 × 10−3) 5.89 × 10−4 (8.8 × 10−3) 

Minimal inhibitory concentration 80 (MIC80) defined as the lowest concentration of the 

antimicrobial agent that led to 80% reduction in absorbance compared to controls without 

agent. MIC values are in % (v/v) and in brackets are the equivalent MIC values in (g/L). 

Table 2. Minimal lethal concentration of commercial essential oils and biocides against C. albicans 

NYCY 1363 and C. albicans 135BM2/94 in the planktonic growth mode. 

Antimicrobial 
Minimal Lethal Concentration [% (v/v)] [(g/L)] 

C. albicans NCYC 1363 C. albicans 135BM2/94 

Basil 0.5 (4.5) 0.5 (4.5) 

Bergamot 0.5 (4.4) 0.5 (4.4) 

Cinnamon 0.1 (1.0) 0.1 (1.0) 

Citronella 0.1 (0.9) 0.1 (2.7) 

Geranium 0.1 (0.9) 0.1 (0.9) 

Lavender 0.5 (4.4) 0.3 (2.6) 

Melissa 0.1 (0.9) 0.1 (0.9) 

Myrtle 1 (8.8) 1 (8.8) 

Peppermint 0.3 (2.7) 0.1 (0.9) 

Sage 1 (9.2) 1 (9.2) 

Spearmint 1 (9.2) 1 (9.2) 

Tea tree oil 0.5 (4.5) 0.3 (2.7) 

E-cinnamaldehyde 0.03 (0.3) 0.03 (0.3) 

Linalool 0.3 (2.6) 0.3 (2.6) 

CHX 2.5 × 10−3 (2.7 × 10−2) 5 × 10−3 (5.3 × 10−2) 

Triclosan NA NA 

Minimal lethal concentration was defined as the lowest concentration of the antimicrobial agent 

that killed C. albicans. MLC values are in % (v/v) and in brackets are the equivalent MLC values 

in (g/L). NA = no antimicrobial activity at tested concentrations. 

2.2. Minimal Biofilm Eradication Concentration 80 

The antifungal activity of biocides and commercial essential oils against C. albicans biofilms 

was expressed as the minimal biofilm eradication concentration (MBEC) [29]. Most test agents 

were not active against biofilms at tested concentrations and did not prevent regrowth after 

removal of the antimicrobial (Table 3). The antimicrobials that exhibited an MBEC against both 

tested C. albicans strains were melissa geranium, E-cinnamaldehyde and linalool (Table 3). 

 

 

 

 



  

 

Table 3. Minimal biofilm eradication concentration 80 of commercial essential oils and biocides 

against C. albicans NCYC 1363 and C. albicans 135BM2/94. 

Antimicrobial 
Minimal Biofilm Eradication Concentration 80 [% (v/v)] [(g/L)] 

C. albicans NYCY 1363 C. albicans 135BM2/94 

Basil NA NA 

Bergamot NA NA 

Cinnamon NA NA 

Citronella NA NA 

Geranium 2.5 (22.3) 2 (17.9) 

Lavender NA NA 

Melissa 1.5 (13.3) 1.5 (13.3) 

Myrtle NA NA 

Peppermint NA NA 

Sage NA NA 

Spearmint NA NA 

Tea tree oil NA NA 

E-cinnamaldehyde 0.8 (8.4) 0.8 (8.4) 

Linalool 1 (8.7) 1.5 (13.1) 

CHX 0.07 NA 

Triclosan >5 × 10−3 (7.45 × 10−2) >5 × 10−3 (7.45 × 10−2) 

Minimal biofilm eradication concentration 80 (MBEC80) defined as the lowest antimicrobial 

concentration that prevented at least 80% regrowth of Candida, after the biofilm was treated 

with antimicrobials for 24 h. MBEC values are in % (v/v) and in brackets are the equivalent 

MBEC values in (g/L). NA = no antimicrobial activity at tested concentrations. 

