

Please cite the Published Version

Mcmullen, Amy Anne (2018) The elucidation of molecular mechanisms in systemic mastocytosis. Masters by Research thesis (MSc), Manchester Metropolitan University.

Downloaded from: https://e-space.mmu.ac.uk/622190/

Usage rights: CC BY-NC-ND tive Works 4.0

Creative Commons: Attribution-Noncommercial-No Deriva-

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

THE ELUCIDATION OF MOLECULAR MECHANISMS IN SYSTEMIC MASTOCYTOSIS

A.A MCMULLEN

Master of Science (by Research) October 2018

THE ELUCIDATION OF MOLECULAR MECHANISMS IN SYSTEMIC MASTOCYTOSIS

AMY ANNE MCMULLEN

A thesis submitted in fulfilment of the requirements of the Manchester Metropolitan University for the degree of Master of Science (by Research)

Faculty of Science and Engineering the Manchester Metropolitan University in collaboration with United Lincolnshire Hospitals NHS Trust, University of Lincoln and The University of Manchester. 2018 Declaration:

With the exception of any statements to the contrary, all the data presented in this report are the result of my own efforts. In addition, no parts of this report have been copied from other sources. I understand that any evidence of plagiarism and/or the use of unacknowledged third party data will be dealt with as a very serious matter.

Signed
Date

Table of Contents

Acknowledgments	6
Tables	7
Figures	8
Abbreviations	. 10
Abstract	. 11
Chapter 1: Introduction and Literature Review	
1.1 Introduction	
1.2 The Mast Cell	
1.3 Mastocytosis, Variants and Prevalence 1.4 Clinical Features	
1.5 Pathogenesis	
1.6 Diagnosis and the WHO criteria	
1.6.1 Bone Marrow Histology	
1.6.2 Mast Cell Immunophenotyping	
1.6.3 Serum Tryptase Levels	
1.6.4 Molecular Biology	
1.7 Prognosis	
1.8 Current Treatment and New Investigational Agents	
1.8.1 Interferon alfa (INF- $lpha$)	
1.8.2 2-Chlorodeoxyadenosine (Cladribine or 2-CdA)	
1.8.3 Imatinib Mesylate (IM)	
1.8.4 Investigational Agents	
1.8.5 Splenectomy	
1.8.6 Stem Cell and Bone Marrow Transplantation	. 41
1.9 Biomarkers	
1.10 SWATH – MS	44
1.11 Aims and Objectives	46
Chapter 2: Materials and Methods	. 47
2.1 Ethics	48
2.2 Subjects	48
2.2.1 Patient Recruitment	. 49
2.2.2 Recruitment of Control Subjects	. 50
2.3 Experimental Protocol	50
2.4 Peripheral Blood Collection	. 50
2.5 Plasma Sample Preparation	. 51
2.5.1 Immuno-depletion of plasma	. 51
2.5.2 Protein Quantification of Immuno-depleted samples	. 51
2.5.3 Digestion of protein into peptides	. 52
2.5.4 Reconstitution of samples	. 53
2.6 Mass Spectrometry	. 54
2.6.1 Triple- TOF MS analysis and SWATH data analysis	
2.6.2 Processing of Mass Spec Data	. 55
2.6.3 Bioinformatics, Functional and Descriptive analysis	. 56

2.7 ELISA	
2.7.1 C-Reactive Protein (CRP)	
2.7.2 Beta-2 Microglobulin (β 2M)	
2.7.3 Platelet Basic Protein (CXCL7)	
2.7.4 Transforming Growth Factor Beta 1 (TGF β 1)	
2.7.5 Liposaccharide Binding Protein (LBP)	
2.7.6 Platelet derived growth factor receptor Beta (PDGFr eta)	60
Chapter 3: Results	62
3.1 Study participants	
3.2 Table of participant Characteristics	
3.3 Gel Electrophoresis showing the depletion and digestion of Plasma samples	
3.4 Proteome difference between patients and controls	
3.5 Proteins identified and the Profile of the Significantly Enriched Proteins	
3.6 Functional Annotation of the Identified Proteins	
3.7 PANTHER – Descriptive Statistics	
3.8 SWATH Ion intensity Graph and ELISA	
Chapter 4: Discussion	
4.1 Identification of Proteins	
4.2 Summary of Results	
4.3 Sample Preparation	
4.4 SWATH-MS, Data Independent Analysis4.5 Enriched Protein Biological Process and Pathway Involvement	
4.5 C- Reactive Protein	
4.0 C- Reactive Protein	
4.8 Platelet derived Growth Factor Receptor Beta	
4.9 Platelet Basic Protein	
4.10 Beta 2 Microglobulin	
4.11 Mastocytosis and Inflammation	
Conclusion	
Limitations	
Further Work	111
References	112
Appendices	
1. Participant information sheet	
2. Patient Consent Form	
3. Heathy Control Participant Consent Form	
4. NRES Letter	
5. List of Identified proteins	
6. List of Significantly Up Regulated proteins	
7. List of Significantly Down Regulated proteins	
8. Abstract from The British Society of Haematology Conference 2018- Liverpool.	

Acknowledgments

Firstly, I would like to thank my supervisor, Dr Ciaren Graham for her guidance, advice and support throughout my time as her student. I would also like to thank Dr Robert Graham, from the University of Manchester, for the advice and training that he provided.

I would like to thank Dr Bethan Myers along with all the men and women who so kindly agreed to participate in this study. Without them, the completion of this study would not have been possible.

Finally, but by no means least, thanks go to my Mum, Dad and Ste whose love and guidance are with me in whatever I pursue. They are the most important people in my world and I dedicate this to them.

Tables

Table 1: Mast cell proinflammatory mediators, chemotactic factors and immunoregulatory cytokines release	pg. 17
Table 2: WHO 2016 diagnostic criteria for Mastocytosis	pg.30
Table 3: Diagnosis of Mastocytosis Variant	pg.31
Table 4: Table of Mastocytosis symptoms and treatments	pg.36
Table 5: Biomarker grouping and their applications	pg.43
Table 6: Table of participant characteristics	pg.66
Table 7: List of the top 12 proteins removed by pierce top 12 abundant protein depletion spin columns	pg.67
Table 8: KEGG pathways found in Immune Response along with the enriched proteins involved	pg. 78
Table 9: Significant over representation of biological processes in PANTHER	pg.84
Table 10: Significant over representation of Reactome pathways in PANTHER	pg.85
Table 11: Circulating plasma levels of CRP, eta 2M, TGF eta 1, CXCL7, LBP and PDGFr eta	pg.96

Figures

Figure 1: Photomicrograph of Human mast cells (X400 Magnification)	pg.15
Figure 2: Mast cell development	pg.16
Figure 3: Mast cell receptor c-KIT (CD117)	pg. 19
Figure 4: Stem cell factor mediated c-KIT signalling pathway	pg.20
Figure 5: Cross linking of IgE bound allergen and the Fc $_{\scriptscriptstyle E}$ R1 signalling pathway	pg.21
Figure 6: The 2016 updated WHO classification and prevalence of Mastocytosis	pg.23
Figure 7: Urticara Pigmentosa (maculopapular skin lesions) in both adult and paediatric patients	pg.25
Figure 8: Bone Marrow trephine biopsy	pg.32
Figure 9: A Proposed treatment algorithm for Mastocytosis sub-variants	pg.42
Figure 10: Schematic of the SWATH-MS	pg.45
Figure 11: Flow diagram of plasma preparation	pg.54
Figure 12: Study flow diagram	pg.64
Figure 13: SDS- Polyacrylamide gel electrophoresis	pg.68
Figure 14: Principle component analysis of SM patients and Control group	pg.69
Figure 15: Volcano plot showing differentially expressed proteins	pg.71
Figure 16: Figure showing the protein-protein interactions for the upregulated proteins identified by SWATH-MS analysed by STRING	pg.73
Figure 17: Pie chart representing biological processes of the significantly up regulated proteins	pg.74
Figure 18: KEGG pathway analysis of the significantly up regulated proteins found in the immune response	pg.76
Figure 19: Bar chart of over representation of biological processes of the significantly enriched proteins when compared to expected values	pg.80
Figure 20: Bar chart of over representation of Reactome Pathways of the significantly enriched proteins when compared to expected values	pg.82
Figure 21: Box and whisker plot showing C-Reactive Protein (CRP) intensity of the peptide ions of SWATH-MS between patients and control groups.	pg.86
Figure 22: Box and whisker plot showing Transforming growth factor beta 1 (TGFβ1) intensity of the peptide ions of SWATH-MS between patients and control groups	pg.87
Figure 23: Box and whisker plot showing Platelet basic protein (CXCL7) intensity of the peptide ions of SWATH-MS between patients and control groups.	pg.88
Figure 24: Box and whisker plot showing beta 2 microglobulin (β2M) intensity of the peptide ions of SWATH-MS between patients and control groups.	pg.89
Figure 25: Box and Whiskers plot showing circulating levels of C-Reactive protein (CRP) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls.	pg.90
Figure 26: Box and Whiskers plot showing circulating levels of Platelet Derived Growth Factor Beta (PDGFrβ) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls	pg.91
Figure 27: Box and Whiskers plot showing circulating levels of Platelet Basic Protein (CXCL7) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls	pg.92

Figure 28:	Box and Whiskers plot showing circulating levels of Liposaccharide binding protein (LBP) (ng/ml) in patients with systematic mastocytosis and apparently heathy controls	pg.93
Figure 29:	Box and Whiskers plot showing circulating levels of Transforming Growth Factor Beta 1 (TGF β 1) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls	pg.94
Figure 30:	Box and Whiskers plot showing circulating levels of Beta 2 microglobulin (β 2M) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls	pg.95

Abbreviations

AML	Acute Myeloproliferative Leukaemia	
ASM	Aggressive Systemic Mastocytosis	
β 2Μ	Beta 2 Microglobulin	
BM	Bone Marrow	
BSA	Bovine Serum Albumin	
СМ	Cutaneous Mastocytosis	
CRP	C-Reactive Protein	
CXCL7	Platelet basic protein	
DAVID	Database Annotation Visualisation and Integrated Discovery	
DCM	Diffused Cutaneous Mastocytosis	
DDA	Data Dependant Acquisition	
DIA	Data Independent Acquisition	
DOC	Sodium Deoxycholate	
DTT	Dithiothreitol	
FDA	Food and Drink Administration	
FDR	False Discovery Rate	
GO	Gene Ontology	
IAA	Iodoacetamide	
IL	Interleukin	
IM	Imatinib Mesylate	
INFα	Interferon alpha	
IRTs	Indexed Retention Times	
ISM	Indolent Systemic Mastocytosis	
LBP	Liposaccharide Binding Protein	
MCL	Mast Cell Leukaemia	
MCS	Mast Cell Sarcoma	
MDS	Myelodysplastic Syndromes	
MPCM	Maculopapular Cutaneous Mastocytosis	
MS	Mass Spectrometry	
PANTHER	Protein Annotation Through Evolutionary Relationships	
PCA	Principle Component Analysis	
PD-1	Programmed cell death protein 1	
PD-L1	Programmed cell death protein 1 Ligand	
PDGFrβ	Platelet derived growth factor receptor beta	
PPI	Protein-protein Interactions	
SCF	Stem Cell Factor	
SM	Systemic Mastocytosis	
SM-AHN	Systemic Mastocytosis with associated Haematological neoplasm	
SSM	Smouldering Systemic Mastocytosis	
SWATH-MS	Sequential Window Acquisition of all Theoretical Mass Spectrometry	
TGFβ1	Transforming Growth Factor Beta 1	
WHO	World Health Organisation	
2-CdA	2-Chlorodeoxyadenoine	

Abstract

Introduction

Mastocytosis, one of the subcategories of myeloproliferative neoplasms, results from a colonel, neoplastic proliferation of morphologically and immunophenotypically abnormal mast cells which accumulate primarily in the skin and bone marrow. Prevalence is reported to be 13 in 100,000 of the population, with an equal male to female preponderance. The clinical spectrum is heterogeneous and ranges from relatively benign cutaneous mastocytosis (CM), with isolated skin lesions, to a more aggressive variant, systemic mastocytosis (SM).

<u>Aim</u>

To carry out both a global discovery and a targeted analysis of the proteome of plasma from peripheral blood of systemic mastocytosis patients and compare to healthy controls, to understand the molecular mechanism of systemic mastocytosis and to identify novel disease biomarkers.

Methods

Peripheral blood was collected by venepuncture at the antecubital fossa from systemic mastocytosis patients (n=13) and healthy controls (n=7). Following immune-depletion of high abundance proteins and tryptic digestion, plasma samples were loaded onto a SciEx 6600 Triple TOF mass-spectrometer.

Results

SWATH-MS identified 1437 proteins, off which 360 were upregulated. Further analysis identified these as being involved in immune system regulation and leukocyte activation. ELISA was used to measure the levels of proteins common to all pathways involved in immune regulation and inflammation. The results of ELISA demonstrated significantly increased circulating plasma levels of CRP, CXCL7, LBP, TGF β 1 and PDGFr β in systemic mastocytosis compared to controls. Circulating plasma levels of B2M were also increased in patients, although this did not reach the level of statistical significance.

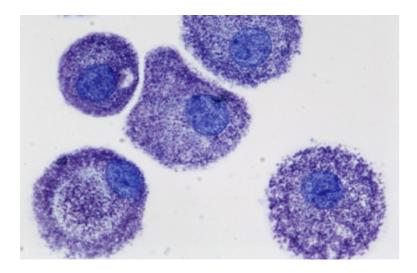
Conclusion

The results of the current investigation demonstrate, the up-regulated proteins identified are involved in immune system regulation and inflammation, suggesting a central role of the inflammatory response in the patho-physiology of systemic mastocytosis.

Chapter 1: Introduction and Literature Review

1.1 Introduction

According to the World Health Organisation (WHO), mastocytosis is considered one of the eight subcategories of myeloproliferative neoplasms. Mastocytosis results from a clonal, neoplastic proliferation of, morphologically and immunophenotypically, abnormal mast cells which accumulate primarily in the skin and bone marrow (Pardanani, 2016).


Mastocytosis has a reported prevalence of 13 in 100,000 of the population, with an equal male to female preponderance, however underdiagnoses is assumed due to clinical misclassification and non-specific symptomology (Brockow, 2014). The clinical spectrum of mastocytosis is heterogeneous and ranges from relatively benign cutaneous mastocytosis (CM), with isolated skin lesions, particularly in paediatric patients who generally experience spontaneous regression at puberty and is associated with an excellent prognosis (Magliacane et al., 2014), to a more aggressive variant, systemic mastocytosis (SM). Systemic mastocytosis generally occurs in adults and is associated with widespread systemic involvement associated with multiorgan dysfunction and reduced survival (Pardanani, 2016).

Mastocytosis patients present with a broad spectrum of widely varying clinical signs and symptoms which, apart from the characteristic skin lesions of urticaria pigmoentosa, lack specificity to point clearly to a definitive diagnosis (Horney et al., 2008). Nevertheless clinical diagnosis of mastocytosis is determined according to the 2016 WHO criteria, which includes the identification of neoplastic mast cells using morphological, immunophenotypic and/or molecular criteria (Pardanani, 2016).

The clinical signs and symptoms of mastocytosis include fatigue, pruritus, flushing, tachycardia, abdominal pain, bone pain and rarely neuro-psychiatric symptoms. The clinical signs and symptoms are mediated by mast cell activation and release of inflammatory and immunological mediators, consequently clinical severity can, in part, be related to the degree of mast cell infiltration and activation (Metcalfe et al., 2017). Clinical management of mastocytosis, regardless of subtype, involves the control of immediate, possibly severe symptoms, by the use of, for example, H1-antihistamines for the reduction of pruritus and flushing, and corticosteroids for bone pain (Komi et al., 2017).

1.2 The Mast Cell

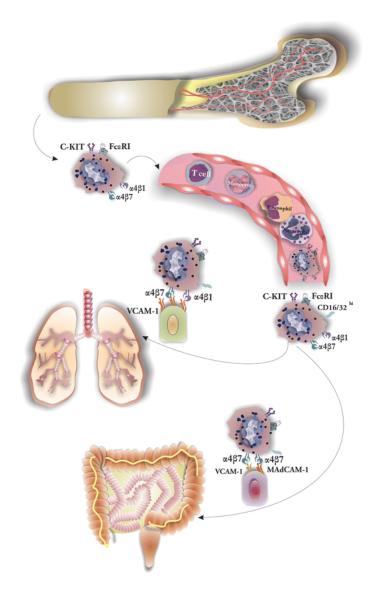

In 1878, Paul Ehrlich was the first to describe mast cells or "mastzellen" in connective tissue that stained reddish purple with aniline dyes (Metcalfe, 2008). Ehrlich also went onto describe the pivotal role of mast cells in inflammation. Several developments, such as the discovery of histamine, mast cell growth factors and the role of mast cells in inflammatory diseases, has since occurred (Krishnaswamy et al., 2001). (Figure 1)

Figure 1: Photomicrograph of Human mast cells (x400 magnification). Human mast cells cultured from peripheral blood in stem cell factor, stained with toluidine blue (Metcalfe, 2008).

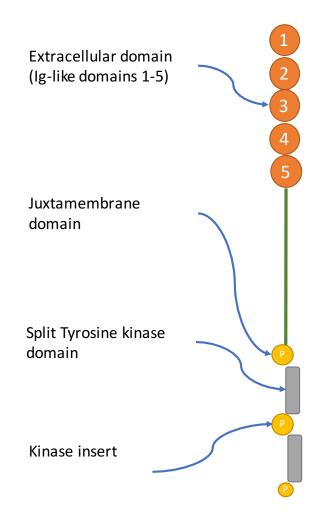
Mast cells are found in peripheral tissue, such as connective tissue and the dermal layer of the skin, where they play a central role in mediating inflammation and immediate allergic reactions (Payne and Kam, 2004). Mast cells are heavily granulated, wandering cells which maybe recruited into peripheral tissues, such as lungs, mucosa, dermis of skin and submucosa of the intestines where they differentiate and mature under the influence of mast cell growth factors (Krishnaswamy et al., 2001).

Mast cells are derived from haematopoietic progenitor cells from bone marrow. Circulating pluripotent progenitor (CD34⁺/CD117⁺) cells, migrate into the peripheral tissue and mature under the influence of stem cell factor (SCF) into $(Fc\epsilon R1^+/CD117^+)$ mast cells. Stem cell factor, which is produced by a number of cells, notably fibroblasts and endothelial cells, is a ligand for the c-KIT (CD117) receptor expressed by mature mast cells, leading to activation of c-KIT to mediate the intracellular signalling pathways (Figure 2).

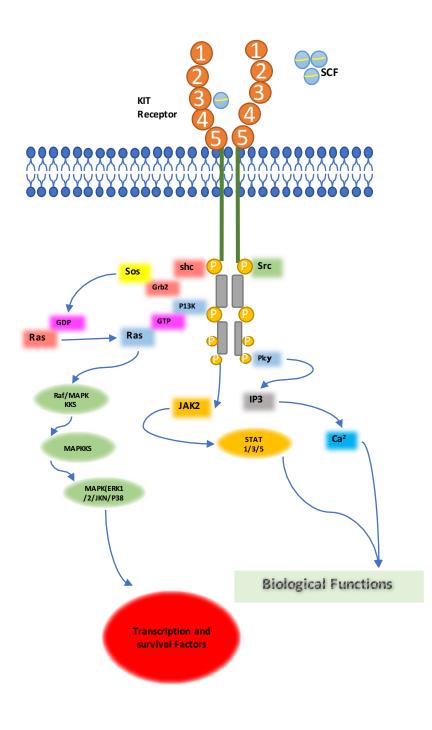
Figure 2: Mast cell development: Mast cells develop from CD34⁺ /CD117⁺ progenitors that originate from the bone marrow. Once the bone marrow progenitors are released from the bone marrow, they enter circulation where they follow a controlled trafficking pattern with the help of interactions between integrin's and their receptors. Upon reaching their target tissues, they mature into mast cells under the influence of growth factors (Komi *et al*,. 2017).

Mast cells are specialised secretory cells of the innate immune system. They play an important role in host defence by producing and releasing proinflammatory mediators, chemotactic factors and immunoregulatory cytokines (Komi et al., 2017) (Table 1). Within their cytoplasm, mast cells contain dense metachromatic granules containing heparin, histamine and a variety of proteases. Upon stimulation of the cell surface Fc receptors with their physiological ligand IgE, the mast cells immediately release the contents of the secretory granules in the process of degranulation. In addition, degranulation may be induced by a number of physical factors, including toxins and venoms (Payne and Kam, 2004).

Table 1: Mast cell proinflammatory mediators, chemotactic factors and immunoregulatorycytokines release. Major human mast cell derived mediators released upon degranulation and theirphysiological effects upon the body (Adapted from Metcalfe, 2008).


Class	Mediators	Physiological effects
Preformed mediators	Histamine, Serotonin, Heparin, Neutral Proteases (tryptase and chymase), Carboxypeptidase, Cathepsin G, Major basic protein, Acid Hydrolases, Peroxidase, Phospholipases	Vasodilation, Vasoconstriction, Angiogenesis, Mitogenisis, Pain, Protein processing/degradation, lipid/proteoglycan hydrolysis, Arachidonic acid generation, Tissue damaged and repair, Inflammation
Lipid mediators	LTB4, LTC4, PGE2, PGD2, PAF	Leukocyte chemotaxis, Vasoconstriction, Bronchoconstriction, Platelet activation, Vasodilation
Cytokines	TNF-α, TGF-β, IFN-α, IFN-, β IL-1α, IL-1 β, IL-5, IL-6, IL-13, IL-16, IL-18	Inflammation, leukocyte, migration/proliferation
Chemokines	IL-8, I-309, MCP-1, MIP-1αS, MIP1 β, MCP-3, RANTES, EOTAXIN, MCAF	Chemoattraction and tissue infiltration of leukocytes
Growth Factors	SCF, M-CSF, GM-CSF, BFGF, VEGF, NGF, PDGF	Growth of various cell types, Vasodilation, Neovascularization, Angiogenesis.

The mast cell receptor c-KIT (CD117), is a type III tyrosine kinase (Komi et al., 2017), consisting of five extracellular immunoglobulin like domains and a single transmembrane spanning region (Figure 3). Three of the Ig domains possess complementary shape and charge and are the ligand binding site for SCF, while domains four and five permit receptor dimerization (Metcalfe, 2008). The intracellular juxtamembrane region, located between the plasma membrane and the kinase domain, controls the c-KIT kinase activity. In addition, the kinase domain is composed of 2 sub-domains designated, tyrosine kinase domain 1 and 2. Stem cell factor mediated c-KIT signalling plays important roles in mediating angiogenesis, migration, cell survival and proliferation of mast cells (Komi et al., 2017). Binding of KIT leads to homodimerization of c-KIT due to the interactions of Ig-like domain 4/5 of two monomeric KIT receptors. These interactions lead to the consecutive transphophylation in the regions juxtamembrane, kinase insert, kinase domain and COOH terminal. The phosphorylated residues act like docking sites for signalling molecules Src and Shc kinase, PI3K and PLCy. Sos, PI3K, PLCy and JAK2 active MAPK cascade, and as a result causes Ca₂ influx and activation of transcription factors required for mast cell activation. This SCF induced activation of the JAK2 results in STAT5 and STAT6 activation which intern promotes mast cell development, survival and proliferation (Figure 4).