2.3. Half Maximal Inhibitory Concentration (IC50) against Fibroblasts 

The half maximal inhibitory concentration (IC50) CHX, cinnamon, E-cinnamaldehyde, 

geranium and melissa on fibroblast proliferation after a 1 h and 24 h exposure was determined 

(Figure 1; Table 4). The highest cytotoxicity occurred with E-cinnamaldehyde, followed by 

geranium (p < 0.0001), which halved proliferation even at the lowest concentration tested. Indeed, 

a concentration of 0.003% (v/v) E-cinnamaldehyde and 0.01% (v/v) geranium inhibited 50% of cell 

proliferation (Table 4). Melissa was the least cytotoxic commercial essential oil, halving 

proliferation at 0.03% (v/v) (p < 0.0001). A 1 h exposure of fibroblasts to cinnamon resulted in 

similar cytotoxicity as melissa but prolonged exposure led to higher cytotoxicity (p < 0.0001). A 1 

h application of CHX was cytotoxic only at the highest concentration tested (IC50 of 0.01% (v/v)) 

which was higher than the MIC, while a 24 h exposure at 7 × 10−4% (v/v) was sufficient to halve 

fibroblast proliferation. 

  
(A) (B) 
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Figure 1. Cytotoxicity of selected antimicrobials against murine fibroblasts. Fibroblast numbers 

(normalised by the control (0% (v/v) antimicrobial) after a 1 h (red square) and 24 h application 

(blue circle) of CHX (A); cinnamon (B); E-cinnamaldehyde (C); geranium (D) and melissa (E). 

Table 4. Half maximal inhibitory concentration (IC50) against fibroblasts after 1 h and 24 h 

application of the antimicrobial. 

Antimicrobial 
Half Maximal Inhibitory Concentration [% (v/v)] [(g/L)] 

1 h 24 h 

Cinnamon 0.03 (0.36) 0.01 (0.11) 

Geranium 0.01 (0.08) 0.01 (0.07) 

Melissa 0.03 (0.3) 0.03 (0.3) 

E-cinnamaldehyde 0.003 (0.03) 0.002 (0.02) 

CHX 0.01 (0.15) 7.32 × 10−4 (0.008) 

Half maximal inhibitory concentration (IC50) defined as the antimicrobial concentration that 

inhibits the 50% of cell proliferation compared to controls without agent. IC50 values are in % 

(v/v) and in brackets are the equivalent IC50 values in (g/L). 

3. Discussion 

Essential oils are natural products often extracted from plants and they frequently exhibit 

antimicrobial, anti-aseptic, anti-inflammatory and anti-oxidant activities. The primary aim of this 

research was to evaluate the antifungal activity of 12 commercial essential oils against C. albicans. 

All tested commercial essential oils demonstrated antifungal activity against planktonic C. 

albicans, with MICs ranging from 0.06% (v/v) to 0.4% (v/v) and MLCs from 0.1% (v/v) to 1% (v/v). 

Comparison of results with those of other studies is problematic given differences in assay 

techniques [30,31]. In addition, the botanical source, climate and environmental conditions, time 



  

 

of harvesting and extraction method can affect both composition and antimicrobial activity of 

commercial essential oils [31–33]. 

The effect of plant origin on antimicrobial properties can be appreciated by comparing the 

activity of cinnamon oil extracted from Cinnamomum zeylanicum leaves and Cinnamomum 

aromaticum leaves. Both types of cinnamon oils are from the evergreen cinnamomum plant but 

Cinnamomum aromaticum extract contains a higher amount of E-cinnamaldehyde, which could 

explain the higher antifungal activity (MICs 0.0006% (v/v)–0.0096% (v/v)) [32] compared to the 

present study using Cinnamomum zeylanicum (MIC 0.1% (v/v)) extract. The impact that the amount 

of E-cinnamaldehyde has on antifungal properties of an essential oil was also evident in this study 

(MICs of 0.03% (v/v) and 0.01% (v/v)). Geranium and melissa oils exhibited highest antifungal 

potential. Both commercial oils contain geraniol and citronellol, which are antifungal [34] and 

likely responsible for the similar antifungal activity of these oils (p > 0.90). However, the MIC of 

melissa oil was lower than that previously reported [35,36]. This present study revealed 

antifungal effects for bergamot oil (MIC of 0.3% (v/v) and MLC of 0.5% (v/v)) which has 

previously only had limited attention. The MIC of basil oil 0.1% (v/v) (0.9 g/L) was lower than 

previously reported, namely 0.5% (v/v) [30] and 0.312% (v/v) [32] but comparable to the MIC (1250 

μg/mL) found against a fluconazole resistant C. albicans strain [15]. The main compound of basil 

and lavender oils is linalool, which previously has had MICs ranging from 0.06% (v/v) to 0.12% 

(v/v) [37]. Comparing activity of pure linalool to those of basil and lavender oils, the anticandidal 

activity of terpene was not significantly higher than that of basil (p > 0.99). Tea tree oil had an 

MIC of 0.2% (v/v) and this was similar to that recorded by Hammer et al. against C. albicans [38]. 

Sage oil exhibited MICs of 0.3% (v/v) (2.7 g/L) and 0.4% (v/v) (3.7 g/L), which were comparable to 

the MIC of 2.78 g/L reported using a disk diffusion method [39] but lower than the MIC of 1.32 

mg/mL measured by broth microdilution assay [40]. Despite their differences in composition, 

peppermint and spearmint oils had similar antifungal activities with MICs of 0.1% (v/v) and 0.1% 

(v/v)–0.2% (v/v), respectively (p > 0.07). However, while the MICs of spearmint oil were similar to 

those reported by Hammer et al. [30], the MIC of peppermint oil was higher than that found by 

Those et al. [41]. Myrtle oil had the lowest antifungal potential, even though its MICs were lower 

than those previously reported by Mahboubi et al. (MIC of 0.8–1.6% (v/v)) [42]. CHX and triclosan, 

two biocides whose antimicrobial properties are widely recognised and both commonly added 

to mouthwashes and toothpastes, were also evaluated in this study. Triclosan exhibited 

fungistatic activity only at concentrations higher than those used in toothpaste formulations (0.3% 

(w/v) [43]) but did not exhibit fungicidal effects at tested concentrations. 

The majority of agents had limited antibiofilm activity. Bacteria in biofilms can be between 

10 and 1000 times more tolerant to antibiotics than their planktonic counterparts and similar 

findings have been reported for Candida [44]. The mechanisms by which biofilm cells have 

elevated antimicrobial tolerance are complex and likely multifactorial. These include altered gene 

expression following surface attachment, reduced growth rates in biofilms, variable nutrient 

availability that induces changes in phenotype and the presence of extracellular polymeric 

substances that impedes penetration of agents into the biofilm [45]. Few studies have previously 

reported activity of commercial essential oils or biocides against C. albicans biofilms [46,47]. In the 

present study, from melissa oil, geranium oil, E-cinnamaldehyde and linalool all had anti-biofilm 

activity, whilst CHX only had anti-biofilm activity against C. albicans NCYC 1363. A 3 min 

application of cinnamon (1 mg/mL) and citronella (1 mg/mL) oils has been found to reduce 

biofilm cell numbers immediately after treatment but this effect was not evident 48 h post 

treatment [46]. These results concur with the current study, where no antibiofilm activity was 

noted for cinnamon and citronella oils after 24 h. An MBEC of tea tree oil of 12.5% (v/v) had 

previously been reported [47], which is a higher concentration (8% (v/v)) than tested in this study, 

as difficulties were encountered in forming a stable suspension of the oil-medium using 1% (v/v) 

Tween 80. 