Cross linking of IgE bound allergen triggers the Fc_ER1 signalling pathway via the recruitment of the Syk, tyrosine kinase, to the y-chain- ITAMs following translocation to the phosphorylation of specific tyrosine within these motifs by Lyn, resulting in activation of Syk, phosphorylation of the transmembrane adaptor module LAT, which in turn coordinates downstream signalling pathways. This results in the activation of PLCy1/2, which are essential signals for mast cell mediator release.

A parallel pathway is also initiated by tyrosine kinase, Fyn, which leads to the activation of PI3K, which are also required for optimal degranulation and cytokine production (Figure 5).

GTP exchangers Sos and Vav activate the Ras-Raf-Mapk pathway, which contributes to the activation of specific transcription factors required for cytokine production (Figure 5), (Metcalfe, 2008 and Komi, 2017).

Figure 3: Mast cell receptor c-KIT (CD117). The c-KIT receptor is a type III tyrosine kinase consisting of five extracellular immunoglobulin like domains and a single transmembrane spanning region. Three of the Ig domains possess complementary shape and charge and are the ligand binding site for SCF, while domains four and five permit receptor dimerization (Figure adapted from Metcalfe, 2008 and Komi, 2017).

Figure 4: Stem cell factor mediated c-KIT signalling pathway. SCF mediated c-KIT signalling plays important roles in mediating angiogenesis, migration, cell survival and proliferation of mast cells (Figure adapted from Metcalfe, 2008 and Komi, 2017).

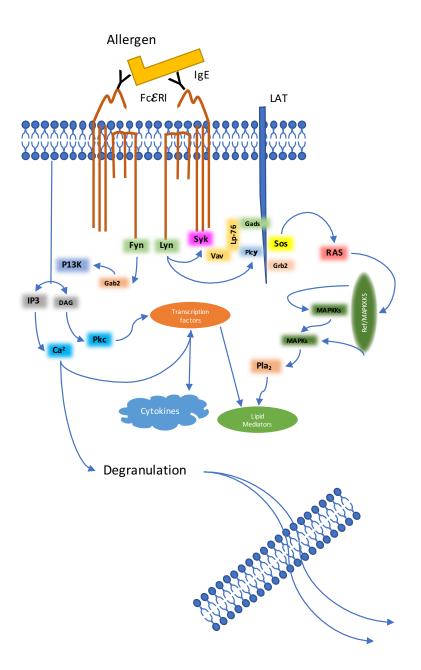
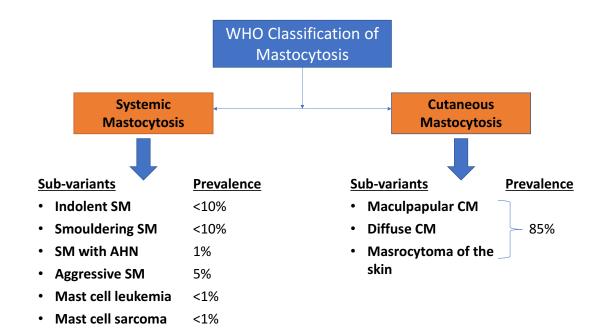


Figure 5: Cross linking of IgE bound allergen and the Fc_ER1 signalling pathway in the mast cell. Fc_ER1 signalling pathway is associated with the production of mediators and degranulation (Figure adapted from Metcalfe, 2008 and Komi, 2017).

1.3 Mastocytosis, Variants and Prevalence

Mastocytosis is considered a rare disease with various studies calculating an


estimated incidence of 5 to 10 new cases per 1 million population per year

(Hartmann et al., 2001). A prevalence of 1 in 60,000 was reported by the authors

of an epidemiological study in Europe and the United States (Magliacane et al., 2014).

Nettleship and Tay (1869) first described mastocytosis in 1869 as a rare form of urticaria which was later termed urticaria pigmentosa by Sanger (Sanger, 1878). In 1887 Unna, reported an association between the lesions and an increase in dermal mast cell numbers (Unna, 1887). In 1949 the first case of SM was reported (Ellis, 1949) with different sub classifications of cutaneous mastocytosis (CM) and systemic mastocytosis (SM) being described over the following decades (Valent et al., 2017). It has now been established, based on clinical observations, that SM can present with or without skin lesions and can display an indolent or aggressive clinical course, in some instances with co-existence of a clonal non-mast cell lineage disorder such as a myeloproliferative disorder or myelodysplastic syndrome (Metcalfe et al., 2017). In current clinical practice the diagnosis of mastocytosis is based on the World Health Organisation (WHO) Criteria developed in 2001 and updated in 2008 and 2016 (Valent, 2017). The WHO diagnostic criteria includes a classification of mastocytosis based on molecular markers, haematological findings, serum tryptase levels, CD markers and the identification of associated mutations (Metcalfe et al., 2017).

Further, the 2016 updated World Health organisation (WHO) classification discriminates cutaneous mastocytosis (CM), disease confined to the skin, and systemic variants which reflect different clinical presentation, prevalence and outcome (Valent et al., 2017), (Figure 6).

Figure 6: The 2016 updated WHO classification and prevalence of Mastocytosis. Variants and prevalence of mastocytosis, Systemic Mastocytosis and Cutaneous Mastocytosis. Systemic mastocytosis is further subdivided into Indolent SM (ISM), Smouldering SM (SSM), SM with associated hematologic neoplasm (SM with AHN), Aggravated SM and Mast cell leukaemia. Cutaneous Mastocytosis is further subdivided into maculopapular CM (MPCM), Diffused CM (DCM) and localised Mastocytoma of the skin (Figure adapted from Valent *et al.*, 2017 and Magliacane *et al.*, 2014).

The most frequent variants of mastocytosis are CM and Indolent SM, with the rarest found to be mast cell leukaemia. The cutaneous form of the disease, which is limited to the skin, comprises of three clinical variants including maculopapular CM (MPCM), diffused CM (DCM) and cutaneous mastcocytoma (Figure 6). All the cutaneous manifestations are more common in children with 80% of cases occurring during the first year of life. Many cases spontaneously regress at, or during, puberty and are associated with a good lifetime prognosis (Fried and Akin, 2013).

In contrast, the systemic form of the disease, which is a clonal and disseminated condition, comprises six clinical variants including, indolent systemic mastocytosis (ISM), smouldering systemic mastocytosis (SSM), systemic mastocytosis with associated hematologic neoplasm (SM-AHN), mast cell leukaemia (MCL) and mast cell sarcoma (MCS). Systemic mastocytosis mainly affects adults, with a peak incidence in adults between 20-40 years of age. Moreover systemic mastocytosis is a chronic condition associated with a poorer prognosis than CM (Lykkegaard Anderson et al., 2012). In systemic mastocytosis, epidemiological evidence suggests that ISM and SM-AHN account for approximately 85% of patients (Lim et al., 2009b) (Figure 6).

1.4 Clinical Features

Mastocytosis is a condition with a broad, none specific symptomology related to mast cell release and, in some cases, multi-organ infiltration (Anderson et al., 2012). Skin symptoms are common in mastocytosis with urticaria pigmentosa being the most frequent. Urticarial pigmentosa is characterised by brownish- red skin lesions and is a universal sign of CM and in addition, occurs in 90% of SM patients including in up to 50% of patients with either SM-AHNMD or aggressive SM (ASM) (Soter, 2000) meaning it is a sensitive but non-specific sign of mastocytosis. In adults, cutaneous lesions are generally <0.5cm in dimeter and primarily occur on thighs and trunk (Horney et al., 2008) (Figure 7a). In children, cutaneous lesions are usually larger, approximately 0.5cm- 3cm in diameter, and affect the body, face and head. (figure 7b).

Figure 7: Urticara Pigmentosa (Maculopapular skin lesions) in both adult and paediatric patients. A) Typical Urticara Pigmentosa skin lesions seen in adult with CM or SM. B) Typical Urticara Pigmentosa skin lesions, usually larger in paediatric patients: as a rule, there is no SM involvement (Image from Horney *et a*l., 2008)

One of the most common complaints is pruritus initiated by changes in temperature (for instance hot baths), certain foods, physical activity, alcohol or drugs (Horney et al., 2008, Lykkegaard-Anderson et al., 2012).

Symptoms related to mast cell activation, degranulation and release occur in both CM and SM with the mast cell mediators inducing vasodilation, hypotension, flushing, itching and syncope. Symptoms can vary in intensity, related to disease burden and extent of mast cell degranulation, from mild allergic reactions to severe life threating anaphylaxis and anaphylactic shock (Austen, 1992). In addition, mast cell release can also result in chronic symptoms, such as persistent gastrointestinal complaints (including vomiting and diarrhoea), however these are less frequent. Symptom onset may be initiated by a range of factors, such as drugs or mediated via cross linking of IgE, infection or emotional stress (Lykkegaard-Anderson et al., 2012).

The symptomology of mastocytosis may also be suggestive of the systemic variety and include anaemia, thrombocytopenia, malabsorption, splenomegaly, hepatomegaly and bone disease in the form of lytic lesions and pathological fractures (Austen, 1992). These more severe chronic symptoms result from multi system organ infiltration causing secondary organ dysfunction (Lykkegaard-Anderson et al., 2012).

1.5 Pathogenesis

Initial small scale studies aimed to determine if SCF, the principal human mast cell growth factor, was elevated in mastocytosis. When considered in its entirety the evidence is contradictory with some authors reporting elevated levels in mastocytotic skin lesions by immunohistochemistry, however later studies measuring SCF levels in skin and blood, by immunoassay, did not support these initial findings in adult patients. It is important to note however that many of these were small number series or case reports. Therefore research began to focus on the SCF receptor, c-KIT (Metcalfe, 2008).

In 1995, Nagata and colleagues, identified a point mutation consisting of a substitution of aspartate to valine in the catalytic domain of *c-KIT* (*ASP816VAL* or *D816V*) in the peripheral blood of patient with mastocytosis (Komi et al., 2017). In 1996, the same mutation was identified in CM and ASM in both skin and spleen

(Metcalfe et al., 2017). In normal mature mast cells activation of the c-KIT receptor by its ligand, SCF, results in increased mast cell proliferation, prolonged survival and an intense release in mediators. These functions are reinforced in mastocytosis resulting in autocrine activation and degranulation of the mast cell. (Horney et al., 2008).

Recent research, in bone marrow derived mononuclear cells, has reported that >80-90% of patients with SM have a somatic gain of function mutation in the KIT receptor tyrosine kinase domain, primarily consisting of an aspartic acid to valine substitution (D816V) in the second catalytic domain, causing enhanced survival and mast cell proliferation (Komi et al., 2017). Further research has demonstrated that in a subset of patients mast cell proliferation increases to such an extent that mast cells may be detected in the peripheral circulation (Metcalfe, 2008). Results from molecular studies and clinical profiling support the contention that mastocytosis can arise due to over activity of the c-KIT receptor and that this is associated with a more severe disease phenotype (Metcalfe et al., 2017). While the D816V mutation would appear to be the most common, others have been reported including *V560G*, within the juxtamembranne domain of KIT, the *E839K* dominant inactivating mutation and the rare germ line mutation F522C (Metcalfe, 2008). Further, other non-specific oncogenic mutations have been recently identified in mastocytosis patients including, TET2, a putative tumour suppressor gene and N-RAS an oncogene (Magliacane et al., 2014). Although evidence suggests KIT mutations contribute to the pathogenesis of mastocytosis, they are also the most common additional genetic abnormalities in Acute Myeloproliferative Leukaemia (AML) with a reported incidence ranging from 26-47%. The *c*-*KIT* mutation is

considered a pro prognostic indicator of AML, hence limiting their specificity in clinical practice (Pullarkat et al., 2009).

In addition, the pathogenesis of mastocytosis is not limited to the activation of the KIT receptor. Authors have reported abnormal mast cell apoptosis with a preponderance to anti-apoptosis contributing to increased cell survival (Komi et al., 2017). Lange *et al.*, (2012) have reported upregulation of the anti-apoptotic protein Bcl-2, in aggressive mastocytosis, along with the upregulation of Bcl-X, another anti-apoptotic protein, in the bone marrow of patients with ISM (Lange et al., 2012). The role of programmed cell death protein-1 (PD-1) has recently been investigated in mastocytosis. The PD-1 ligand (PD-L1) is expressed on tumour cells while the PD-1 receptor is expressed on T and B lymphocytes. PD-L1, expression on mast cells has been reported (Kuklinski and Kim, 2016), enabling abnormal mast cells to evade immune surveillance (Komi et al., 2017). In their 2017 study, Kuklinski and Kim reported increased expression of PD-L1 in mast cells, by immunohistochemistry, in skin biopsies obtained from patients with mastocytosis, although the exact mastocytosis variants were not reported. These results are supported by other investigators who have shown expression of the PD-1 receptor in clinical samples of human CM and in laboratory studies utilising the human mastocytosis cell line LAD2.

In addition, intracellular signalling molecules, involved in KIT signalling, have been investigated as possible therapeutic targets for mastocytosis. Bibi and colleagues (2014) have reported increased phosphorylation of AKT in HMC-1 cells, a human mast cell line potentially implicating a role for the PI3 kinase pathway in the

pathogenesis of mastocytosis. These initial preclinical results have been supported by Komi and colleagues (2017) who have recently reported increased phosphorylation of AKT in patients with *KIT D816V* SM (Komi et al., 2017). Further molecular studies by Chan and colleagues (2013), described alterations in *KIT* mRNA transcription in SM patients after identifying novel KIT transcripts in aggressive mast cell tumours (Chan et al., 2013).

1.6 Diagnosis and the WHO criteria

The classification and diagnosis of mastocytosis is based on established WHO criteria as developed and refined in 2008 & 2016, by the identification of neoplastic mast cells utilising morphological, immunophenotypic, and/or genetic criteria (Pardanani, 2016) The WHO diagnostic criteria are summarised in Table 2.

 Table 2: WHO 2016 diagnostic criteria for Mastocytosis.
 Table showing major, minor, B findings and C findings criteria for the diagnosis of mastocytosis (Adapted from Metcalfe *et al.*, 2017).

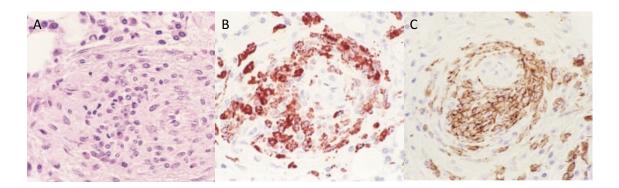

CRITERIA	DEFINITION
MAJOR CRITERION	 Detected in sections in BM and/or other extracutaneous organs multifocal dense infiltrates of MC (>15 MC in aggregates)
MINOR CRITERION	 Detected in sections in BM or other extracutaneous organs – >25% of MC in the infiltrate are spindle-shaped or have atypical morphology, or of all MC in BM aspirate smears, >25% are immature or atypical.
	• Detection in blood, BM, or another extracutaneous organ – A activating point mutation at codon 816 of KIT
	• Detection in blood, BM, or another extracutaneous organ – mast cells expressing CD25, with or without CD2, in addition to MC markers.
	 Serum total tryptase > 20 ng/mL
B FINDINGS	 BM biopsy showing - >30% infiltration by MC and/or serum total tryptase level >200 ng/mL
	• Signs of myeloproliferation or dysplasia in non-MC lineages but insufficient criteria for definitive diagnosis of a haematopoietic neoplasm with normal or slightly increased blood counts.
	 Hepatomegaly without impairment of liver function, and/or palpable splenomegaly without hyperplenism and/or lymphadenopathy on palpation or imaging
C FINDINGS	• BM dysfunction manifested by 1 or more cytopenias caused by neoplastic mast cell infiltration.
	 Hepatomegaly with impairment of liver function Ascites And/or portal hypertension
	• Skeletal involvement with large, osteolytic lesions and/or pathological fractures.
	Malabsorption with weight loss due to gastrointestinal MC infiltrates
	Splenomegaly with hypersplenism

Table 3: Diagnosis of Mastocytosis Variants. Table showing the WHO diagnosis criteria formastocytosis variants (Adapted from Metcalfe et al., 2017).

VARIANT	DIAGNOSIS
CUTANEOUS MASTOCYTOSIS	Typical mast cell infiltrates in a multifocal or diffused pattern on biopsy.
SYSTEMIC MASTOCYTOSIS	1 major or 1 minor criterion, or at least 3 minor are present (see table 2)
INDOLENT SM	SM and no C findings, no sign of associated haematological neoplasm. (see table 2)
SMOLDERING SM	ISM but with 2 or more B findings and no C findings. No sign of associated haematological neoplasm or MCL. (see table 2)
SM WITH ASSIOSIATED HAEMATOLOGIC NEOPLASM	Meets criteria for SM and for an associated clonal haematological non-mast cell lineage disorder, lymphoma or other haematological neoplasm (see table 2)
AGGRESSIVE SM	SM with 1 or more C findings. No evidence of MCL (see table 2)
MAST CELL LEUKEMIA	SM and bone marrow shows diffuse infiltration by atypical, immature mast cells: bone marrow aspirate smears show >20% mast cells.
MAST CELL SARCOMA	Unifocal mast cell tumour with no evidence of SM, high grade cytology.

1.6.1 Bone Marrow Histology

As the bone marrow is universally involved in SM, bone marrow aspiration and examination remains the diagnostic investigation of choice in suspected SM. However histological examination and identification of the key histological abnormalities (dense mast cell aggregates in the perivascular and/or paratrabecular bone marrow) may be hampered by poor uptake of standard stains such as Giemsa, in particular when mast cell hypergranulation or abnormal nuclear morphology is present (Pardanani, 2016). Immunoreactive tryptase has been reported as the most sensitive immunohistochemical marker of mastocytosis, however immunohistochemical identification of tryptase, and KIT/CD117 lacks the diagnostic specificity to differentiate normal and abnormal mast cells. The most specific immunohistochemical marker has been reported to be CD30 due to its ability to detect all abnormal mast cells in patients with SM (Sotlar et al., 2004) (Figure 8).

Figure 8: Bone Marrow trephine biopsy, showing a pathognomonic mast cell aggregate comprised of morphologically a typical mast cells revelled by A) Hematoxylin-eosin stain, B) Tryptase immunostaining, C) c-kit immunostaining (Image from Patnaik et al., 2007).

1.6.2 Mast Cell Immunophenotyping

Mast cell immunophenotyping by flow cytometry to identify and quantify cell surface antigen expression contributes towards the minor diagnostic criteria set by WHO. Normal mast cells usually express c-KIT/CD117 and FccR1 and the typical profile of normal mast cells is CD117⁺/ FccR1⁺/ CD34⁻/CD38⁻ /CD33⁺/CD45⁺/CD11c⁺/CD71⁺. It is also worthy of note that myeloid markers, such as CD14 and CD15, or lymphoid lineage markers, except CD22, are not expressed

on normal mast cells (Patnaik et al., 2007)

In contrast, neoplastic mast cell commonly express the surface antigens CD25 and/or CD2 with at least one of these two counting as a minor criterion towards the diagnosis of SM according to the WHO criteria, although CD25 may be a more sensitive and specific marker (Horny *et al.*, 2008; Horny and Valent, 2002; Patnaik *et al.*, 2007).

1.6.3 Serum Tryptase Levels

Mast cell derived tryptase has been shown to be a useful disease related marker in SM. Mast cell tryptase include two molecular forms (alpha and beta) with designated subtypes alpha 1 or 2 and beta 1, 2 or 3. Beta 2 tryptase is the molecular form released on mast cell degranulation. It has been suggested therefore that circulating levels of beta 2 tryptase may reflect mast cell burden and the extent of mast cell activation (Patnaik et al., 2007). Circulating mast cell tryptase activity has been evaluated as a diagnostic test, which yielded a diagnostic sensitivity of 83%, and specificity of >98%. In addition, other groups have demonstrated that serum tryptase activity may be useful in evaluating treatment aimed to reduce mast cell numbers in patients with SM (Payne and Kam, 2004 and Valent et al., 2017). The specificity of serum tryptase activity however is limited due to elevated levels being observed in other conditions such as acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and myelodysplastic syndromes (MDS) (Sperr et al., 2009). At present there appears to be no direct clinical correlation between the serum tryptase and occurrence or severity of symptoms associated with increased mast cell degranulation or systemic mast cell burden (Pardanani et al., 2010). Further, in patients with indolent mastocytosis,

Paradanani and colleagues (2010) reported, mast cell release levels were significantly correlated with bone marrow burden, but not to mast cell mediator release symptoms for reasons which remain to be elucidated (Pardanani et al., 2010).

1.6.4 Molecular Biology

The identification of *KIT D816V* mutation fulfils a minor criterion according to the WHO diagnostic classification (Metcalfe et al., 2017). With the use of sensitive techniques, it is possible to demonstrate a somatic mutation in the coding sequence of KIT-gene in 90% of adult cases of SM however, with the less sensitive Sanger Sequencing, false negative results may be reported (Kristensen et al., 2011). In a smaller subgroup of adult patients, where *D816V* mutation cannot be demonstrated, other sensitive molecular techniques are able to detect other auto activating mutations of KIT (Lykkegaard Anderson et al., 2012).

By drawing all the diagnostic criteria together, Sanchez-Munoz and colleagues (2011) conducted a study to validate the WHO diagnostic criteria and reported that approximately 20% of ISM patients lack mast cell clusters in the bone marrow and approximately 30% exhibit a total serum tryptase level <20 ng/ml (Sanchez-Munoz et al., 2011). However, the sensitivity for detecting morphologic atypia, aberrant CD25 and/or CD2 expression, or *KIT D816V* in bone marrow mast cells is reported as >90% although the reporting of the diagnostic efficacy of all the investigations undertaken is inconsistent. The full diagnostic validation study however

demonstrates the importance of the minor criteria that form part of the WHO diagnostic criteria for mastocytosis (Sanchez-Munoz et al., 2011).

1.7 Prognosis

In 95% of adult and paediatric patients with CM and ISM, life expectancy is not reduced and a favourable prognosis is determined (Horney et al., 2008). Cutaneous mastocytosis mainly occurs in children, with >50% of recorded cases occurring in the paediatric population. In children, the majority of cases spontaneously regress by the time the patient reaches adolescence. In adults, however, CM usually follows a chronic course and only in a small number of patients with ISM does it tend to regress (Horney et al., 2008). In contrast, the progressive forms of SM, in particular ASM and MCL, are associated with significant mortality, in some instances within a few months, with or without chemotherapy to reduce tumour burden (Valent et al., 2007).

While in an outcome based follow up study, Lim and colleagues (2009) followed 342 adult patients with ISM and ASM. The authors reported an overall mean survival of 198 months, which was reported not to be significantly different from the non-ISM population when matched for age and sex. In the ASM group however, the prognosis was significantly worse, with an overall mean survival of 41 months and 5% of patients with ASM undergoing leukaemic transformation during the follow-up period (Lim et al., 2009). While the outcomes of the study are instructive as to outcome in ISM and ASM, the study is limited by its small number of subjects and further subgroup analysis.

1.8 Current Treatment and New Investigational Agents

The treatment of all categories of mastocytosis involves the control of symptoms with pharmacological agents, that inhibit the action of mast cell mediators such as histamine and leukotrienes (Table 4), together with agents to treat any associated haematological disorder and reduce mast cell burden (Metcalfe et al., 2017). Therapy should be individualised to each patients' clinical presentation and prognosis, due to the heterogeneous nature of mastocytosis.

 Table 4: Table of Mastocytosis symptoms and treatments. Treatments include pharmacological agents, that inhibit the action of mast cell mediators (Adapted from Metcalfe, 2017)

Symptoms	Treatment
Flushing, Tachycardia, Syncope	Aspirin,
Diarrhoea	Anticholinergics, oral cromolyn sodium
Pruritus, Flushing	H1 and H2 Antihistamines
Gastric Hypersecretion	H2 Antihistamines and Proton Pump
	Inhibitors.
Osteoporosis	Calcium, Vitamin D and
	Bisphosphonates.
Associated Inflammation	Glucocorticoids
Systemic anaphylaxis-like reactions	Epinephrine

Control of cutaneous symptoms such as pruritus and flushing, together with gastric hypersecretion can be controlled by antihistamines and proton pumps inhibitors respectfully. Corticosteroids are also used for the treatment of anaphylaxis as well as for the control of malabsorption and ascites (Worobec, 2000). In addition, some authors report the use of aspirin for the treatment of flushing, tachycardia and syncope however, this must be used with caution as it may trigger vascular collapse, in some patients, and exacerbate co-existing peptic ulcer disease (Metcalfe et al., 2017). At present, chemotherapy does not seem to have a role in the treatment of the cutaneous or indolent forms of mastocytosis.

Currently, no standardised treatment regimens have been documented for use in patients with aggressive forms of mastocytosis, rather treatment for SM-AHN, ASM and MCL are focused on management of any associated medical conditions and the underlying haematological disorder and associated co-morbidities (Hennessy et al., 2004).

1.8.1 Interferon alfa (INF- α)

In patients with symptomatic aggressive SM, INF- α has shown variable therapeutic efficacy, as a first line therapeutic agent, to improve symptoms related to mast cell degranulation, decrease mast cell infiltration of the bone marrow and improve mastocytosis related ascites, hepatosplenomegaly, cytopenias, cutaneous symptoms and osteoporosis. It should be noted, however that these results are derived from small case series, and not randomised controlled trials and hence patient selection will be highly variable, of subject to selection bias, and perhaps contribute to the variable therapeutic efficacy observed in these small series. (Kluin-Nelemans et al., 1992; Worobec et al., 1996; Butterfield, 1998; Lehmann and Lammle, 1999).

Further, using the WHO diagnostic criteria for mastocytosis as a guide to measure treatment efficacy, $INF\alpha$ has been shown to be consistently ineffective when assessed for frequency of a major response. In this context, a major response is defined as compete resolution of one of more baseline C-findings (Table 2). In small series clinical investigations, INF α has been shown to result in major therapeutic response in only 20-30% of cases (Hennessy et al., 2004), although this can be improved by concomitant administration of glucocorticoid to around 40% (Delaporte et al., 1995). The poor therapeutic efficacy could be related to the fact that the optimal duration and dose of INF- α remains to be elucidated (Delaporte et al., 1995).

INF- α treatment is not without side effects and complications such as fever, bone pain, flu like symptoms, cytopenias, depression and hypothyroidism have been reported in up to 50% of patients, however it should be noted that numbers are small and patient selection criteria highly variable (Pardanani, 2016). Time to therapeutic response has also been variable, with authors reporting up to a year, and in some cases longer, to observe clinical benefit (Pardanani, 2016).

1.8.2 2-Chlorodeoxyadenosine (Cladribine or 2-CdA)

2-Chlorodeoxyadenosine (cladribine or 2-CdA) is a purine nucleoside analog which has been shown to reduce cell proliferation by interfering with DNA replication, including in neoplastic mast cells. Small case series have reported the use of cladribine for the treatment of all types of aggressive mastocytosis including systemic mastocytosis. In a study of 9 patients with systemic mastocytosis, receiving 6 courses of treatment, Kluin-Nelemans *et al.*, (2003) reported an improvement in clinical symptomology and a decrease in circulating serum tryptase levels. The authors concluded that cladribine may be a possible therapeutic regimen for aggressive mastocytosis, although the number of participants is too small to draw any significant conclusions or make a recommendation cladribine use

as a therapeutic agent in the setting of SM. In addition, cladribine is not without significant side effects and may induce pancytopenia and immunosuppression (Metcalfe et al., 2017).

1.8.3 Imatinib Mesylate (IM)

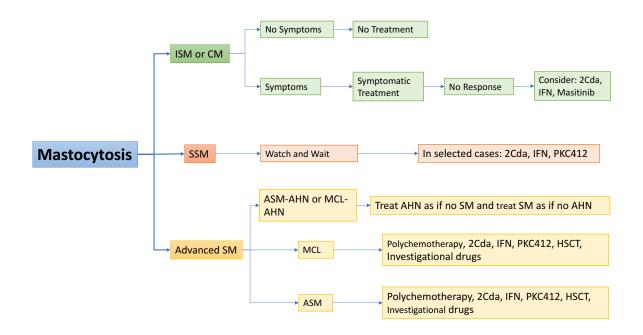
Imatinib Mesylate is a tyrosine kinase inhibitor that has been shown to inhibit the phosphorylation of wild type KIT, including some of the transmembrane and juxtamembrane KIT mutations. Imatinib, however is ineffective at inhibiting the phosphorylation of KIT with the common D816V mutation (Pardanani, 2016). Presently, Imatinib is the only therapeutic agent that has been approved by the US Food and Drug Administration (FDA) for patients with SM, without the KIT D816V mutation, or when the KIT phenotype is unknown. Evidence for the use of Imatinib however is still limited. In a series of 27 patients with SM, Lim and colleagues (2009) reported an overall response rate, irrespective of KIT phenotype, of 18% during a median duration of treatment of 19.6 months. Response was defined as an improvement in urticarial pigmentosa and a decrease in bone marrow mast cell burden. In this series, however, subgroup analysis of the 86% of patients who carry the D816V mutation reported an overall response rate of 17%, compared to 33% in patients who do not carry the D816V mutation. It should be noted however that the number of participants was small and heavily biased towards patients carrying the D816V mutation. However an earlier study reported overall response rate of 36% in patients with the D816V mutation (Droogendijk et al., 2006). The difference may be due to patient selection or the occurrence of Imatinib selective KIT mutations (Pardanani, 2016). Therefore current evidence has shown that efforts to

inhibit the mutant D816V KIT with tyrosine kinase inhibitors has been largely unsuccessful, although results are variable, and further molecular and proteomic profilling is required to identify potential new targets (Magliacane et al., 2014)

1.8.4 Investigational Agents

Second generation tyrosine kinase inhibitors, such as Midostaurine (PKC412), Dasatinib and Nilotinib, may provide additional therapeutic efficacy that is not evidence with current treatment regimens. (Metcalfe et al., 2017).

Dasatinib, *in vitro*, has shown efficacy against various KIT mutations including *D816V* and appears to have modest activity in *KITD816V* positive SM (Shah et al., 2006). Cumulative published data however, does not clarify which subgroup of SM patients are likely to gain the most benefit. (Pardanani, 2016). Midostaurine (PKC412) also demonstrates activity against kinase domain KIT mutants (*D816V*) as in a small clinical study, including patients with MCL who harbour the *KITD816V*, resulted in transient clinical benefit (Growney et al., 2005). In addition, midostaurine treatment, in patients with advanced SM, resulted in significant improvement in organ function with concomitant reduction in mast cell burden, in the majority of patients (Pardanani, 2016).


Brentuximab vedotin is an antibody-drug conjugate directed against the cell membrane protein, CD30. CD30 is a member of the tumour necrosis factor receptor superfamily, with reported aberrant expression on neoplastic mast cells, with preferential expression in advanced SM, the role of Brentuximab vedotin in treating advanced SM is currently being investigated (Pardanani, 2016). Recently, Borate and colleagues (2016) reported the outcome a phase 2 open label trial, where two of four patients with advanced SM demonstrated an improvement in circulating serum tryptase and improvements in circulating and bone marrow mast cell burden (Borate et al., 2016). It should be noted however that these are preliminary results in a small number of patients and that furthermore detailed clinical evaluation of Brentuximab will require further study in a larger patient cohort.

1.8.5 Splenectomy

In patients with ASM or SM-AHN, who present with massive splenomegaly, splenectomy has been shown to decrease mast cell burden aiding the use of myelosuppressive agents (Metcalfe, 2008). Previous work by Friedman and colleagues (1990) has shown an improvement in overall survival (34 vs 26 months in the control group), however the authors note the high surgical risk associated with splenectomy (Friedman et al., 1990 & Metcalfe, 2008).

1.8.6 Stem Cell and Bone Marrow Transplantation

In patients with advanced and potentially fatal SM-AHN, MCL and ASM, stem cell and bone marrow transplantation, following ablative chemotherapy has been proposed. To date, there is limited outcome data to show therapeutic efficacy, and the data that has been published is contradictory (Metcalfe, 2017). Therefore, drawing all the evidence together for the different therapeutic options for mastocytosis, Vaes and colleagues (2017) proposed a treatment algorithm for Mastocytosis as shown below (Figure 9).

Figure 9: A Proposed treatment algorithm for Mastocytosis sub-variants including: ISM, CM, SSM, ASM, MCL, ASM-AHN (Adapted from Vaes *et al.*, 2017.)

1.9 Biomarkers

Mastocytosis is a difficult disease to diagnose. It is recognised that c-KIT is implicated in its pathogenesis however we do not fully understand what is driving its aetiology. Proteomics is a valuable tool used to elucidate the differences in alterations in proteins and/or protein expression levels thus providing a central contribution to improve the knowledge into physiological and pathological mechanisms (Anjo et al., 2017). By allowing the identification of biomarkers capable of distinguishing healthy from diseased conditions, these approaches are valuable for applied and translational research (Anjo et al., 2017).

Biomarkers can serve a variety of functions when used in a clinical content such as

for diagnosis or risk stratification (Table 5).

 Table 5: Biomarker grouping and their applications. Biomarker grouping types and their application

 when used in a clinical content (Adapted from Biomarkers definition working group, 2001)

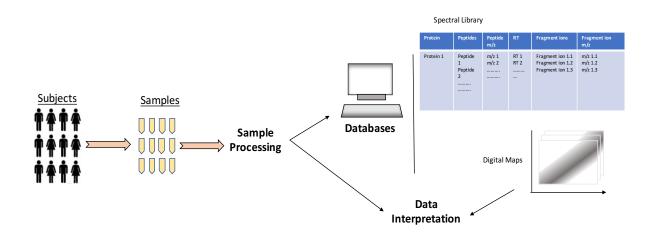
Biomarkers	Application
Risk stratification biomarkers	Identifying the risk of disease development
Screening biomarkers	Screening for subclinical diseases
Diagnostic biomarkers	Recognising overt diseases
Staging biomarkers	Categorising disease severity
Prognostic biomarker	Predicting future disease course and therapy response

The use of biomarkers in improving personised clinical information relies on reliable pre-analytical and analytical processing of clinical samples (Heaney et al., 2017).

Mass spectrometry (MS) is a powerful qualitative and quantitative analytical technique that is capable of measuring a wide verity of clinical relevant analyte with high levels of reproducibility, precision and accuracy and has a potential to extend current capabilities in biomarker discovery, development and validation (Heaney et al., 2017). Due to its incomparable capacity to analyse the complex protein mixtures found in body fluids and tissues, MS has become the method of choice in proteomic approaches. The biomarker tryptase for mastocytosis does not fully fulfil the characteristics of an idea biomarker therefore, creating the need to

establish and validate sensitive and specific biomarker for mastocytosis (Crutchfield, 2016). One way to measure biomarkers is via Sequential window acquisition of all theoretical Mass spectrometry (SWATH-MS).

1.10 SWATH – MS


Sequential window acquisition of all theoretical Mass spectrometry (SWATH-MS) is a data independent acquisition (DIA) approach that is able to reliably quantify significant numbers of peptides and proteins in an unbiased manner as well as allow peptide identification and quantification (Kang et al., 2017).

Proteomic studies have made remarkable progress recently, facilitated by the widespread application of LC MS/MS, and development of quantification methods (Domon and Aebersold, 2006). The development of TOF MS has enabled many new approaches for data acquisition in proteomic analysis possible. There are generally three types of LC MS/MS strategies, targeted acquisition, precursor dependant acquisition and precursor independent acquisition, in which the application of the different methods are dependent on factors such as goal of analysis, instrumental performance and sample complexity (Kang et al., 2017).

Data dependant acquisition (DDA) is a technique which typically detects only the most abundant peptides from complex samples after extensive fractionation (Hopfgartner et al., 2012). Data-independent acquisition (DIA) is a technique in where fragment ion information for all precursor ions within a determined mass range are acquired, therefore result in an unbiased precursor ion selection (Tate et al., 2013).

One DIA approach is SWATH-MS which utilises the rapid analysis time of TOF and has enhanced ion detection and fragmentation quality resulting in improved reproducibility when compared to DDA approaches (Zhu et al., 2014). Peptide extraction for SWATH-MS data requires a spectral reference list containing information of retention time (IRTs), fragment ions and their relative intensity which are used to extract any given peptide from SWATH-MS/MS maps using the fragmentation chromatograms (Kang et al., 2017).

The SWATH-MS method uses small Q1 windows enabling better selectivity and enhanced high confidence peptide extraction from data files (Kang et al., 2017). All precursors present are associated with their fragment ions resulting in improved identification specificity and therefore providing a more in depth view of protein and peptide species in a complex sample (Figure 10) (Kang et al., 2017).

Figure 10: Schematic of the SWATH-MS. Implementation in applied and translational research (Adapted from Anjo et al., 2017)

SWATH-MS has been applied to biological samples such as, urine, serum and plasma together with organ specific tissue (Anjo et al., 2017). The variety of potential analytical sample types suggests that SWATH-MS is a valuable techniques for the identification and validation of biomarkers for diagnostic testing (Anjo et al., 2017).

1.11 Aims and Objectives

AIM: Using SWATH-MS to investigate the underlying mechanisms of disease in systemic mastocytosis.

To carry out global discovery of the proteome of plasma from peripheral blood of systemic mastocytosis patients and compare these to healthy controls.

Sequential Window Acquisition of all Theoretical fragmentation spectra mass spectrometry (SWATH-MS) will be employed to generate, in a single measurement, a complete permanent recording of all the components in a biological sample – a digital map.

The aim is to identify proteins that may discriminate between the two groups (patients diagnosed with SM and healthy controls). A map of those differently expressed proteins in an unbiased manner will be produced, allowing the elucidation of the molecular mechanisms involved in SM.

Chapter 2: Materials and Methods

2.1 Ethics

This study was approved by the NHS Health Research Authority on the 10th May 2016 (London and City East Research Ethics Committee (16/LO/0787). Ethical approval was also granted for this study by the Faculty of Science and Engineering Research Ethics Committee, following the completion of an internal ethics checklist and application. COSHH and risk assessments were also completed before the study was launched. The research is being co-sponsored by the United Lincolnshire Hospitals NHS Trust, University of Lincoln, Manchester Metropolitan University and the University of Manchester. The study was funded by the Mastocytosis Charity.

2.2 Subjects

Fourteen (14) patients with systemic mastocytosis were recruited from the Mastocytosis clinic at the United Lincolnshire Hospitals NHS Trust and Leicester Royal Infirmary. In addition, eleven (11), apparently healthy, controls were recruited from the staff and students of Manchester Metropolitan University. Patients and controls were recruited over a 30-month period between January 2016 - June 2018, by the author and other members of the research team. Patient inclusion and exclusion criteria are shown below:

Inclusion Criteria:

- Male or female participants \geq 18 years old.
- Diagnosed with Systemic Mastocytosis according to WHO classification or documented Mastocytosis based on histological criteria.

• Able and willing to provide written informed consent prior to participation in the study.

Exclusion criteria:

- Unable or unwilling to provide written informed consent prior to participation in the study.
- Pregnant or currently breast feeding.
- <18 years old
- other haematological malignancies
- Patients who have received chemotherapy, any investigational drug or undergone majored surgery < 4 weeks prior to the begging of the study.

2.2.1 Patient Recruitment

Patients were selected from either the Mastocytosis database, or from potential patients, according to clinical and/or laboratory suspicion of Mastocytosis and where a bone marrow biopsy was indicated. Potential study participants were invited take part by letter and accompanying patient information sheet, which was forwarded at the same time as their appointment letter for the haematology clinic (Appendix 1). Potential participants were able to discuss the study, if they wished to seek further information or clarification, with a consultant haematologist at a time separate to their clinic appointment. All patients recruited to the study gave written informed consent prior to the collection of a peripheral blood sample at the antecubital fossa (Appendix 2).

2.2.2 Recruitment of Control Subjects

Heathy controls were recruited from the staff and students at the University of Lincoln and Manchester Metropolitan University. Volunteers were recruited through use of general University of Lincoln and Manchester Metropolitan University email. Volunteers who were interested in taking part were provided with a participant information sheet (Appendix 1) and given the option to discuss the project further with the author or Principal Investigator. Participants were given a minimum of 24 hours to consider study related information before being asked to provide written informed consent (Appendix 3) to collect a peripheral blood sample at the antecubital fossa.

2.3 Experimental Protocol

Each participant was assigned a unique identity number ensuring that all data was anonymised at source. The numbers ranged from LCH01-LCH09 (Lincolnshire Hospitals NHS Trust), LRI01-LRI04 (Leicester Royal Infirmary) and MCC01-MCC09, MMU02 for healthy controls (Manchester Metropolitan University).

2.4 Peripheral Blood Collection

A venous peripheral blood sample was collected at the antecubital fossa by a trained phlebotomist. Two peripheral blood samples, of a total volume of approximately 8-12ml whole blood (2x EDTA-plasma, Vacutainer, BD, Oxford, England, UK), were collected and processed within 24hrs of collection.

2.5 Plasma Sample Preparation

Peripheral EDTA blood (1ml) (EDTA-plasma, Vacutainer, BD, Oxford, England, UK) was centrifuged (SIGMA 3-15KL) at 3000 rpm for 3 minutes at room temperature. Plasma was aliquoted (15 μ l) and stored frozen at -80°C.

2.5.1 Immuno-depletion of plasma

Plasma aliquots (15 µl) were thawed on ice and 10 µl added to Top 12 abundant protein depletion spin columns (Pierce, Thermos Scientific, Rockford, USA). These were vortexed and incubated for 60 minutes at room temperature on a rotary mixer at 300 rpm (Rotor Genie 88881002, Thermo Scientific, Paisley, UK), followed by centrifugation at 1000 g for 2 minutes (Mikro 185, Hettich, USA). Following centrifugation, the eluate (500 µl) was transferred to a Amicon ultra 0.5ml centrifugal filter device (Millipour, UK) and centrifuged at 14,000 g for 30 minutes at room temperature. The eluate was discarded, and 400µl of 25mM ammonium bicarbonate (ACROS Organics) added to the Amicon ultra 0.5ml centrifugal filter device followed by centrifugation at 14,000g for 10 minutes at room temperature. Finally, 30µl of 25mM ammonium bicarbonate was added to the Amicon ultra 0.5ml centrifugal filter device which was then inverted into 2ml Eppendorff tubes and centrifuged at 1000g for 2 minutes at room temperate to elute the proteins.

2.5.2 Protein Quantification of Immuno-depleted samples

A Pierce BCA protein Assay Kit, calibrated with bovine serum albumin (BSA), (Thermo Scientific, Rockford, USA) was utilised to measure the protein concentration of the immuno-depleted plasma samples, according to manufactures

instructions. Using BSA and assay diluent, 25mM ammonium bicarbonate, eight standards were prepared across the concertation range 2000µg/µl to 0µg/µl. Standard and immunodepleted samples (10µl) were added to a 96 well flat bottomed microtitre plate in duplicate. Working reagent (200µl) at a ratio of 50:1 was added to each well containing an aliquot of standard or sample. The plate was incubated for 30 mins at 37°C and the absorbance measured at 562nM. A standard curve was prepared to determine the protein concentration in the immunodepleted samples against the BSA standards. In order to standardise the amount of protein subjected to enzymatic digestion, prior to mass spectrometric proteome analysis, protein concentration was standardised by the addition of an appropriate volume of 25 mM ammonium bicarbonate.

2.5.3 Digestion of protein into peptides

Dithiothreitol (DTT) (12µl of 50mM) (Sigma, St Louis, MO, USA) was added to the normalised depleted protein samples to give a final concentration of 5mM DTT. Subsequently, sodium deoxycholate (DOC) (12µl of 10%) was added (at a final concentration of 1% sodium deoxycholate) and the mixture incubated for 30 mins at 60°C with agitation (Thermo Mixer C, Eppendorph). Following incubation lodoacetamide (IAA) (10µl of 650 mM) was added (final concentration of 50mM lodoacetamide). The mixture was again incubated for 30 minutes in the dark, at room temperature. Following incubation, enzymic digestion was performed by the addition of trypsin (1:50 at a final concentration of $0.1 \,\mu g/\mu l$). The mixture was again incubated at 37° C, overnight. Equal volumes of 1% formic acid were then added (final concentration of 0.5% formic acid) and the samples centrifuged at

12,000 g for 10 mins, the supernatant transferred into new clean 1.5μl microfuge tubes and vacuum concentrated for approximately 90 minutes (Speedvac concentrator, Savant SPD1010, Thermo Sientific). Samples where then freeze dried and stored frozen, prior to mass spectrometry, at -80°C.

2.5.4 Reconstitution of samples

Depleted and digested samples were allowed to thaw on ice and reconstituted to give a final concentration of 1µg of protein per 5µl volume, using 3% Acetonitrile in 0.1% formic acid solution. Internal standard at 0.1% final concentration of IRTs was added to each sample (Index retention time, Biognosys, Switzerland) (Figure 11).

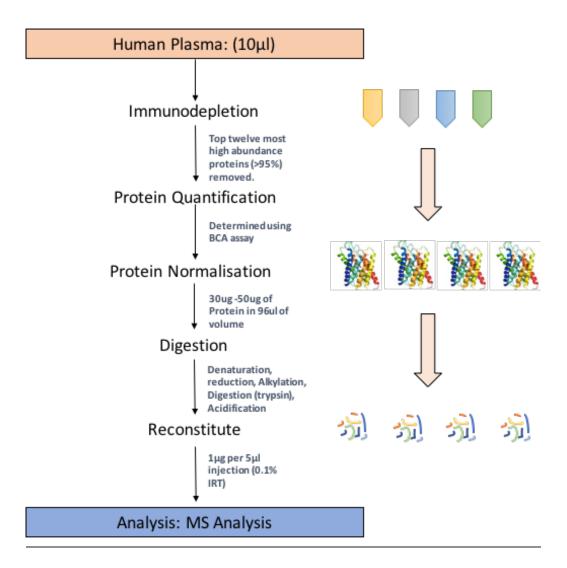


Figure 11: Flow diagram of plasma sample preparation.