Few studies have investigated the cytotoxic effects of these oils. Cytotoxicity of CHX, 

cinnamon, E-cinnamaldehyde, geranium and melissa oils had a dose- and time-dependent 



  

 

cytotoxicity. Overall, the commercial essential oils halved fibroblast proliferation at 

concentrations lower than their MICs. The IC50 values for E-cinnamaldehyde, geranium and 

cinnamon oils were actually 10-fold lower than their MIC 80, while melissa oil had an MIC 80 of 

0.06% (v/v) and an IC50 of 0.03% (v/v). Although a different assay and cell type was used, the 

melissa oil results (IC50 0.3 g/L) were in accordance with those of Paul et al. [48] who did not see 

a significant change in leukocytes viability after 3 h treatment with 150 μg/mL melissa oil. Several 

studies have used E-cinnamaldehyde to inhibit proliferation of cancer cells and reported IC50s 

ranging from 45.8 to 129.4 mM [49], higher than those obtained in this study with fibroblasts 

(0.16–0.26 mM). Barros et al. found that at concentrations lower than those evaluated in this study 

(5 µg/mL), Cinnamomum zeylanicum oil had cytoxicity towards erythrocytes [50]. A 1 h exposure 

of fibroblasts to CHX (0.01% (v/v)) halved cell proliferation compared to controls. However, this 

concentration was lower than the MICs (2.5 × 10−3% (v/v) and 5 × 10−3% (v/v)) found in the current 

study. This finding was similar to the cytotoxic effect of CHX previously reported using 

macrophages [51] and human alveolar bone cells [52]. Even if these results showed that 

commercial essential oils were cytotoxic, it should be taken into account that cytotoxicity was 

conducted in 2D culture, which is notably different from in vivo conditions. Further investigation 

on mammalian cells could be performed in 3D culture or ex/in vivo models to better mimic the 

biological structure of the tissues. 

4. Materials and Methods 

4.1. Essential Oils and Biocides Preparation 

Twelve commercial essential oils (Essential Oils Direct Ltd., Oldham, UK) (Table 5), two 

terpenes (E-cinnamaldehyde and linalool (Sigma-Aldrich, Gillingham, UK)), chlorhexidine 

digluconate (CHX) (Sigma-Aldrich, Gillingham, UK) and triclosan (Irgasan from Sigma-Aldrich, 

Gillingham, UK) were evaluated. 

Table 5. List of commercial essential oils tested. 

Plant Species Essential Oil Origin 

Ocimum basilicum Basil oil Leaves 

Citrus bergamia Bergamot FCF oil Peel 

Cinnamomum zeylanicum Cinnamon leaf oil Leaves 

Cymbopogon winterianus Citronella oil Aerial parts 

Pelargonium graveolens Geranium oil Flowering herb 

Lavandula angustifolia Lavender oil Flowering herb 

Melissa officinalis Melissa oil Leaves and tops 

Myrtus communis Myrtle oil Leaves 

Mentha piperita Peppermint oil Whole plant 

Salvia officinalis Sage oil Leaves 

Mentha spicata Spearmint oil Aerial parts 

Melaleuca alternifolia Tea tree oil Leaves and twigs 

The commercial essential oils were tested at a range of concentrations against planktonic 

growth (2% (v/v) to 0.007% (v/v) and biofilms (8% (v/v) to 0.125% (v/v)). All agents were prepared 

in Sabouraud Dextrose Broth (SDB; Oxoid Ltd, Basingstoke, UK). To enhance dispersion of 

essential oils in the medium, 1% (v/v) Tween 80 (Sigma-Aldrich, Gillingham, UK) was added. In 

the case of biofilm studies, 0.015% (w/v) Agar Bacteriological (LP0011; Oxoid Ltd, Basingstoke, 

UK) was added to SDB [53]. CHX was used in SDB at concentrations between 0.04% (v/v) to 3.1 × 

10−4% (v/v) and from 0.08% (v/v) to 6.2 × 10−4% (v/v) for planktonic and biofilm growth 

experiments, respectively. A 20% (w/v) stock solution of triclosan was prepared in Dimethyl 

Sulfoxide (DMSO) (Fisher Scientific, Loughborough, UK). Serial doubling dilutions of the stock 

solution were prepared in SDB yielding final concentrations from 5.2 × 10−6% (v/v) to 6.7 × 10−4% 



  

 

(v/v) and from 1.7 × 10−4% (v/v) to 5 × 10−3 (v/v) for planktonic and biofilm experiments, 

respectively. 