2.6 Mass Spectrometry

2.6.1 Triple- TOF MS analysis and SWATH data analysis

Samples from each patient and control subject were loaded onto a 6600 Triple TOF mass spectrometer, in triplicate (AB Sciex, Warrington, UK), with an Eksigent 1D+ Nano LC system (Eksigent, Dublin, CA) for SWATH-MS analysis. The LC gradient consisted of buffer A (2% acetonitrile and 0.1% formic acid in HPLC water) and buffer B (2% water and 0.1% formic acid in acetonitrile). Protein depleted and digested samples were spiked with 1:50 (v:v) iRT peptides. Sample (5µl) was injected (1µg of protein in 5 µl injection volume) and separated with a linear gradient of 2% buffer A to 35% buffer B over 135 minutes at a flow rate of 0.3µl min⁻¹.

The mass spectrometer was operated and data collected in SWATH acquisition mode using 100 variable windows. SWATH wiff files were converted into mzXML files. The mzXML file was converted to mzML file using OpenMS tool File converter. Spectral alignment and targeted data extraction of DIA samples were performed with SWATH 2.0 processing in Peakveiw (version 2.2, AB Sciex) using an in-house reference spectral library.

2.6.2 Processing of Mass Spec Data

Spectral aliment and targeted extraction of DIA samples were performed in Peakview (version 2.0, Sciex). DIA raw files were loaded in unison using extraction window false discovery rate (FDR) of 1% and peptide confidence of 99%. After data processing, raw data including peak area and retention times were exported from Peakveiw to Microsoft Excel. Data was processed and analysed, using MSStats and Markerviewer (Sciex).

Principle component analysis plots (PCA) were produced using Markerveiwer (Sciex). Volcano plots were generated using GraphPad Prism 7. Data was expressed as mean and the differences were determined using Welch's' t tests to determine differences in regulated proteins. A probability value of < 0.05 with 95% confidence limit was considered statistically significant. A fold chance of >1.5 was reported as significantly up regulated and 1/1.5 (<0.667) significantly down regulated.

2.6.3 Bioinformatics, Functional and Descriptive analysis

The international standardised gene function classification system of gene ontology (GO) (http://www.geneontology.org/) and the Database Annotation Visualisation and Integrated Discovery (DAVID) database were used to interpret the biological processes, molecular functions and the cellular components of the significantly up regulated identified proteins (P value <0.05), (fold change >1.5).

ClueGo (Version 3.6.1, a Cytoscape plug-in) was used to assess proteins that were significantly enriched (P-value <0.05, fold change >1.5-2). Functional gene ontology (GO) categories in biology processes were reported using right-sided hypergeometric test. Protein-protein interactions were determined using the STRING database (version 10.5) with a high confidence level applied of 0.7. The PANTHER (v.8.0) (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) was employed to perform a statistical overreprentation test between the 360 significantly enriched proteins identified and a relative reference list in PANTHER (Version 11.0) using a test type of Fishers exact with FDR multiple test correlations. Statistical significant, overrepresented proteins were determined and grouped into Biological process and Reactome pathways (P <0.05), (fold change >2.0).

2.7 ELISA

2.7.1 C-Reactive Protein (CRP)

CRP was measured in neat human plasma using a SimpleStep ELISA kit (Catalogue Number ab181416, Abcam UK) according to manufacturer's instructions. Briefly, standards in the range of 0 - 1000pg/ml were prepared in sample diluent. Samples (1:10000 dilution in sample diluent) or standards (50µl) were added, in duplicate, to each well of a coated mictotitre plate. Antibody cocktail (50µl) was added to each well and the plate incubated for 1 hour at room temperature with agitation. Following incubation, the plate was washed (x3) with plate wash buffer and blotted dry. Substrate (TMB, 100µl) was added to each well and the plate incubated for 10 minutes, with agitation, at room temperature in the dark. Following incubation, stop solution (100µl) was added and the OD at 450nm measured on a plate reader.

2.7.2 Beta-2 Microglobulin (β 2M).

 β 2M was measured in neat human plasma using a SimpleStep ELISA kit (Catalogue Number ab181423, Abcam UK) according to manufacturer's instructions. Briefly, standards in the range of 0 – 2000 pg/ml were prepared in sample diluent. Samples (1:10000 dilution in sample diluent) or standards (50µl) were added, in duplicate, to each well of a coated mictotitre plate. Antibody cocktail (50µl) was added to each well and the plate incubated for 1 hour at room temperature with agitation. Following incubation, the plate was washed (x3) with plate wash buffer and blotted dry. Substrate (TMB, 100µl) was added to each well and the plate

incubated for 10 minutes, with agitation, at room temperature in the dark. Following incubation, stop solution (100μ l) was added and the OD at 450nm measured on a plate reader.

2.7.3 Platelet Basic Protein (CXCL7)

CXCL7 was measured in neat human plasma using a SimpleStep ELISA kit (Catalogue Number ab216171, Abcam UK) according to manufacturer's instructions. Briefly, standards in the range of 0 - 300 pg/ml were prepared in sample diluent. Samples (1:10000 dilution in sample diluent) or standards (50µl) were added, in duplicate, to each well of a coated microtitre plate. Antibody cocktail (50µl) was added to each well and the plate incubated for 1 hour at room temperature with agitation. Following incubation, the plate was washed (x3) with plate wash buffer and blotted dry. Substrate (TMB, 100µl) was added to each well and the plate incubated for 10 minutes, with agitation, at room temperature in the dark. Following incubation, stop solution (100µl) was added and the OD at 450nm measured on a plate reader.

2.7.4 Transforming Growth Factor Beta 1 (TGF β 1)

TGF β 1 was measure in neat plasma using a TGF beta 1 Human ELISA KIT (Catalogue Number ab216171, Abcam UK) according to manufactures instructions. Briefly, standards ranged from 0 - 4000 pg/ml were prepared in sample diluent. Samples (1:4 dilution in sample diluent) or standards (100µl) were added, in duplicate, to each well of a coated microtitre plate. The plate was incubated overnight at 4°C with gentle agitation. Following incubation, the plate was washed (x4) with wash buffer and blotted dry. Biotinylated TGF beta 1 Detection Antibody (100µl) was added to each well and the plate was incubated for 1 hour at room temperature with gentle agitation. Following incubation, the plate was washed (x4) with wash buffer and blotted dry before the addition of HRP- Streptavidin solution (100µl) to each well. The plate was incubated for a further 45 minutes at room temperature with, gentle agitation, before the plate was once again, washed (x4) with wash buffer and blotted dry. Substrate (TMB, 100µl) was added to each well and the plate incubated for 30 minutes, with agitation, at room temperature in the dark. Following incubation, stop solution (100µl) was added and the OD at 450nm measured on a plate reader.

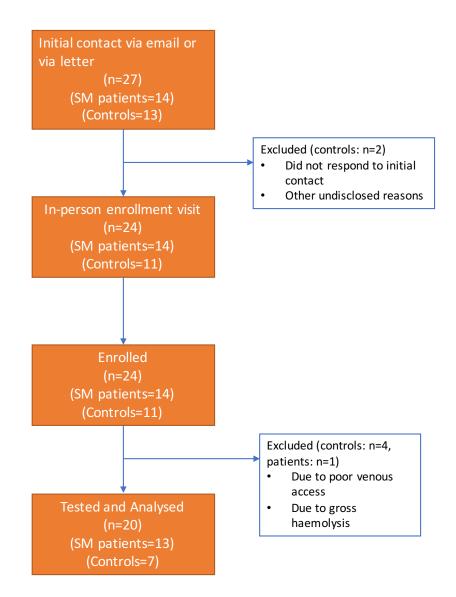
2.7.5 Liposaccharide Binding Protein (LBP)

LBP was measured in neat plasma using Human LBP ELISA KIT (Catalogue Number ab213805, Abcam UK) according to manufactures instructions. Briefly, standards ranged from 0 - 50ng/ml were prepared in sample diluent. Samples (1:100 dilution in sample diluent) and standards (100µl) were added, in duplicates, to each well of a coated microtitre plate. The plate was then incubated at 37 °C for 90 minutes, before the contents of the plate were discarded and biotinylated anti-human LBP antibody working solution (100µl) added to each well. The plate was then incubated at 37 °C for 60 minutes before being washed (x3) with 0.01 M PBS. Avidin-Biotin-Peroxidase Complex working solution (100µl) was added to each well and incubated at 37 °C for 30 minutes. The plate was washed again (x5) before substrate (TMB, 90µl) was added to each well and the plate incubated for 30

minutes, at 37 °C, in the dark. Following incubation, stop solution (100 μ l) was added and the OD at 450nm measured on a plate reader.

2.7.6 Platelet derived growth factor receptor Beta (PDGFr β)

PDGF Receptor Beta was measured in neat plasma using a PDGF receptor beta Human ELISA KIT (Catalogue Number ab100626, Abcam UK) according to manufactures instructions. Briefly, standards ranged from 0 - 18,000 pg/ml were prepared in sample diluent. Samples (1:20 dilution in sample diluent) or standards (100µl) were added, in duplicates, to each well of a coated microtitre plate. The plate was incubated overnight at 4°C with gentle agitation. Following incubation, the plate was washed (x4) with wash buffer and blotted dry. Biotinylated PDGF receptor beta Detection Antibody (100μ) was added to each well and the plate incubated for 1 hour at room temperature with gentle agitation. Following incubation, the plate was washed (x4) with wash buffer and blotted dry before the addition of HRP- Streptavidin solution (100µl) to each well. The plate was incubated for a further 45 minutes at room temperature with, gentle agitation, before being, washed (x4) with wash buffer and blotted dry. Substrate (TMB, 100µl) was added to each well and the plate incubated for 30 minutes, with agitation, at room temperature in the dark. Following incubation, stop solution $(100\mu l)$ was added and the OD at 450nm measured on a plate reader.


All data was uploaded to a master Microsoft Office Excel spreadsheet (Microsoft Excel for Mac, Version 15.30) pending analysis. For statistical analysis, data was imported into Prism 7 for Mac (GraphPad Software, California, USA). Parametric

(Independent T test) tests were used to compare systemic mastocytosis patients and healthy control results. Graphical outputs and box and whisker plots were produced using Prism 7 for Mac (GraphPad Software, California, USA). A P<0.05 was accepted as statistically significant. **Chapter 3: Results**

3.1 Study participants

A total of thirteen healthy controls, three from University of Lincoln and ten from Manchester Metropolitan University, were invited to participate in the study, which resulted in eleven participants attending the first enrolment visit. From the enrolment visit, four were excluded due to poor venous access, meaning a total of seven healthy controls were included in the proteomic analysis by mass spectrometry (Figure 12).

Fourteen patients with Systemic Mastocytosis, who were attending the Mastocytosis clinics at the United Lincolnshire Hospitals NHS Trust and Leicester Royal Infirmary, were also invited to participate. In total, thirteen patients with systemic mastocytosis were included in the proteomic analysis by mass spectrometry, with one patient sample excluded due to gross haemolysis (Figure 12).

Figure 12: Study Flow Diagram. Flow diagram showing initial recruitment of Systemic Mastocytosis patients and Controls. Diagram also shows the number of participants excluded (patients and controls). The main reasons for exclusion of participants was poor venous access and sample haemolysis.

3.2 Table of participant Characteristics

Participants demographics are shown in table 6 below. There was a greater number

of female participants, 9 from the systemic mastocytosis patient group and 1 from

the healthy control group, however the gender of 4 participants is unknown. The

mean age of the healthy control group is 44 years compared to 58 years in the

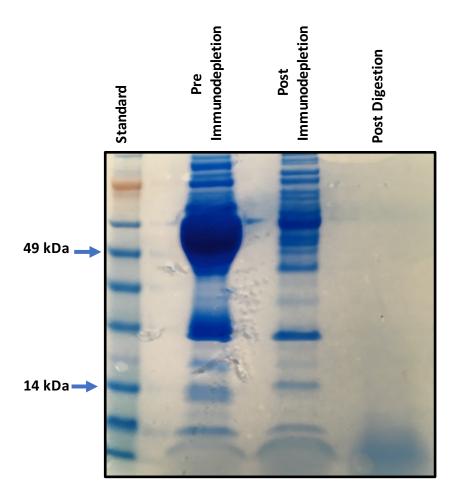
patients group (P >0.05). A point mutation consisting of a substitution of aspartate

to valine in the catalytic domain of *c-KIT* (*ASP816VAL* or *D816V*) was detected in the peripheral blood of 9, out of the 13, patients diagnosed with systemic mastocytosis. *KIT* status was not determined in the healthy control group. Patients diagnosed with systemic mastocytosis had a mean serum tryptase of 92ng/ml. Healthy control participants had higher mean haemoglobin (138g/l) compared to patients diagnosed with systemic mastocytosis (129g/l), although the difference did not reach the level of statistical significance. The patient group had a higher white cell count and platelet count (6.37 x 10^9 /L, 245 x 10^9 /L) when compared to the healthy control group (5.53 x 10^9 /L, 169 x 10^9 /L), which again did not reach the level of statistical significance.

Table 6: Table of participants' characteristics. Demo	ographics include age, gender, kit status,
Tryptase (ng/ml), Haemoglobin (g/l), white cell coun	t (WCC, x10 ⁹ /L), platelets (x10 ⁹ /L).

Characteristic	Systemic Mastocytosis Patients	Healthy Controls	Total Participants
Subjects (n)	13	7	20
Age (median[range])	58 [27-80]	44 [26-55]	51 [26-80]
Gender	Male = 3 Female = 9 Unknown = 1	Male = 3 Female= 1 Unknown = 3	Male = 6 Female = 10 Unknown = 4
Kit Status	Positive = 9 Negative = 1 Unknown = 3	-	Positive = 9 Negative = 1 Unknown = 3
Tryptase (ng/ml) (mean [range])	92 [20.5->200]	-	92 [20.5- >200]
Haemoglobin (g/l) (mean [range])	129 [91-155]	138 [124-142]	133.5 [91-155]
WCC (10x10 ⁹ /L) (mean [range])	6.37 [2.5-9.5]	5.53 [2.25-5.99]	5.59 [2.25-9.5]
Platelets (10x10⁹/L) (mean [range])	245 [112-362]	169 [135-205]	207 [112-205]

3.3 Gel Electrophoresis showing the depletion and digestion of Plasma samples


Prior to tryptic digestion, plasma samples were immunodepleted to remove high abundance proteins (Table 7). Previous work has shown that immunodepletion and tryptic digestion are necessary to improve the overall accuracy and precision of proteomic analysis (Pan, *et al* 2009). In order to assess the efficiency of this step, immunodepleted and digested samples were subject to SDS-polyacrylamide gel electrophoresis. Figure 13 shows the results of Immunodepletion and tryptic digestion. As can be observed, Immunodepletion removed the majority of the high

abundance proteins, mainly albumin, while tryptic digestion resulted in the

fragmentation of proteins into peptides.

Table 7: List of the top 12 proteins removed by Pierce top 12 abundant protein depletionspin columns (Pierce, Thermos Scientific, Rockford, USA).

Top 12 Proteins Removed by Depletion Spin Columns		
Alpha 1- Acid Glycoprotein	Fibrinogen	
Alpha 1- Antitrypsin	Haptoglobin	
Alpha 2- Macroglubulin	IgA	
Albumin	IgG	
Apolipoprotein A-I	lgM	
Apolipoprotein A-II	Transferrin	

Figure 13: SDS-Polyacrylamide Gel Electrophoresis. This figure shows an image of a gel post electrophoresis using control sample. Pre Immunodepleted plasma (5µl) diluted 1:10/ Post immunodepleted sample, pre-trypsin digest – $20\mu g$ /Post Trypsin digested sample. Left hand lane showing SeeBlue Plus2 pre-stained protein molecular weight standards (molecular weight range 3-198 kDa) (Thermos Scientific – UK).

3.4 Proteome difference between patients and controls

Principle component analysis (PCA) was undertaken to show the proteomic

differences between the systemic mastocytosis patients and healthy controls.

Figure 14 demonstrates that mastocytosis patients can be clearly separated on

proteomics from the healthy control population.

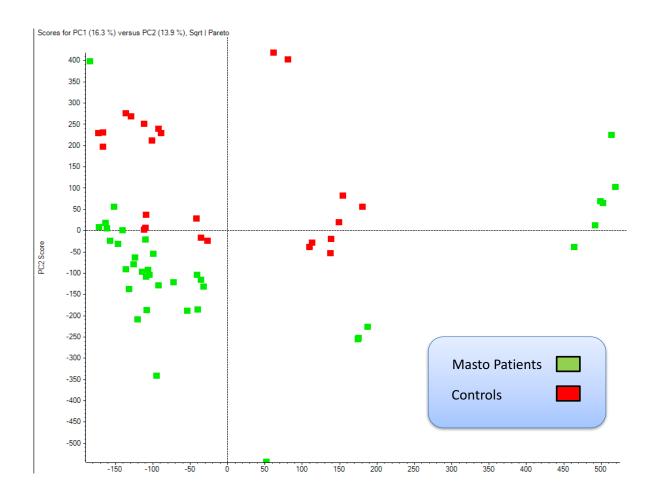
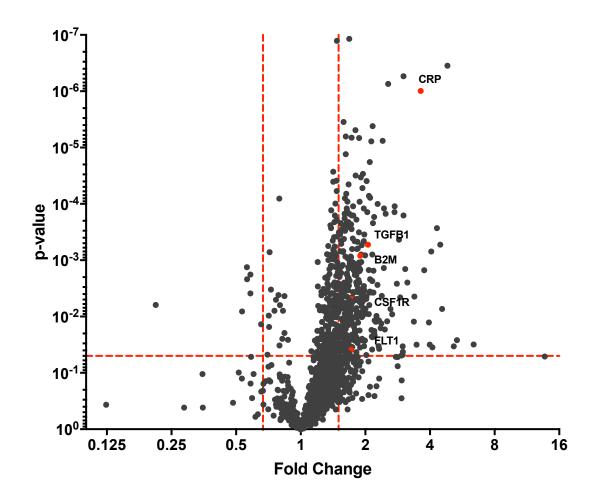



Figure 14: Principle component analysis of Systemic Mastocytosis patents and Control samples.

3.5 Proteins identified and the Profile of the Significantly Enriched Proteins

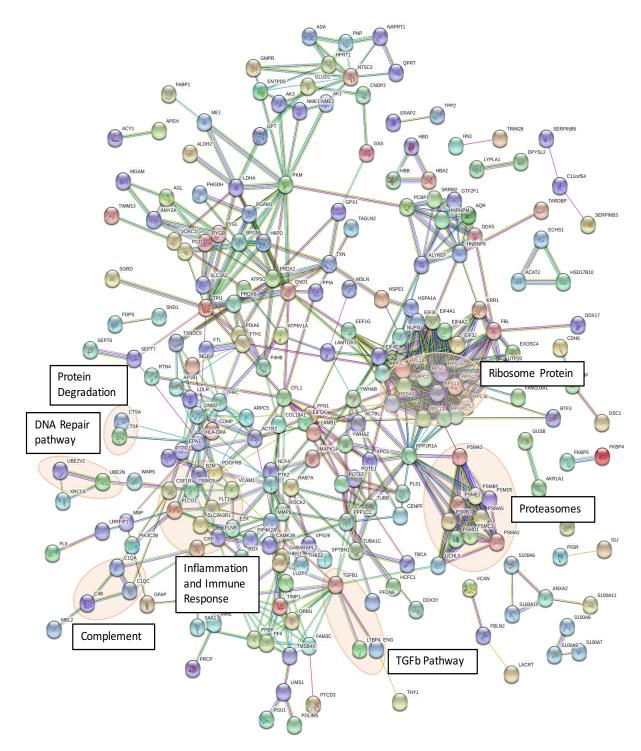
A high-level coverage of plasma proteome was achieved with a total of 1437 proteins being identified at a 1% FDR and 99% peptide confidence. A table including all 1437 proteins identified, along with their individual P and fold change values, was constructed and is available in Appendix 5.

A volcano plot was constructed to show the results of the differentially expresses proteins, between the patient and control groups, based on fold change versus ttest probability as shown in Figure 15. When considering patients with Systemic Mastocytosis, 368 (of the 1437) proteins were found to be significantly differentially expressed (>1.5 & < 1/1.5-fold change) when compared to the control population (P < 0.05). Of the proteins identified, 360 were found to be significantly up regulated, in patients, with a >1.5-fold change, and 8 found to be significantly down regulated, in patients, with a fold change <1/1.5 (<0.667), when compared to apparently healthy controls. A table of all, 360 significantly upregulated and 8 significantly down regulated proteins identified, along with their individual P value and fold change, was constructed and is available in Appendix 6 & 7. Significantly up regulated proteins included, C-reactive protein (CRP), Transforming Growth Factor Beta 1 (TGF β 1), Beta 2 Microglobulin (β 2M), Colony Stimulating Factor 1 Receptor (CSF1R) and Vascular Endothelial Growth Factor Receptor 1 Precursor (FLT1) are represented as red dots seen in Figure 15.

Figure 15: Volcano plot showing differentially expressed proteins. The volcano plot shows the results of differentially expressed proteins between patient and healthy control groups, based on fold change versus t-test probability. Each protein is represented as a black dot and is mapped according to its fold change on the abscissa axis (x) and t-test p-value on the ordinate axis (y). Any proteins with a P <0.05 are found to have significant changes when compared to controls (above horizontal red line). Any proteins found to have a fold change of < 0.667 was considered downregulated when compared to controls (left of red vertical line). Proteins found to have a fold change of > 1.5 were considered up regulated when compared to control group (right of red vertical line). Significantly up regulated proteins included, C-reactive protein (CRP), Transforming Growth Factor Beta 1 (TGF1), Beta 2 Microglobulin (B2M), Colony Stimulating Factor 1 Receptor (CSF1R), Vascular endothelial growth factor receptor 1 precursor (FLT1) (marked as red dots above).

In order to explore protein-protein interactions, STRING (Version 10.5), protein-

protein interaction (PPI) network analysis was performed at a high confidence


score of 0.7 as illustrated below in figure 16. The results demonstrated a significant

association amongst the significantly up regulated proteins.

Further, PPI network analysis (Figure 16) suggests the identified proteins have

strong interactions that contribute to numerous biological functions including,

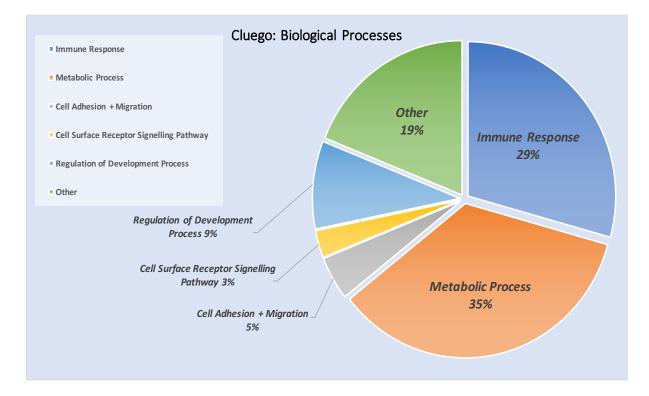

complement, proteasomes, protein synthesis and degradation, inflammation and immune Response, DNA repair and increased cell survival, enhanced protein folding, platelet aggregation and activation and the TGF- β pathway. This suggests a general state of pro-inflammatory and immune response in the pathophysiology of systematic mastocytosis.

Figure 16: Figure showing the protein-protein interactions for the upregulated proteins identify by SWATH-MS, analysed by STRING (Version 10.5) with a high confidence of 0.7. In the network analysis, the up regulated expressed proteins were represented as nodes.

3.6 Functional Annotation of the Identified Proteins

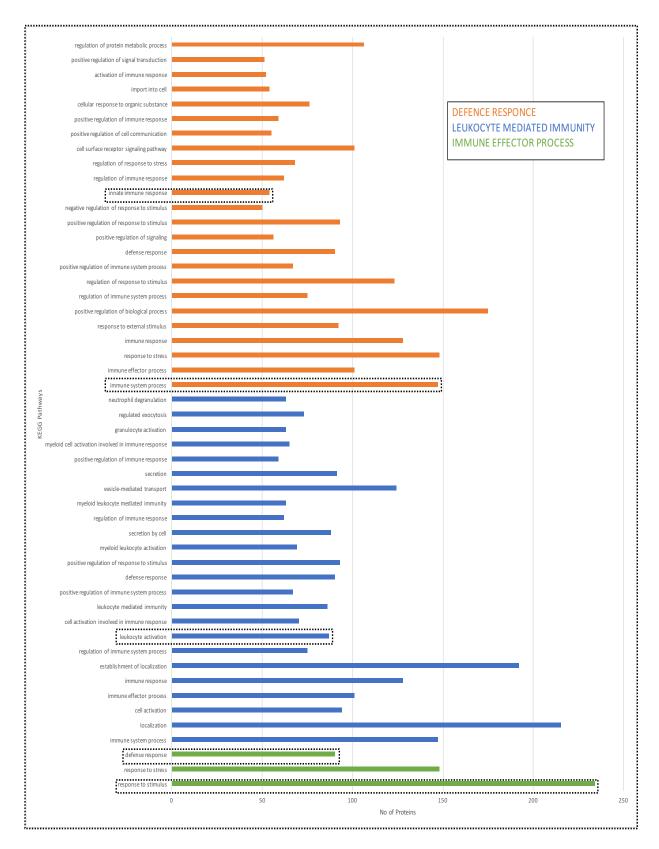

To assess the biological functions of the significantly upregulated proteins, ClueGo (Version 3.6.1, a Cytoscape plug-in) and DAVID databases were utilised. When analysed for biological processes it was revealed that the identified enriched proteins are largely involved in metabolic processes (35%), immune responses (29%), regulation of development processes (9%), cell adhesion and migration (5%) and cell surface receptor signalling pathways (3%) (Figure 17).

Figure 17: Pie chart representing biological processes of significantly up regulated proteins (ClueGo, Version 3.6.1, a CytoScape plug-in). The biological processes of the significantly up regulated protein were grouped into metabolic response (35%), Immune response (29%), Regulation of development process (9%), Cell adhesion and migration (5%), Cell surface receptor signalling pathway (3%) and other (19%).

Based on functional analysis, the significantly up regulated proteins seem to function largely in the immune response (29%), which could be further sub-divided into immune effector process (13.79%), leukocyte mediated immunity (13.79%)

and defence response (1.72%). According to the KEGG pathway annotation, significantly up regulated proteins, involved with the immune response (29%), were classified into 50 pathways (Figure 18).

Figure 18: KEGG pathway analysis of significantly up regulated proteins found in the immune

response. Many of the identified up regulated proteins exhibited biological functions in relation to immune system processes and response. The horizontal bars represent the number of differentially expressed proteins involved with various pathways (ClueGo, Version 3.6.1, a CytoScape plug-in).

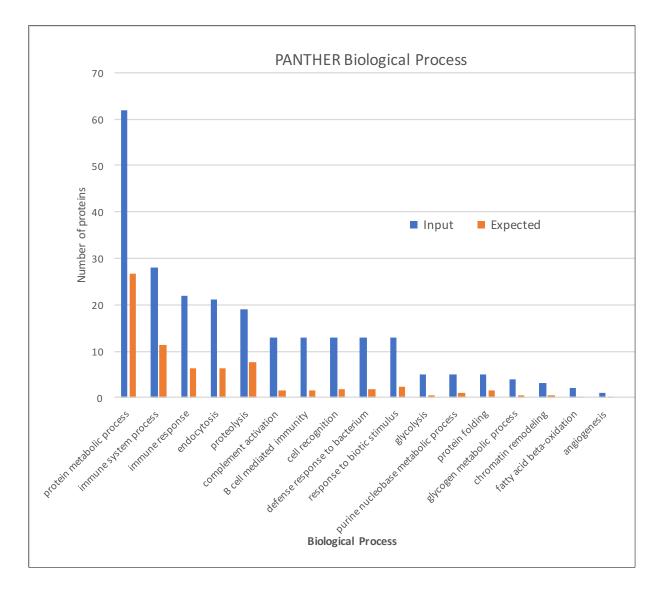
Among the 360 significantly enriched proteins, 147 proteins were found to be involved with immune system process, 54 in the innate immune response, 234 in response to stimuli, 62 in the regulation of immune response, 90 in defence response, 148 in response to stress, 63 in neutrophil degranulation, 73 in regulated exocytosis and 87 in leukocyte activation (Figure 18). From these pathways, specific proteins were identified using KEGG pathway analysis and the names of the specific proteins may be found in table 8. The list of pathway specific proteins was interrogated by visual inspection to identify proteins common to the five pathways (immune system process, innate immune response, response to stimuli, defence response and leukocyte response) (Table 8). Proteins common to all pathways are highlighted in bold (Table 8) and proteins identified as upregulated by massspectrometry were verified by ELISA.

Table 8: KEGG pathways found in immune response along with the enriched proteins. These pathways include immune system process, innate immune response, response to stimulus, defence response and leukocyte activation. Proteins emboldened, such as Beta 2 Microglobulin (B2M), C-Reactive Protein (CRP), Transforming Growth Factor Beta 1 (TGFb1), Vascular Endothelial Growth Factor receptor 1 precursor (FLT1), Platelet basic protein (PPBP/CXCL7) and lipopolysaccharide binding protein (LBP) are consistently found throughout (ClueGo, Version 3.6.1, a CytoScape plug-in).

3.7 PANTHER – Descriptive Statistics

A statistical over-representation test was preformed between the 360 significantly

enriched proteins identified and a relative reference list in PANTHER (Version 11.0)


using a test type of Fisher's exact test with FDR multiple test correlations.

Statistically significant, overrepresented proteins were determined and grouped into biological process and reactome pathways, illustrated as bar charts, Figure 19 and Figure 20 (P < 0.05) (fold change >2.0).

Figure 19, illustrates the identified enriched proteins which are found to be significantly over represented in biological processes, with the greatest over-representation involved in, complement activation (P <0.001, fold change 8.24), B cell mediated immunity (P <0.001, fold change 8.24), cell recognition (P <0.001, fold change 10.64), defence response to bacteria (P <0.001, fold change 6.92), glycolysis (P <0.001, fold change 10.64) and glycogen metabolic process (P <0.001, fold change 6.81). Over- representation of other biological process included response to biotic stimulus (P <0.001, fold change 5.38), fatty acid beta oxidation (P <0.001, fold change 5.96), chromatin remodelling (P <0.001, fold change 5.26), purine nucleobase metabolic process (P <0.001, fold change 3.42), immune system process (P <0.05, fold change 2.49, protein metabolic processes (P <0.001, fold change 2.33), endocytosis (P <0.001, fold change 3.31), proteolysis (P <0.001, fold change 2.53), proteins folding (P <0.001, fold change 3.17) and angiogenesis (P <0.001, fold change 3.31).

The significantly over-represented proteins were mainly found to be in biological processes mainly involved with the immune response (immune system process, B cell mediated immunity, cell recognition and defence response to bacterium), inflammation (complement activation), angiogenesis, intra-cellular protein transport (endocytosis), energy metabolism (glycolysis, glycogen metabolic

process, fatty acid beta oxidation) and protein synthesis and breakdown (proteolysis, protein folding, protein metabolic process and chromatin remodelling) (Figure 19 and Table 9).

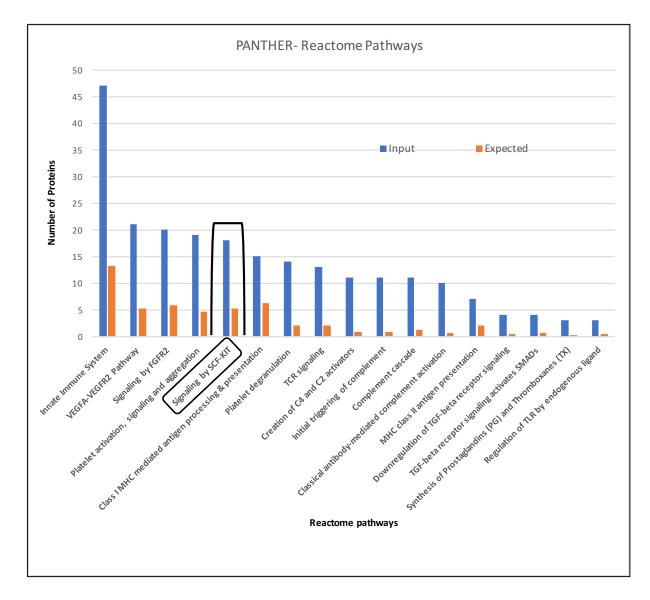


Figure 19: Bar Chart of over-representation of biological processes of the significantly enriched proteins when compared to expected values. The input values (blue) and expected values (orange) are mapped according to their biological process on the abscissa axis (x) and number of proteins involved on the ordinate axis (y). PANTHER (Version 11..0), (P <0.05, fold change >2.0). Figure 20, illustrates the identified enriched proteins which are significantly over represented in reactome pathways, with the greatest over-representation involved in, complement cascade (P < 0.001, fold change 8.86), classical antibody mediated compliment activation (P < 0.001, fold change 15.69), initial triggering of complement (P < 0.001, fold change 12.61), synthesis of prostaglandins and thromboxane(P <0.001, fold change 11.92), down regulation of TGF β 1 receptor signalling (P <0.001, fold change 9.54) and TGF β receptor signalling activates SMADs (P <0.001, fold change 7.69). Over representation of other reactome pathways include the Innate immune system (P < 0.001, fold change 3.57), VEGFA-VEGFR2 pathway (P <0.001, fold change 4.09), platelet activation, signalling and aggregation (P <0.001, fold change 4.13), platelet degranulation (P <0.001, fold change 6.68), signalling by SCF-KIT (P <0.001, fold change 3.46), class I MHC mediated antigen processing and presentation (P < 0.001, fold change 2.42), MHC class II antigen presentation (P < 0.001, fold change 3.54), T cell receptor signalling (P < 0.001, fold change 6.35).

The analysis demonstrated that the reactome pathways that were shown to be significantly over-represented mainly involved pathways contributing to increased proliferation, migration survival and differentiation of hematopoietic progenitors (Signalling by SCF-KIT), complement (creation of C4 & C2 activators, initial triggering of complement, complement cascade, classical antibody mediated compliment activation), T-cell proliferation, differentiation and activation (class I & II MHC mediated antigen processing and presentation, T-cell receptor signalling), cell proliferation, migration and survival, angiogenesis and tissue repair and

Inflammation (VEGFA-VEGFR2 pathway and signalling by FGR2) (Figure 20 and

Table 10).

Figure 20: Bar Chart of over-representation of Reactome pathways of the significantly enriched proteins when compared to expected values. The input values (blue) and expected values (orange) are mapped according to their biological process on the abscissa axis (x) and number of proteins involved on the ordinate axis (y). PANTHER (Version 11..0), (P <0.05, fold change >2.0).

Significant over representation of proteins involved in these highlighted biological

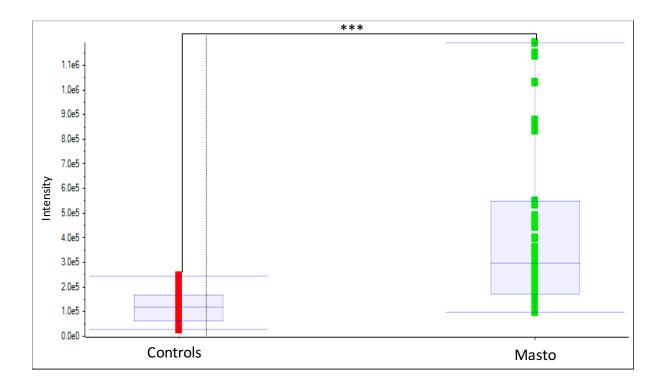
processes and reactome pathways, including P value and fold change, are shown in

Tables 9 and 10. The input column is the number of the significantly upregulated

protein that are grouped based on the PANTHER classification - biological process. The PANTHER reference list column contains the number of proteins involved with the biological process. The expected value is the number of proteins that would be expected to be present in the input list for a specific biological process on the basis of the reference list. Therefore, if the biological process under investigation, more proteins are observed in the input list that expected, fold change >2.0, there is an over representation (+) of the proteins involved in that specific biological function. P <0.05 determines if the over-representation is significant or not.

PANTHER analysis demonstrated many biological processes and reactome pathways shown to be over represented are central to pro-inflammation, immune response, increased cell survival and differentiation in the pathophysiology of systematic mastocytosis. **Table 9: Significant over representation of biological processes in PANTHER.** Over-representation was determined by number of proteins in PANTHER reference list as well as number of Inputted significantly upregulated proteins. P <0.05 and fold change >2.0 was considered significantly over-represented.

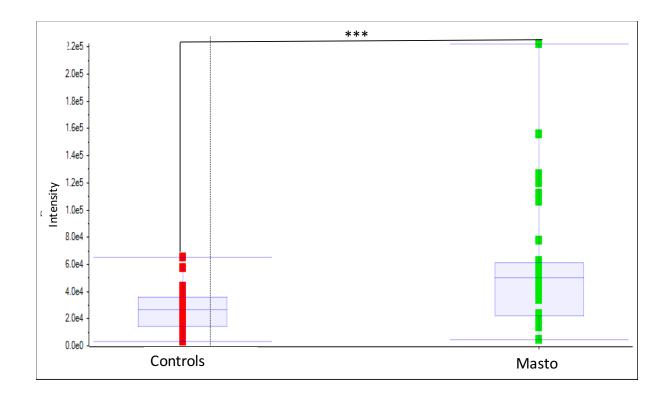
Biological Process	PANTHER- Ref List	Input	Expected	over/under representation	Fold Enrichment	P-value
protein metabolic process	1583	62	26.56	+	2.33	8.84E ⁻¹⁰
immune system process	669	28	11.22	+	2.49	2.26E ⁻⁰⁵
immune response	383	22	6.43	+	3.42	1.18E ⁻⁰⁶
endocytosis	378	21	6.34	+	3.31	3.40E ⁻⁰⁶
proteolysis	448	19	7.52	+	2.53	3.05E ⁻⁰⁴
complement activation	94	13	1.58	+	8.24	2.42E ⁻⁰⁸
B cell mediated immunity	94	13	1.58	+	8.24	2.42E ⁻⁰⁸
cell recognition	105	13	1.76	+	7.38	7.89E ⁻⁰⁸
defence response to bacterium	112	13	1.88	+	6.92	1.57E ⁻⁰⁷
response to biotic stimulus	144	13	2.42	+	5.38	2.16E ⁻⁰⁶
glycolysis	28	5	0.47	+	10.64	1.93E ⁻⁰⁴
purine nucleobase metabolic process	57	5	0.96	+	5.23	3.56E ⁻⁰³
protein folding	94	5	1.58	+	3.17	2.41E ⁻⁰²
glycogen metabolic process	35	4	0.59	+	6.81	3.80E ⁻⁰³
chromatin remodelling	34	3	0.57	+	5.26	2.29E ⁻⁰²
fatty acid beta- oxidation	20	2	0.34	+	5.96	5.05E ⁻⁰²
angiogenesis	18	1	0.3	+	3.31	2.71E ⁻⁰¹


Table 10: Significant over representation of Reactome pathways in PANTHER. Over-representation was determined by number of proteins in PANTHER reference list as well as number of Inputted significantly upregulated proteins. P <0.05 and fold change >2.0 was considered significantly over-represented.

Reactome pathways	PANTHER- Ref List	Input	Expected	Over/under representation	Fold Enrichment	P-value
Innate Immune System	38	47	13.15	+	3.57	1.57E ⁻¹³
VEGFA-VEGFR2 Pathway	43	21	5.13	+	4.09	1.35E ⁻⁰⁷
Signaling by FGFR2	52	20	5.8	+	3.45	3.32E ⁻⁰⁶
Platelet activation, signaling and aggregation	15	19	4.6	+	4.13	4.65E ⁻⁰⁷
Signaling by SCF-KIT	25	18	5.2	+	3.46	9.70E ⁻⁰⁶
Class I MHC mediated antigen processing & presentation	19	15	6.19	+	2.42	1.91E ⁻⁰³
Platelet degranulation	74	14	2.1	+	6.68	7.81E ⁻⁰⁸
TCR signaling	31	13	2.05	+	6.35	3.86E ⁻⁰⁷
Creation of C4 and C2 activators	125	11	0.72	+	15.25	1.07E ⁻⁰⁹
Initial triggering of complement	122	11	0.87	+	12.61	6.04E ⁻⁰⁹
Complement cascade	274	11	1.24	+	8.86	1.52E ⁻⁰⁷
Classical antibody-mediated complement activation	306	10	0.64	+	15.69	4.93E ⁻⁰⁹
MHC class II antigen presentation	784	7	1.98	+	3.54	4.75E ⁻⁰³
Downregulation of TGF-beta receptor signaling	118	4	0.42	+	9.54	1.25E ⁻⁰³
TGF-beta receptor signaling activates SMADs	310	4	0.52	+	7.69	2.55E ⁻⁰³
Synthesis of Prostaglandins (PG) and Thromboxanes (TX)	346	3	0.25	+	11.92	3.02E ⁻⁰³
Regulation of TLR by endogenous ligand	369	3	0.32	+	9.41	5.43E ⁻⁰³

3.8 SWATH Ion intensity Graph and ELISA

To quantify proteins between patients and controls, SWATH-MS ion intensity graphs were plotted for key proteins that belong to immune response (Table 8) shown in Figure 21, 22, 23 and 24.


SWATH Data indicated that CRP was significantly up regulated in patients when compared to healthy control group as shown below in figure 21 (Fold Change 3.62 patients vs controls, P <0.001).

C-Reactive Protein

Figure 21: Box and whisker plot showing C-Reactive Protein (CRP) intensity of the peptide ions of SWATH-MS between patients and control groups (Mean and SD). Peptide ion intensity are plotted on the abscissa axis (x) and participant and control group on the ordinate axis (y) A P < 0.001.

SWATH Data indicated that TGF β 1 was significantly up regulated in patients when compared to healthy control group as shown below in figure 22 (Fold change 2.06 patients vs controls, P<0.001).

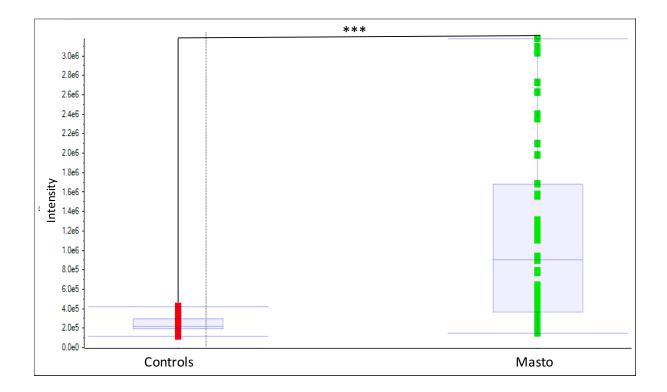

Transforming Growth Factor Beta 1

Figure 22: Box and whisker plot showing Transforming growth factor beta 1 (TGF β 1) intensity of the peptide ions of SWATH-MS between patients and control groups (Mean and SD). Peptide ion intensity are plotted on the abscissa axis (x) and participant and control group on the ordinate axis (y). P <0.001

SWATH Data indicated that platelet basic protein (CXCL7) was significantly up

regulated in patients when compared to heathy control group as shown below in

figure 23 (Fold change 4.83 patients vs controls, P<0.001).

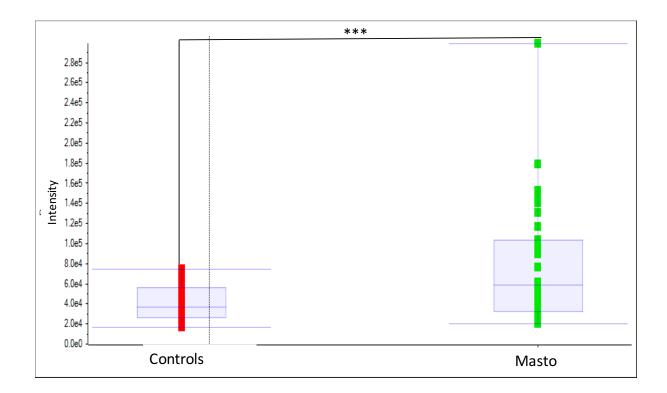
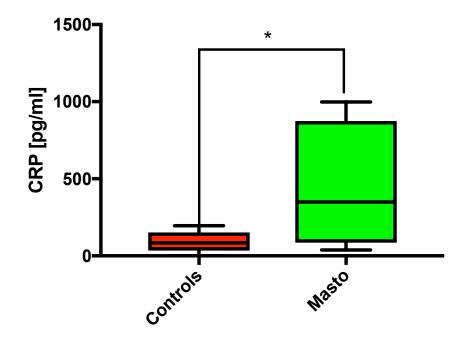

Platelet Basic Protein

Figure 23: Box and whisker plot showing Platelet basic protein (CXCL7) intensity of the peptide ions of SWATH-MS between patients and control groups (Mean and SD). Peptide ion intensity are plotted on the abscissa axis (x) and participant and control group on the ordinate axis (y). P <0.001)

SWATH Data indicated that beta 2 microglobulin (β 2M) was significantly up

regulated in patients when compared to heathy control group as shown below in

figure 24 (Fold change 1.9 patients vs controls, P<0.001).



Beta 2 Microglobulin

Figure 24: Box and whisker plot showing beta 2 microglobulin (β 2M) intensity of the peptide ions of SWATH-MS between patients and control groups (Mean and SD). Peptide ion intensity are plotted on the abscissa axis (x) and participant and control group on the ordinate axis (y). A P <0.001)

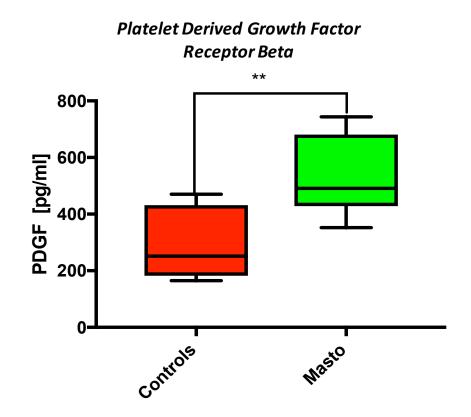
Orthogonal confirmation of the SWATH-MS data was preformed using commercially available ELISA's in order to confirm the changes seen in the plasma proteome. C-reactive protein, beta 2 microglobulin, transforming growth factor beta 1, platelet basic protein, liposaccharide binding protein, and platelet derived growth factor receptor were measured, by commercially available ELISA, in the plasma of 7 patients and 7 controls.