4.2. Microorganisms 

Candida albicans NYCY 1363 and C. albicans 135BM2/94 were used to assess antifungal 

activity of commercial essential oils and biocides. Candida albicans 135BM2/94 is a clinical strain 

from the School of Dentistry (Cardiff University, Cardiff, UK), which has been described as a high 

invader of tissues [54]. Strains were subcultured onto Sabouraud Dextrose Agar (SDA) (CM0041; 

Oxoid Ltd, Basingstoke, UK) and grown at 37 °C in an aerobic incubator for 24 h. A colony of C. 

albicans was inoculated in 20 mL of SDB and incubated aerobically with shaking (150 rev/min) 

overnight at 37 °C. The overnight culture was prepared in SDB to a turbidity equivalent to a 0.5 

McFarland Standard and used for further experiments. 

4.3. Minimum Inhibitory Concentration and Minimal Lethal Concentration 

The minimum inhibitory concentration (MIC) and the minimal lethal concentration (MLC) 

were determined using a broth microdilution assay. The method was adapted from that 

previously reported by Malic et al. [29]. Briefly, 100 µL of antimicrobial and 100 µL of overnight 

culture diluted to 1 × 105 CFU/mL were added to the wells of 96-well microtitre plates (Thermo 

Fisher Scientific, Hemel Hempstead, UK). Controls included Candida suspension cultured in SDB, 

with or without 0.5% (v/v) of Tween 80. In addition, when triclosan was tested, SDB containing 

1% (v/v) DMSO was used as control. The plates were covered with the lids supplied by the 

manufacturer and sprayed with 3% (v/v) of Triton 100-X (Sigma-Aldrich, Gillingham, UK) in pure 

ethanol to reduce condensation. The plates were incubated aerobically at 37 °C with shaking at 

110 rpm, for 24 h. Growth was estimated by measuring turbidity of each well by 

spectrophotometric absorbance at 620 nm (Thermo Scientific™ Multiskan™ GO Microplate 

Spectrophotometer), shaking 3 s before the reading. The absorbance readings were standardised 

against microbial-free controls. The minimal inhibitory concentration 80 (MIC 80) was defined as 

the lowest concentration of the antimicrobial agent that showed at least 80% reduction in 

absorbance compared to the control. The MLC was determined by plating selected well contents 

(where no visible growth was evident) on to SDA and incubating for 24 h at 37 °C. The MLC was 

defined as the lowest concentration of antimicrobial agent that killed the Candida as shown by no 

colony growth on SDA. All concentrations were tested in quadruplicate and on three separate 

occasions. 

4.4. Minimal Biofilm Eradication Concentration 80 

The minimal biofilm eradication concentration (MBEC) method was adapted from Malic et 

al. (2013) [29]. Briefly, a 96-well microtitre plate containing 200 µL of an overnight culture diluted 

at 1 × 105 CFU/mL was incubated for 48 h at 37 °C without agitation to allow biofilm formation. 

Controls included Candida suspension cultured in SDB, with or without 1% (v/v) of Tween 80 and 

0.015% (w/v) Agar Bacteriological. When triclosan was tested, SDB containing 8% (v/v) DMSO 

was also used as control. After 48 h, the SDB was removed and the microtitre plate inverted onto 

tissue paper to remove residual medium. The biofilm was washed three times with 100 µL of 

PBS. One hundred µl of test agent was added to the biofilm and the plate incubated statically for 

24 h at 37 °C. After incubation, test agent was removed and the biofilm washed twice with 100 

µL of PBS. Two hundred µL of SDB was added to each well and the biofilm disrupted by repeated 

pipetting. The three replicates were then pipetted into a microcentrifuge tube which was then 

centrifuged for 3 min at 3000 rev/min (Hettich Universal Mikro 12-24, Hettich, Tuttlingen, 

Germany). The supernatant containing residual test agent was discarded and the microorganisms 

resuspended in fresh SDB and three wells of a 96-well plate were inoculated with the suspension. 