Each of the plasma protein measurements were compared between patients and healthy control group, using independent t-tests, with statistical differences illustrated in figures 25,26,27,28,29 and 30, and values reported in table 11. A P<0.05 was considered statistically significant. Figure 25 and Table 11 shows, patients with SM had a significantly increased mean circulating plasma concentration of CRP, compared to controls (417.6 pg/ml vs 76.14 pg/ml, P = 0.02)

C- Reactive Protein

Figure 25: Box and Whiskers plot showing circulating levels of C-Reactive protein (CRP) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls (Mean and SD). Plasma protein measurements were compared between systemic mastocytosis patients (Green) and healthy controls (Red) using Independent t-tests. P = 0.02. A P<0.05 was considered Statistically significant. (*<0.05, **<0.01, ***<0.001).

Figure 26 and Table 11 shows, patients with SM had a significantly increased mean circulating plasma concentration of Platelet Derived Growth Factor Receptor Beta, compared to controls (538.8 pg/ml vs 293.3 pg/ml, P = 0.006)



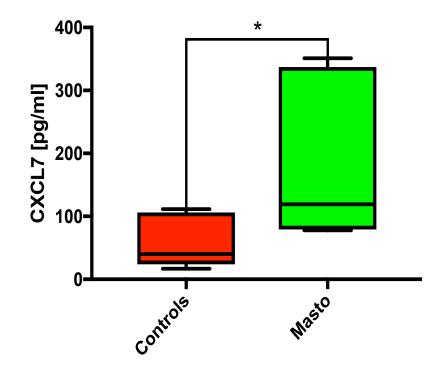

Figure 26: Box and Whiskers plot showing circulating levels of Platelet Derived Growth Factor Beta (PDGFr β) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls (Mean and SD). Plasma protein measurements were compared between systemic mastocytosis patients (Green) and healthy controls (Red) using Independent t-tests. P = 0.006. A P<0.05 was considered Statistically significant. (*<0.05, **<0.01,***<0.001).

Figure 27 and Table 11 shows, patients with SM had a significantly increased mean

circulating plasma concentration of Platelet Basic Protein, compared to controls

(167.2 pg/ml vs 59.78 pg/ml, P = 0.04)

Platelet Basic Protein

Figure 27: Box and Whiskers plot showing circulating levels of Platelet Basic Protein (CXCL7) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls (Mean and SD). Plasma protein measurements were compared between systemic mastocytosis patients (Green) and healthy controls (Red) using Independent t-tests. P = 0.04. A P<0.05 was considered Statistically significant. (*<0.05, **<0.01,***<0.001).

Figure 28 and Table 11 shows, patients with SM had a significantly increased mean

circulating plasma concentration of liposaccharide binding protein, compared to

controls (93.54 ng/ml vs 80.67 ng/ml, P = 0.02)

Liposaccharide Binding Protein

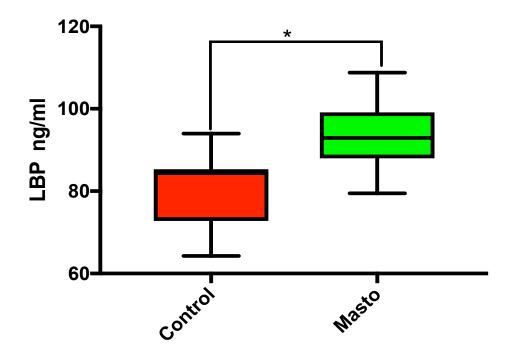


Figure 28: Box and Whiskers plot showing circulating levels of Liposaccharide binding protein (LBP) (ng/ml) in patients with systematic mastocytosis and apparently heathy controls (Mean and SD). Plasma protein measurements were compared between systemic mastocytosis patients (Green) and healthy controls (Red) using Independent t-tests. P= 0.02. A P<0.05 was considered Statistically significant. (*<0.05, **<0.01,***<0.001).

Figure 29 and Table 11 shows, patients with SM had a significantly increased mean

circulating plasma concentration of Transforming Growth Factor Beta 1, compared

to controls (1823 pg/ml vs 748.7 pg/ml, P = 0.02)

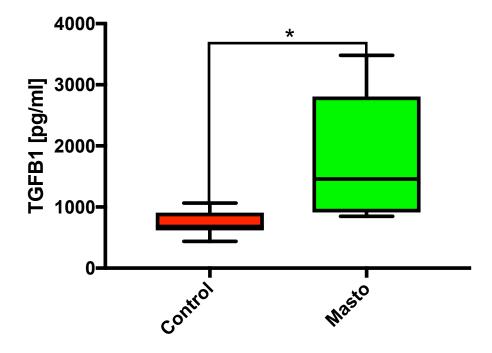


Figure 29: Box and Whiskers plot showing circulating levels of Transforming Growth Factor Beta 1 (TGF β 1) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls (Mean and SD). Plasma protein measurements were compared between systemic mastocytosis patients (Green) and healthy controls (Red) using Independent t-tests. P= 0.02. A P<0.05 was considered Statistically significant. (*<0.05, **<0.01,***<0.001).

Figure 30 and Table 11 shows, patients with SM had non-statistically significant

increased mean circulating plasma concentration of Beta 2 Microglobulin,

compared to controls (437.8 pg/ml vs 180.2 pg/ml, P = 0.21)

Beta 2 Microglobulin

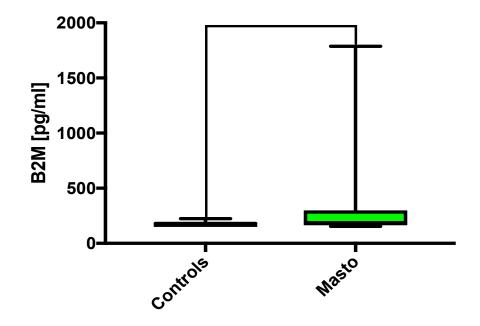


Figure 30: Box and Whiskers plot showing circulating levels of Beta 2 microglobulin (β2M) (pg/ml) in patients with systematic mastocytosis and apparently heathy controls (Mean and SD). Plasma protein measurements were compared between systemic mastocytosis patients (Green) and healthy controls (Red) using Independent t-tests. P= 0.21. A P<0.05 was considered Statistically significant. (*<0.05, **<0.01,***<0.001).

Table 11: Circulating plasma levels of C-Reactive Protein (CRP), Beta 2 Microglobulin (β2M), Transforming Growth Factor, Beta 1 (TGFβ1), Platelet Basic Protein (PPBP/CXCL7), Liposaccharide Binding Protein (LBP) and Platelet Derived Growth Factor Receptor (PDGFR). Plasma protein measurements were compared between systemic mastocytosis patients and healthy controls using Independent t-tests. A P<0.05 was considered statistically significant (*P <0.05, **<0.01, ***<0.001).

	Total	Mastocytosis Patients	Control
C-Reactive protein (pg/ml)	246.87 (225.12)	417.6 (375.5) *	76.14 (74.73)
Beta 2 Microglobulin (pg/ml)	309 (310.21)	437.8 (597.8)	180.2 (22.62)
Transforming Growth Factor, Beta 1 (pg/ml)	1286 (598.8)	1823 (982.6)*	748.7 (214.9)
Platelet Basic Protein (pg/ml)	113.49 (80.85)	167.2 (122.5) *	59.78 (39.2)
Liposaccharide Binding Protein (ng/ml)	87.105 (9.39)	93.54 (9.103)*	80.67 (9.682)
Platelet Derived Growth Factor Receptor (PDGFR) (pg/ml)	416.05 (137.35)	538.8 (149.4)**	293.3 (125.3)

Chapter 4: Discussion

4.1 Identification of Proteins

Screening for novel protein biomarkers from human plasma can provide essential clinical information. In the current project, SWATH-MS was used to identify proteins in patients with SM, compared to healthy controls and to assess any difference in concentration. A total of 1437 proteins were identified at a 1% FDR and 99% peptide confidence. The identification of 1437 proteins in the plasma samples of patients with SM is comparable to other reports in the literature. Recently, Miyauchi and colleagues (2018) report the identification of blood biomarkers in Glioblastoma using SWATH-MS. In this study, the authors reported the identification of 962 proteins with a 1% FDR and 99% protein confidence in samples derived from 14 patients (Miyauchi et al., 2018). In addition, a comparative proteomic analysis of five body fluids (plasma, urine, cerebrospinal fluid, amniotic fluid and saliva) reported the identification of 1189 proteins in plasma samples derived from 25 apparently healthy participants with a 1% FDR and 99% protein confidence (Zhao et al., 2018). It is worthy of note however, that Miyauchi and colleagues (2018) did not immunodeplete the high abundance proteins during pre-analytical sample preparation.

While SWATH-MS is not the only technique that could have been utilised for the identification of proteins it has a number of advantages when compared to the others. The run time for SWATH-MS is significantly less than other techniques. In their 2018 paper, Johnston (2018) and colleagues report a LC-MS/MS technique for proteomic profiling of CLL. The run time reported in that study was 210hours, compared to 2 hours for SWATH-MS. In addition, to a decrease in analytical run time, SWATH-MS has demonstrated enhanced sensitivity, reliability and precision

with lower sample volumes than isobaric tags for relative and absolute quantification (iTRAQ)-MS making it a superior technique for biomarker discovery in clinical samples (Jylha et al, 2018).

4.2 Summary of Results

The results of the current SWATH-MS study in patients with systematic mastocytosis have demonstrated the enrichment of 360 proteins involved in immune system process, innate immune response, response to stimulus, defence response and leucocyte activation. Further analysis has also demonstrated statistical over-representation of proteins involved in biological process and reactome pathways, supporting the results above. Formal immunoassay quantification by ELISA of proteins identified as common to all the above pathways has shown significantly increased levels of CRP, CXCL7, LBP, TGF β 1 and PDGF receptor- β in patients with systemic mastocytosis when compared to an apparently healthy control population. Levels of B2M were also increased in patients when compared to controls, however the difference did not reach statistical significance, most likely due to the large spread of results.

4.3 Sample Preparation

Sample preparation is considered an integral part of pre-analytical sample preparation and can significantly influence the overall analytical sensitivity of SWATH-MS. Due to the complexity of the plasma sample matrix and depth of proteome, a range of sample preparation strategies have been developed for targeted protein quantification. One of the most effective and most commonly

used techniques is the depletion of highly abundant proteins to enhance the analytical dynamic range and detection sensitivity. For the analysis of plasma samples, the depletion and tryptic digestion processes, as reported in Chapter 2, are therefore critically important in sampling processing, impacting the accuracy and precision of protein quantification overall (Pan, *et al* 2009).

In accordance with manufactures instructions (Pierce, Thermos Scientific, Rockford, USA), the top twelve most highly abundant proteins (>95%) (Table 12) were removed from 10 µl of peripheral blood plasma using depletion spin columns containing a resin of immobilised highly specific antibodies, whilst providing minimal nonspecific interactions with other proteins. Removing >95% of these top 12 abundant proteins from the plasma samples enabled the identification and quantification of low abundance proteins by mass spectrometry, removing the interference from the most abundant tryptic peptides which may mask the identification of the less abundant peptides. Previous reports have shown that the less abundant peptides are often derived from proteins of biological importance (Dayon, 2013).

4.4 SWATH-MS, Data Independent Analysis

MS can be either data dependent acquisition (DDA) or data independent acquisition (DIA). In DDA, a set of fixed rules and parameters must be set in advance. Peptides are ionised and analysed, and a fixed number of predefined peptides are selected at random for fragmentation. This produces a tandem MS/MS mass spectra that can be matched to spectra in an existing database. Although the selection is random, the

most abundant peptides are the ones selected based on having a much higher concentration in the sample, meaning it is difficult to reproducibly quantify and identify the lowest abundance peptides in the sample (Kang et al 2017).

In contrast, when utilising DIA all the peptides identified are subjected to fragmentation without being predefined enabling improved accuracy in peptide quantification and profiling.

SWATH MS is a DIA approach enabling a highly comprehensive interpretation of proteins and peptides in complex samples (Kang et al 2017). SWATH permits, in a single step, the identification and quantification of peptides eradicating the need for multiple scans. Consequently, SWATH has an improved turnaround time, accuracy and reduced error rate when compared with DDA. Only the DIA approach comprehensively detects and analyses every detectable compound within the sample under investigation (Kang et al 2017).

4.5 Enriched Protein Biological Process and Pathway Involvement

Clugo and DAVID databases were used to explore the role of the significantly enriched proteins identified by SWATH-MS in biological processes and KEGG pathways. Analysis revealed that proteins, identified in this study, are largely involved in metabolic process, immune response, regulation of development and cell adhesion, migration and cell surface receptor signalling pathways. Based on biological functional analysis, identified proteins largely play roles in the immune response. In addition, according to the KEGG pathway annotation, identified proteins involved within the immune response, were classified into different

pathways including immune system process, the innate immune response, response to stimulus, defence response and leukocytes activation. Further analysis, using PANTHER supported the above findings and identified that enriched proteins were significantly over represented in biological processes such as, immune response immune system process, compliment activation, B cell mediated immunity, glycolysis and cell recognition.

In addition, PANTHER identified enriched proteins found to be significantly over represented in Reactome pathways such as the Innate immune system, VEGFA-VEGFR2 pathway, platelet activation, signalling, aggregation and degranulation. Signalling by SCF-KIT, Class I MHC mediated antigen processing and presentation, MHC class II antigen presentation, T cell receptor signalling, compliment cascade, classical antibody mediated compliment activation, initial triggering of compliment, down regulation of TGFB1 receptor signalling and TGF-beta receptor signalling pathways were also identified.

The results of the current bioinformatics analysis identified up regulated proteins derived from immunoglobulins, acute phase reactants and binding proteins thought to play crucial roles in immune system regulation, inflammation and acute inflammatory response. These pathways are highly relevant to the present study since systemic mastocytosis is a disease caused by abnormalities which affect the immune system. To further support the results obtained from the SWATH-MS analysis, circulating plasma levels of C-reactive protein (CRP), Beta 2 Microglobulin (B2M), Transforming Growth Factor-β1 (TGFβ1), Liposaccharide Binding Protein

(LBP), Platelet Binding Protein (CXCL7/PBP) and Platelet Derived Growth Factor Receptor- β (PDGFR β), were quantified by ELISA.

4.6 C- Reactive Protein

The results of the current investigation have demonstrated a significantly increased circulating plasma level of CRP in patients with systemic mastocytosis using both SWATH-MS and ELISA techniques.

CRP is predominantly synthesised by the liver, as a part of the acute-phase response, (Hurlimann et al., 1966). Extra-hepatic synthesis of CRP has also been reported in organs such as the kidneys suggesting local synthesis of CRP (Becker, et al., 1980 & Nakahara, et al., 2001). Irrespective of the site of synthesis, CRP is deposited at sites of acute inflammation (Du Clos & Mold., 2004). The main stimuli to CRP synthesis include interleukin (IL)-6 and IL-1 however, several different agents, such as corticosteroids, can alter synthesis of CRP. CRP is a classical acute phase protein with its blood concentration increasing from $< 1\mu g/mL$ to as high as 600-1000µg/mL during at the maxima of an acute phase response (Du Clos & Mold., 2004). In myocardial infarction, levels may rise from $< 2\mu g/mL$ to over 100µg/mL in approximately 24 hours (Kushner, et al., 1978). In addition, levels >500µg/mL have been reported in patients with sepsis following burn injury. CRP levels, in general, reflect circulating IL-6 levels and correlate with inflammation and other makers of the acute phase response, such as erythrocyte sedimentation rate. CRP levels, however Increase and decrease more rapidly than many other acute phase proteins, therefore making it a useful marker to follow clinical disease course and response to treatment (Du Clos & Mold., 2004). Despite a

comprehensive literature search, the author was unable to identify any clinical studies of the role of CRP in systematic mastocytosis. In multiple myeloma, however Devetzoglou and colleagues (2015), reported a correlation between mast cell density and IL-6 and CRP in 86 patients of varying degrees of disease severity. In this study, it was also reported an increase in mortality in patients with increased mast cell density, although the investigators evaluate this with IL-6 or CRP. It should be noted however that the number of patients was small and there was quite a spread of results for mast cell density, IL-6 and CRP on visual inspection of the data. Further a more recent study by Herishanu and colleagues (2017) reported that increased circulating CRP concentrations are associated with increased mortality and the development of future solid tumours in patients with chronic lymphocytic leukaemia. Again, however the number of patients was small (n=107). The exact role of CRP in the current study and studies reported above remains to be elucidated, however earlier work by Fujimoto and colleagues (2003) has shown that CRP can activate mast cells in a canine model.

4.7 Transforming Growth Factor Beta 1

The results of the current investigation have demonstrated a significantly increased circulating plasma level of TGF β 1 in patients with systemic mastocytosis using both SWATH-MS and ELISA techniques.

Transforming growth factor beta is a multipotent cytokine comprising of TGF β 1,2 and 3 (Derynck & Zhang., 2003). TGF β 1 is the most abundant isoform in most tissues, including the skin, and is secreted in a biologically latent form before

becoming activated when mature TGF β 1 dissociates from its latency associated peptide dimer (Han *et al.*, 2012). TGF β 1 stimulates migration of monocytes, lymphocytes, neutrophils and fibroblasts at low concentrations (McCartney & Wahl, 1994).

Physiologically, TGF β signalling is essential for the normal regulation of cellular processes, including cell survival, migration, proliferation and differentiation. TGF β has a negative impact on cellular proliferation while stimulating differentiation, mast cell activation and apoptosis in a concentration dependant manner during haematopoiesis and suggesting an important role during tumorigenesis (Dong & Blobe, 2006, Shi & Massague, 2003 and Ndaw, et al., 2017). Further, in haematological malignancy, the normal physiology of TGF β can be modified by oncoproteins, suggesting that TGF β may have a tumour suppressor function under normal physiology (Dong & Blobe, 2006).

Clinically, in patients with hairy cell leukaemia, Shehata and colleagues (2004) reported elevated circulating levels of TGF β 1 and confirmed that hairy cells were the predominant source of the elevated levels (Dong & Blode, 2006). Further the authors reported that TGF β 1 was also present, at increased concentration in bone marrow derived mononuclear cells (Shehata, et al., 2004). Moreover, the authors went on to demonstrate a correlation between the circulating levels of TGF β 1 and the extent of bone marrow fibrosis. (Shehata, et al., 2004). In patients with mastocytosis, bone marrow reticulin fibrosis is commonly observed (Li & Baek, 2002). Mast cells are a recognised source of pro-fibrotic cytokines, including TGF β 1.

In clinical studies, Li and colleagues (2002) have reported a correlation between the circulating plasma levels of TGF β 1 and bone marrow fibrosis.

4.8 Platelet derived Growth Factor Receptor Beta

The results of the current investigation have demonstrated a significantly increased circulating plasma level of PDGF Receptor-beta (PDGFr β) in patients with systemic mastocytosis using both SWATH-MS and ELISA techniques.

Platelet derived growth factor is a potent mitogenic agent for fibroblasts and smooth muscle cells, and exerts its effect through the cell surface tyrosine kinase domain receptor designated the PDGF receptor (Raica & Cimpean, 2010). In addition, mast cells have been shown to be a source of PDGF (Li & Baek, 2002). In a recent study, Yang and colleagues (2018) reported increased expression, by immunohistochemistry, of PGDFR β on leukemic large granular lymphocytes. In addition, the results demonstrated that those cells expressing PDGFR β had a significant survival advantage. Similar results were also observed when PDGF was assayed directly by ELISA in the serum of patients with large granular lymphocyte leukaemia. The results from Yang and colleagues (2018) also support the earlier findings of Ulvestad and colleagues (2001) who reported PDGFR β expression in patients with human acute myelongenous leukaemia.

The significance of PDGFR β in patients with mastocytosis remains to be elucidated with no reports in the literature. The results of the current study however would suggest that PDGFR β may have significance in this group of patients.

4.9 Platelet Basic Protein

The results of the current investigation have demonstrated a significantly increased circulating plasma level of platelet basic protein (CXCL7) in patients with systemic mastocytosis using both SWATH-MS and ELISA techniques.

In their recent review, Ntelis and colleagues (2017) discuss the potential significance of platelet derived growth factors in many autoimmune and vascular diseases, including a role in the development of fibrosis and is released following platelet activation (Ntelis, et al., 2017 & Li & Baek, 2002). The significance of platelet basic protein in the diagnosis and monitoring of mastocytosis remains to be elucidated.

4.10 Beta 2 Microglobulin

The results of the current investigation have demonstrated a significantly increased circulating plasma level of β 2M in patients with systemic mastocytosis using SWATH-MS only. Results obtained using a specific ELISA showed increased circulating plasma levels of β 2M although this did not reach statistical significance.

Beta 2 Microglobulin (β 2M) is a non-glycosylated polypeptide of 100 amino acid residues. It is the invariant chain of the major histocompatibility (MHC) class 1 molecules on the cell surface of nearly all nucleated cells and is present in most biological fluids, including serum, urine and synovial fluid (Drueke., 2009), and functions to stabilise the tertiary structure of the MCH class 1 α -chain. Free β 2M can be measured in body fluids under physiological conditions as a result of shedding from cell surfaces or intracellular release. β 2M is mainly catabolised within the kidney, with 95%-100% of circulating β 2M being eliminated through glomerular filtration (Karlsson, et al., 1980). In renal tubulopathies quantities of β 2M in urine are increased, reflecting the degree of renal impairment. If the rate of glomerular filtration is reduced, the level of serum β 2M is increased therefore, serum and urine concentrations of β 2M are used to monitor glomerular and tubular nephropathies (Wilbell, et al., 1978). In health, the serum concentration of β 2M, is normally <2mg/L and the urinary excretion being < 400 μ g/24 hours (Xie, et al., 2003). In addition, β 2M is extensively involved in the functional regulation of cell survival, proliferation, apoptosis and metastasis in cancer cells (Li, et al., 2016). Other groups have reported that increased serum β 2M levels are a predictor of poor survival in several haematological malignancies including multiple myeloma, Hodgkin lymphoma, acute lymphoblastic leukaemia, chronic myeloid leukaemia, chronic lymphocytic leukaemia and myelodysplastic syndromes (Durie et al., 1990, Chronowski et al., 2002, Kantarjian et al., 1992, Molica et al., 1999 and Gatto et al., 2003).

Further, Durie and collugues (1990) described serum β 2M measurements as having the highest prognostic significance in 612, previously untreated patients with acute multiple myeloma, then any other prognostic factor measured. Mean survival for patients, with pre-treatment serum β 2M values of <6µg/ml, was reported, using radioimmunoassay, as 36 months, compared with a mean survival rate of 23 months for 225 patients with serum β 2M \geq 6µg/ml. Serum β 2M was highly

correlated with stage and it was possible to stratify myeloma patient into low, intermediate and high risk categories based on serum β 2M levels , albumin and age (Durie *et al.*, 1990). The authors concluded that serum β 2M is the most powerful prognostic factor currently available for multiple myeloma and that it can be used for pre-treatment stratification (Durie *et al.*, 1990).

Further in their study of 86 patients with multiple myeloma, Devetzoglou and colleagues (2015) reported a correlation between mast cell density and β 2M, although the data was widely dispersed on visual inspection. As previously reported increased mast cell density was associated with increased mortality, although a formal evaluation of β 2M as a predictor of outcome was not included in their analysis.

The above results are also supported by results of earlier studies in haematological malignancies, which reported a correlation between levels of β 2M and outcome including all-cause mortality (Campos., *et al.*, 1984 & Bataille *et al.*, 1984).

4.11 Mastocytosis and Inflammation

As outlined in Chapter 1, the mast cell plays a significant role in inflammation, secreting a number of biological mediators. The increases circulating plasma levels of CRP, Platelet Derived Growth Factor Receptor- β , Platelet Basic Protein, Liposaccharide Binding Proteins, Transforming Growth Factor- β 1 and Beta-2 microglobulin all point to a low grade inflammatory state in patients with SM. The increased levels of CRP, a routinely measured marker of inflammation, while not clinically significant would also support the presence of a low grade inflammatory state. Indeed, as discussed above, levels of CRP have been shown to be predictive of mortality in haematological malignancy.

Conclusion

In conclusion, the global aim of this investigation was to identify a circulating plasma proteome that may differentiate systemic mastocytosis from normal healthy individuals. The results reported here have demonstrated the utility of SWATH-MS for the discovery of potential biomarkers of systemic mastocytosis. The results obtained by mass spectrometry have demonstrated significantly increased levels of CRP, CXCL7, LBP, TGF β 1 and PDGF receptor- β in patients with systemic mastocytosis when compared to an apparently healthy population. Levels of β 2M were also increased in patients when compared to controls, however the difference did not reach statistical significance, most likely due to the large spread of results. Results obtained by ELISA have confirmed the results obtained by mass-spectrometry, with one notable exception, that B2M was significantly increased in patients by SWATH-MS, but not when quantified by ELISA.

Limitations

The work reported here has a number of limitations:

• The sample numbers were small (13 patients and 7 controls), although the condition is relatively rare making it difficult to collect large numbers of participants from a single clinical site.

- The demographic data for some of the patients is missing and the c-KIT status and circulating tryptase levels of the control population is unknown, although it is assumed to be wild-type and normal respectively.
- The age of the patients is greater than the age of the controls however, this was not statistically significant. Likewise, the gender distribution between patients and controls is not exactly matched with a female predominance in the patient population
- The results reported here are for the plasma proteome only and does not include, for example the proteome of mononuclear cell and bone marrow fluid.

Further Work

The results of the current investigation would suggest a number of avenues for further work. The work presented here, details the results of the analysis of blood plasma derived from a peripheral blood sample collected at the antecubital fossa. As part of the current project, the author also isolated peripheral blood and bone marrow derived mononuclear cells together with bone marrow fluid, however time only permitted the completion of peripheral blood plasma sample. The next stage, would be to analyse the proteome of the intra-cellular lysate of mononuclear cells, derived from peripheral blood and bone marrow, in addition to bone marrow fluid.

References

Anderson, CL., Kristensen, TK., Severinsen, MT., Moller, MB., Vestergaard, H., Bergmann, OJ., Hasselbalch, HC (2012) Systemic mastocytosis- a systematic reveiw. *Danish Medical Journal*, 59(3) 6, pp. 1-6.

Anjo, S., Santa, C. and Manadas, B. (2017) SWATH-MS as a tool for biomarker discovery: from basic research to clinical application.*Proteomics*, 17(3-4). p. 160-278

Austen, K. (1992) Systemic Mastocytosis.' *New England Journal of Medicine*, 326 (9). p. 639-640

Bataille, R., Grenier, J., Sany, J. (1984) B2M in myeloma: optimal use for staging, prognosis and treatment. *Blood.* 63 (2). p 468-476.

Becker, G., Waldburger, M., Hughes, G. and Pepys, M. (1980). Value of serum C-reactive protein measurement in the investigation of fever in systemic lupus erythematosus. *Annals of the Rheumatic Diseases*, 39(1), p.50-52.

Bibi, S., Arslanhan, M., Langenfeld, F., Jeanningros, S., Cerny-Reiterer, S., Hadzijusufovic, E., Tchertanov, L., Moriggi, R., Valent, P. and Arock, M. (2014) Cooperating STAT5 and AKT signalling pathways in CML and mastocytosis. *Heamatology*, 99(3). p.417-29

Biomarkers Definition working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. *Clinical Pharmacology Therapeutics.* 69(3). p. 89-95

Borate, U., Mehta, A. and Reddy, V. (2016) Treatment of CD30 positive SM with Brentuximab vedotin. *Leukemia Research*, 44. p.25-31

Brockow, K. (2014) Epidemiology, prognosis and risk factors in mastocytosis. *Immunology Allergy clinical North America*, 34(2). p. 283-295

Butterfield, J. (1998) Responce of severe systemic mastocytosis to INF alfa. *British Journal of Dermatology*, 138 (3). p.489-495

Campos, L., Vu-Van, H., Ville, D. (1984) Serum Beta 2 Microglobulin in adult myeloid acute leukaemia. *Annals of Hematology.* 48. p 221-226

Chan, E., Bai, Y., Bandara, G., Simakova, O., Brittain, E., Scott, L., Dyer, K., Kilion, A., Maric, I., Grlfillan, A., Metcalfe, D. and Wilson, T. (2013) 'KIT GNNK splice variants: expression in SM and influence on the activating potential of the D816V mutation in mast cells.' *Experimental Hematology*, 41(10). p. 870-881

Chronowski, GM., Wilder, RB. Tucker, SL (2002) An elevated serum B-2microglobulin level is an adverse prognostic factor for overall survival in patients with early-stage Hodgkin disease. *Cancer*. 95. p 2534- 8.

Crutchfield, A., Thomas, A., Sokoll. and Chan, D (2016) Advances in mass spectrometry -based clinical biomarker discovery. *Clinical Protenomics*, 13(1)

Dayon, L. and Kussmann, M. (2013). Proteomics of human plasma: A critical comparison of analytical workflows in terms of effort, throughput and outcome. *EuPA Open Proteomics*, 1, p.8-16.

Delaporte, E., Pierard, E. and Wolthers, B. (1995) INF- alpha in combination with corticosteroids improves systemic mast cell disease. *British Journal of Dermatology*, 132(3). p. 479-482

Derynck, R., Zhang, YE. (2003) Smad dependant and Smad independent pathways in TGF-B family signalling. *Nature*. 425, p 577-84

Devetzoglou, M., Vyzoukaki, R., Kokonoxaki (2015) High Density tryptase postitive mast cell in patients with multiple myeloma: correlation with parameters of disease activivty. *Tumour Biology*. 36. p 8491-8487

Domon, B. and Aebersold, R. (2006) Mass Spectrometry and Protein Analysis. *Science*, 5771 (312). p. 212-217

Dong, M., Blobe, G. (2006) Role of TGFB in Haematological malignancies. *Blood.* 107(12). p 4589-4169

Droogendijk, H., Kluin-Nelemans, H. and Van Doormaal, J. (2006) Imatinib mesylate in the treatment of systemic mastocytosis: A phase II trial. *Cancer*, 107(2). p.245-351

Drueke, TB., Massy ZA. (2009) Beta 2 microglobulin. *Seminars in Dialysis*. 22(4). p 378-80

Du Clos, TW. and Mold, C. (2004) C-Reactive protein: an activator of innate immunity and a modulator of adaptive immunity. *Immunologic Research*. 30(3). p 261-277

Durie, BG., Stock-Novack, D., Salmon, SE. (1990) Prognostic value of pre-treatment serum B2 microglobulin in myeloma: A Southwest Oncology Group Study. *Blood*. 75. p 823- 830.

Ellis, J. (1949) Urticaria Pigmentosa; a report of a case with autopsy. *Archives in Pathology*, 48(5) pp. 426-435.

Fried AJ and Akin, C. (2013) Primary mast cell disorders in children. *Current Allergy and Asthma Reports*, 13(6) pp. 693-701.

Friedman, B., Darling, G., Norton, J., Hamby, L. and Metcalfe, D. (1990) Splenectomy in the managment of systemic mast cell disease. *Surgery*, 107. p. 94-100

Fujimoto, T., Sato, Y., Sasaki, N., Teshima, R., Hanaoka, K., Kitani, S. (2003) The canine mast cell activation via CRP. *Biochemical and Biophysical Research Communications*. 301.p212-217

Gatto, S., Ball, G., Onida, F. (2003) Contribution of h-2 microglobulin levels to the prognostic stratification of survival in patients with myelodysplastic syndrome (MDS). *Blood* .102. p.1622 - 5.

Growney, J., Clark, J. and Adelsperger, J. (2005) Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. *Blood*, 106 (2). p. 721-724

Han, G., Li, F., Singh, T., Wolf, P., Wang, X. (2012) The pro inflammatory role of TGFB1. *International Journal of Biological Sciences*. 8(2). p 228-235

Hartmann, K., Henz, BM (2001) Mastocytosis: recent advances in defining the disease. *British Journal of Dermatology*, 144. p. 682-95

Heaney, L., Jones, D. and Suzuki, T. (2017) Mass Spectrometry in medicine: a technology for the future. *Future Science*, 3(3). p. 17-23

Hennessy, B., Giles, F., Cortes, J., O'Brien, S. and Ferrajoli, A. (2004) Management of patients with systemic Mastocytosis. *American Journal of Hematology*, 77(3). p. 209-214

Herishanu, Y., Polliack, A., Shenhar, S., Weinberger, R., Gelman, (2017) Increased CRP levels with shorter survival and developlment of second cancers in CLL. *Annals of Medicine*. 49(1).p 75-82

Hopfgartner, G., Tonoli, D. and Varesio, E. (2012) High-resolution mass spectrometry for integrated qualitative and quantitive analysis of pharmaceuticals in biological matrices. *Analyticl and Bioanlytical Chemistry*, 402(8). p.2587-2596

Horney, H., Sotlar, K. and Hartmann, K. (2008) Mastocytosis. *Deutsches Arzteblatt International*, 105(40). p. 686-692

Horny, H. and Valent, P. (2002) Histopathological and immunohistochemical aspects of mastocytosis. *International Archives of Allergy and Immunology*, 127. p. 115-117

Hurlimann, J., Thorbecke, GJ. And Hochwald, GM. (1966) The liver as the site of C-reactive Protein formation. *Journal of Experimental Medicine*. 123(2). p. 365-378

Jylhä, A., Nättinen, J., Aapola, U., Mikhailova, A., Nykter, M., Zhou, L., Beuerman, R. and Uusitalo, H. (2018). Comparison of iTRAQ and SWATH in a clinical study with multiple time points. Clinical Proteomics, 15(1). p. 1559-0275

Kang, Y., Burton, L., Lau, A. and Tate, S. (2017) SWATH-ID: an instrument method which combines identification and quantification in a single analysis. *Proteomics*, 17(10). p. 207-223

Kantarjian, HM., Smith, T., Estey ,E.(1992) Prognostic significance of elevated serum B2-microglobulin levels in adult acute lymphocytic leukaemia. *American Journal of Medicine*. 93. p. 599 - 604.

Karlsson, FA., Wilbell, L., Ervin, PE. (1980) Beta 2- Microglobulin in clinical medicine. *Scandinavian Journal of Clinical and Laboratory Investigation.* 40. p 27-37

Kluin-Nelemans, H., Jansen, J. and Breukelman, H. (1992) Responce to interferon alfa 2b in patients with systemic mastocytosis. *New England Journal of Medicine*, 326 (9). p. 619-623

Kluin-Nelemans, H., Oldhoff, J. and Van Doormaal, J. (2003) Cladribine therapy for systemic mastocytosis. *Blood*, 102(5). p. 4270-4276

Komi, D., Rambasek, T. and Wohrl, S. (2017) Mastocytosis: from a molecular point of view. *Clinical Reviews in Allergy and Immunology*, 53(3). p. 397-411

Krishnaswamy, G., Kelley, J. and Johnson, D. (2001) The human mast cell: functions in Physiology and Disease. *Frontiers in Bioscience*, 6. p. 1109-27

Kristensen, T., Vestergaard, H. and Moller, M. (2011) Improved detection of the KIT D816V mutation in paitents with systemic mastocytosis using a quantitive and highly sensitive real time qPCR assay. *Journal of Molecular Diagnostics*, 13(2). p. 180-8

Kuklinski, L. and Kim, J. (2016) 'Expression of PD-L1 in mastocytosis.' *Journal of American Academy of Dermaology*, 74(5). p. 1010-1012

Kushner, I., Broder, MI. and Karp, D. (1978) Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction. *Journal of Clinical Investigation.* 61(2) p. 235-242

Lange, M., Nedoszytko, B., Gorska, A., Zawrocki, A., Sobjanek, M. and Kozlowski, D. (2012) Mastocytosis in children and adults: clinical disease heterogeneity. *Archives of Medical Science*, 8(3). p.533-41

Lehmann, T. and Lammle, B. (1999) INF alpha treatment in systemic mastocytosis. *Annals of Hematology*, 78(13). p. 483-489

Li, L., Dong, M., Wang, X. (2016) The implication and significance of beta 2 microglobulin: A Conservative Multifunctional Regulator. *Chinese Medical Journal*. 129(4). p 448-455

Li, CY., Baek, JY (2002) Mastocytosis and Fibrosis: role of cytokines. *International Archives Allergy and Immunology*. 127.p 123-126

Lim, K., Pardanani, A. and Butterfield, J. (2009a) Cytoreductive therapy in 108 adults with systemic mastocytosis: Outcome analysis and response prediction during treatment with IFNalpha, hydroxyurea, imatinib or 2-Chlorodeoxyadenosine. *American Journal of Hematology*, 84(12). p.790-4

Lim, K., Tefferi, A. and Lasho, T. (2009b) 'Systemic Mastocytosis in 342 consecutive adults:survival studies and prognosis factors.' *Blood*, 113(23). p. 5727-5736.

Lin, D., Tabb, D. and Yates, J. (2003) 'Large scale protein identification using mass spectrometry.' *Biochimica et Biophysica Acta*, 1646(2). p.1-10

Wahl, S. (1994). Transforming growth factor beta: the good, the bad, and the ugly. Journal of Experimental Medicine, 180(5), p.1587-1590.

Magliacane, D., Parente, R. and Triggiani, M. (2014) Current Concepts on Diagnosis and Treatment of Mastocytosis. *Translational Medicine*, 8(8) pp. 65-74.

Metcalfe, D. (2008) Mast Cells and Mastocytosis. Blood, 112(4). p.946-56

Metcalfe, D., Joseph, A. and Mekori, A. (2017) Pathogenesis and Pathology of Mastocytosis. *Annual Review of Pathology*, 12. p. 487-514.

Miyauchi, E., Furuta, T., Ohtsuki, S., Tachikawa, M., Uchida, Y., Sabit, H., Obuchi, W., Baba, T., Watanabe, M., Terasaki, T. and Nakada, M. (2018). Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. *PLOS ONE*, 13(3), p. 0193-799.

Molica, S., Levato, D., Cascavilla, N. (1999) Clinical prognostic implications of simultaneous increased serum levels of soluble CD23 and B2-microglobulin in B-cell chronic lymphocytic leukaemia. *European Journal of Haematology*, 62: p 117 -22.

Nakamura, K., Kitani, A., Strober, W (2001) Cell contact dependant immunosuppression by CD4 and CD25 regulatory T cell is mediated by cell surface bound TGFB. *Journal of Experimental Medicine*. 194. p. 629-644 Ndaw, V., Abebayehu, D., Spence, A., Paez, P., Kolawole, M (2018) TFGB! Supresses IL-33 induced mast cell function. *The Journal of Immunology*. 21. p 1-8

Nettleship, E. and Tay, W. (1869) Rare forms of urticaria. *British Medical Journal*, 2 p. 323-325.

Ntelis, K., Solomou, E., Sakkas, L., Liossi, S., Daussis (2017) The role of platlets in autoimmunity, Vasculopathy and fibrosis. *Seminars in Arthritis and Rheumatism*. 47.p 409-417

Pan, S., Aebersold, R., Chen. R., Rush, J., Goodleft, D., McIntosh, M., Zhang, J and Brebtnall, T (2009) Mass Spectrometry based targeted protein Quantification: Methods and Applications. *Journal of Proteomic Research.* 8(2). p.787-797.

Pardanani, A. (2016) Systemic Mastocytosis in adults: 2017 update on diagnosis, risk stratification and management. *American Journal of Hematology*, 91(11). p.1146-1159

Pardanani, A., Lim, K. and Lasho, T. (2010) WHO subvarient of indolent mastoctosis: clinical details and prognostic evaluation in 159 consecutive adults. *Blood*, 115(1). p.150-1

Patnaik, M., Rindos, M., Kouides, P., Tefferi, A. and Pardanani, A. (2007) Systemic Mastocytosis. *Archives of Pathology and Laboratory Medicinee*, 131(5). p.784-91

Payne, V. and Kam, P. (2004) Mast Cell Tryptase: a review of its physiology and clinical significance. *Anesthesia*, 59(7). p. 695-703

Pullarkat, S., Pullarkat, V., Kroft, S., Wilson, C., Ahsanuddin, A., Mann, K., Thein, M., Grody, W. and Brynes, R. (2009) Systemic Mastocytosis- associated with AML. *Journal of Hematology*, 2(1). p.27-33

Raica, M., Cimpean, M. (2010) PDGF receptors: Axis as target for antitumor therapy. Pharmaceuticals. 3(3). p.572-599

Sanchez-Munoz, L., Alvarez-Twose, I. and Garcia-Montero, A. (2011) Evaluation of the WHO criteria for the classification of patients with mastcoystosis. *Modern Pathoologyl*, 24(9). p.1157-68

Sanger, A. (1878) An anomalous totted rash, accompanied by pruritus, factious urticaria and pigmentation, "urticaria pigmentosa". *Clinical Society*, 11. p. 161-163.

Shah, N., Lee, F. and Luo, R. (2006) Dasatinib inhibits KITD816V, an imatinibresistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. *Blood*, 108(1). p.286-91 Shehata, M., Schwarzmeier, JD., Hilgarth, M., Hubmann, R., Duechler, M., Glisslinger, H. (2004) TGFB1 induces bone marrow reticulum fibrosis in hairy cell leukaemia. *Journal of Clinical Investigation*. 113. p 676-685.

Shi, Y., Massague, J. (2003) Mechanisms of TGF-beta signalling from cell membrane to the nucleus. *Cell*. 113. p 685-700

Soter, N. (2000) 'Mastocytosis and the Skin.' *Hematology/Oncology clinics ofl north America*, 14(3). p. 537-555

Sotlar, K., Horny, H. and Simonitsch, I. (2004) CD25 indicates the neoplastic phenotype of mast cells novel immunohistochemical marker for the diagnosis of systemic mastocytosis in routinely processed bone marrow biopsy specimens. *American Journal of Surgical Pathology*, 28(10). p.1319-25

Sperr, W., El-Samahi, A. and Kundi, M. (2009) Elevated Tryptase levels selectively cluster in myeloid neoplasms. *European Journal of Clinical Investigation*, 39(10) p.914-23

Tate, S., Larsen, B., Bonner, R. and Gingras, A. (2013) Label free quantitative proteomics trends for protein-protein interactions. *Journal of Proteomics*, 81(9). p.91-101

Ulvestad, E. Foss, B., and Bruserud, O. (2001). Platelet-derived growth factor (PDGF) in human acute myelogenous leukemia: PDGF receptor expression, endogenous PDGF release and responsiveness to exogenous PDGF isoforms by in vitro cultured acute myelogenous leukemia blasts. *European Journal of Haematology*, 67(4), p.267-278.

Unna, P. (1887) Beitrage zur Anatomie und Pathogenese der Urticaria simplex und pigmentrosa. *Prakt. Dermatol. Suppl. Dermatol. Stud.*, 3(9). p.221-228

Vaes, M., Benghiat, F. and Hermine, O. (2017) Targeted Treatment options in Mastocytosis. *Frontiers in Medicine*, 4(110). p.1-12

Valent, P., Akin, C. and Escribano, L. (2007) Standards and standardisation in mastcytosis: consensus statements on diagnostic treatment recommendations and response criteria. *European Journal of Clinical Investigation*, 37(6). p.435-53

Valent, P., Akin, C. and Metcalf, D. (2017) Mastocytosis:2016 update WHO classification and novel emerging treatment concepts. *Blood Journal*, 129 p. 1420.

Wilbell, L (1978) The serum level and urinary excretion of B2M in health and renal disease. *Pathological Biology.* 26. p 295-301

Worobec, A. (2000) 'Treatment of systemic mast cell disorders.' *Heamatological/ Oncology Clinics of North America*, 14(3). p.659-87

Worobec, A., Kirshenbaum, A., Schwartz, L. and Metcalfe, D. (1996) Treatment of three patients with systemic mastocytosis with IFN alfa 2b.' *Leukemia and Lymphoma*, 22(1). p.1-12

Xie, J., Wang, Y., Freeman, M., Barlogie, B., Yi, Q. (2003) B2M as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. *Immunobiology*. 101(10). p 4005-4011

Yang, J., Lui, S., Nyland, S., Zhang, R., Ryland, L., Broeg, K, Baab, K (2018) PDGF mediated survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. *Blood.* 115(1). p.51-62

Zhao, M., Yang, Y., Guo, Z., Shao, C., Sun, H., Zhang, Y., Sun, Y., Liu, Y., Song, Y., Zhang, L., Li, Q., Liu, J., Li, M., Gao, Y. and Sun, W. (2018). A Comparative Proteomics Analysis of Five Body Fluids: Plasma, Urine, Cerebrospinal Fluid, Amniotic Fluid, and Saliva. *PROTEOMICS - Clinical Applications*, p.1800-8.

Zhu, X., Chen, Y. and Subramanian, R. (2014) Comparison of IDA, SWATH and MS techniques in metabolites identification studies employing ultra high performance LC TOF-MC. *Analytical Chemistry*, 86. p.1-10

Appendices

Version 1.1 4th January 2017/18

Title of Study: Understanding the Molecular Mechanisms of Mastocytosis

Name of Researcher(s): Dr Ciaren Graham, Dr Robert Graham and Dr Bethan Myers

We would like to invite you to take part in our research study. Before you decide, we would like you to understand why the research is being carried out and what it would involve for you. Dr Myers will go through this information sheet with you and answer any questions you may have at your next hospital appointment. We expect that this will take about 15 minutes. If you wish to ask any questions about the study before your appointment, please feel free to use the contact details on page 4. Please take time to read the following information carefully and discuss it with others if you wish. Ask us if there is anything that is not clear or if you would like more information. Take time to decide whether or not you wish to take part.

Part 1

What is the purpose of the study?

Mastocytosis is a term used to describe a blood disorder in which there are an increased number of mast cells. Mast cells are an important part of the immune system; they help fight infection and are part of the body's response to allergens. How mastocytosis develops is poorly understood. We would like to study this blood disorder from bone marrow and blood cells in patients with mastocytosis using a technique called mass spectrometry. We hope that by understanding mastocytosis development this will lead to better and improved therapies.

Why have I been invited?

You have been invited as you are patient affected by mastocytosis. We are hoping to include 10 patients currently affected by mastocytosis in this study, and we are inviting patients who currently attend the mastocytosis clinics to consider participating.

Do I have to take part?

It is up to you to decide whether you wish to take part in the study. You will have until your next routine clinic appointment, or as long as you need, to consider the information in this sheet and decide whether or not to take part. A member of the research team will go through all the information with you again on the day of your appointment and answer any questions you may have. If you agree to take part, we will then ask you to sign a consent form. You are free to withdraw at any time, without giving a reason. This would not affect the standard of care you receive. Version 1.1 4/01/2016 2

What will happen to me if I take part?