The turbidity of the suspension was measured by spectrophotometer absorbance at 620 nm prior 

to and after incubation for 24 h at 37 °C with shaking at 110 rev/min. The minimal biofilm 



  

 

eradication concentration 80 (MBEC80) was defined as the lowest antimicrobial concentration 

that prevented at least 80% regrowth of Candida. All experiments were conducted on three 

separate occasions. 

4.5. Half Maximal Inhibitory Concentration 

Mouse fibroblasts (NIH 3T3; Sigma-Aldrich, Gillingham, UK) were cultured in Dulbecco 

Modified Eagle Medium (DMEM) (Sigma-Aldrich, Gillingham, UK) supplemented with 10% 

(v/v) foetal bovine serum (FBS) (Life Technologies, Paisley, UK), 1% (v/v) penicillin/streptomycin 

(Sigma-Aldrich, Gillingham, UK) and 1% (v/v) L-glutamine (Sigma-Aldrich, Gillingham, UK). 

Serial doubling dilutions of commercial essential oils and biocides were prepared in the fibroblast 

culture medium at final concentrations ranging from 0.25% to 0.007% (v/v) for the commercial 

essential oils and from 0.04% to 3 × 10−4% (v/v) for chlorhexidine. Fibroblasts were harvested using 

trypsin EDTA (EDTA 0.25% (w/v), Trypsin 0.53 mM, Thermo Fisher Scientific, Hemel Hempstead, 

UK) and diluted to a density of 5 × 105 cells/mL. One-hundred µl of the cell suspension was used 

to inoculate a 96-well plate (5 × 104 cells per well) which was then incubated at 37 °C and 5% CO2 

for 1.5 h. A 100-µL volume of the antimicrobial was then added. After 1 and 24 h, the medium 

was removed and the cells washed twice with 100 µL of PBS. Three hundred µL of DMEM 

containing 10% (v/v) of alamarBlue (AlamarBlue Cell Viability Reagent, Invitrogen, Paisley, UK) 

was added to each well and the plate incubated for 1.5 h. Fluorescence was read with a Synergy 

HT plate reader (BioTek® Instruments, Winooski, VT, USA) with excitation and emission 

wavelengths of 545 nm and 590 nm, respectively. The half maximal inhibitory concentration 

(IC50) was defined as the antimicrobial concentration that inhibited 50% cell proliferation 

compared to the control (i.e. DMEM without antimicrobial agent). Each condition was studied in 

triplicate and on three separate occasions. 

4.6. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism Version 7.0. Data were presented 

as arithmetic mean ± SD. The difference between treatments was statistically analysed using one-

way analysis of variance (ANOVA) followed by Tukey multiple comparisons test. Statistically 

significant differences were set at p < 0.05. 

5. Conclusions 

This study showed that all the twelve commercial essential oils, two terpenes and triclosan 

and CHX had antifungal activity against planktonic C. albicans. Six of these compounds (CHX, 

cinnamon, E-cinnamaldehyde, linalool, geranium and melissa) were also active against C. albicans 

biofilms, which are usually challenging to effectively inhibit. Cytotoxicity screening revealed that 

the commercial essential oils halved fibroblast proliferation at concentrations lower than those 

required to inhibit C. albicans growth. Further investigation on the effect of these agents against 

mammalian cells is however warranted before any in vivo application. The antifungal potential 

of these essential oils could be a future therapeutic for topical candidosis as an option to overcome 

emerging antifungal drug resistance. 
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