If you decide to take part in the study the only difference from when we routinely take blood and bone marrow from you is that three extra vials (approximately 12mls) of blood and two extra vials (approximately 8mls) of bone marrow will be taken. These additional samples will only be taken when you are having blood and/or bone marrow samples taken as part of your normal care. You will not need to have any extra procedures as part of the study.

What are the possible disadvantages and risks of taking part?

The main disadvantages to taking part are the possible discomfort associated with the blood test and the bone marrow aspiration, both of which you will have as part of your care, whether you chose to take part in the research study. You may experience a slight discomfort when blood is taken, and there is the potential for a small bruise to occur afterwards. You may also find the bone marrow aspiration uncomfortable both during and after the procedure. All staff performing these procedures are fully trained and experienced and will ensure that your needs are met during the process. Otherwise there are no known risks from taking part in this study. Taking part in the study will not affect your current treatment.

What are the possible benefits of taking part?

There is no immediate benefit to you taking part in this study. However, the information we get from this study may help to improve the treatment of yourself and others affected by mastocytosis

What if there is a problem?

Any complaint about the way you have been approached or treated during the study or any possible harm you might suffer will be addressed. The detailed information on this is given in Part 2.

Will my taking part in the study be kept confidential?

Yes. We will follow ethical and legal practice and all information about you will be handled in confidence. The details are included in Part 2.

This completes part 1.

If the information in Part 1 has interested you and you are considering participation, please read the additional information in Part 2 before making any decision.

Part 2.

What will happen if I don't want to carry on with the study? Version 1.1 4/01/2016 3

You are free to withdraw from the study at any time. If you withdraw from the study, we will destroy all of your identifiable samples, but we will need to use the data collected up to your withdrawal.

What if there is a problem?

Complaints

If you have a concern about any aspect of this study, you should speak to Dr Myers who will do her best to answer your questions. If you remain unhappy and wish to complain formally, you can do this by contacting [insert PALS details here]

Harm

In the unlikely event that something does go wrong and you are harmed during your participation in this research study there are no special compensation arrangements. However if you are harmed and this is due to someone's negligence then you may have grounds for a legal action for compensation against United Lincolnshire Hospitals NHS Trust, but you may have to pay your legal costs. The normal National Health Service complaints mechanisms will still be available to you.

Will my taking part in this study be kept confidential?

If you join the study, some parts of your medical records and the data collected for the study will be looked at by authorised persons from the organisations sponsoring and/or organising and conducting the research in order to check that the study is being carried out correctly. All will have a duty of confidentiality to you as a research participant and we will do our best to meet this duty.

What will happen to any samples I give?

As explained to you in Part 1 we will take three extra vials of your blood and bone marrow alongside routine samples taken during the course of your attendance at your routine clinical appointments. These samples will be transferred to the research team at University of Lincoln for processing and then to the University of Manchester for mass spectrometry analysis.

Only the authorised researcher's team will have access to your samples and will process them in respect of rules of confidentiality.

The remaining samples will be disposed of according to University of Lincoln regulations for biological samples. The research will be conducted within United Lincolnshire Hospitals NHS Trust, the University of Lincoln and the University of Manchester; no materials will be sent outside of the UK.

What will happen to the results of the research study? Version 1.1 4/01/2016 4

The results of this study may be presented at meetings, conferences and submitted for publication in relevant medical journals. However, no personal data will be disclosed within the results and all samples will remain anonymous.

A webpage has been created for this study, where we will publish the studies finding:

http://lincolnproteomics.blogs.lincoln.ac.uk/mastocytosis-digital-proteomic-maps-2/ In addition, a summary of the study findings will also be published on the ULHT Lincolnshire Clinical Research Facility webpage at www.ulh.nhs.uk/LCRF following completion of the study.

Who is organising and funding the research?

The research is being co-sponsored by the United Lincolnshire Hospitals NHS Trust and the University of Lincoln and is funded by the Mastocytosis Charity.

Who has reviewed the study?

All research in the NHS is looked at by an independent group of people, called a Research Ethics Committee, to protect your interests. This study has been reviewed and given favourable opinion by the NHS Research Ethics Committee.

Further Information and Contact Details

You will be offered a copy of this information sheet and your signed consent form (if applicable) to keep for future reference.

If you would like any further information regarding this study please contact:

Dr Bethan Myers

United Lincolnshire Hospitals NHS Trust

Greetwell Road Lincoln Lincolnshire LN2 5QY 01522 512512 Bethan.Myers@ULH.nhs.uk Dr Ciaren Graham Manchester Metropolitan University John Dalton Building Chester Street Manchester M1 5GD 0161 2471146 c.graham@mmu.ac.uk **Dr Robert Graham** University of Manchester

Institute of Cancer Sciences 27 Palatine Road Manchester M20 3LJ 0161 2750005 Robert.graham@manchester.ac.uk

2. Patient Consent Form

[Insert Trust header here]

CONSENT FORM

The Molecular Mechanisms of Mastocytosis

Name of Researcher: Dr Bethan Myers – Consultant Haematologist, United Lincolnshire Hospitals NHS Trust Dr Ciaren Graham – Senior lecturer, Manchester Metropolitan University Dr Robert Graham – Senior Lecturer, University of Manchester

Contact Details:

Dr Bethan Myers: ULHT, Greetwell Road, Lincoln, Lincolnshire, LN2 5QY, (01522) 512 512 Email: <u>Bethan.Myers@ULH.nhs.uk</u> Dr Ciaren Graham: Manchester Metropolitan University, John Dalton Building Chester Street Manchester M1 5GD, 0161 247 1146 E-mail <u>c.graham@mmu.ac.uk</u> University of Lincoln, Joseph Banks Laboratories, Email <u>cgraham@lincoln.ac.uk</u> Dr Robert Graham: University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, 0161 275 0005, <u>robert.graham@manchester.ac.uk</u>

Please initial box each box

 I confirm that I have read and sheet dated (version) for I have had the opportunity to cons questions and have had these answ 	or the above study. sider the information, ask	
2. I understand that my participa am free to withdraw at any time w without my medical care or legal r	vithout giving any reason,	
3. I understand that relevant sect and data collected during the stud individuals from the regulatory au or the Sponsor where it is relevant permission for these individuals to	y, may be looked at by thorities, the NHS Trust, t to my taking part in this resea	arch. I give
4. I agree to take part in the above	e study.	
Name of Patient	Signature	Date
Name of Person taking consent	Signature	Date
Version 1.2 18/03/2016		1

3. Heathy Control Participant Consent Form

EX S	
V	

01/01/18 Amy McMullen Department of Healthcare Science John Dalton Manchester Metropolitan University Tel: 0161- 247-2000

Manchester Metropolitanconsent Form University

	9								
	Title of Project: Understanding the Molecular Mechanisms of Mastocytosis								
	Name of Researcher: Amy McMullen Name of Supervisor: Dr C Graham								
Pa	rticipant Identification Code for	this project:							
1.	I confirm that I have read and unders dated for the above project and h opportunity to ask questions about th	ave had the							
2.	I understand that my participation is a any time without giving any reasor	voluntary and that I am free to withdraw n to the named researcher.							
3.	l understand that my blood samples research project.	will be used for analysis for this							
4.	I give/do not give permission for any of this research project, making it ava	blood samples to be archived as part ailable to future researchers.							
5.	I agree to take part in the above rese	earch project.							
Na	Name of Participant Date Signature								
	Researcher Date Signature								
То	To be signed and dated in presence of the participant								

Once this has been signed, you will receive a copy of your signed and dated consent form and information sheet by post.

4. NRES Letter

London - City & East Research Ethics Committee

Bristol Research Ethics Committee Centre Whitefriars Level 3, Block B Lewins Mead Bristol BS1 2NT

Telephone: 02071048033/53

10 May 2016

Dr Ciaren Graham Senior Lecture Manchester Metropolitan University John Dalton Building Chester Street Manchester M1 5GD

Dear Dr Graham

Study title:

REC reference: IRAS project ID: Defining the Molecular Mechanisms of Mastocytosis using Mass Spectrometry 16/LO/0787 192830

Thank you for your response of 04 May 2016, responding to the Proportionate Review Sub-Committee's request for changes to the documentation for the above study.

The revised documentation has been reviewed and approved by the sub-committee.

We plan to publish your research summary wording for the above study on the HRA website, together with your contact details. Publication will be no earlier than three months from the date of this favourable opinion letter. The expectation is that this information will be published for all studies that receive an ethical opinion but should you wish to provide a substitute contact point, wish to make a request to defer, or require further information, please contact the REC Manager Mr Rajat Khullar, nrescommittee.london-cityandeast@nhs.net. Under very limited circumstances (e.g. for student research which has received an unfavourable opinion), it may be possible to grant an exemption to the publication of the study.

Confirmation of ethical opinion

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above research on the basis described in the application form, protocol and supporting documentation as revised.

Management permission must be obtained from each host organisation prior to the start of the study at the site concerned.

5. List of Identified proteins

Row Peak Name	Group	p-value	Fold Chang
1 P51149	Ras-related protein Rab-7a	0.00	1.79297
2 Q9Y696	Chloride intracellular channel protein 4	0.00	1.68172
3 Q9Y490	Talin-1	0.00	1.4735
4 P02775	platelet basic protein	0.00	4.82742
5 P07996	Thrombospondin-1	0.00	3.01013
6 P00491	Purine nucleoside phosphorylase	0.00	2.55602
7 P02741	C-reactive protein	0.00	3.62283
8 O14980	Exportin-1	0.00	1.58491
9 Q05397	Focal adhesion kinase 1	0.00	2.16173
10 P01130	Low-density lipoprotein receptor	0.00	1.79741
11 Q12805	EGF-containing fibulin-like extracellular matrix protein 1	0.00	1.6198
12 P02750	Leucine-rich alpha-2-glycoprotein	0.00	1.72623
13 P63104	14-3-3 protein zeta/delta	0.00	1.87131
14 Q9UBX1	Cathepsin F	0.00	2.40934
15 P02786	Transferrin receptor protein 1	0.00	2.13351
16 P07942	Laminin subunit beta-1	0.00	1.62182
17 P30041	Peroxiredoxin-6	0.00	2.09833
18 P55072	Transitional endoplasmic reticulum ATPase	0.00	1.4176
19 P14780	Matrix metalloproteinase-9	0.00	1.9487
20 P46821	Microtubule-associated protein 1B	0.00	1.8008
21 P08567	Pleckstrin	0.00	1.9028
22 P12259	Coagulation factor V	0.00	1.4658
23 P18428	Lipopolysaccharide-binding protein	0.00	2.0293
24 P00736	Complement C1r subcomponent	0.00	1.4173
25 Q9BXR6	Complement factor H-related protein 5	0.00	1.6703
26 P06702	Protein S100-A9	0.00	1.9392
27 P11047	Laminin subunit gamma-1	0.00	1.4708
28 P07737	Profilin-1	0.00	1.6300
29 P08779	Keratin, type I cytoskeletal 16	0.00	2.0776
30 P60842	Eukaryotic initiation factor 4A-I	0.00	2.1060
31 Q13263	Transcription intermediary factor 1-beta	0.00	1.6051
32 P01024	Complement C3	0.00	0.7946
33 P43243	Matrin-3	0.00	1.6500
34 P22087	rRNA 2'-O-methyltransferase fibrillarin	0.00	1.8814
35 P12814	Alpha-actinin-1	0.00	1.4497
36 P62328	Thymosin beta-4	0.00	2.2805
37 P01714	Immunoglobulin lambda variable 3-19	0.00	
38 Q16555	Dihydropyrimidinase-related protein 2	0.00	
39 075691	Small subunit processome component 20 homolog	0.00	1.9673
40 P26583	High mobility group protein B2	0.00	1.6373
41 095568	Histidine protein methyltransferase 1 homolog	0.00	2.4431
	Complement component C7		1.3878
42 P10643		0.00	
43 Q13451	Peptidyl-prolyl cis-trans isomerase FKBP5 Melanotransferrin	0.00	1.6404
44 P08582		0.00	2.73
45 P24298	Alanine aminotransferase 1	0.00	2.041
46 043175	D-3-phosphoglycerate dehydrogenase	0.00	1.6005
47 P25398	40S ribosomal protein S12	0.00	2.4874
48 Q96HC4	PDZ and LIM domain protein 5	0.00	1.6843
49 P01877	Ig alpha-2 chain C region	0.00	3.0113
50 P02763	Alpha-1-acid glycoprotein 1	0.00	1.7284
51 P19320	Vascular cell adhesion protein 1	0.00	1.7572
52 Q09666	Neuroblast differentiation-associated protein AHNAK	0.00	1.441
53 Q15819	Ubiquitin-conjugating enzyme E2 variant 2	0.00	2.1978
54 Q07912	Activated CDC42 kinase 1	0.00	1.601
55 Q14146	Unhealthy ribosome biogenesis protein 2 homolog	0.00	1.8174
56 Q15746	Myosin light chain kinase, smooth muscle	0.00	1.4714
57 P02533	Keratin, type I cytoskeletal 14	0.00	1.4678
58 P37802	Transgelin-2	0.00	1.6675
59 Q7KZ85	Transcription elongation factor SPT6	0.00	1.4343
60 Q86VP6	Cullin-associated NEDD8-dissociated protein 1	0.00	1.64056

Row	Peak Name	Group	p-value	Fold Change
61	Q04721	Neurogenic locus notch homolog protein 2	0.00	1.539502
62	P07203	Glutathione peroxidase 1	0.00	2.170013
63	P62847	40s ribosomal protein s24	0.00	1.7169830
64	P00488	Coagulation factor XIII A chain	0.00	1.3752568
65	POCOL5	Complement C4-B	0.00	1.6130616
66	P19174	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamm	0.00	1.5780664
67	Q92520	Protein FAM3C	0.00	1.6865071
68	P14625	Endoplasmin	0.00	1.3847378
69	P55259	Pancreatic secretory granule membrane major glycoprotein GP2	0.00	4.3058391
70	P11216	Glycogen phosphorylase, brain form	0.00	1.7256495
71	P50570	Dynamin-2	0.00	1.5622544
72	P55058	Phospholipid transfer protein	0.00	1.6106338
73	P17844	Probable ATP-dependent RNA helicase DDX5	0.00	1.8680658
74	Q13347	Eukaryotic translation initiation factor 3 subunit I	0.00	1.5049623
	P60174	Triosephosphate isomerase	0.00	1.5279772
76	P29144	Tripeptidyl-peptidase 2	0.00	1.5251873
77	Q13554	Calcium/calmodulin-dependent protein kinase type II subunit beta	0.00	1.9791109
	Q9H0E2	Toll-interacting protein	0.00	1.4760583
	P51884	Lumican	0.00	1.4298410
	P23528	Cofilin-1	0.00	1.7472214
	Q13045	Protein flightless-1 homolog	0.00	1.5894003
	P04746	Pancreatic alpha-amylase	0.00	2.8719093
	P02748	Complement component C9	0.00	1.4105643
	P12956	X-ray repair cross-complementing protein 6	0.00	1.5468776
	P12930 P02042		0.00	1.7815043
	P02042 P49747	Hemoglobin subunit delta	0.00	
		Cartilage oligomeric matrix protein	0.00	1.9673027
	Q01082	Spectrin beta chain, non-erythrocytic 1		
	P32119	Peroxiredoxin-2	0.00	1.8373277
	Q32MZ4	Leucine-rich repeat flightless-interacting protein 1	0.00	1.5433280
	P01137	Transforming growth factor beta-1	0.00	2.0557514
	P01834	lg kappa chain C region	0.00	4.4654063
	P48163	NADP-dependent malic enzyme	0.00	1.9266139
	P05543	Thyroxine-binding globulin	0.00	1.3437524
	P49913	Cathelicidin antimicrobial peptide	0.00	1.4403022
	P00568	Adenylate kinase isoenzyme 1	0.00	1.8439333
	P06733	Alpha-enolase	0.00	1.8283048
	P13798	Acylamino-acid-releasing enzyme	0.00	1.7343241
98	Q14789	Golgin subfamily B member 1	0.00	1.4173819
	P06737	Glycogen phosphorylase, liver form	0.00	1.5304134
	Q99460	26S proteasome non-ATPase regulatory subunit 1	0.00	1.5772919
101	075390	Citrate synthase, mitochondrial	0.00	1.4292347
102	P01771	Immunoglobulin heavy variable 3-33	0.00	4.0578910
	P49321	Nuclear autoantigenic sperm protein	0.00	1.5657462
104	P01008	Antithrombin-III	0.00	0.7167183
105	P61626	Lysozyme C	0.00	1.4279035
106	P11021	78 kDa glucose-regulated protein	0.00	1.3254648
107	P52948	Nuclear pore complex protein Nup98-Nup96	0.00	1.4582363
108	Q02790	Peptidyl-prolyl cis-trans isomerase FKBP4	0.00	2.1565991
109	Q8NBS9	Thioredoxin domain-containing protein 5	0.00	1.911313
110	Q9Y6R7	IgGFc-binding protein	0.00	1.3756499
111	Q8WVV4	Protein POF1B	0.00	1.9943434
112	P61769	Beta-2-microglobulin	0.00	1.8950863
113	015511	Actin-related protein 2/3 complex subunit 5	0.00	1.7097017
	P19021	Peptidyl-glycine alpha-amidating monooxygenase	0.00	1.6165203
	P22314	Ubiquitin-like modifier-activating enzyme 1	0.00	1.4528208
	Q86V48	Leucine zipper protein 1	0.00	1.7176939
	P07237	Protein disulfide-isomerase	0.00	1.6605437
	Q14204	Cytoplasmic dynein 1 heavy chain 1	0.00	1.4071300
	Q70J99	Protein unc-13 homolog D	0.00	1.4367176
	P07814	Bifunctional glutamate/prolinetRNA ligase	0.00	1.344563

ow	Peak Name	Group	p-value	Fold Change
121	P08107	NA	0.00	1.6991707
122	P09871	Complement C1s subcomponent	0.00	1.1990989
123	Q96AB3	Isochorismatase domain-containing protein 2	0.00	1.9140513
124	P54577	TyrosinetRNA ligase, cytoplasmic	0.00	1.4830155
125	P00367	Glutamate dehydrogenase 1, mitochondrial	0.00	1.8679848
126	P17980	26S protease regulatory subunit 6A	0.00	1.7553750
127	P02792	Ferritin light chain	0.00	1.6927890
128	P28066	Proteasome subunit alpha type-5	0.00	1.5702254
129	Q14697	Neutral alpha-glucosidase AB	0.00	1.3831354
130	P22307	Non-specific lipid-transfer protein	0.00	1.402458
131	P52272	Heterogeneous nuclear ribonucleoprotein M	0.00	1.4975369
132	Q9H4M9	EH domain-containing protein 1	0.00	1.797734
133	P08865	40S ribosomal protein SA	0.00	1.8635555
134	Q15084	Protein disulfide-isomerase A6	0.00	1.548422
135	P25788	Proteasome subunit alpha type-3	0.00	1.703902
136	P04264	Keratin, type II cytoskeletal 1	0.00	0.561883
137	P08246	Neutrophil elastase	0.00	1.803539
138	P20290	Transcription factor BTF3	0.00	1.665043
	P43490	Nicotinamide phosphoribosyltransferase	0.00	1.456730
	Q13228	Selenium-binding protein 1	0.00	1.387335
	P21796	Voltage-dependant anion-selecive channel protein 1	0.00	2.437795
	Q92619	Minor histocompatibility protein HA-1	0.00	1.674533
	P01876	Ig alpha-1 chain C region	0.00	3.064397
	P05166	Propionyl-CoA carboxylase beta chain, mitochondrial	0.00	1.361207
	Q00796		0.00	1.89479
	P23381	Sorbitol dehydrogenase TryptophantRNA ligase, cytoplasmic	0.00	1.859874
	P16152	Carbonyl reductase (NADPH) 1	0.00	2.074553
	P80748	Immunoglobulin lambda variable 3-21	0.00	3.761701
	P10619	Lysosomal protective protein	0.00	1.770043
	P01763	Immunoglobulin heavy variable 3-48	0.00	2.182939
	P20061	Transcobalamin-1	0.00	1.879425
	Q14344	Guanine nucleotide-binding protein subunit alpha-13	0.00	1.528533
	P50440	Glycine amidinotransferase, mitochondrial	0.00	1.486549
	P13727	Bone marrow proteoglycan	0.00	1.544610
	Q9UIJ7	GTP:AMP phosphotransferase AK3, mitochondrial	0.00	1.642504
	P54108	Cystenine-rich secretory protein 3	0.00	1.362372
	Q9Y6I3	Epsin-1	0.00	1.817084
158	Q96KN2	Beta-Ala-His dipeptidase	0.00	0.582554
159	Q9UBQ0	Vacuolar protein sorting-associated protein 29	0.00	1.785087
160	P15311	Ezrin	0.00	1.643798
161	P48637	Glutathione synthetase	0.00	1.813924
162	P29317	Ephrin type-A receptor 2	0.00	1.462772
163	P52701	DNA mismatch repair protein Msh6	0.00	
164	P00352	Retinal dehydrogenase 1	0.00	1.516323
165	P08571	Monocyte differentiation antigen CD14	0.00	1.299912
166	Q16401	26S proteasome non-ATPase regulatory subunit 5	0.00	1.672097
167	P41222	Prostaglandin-H2 D-isomerase	0.00	1.660094
168	P58107	Epiplakin	0.00	1.330305
169	P01781	Ig heavy variable 3-7	0.00	2.10660
170	P02652	Apolipoprotein A-II	0.00	0.562115
171	P55285	Cadherin-6	0.00	1.855762
172	P14618	Pyruvate kinase PKM	0.00	1.688731
173	POCG39	POTE ankyrin domain family member J	0.00	2.154349
	P31946	14-3-3 protein beta/alpha	0.00	1.681024
	075608	Acyl-protein thioesterase 1	0.00	1.654068
	Q9H8L6	Multimerin-2	0.00	1.436627
	Q9UHD1	Cysteine and histidine-rich domain-containing protein 1		1.815067
	P07437	Tubulin beta chain	0.00	1.596067
	P62701	40S ribosomal protein S4, X isoform	0.00	1.874356
1/3	Q9NWV4	UPF0587 protein C1orf123	0.00	3.140469

Row	Peak Name	Group	p-value	Fold Change
18	1 Q14203	Dynactin subunit 1	0.00	1.46876293
18	2 043776	AsparaginetRNA ligase, cytoplasmic	0.00	1.48141237
18	3 P12111	Collagen alpha-3(VI) chain	0.00	1.33161029
18	4 P07355	Annexin A2	0.00	1.50862183
18	5 P10645	Chromogranin-A	0.00	1.43163979
18	6 P01857	Ig Heavy constant Gamma 1	0.00	2.80142066
18	7 Q92797	Symplekin	0.00	1.42206001
18	8 Q14956	Transmembrane glycoprotein NMB	0.00	1.51771858
18	9 Q9NXE4	Sphingomyelin phosphodiesterase 4	0.00	2.2795879
19	0 P09972	Fructose-bisphosphate aldolase C	0.00	1.42215329
19	1 Q07075	Glutamyl aminopeptidase	0.00	1.82640834
19	2 P02747	Complement C1q subcomponent subunit C	0.00	1.57103258
19	3 P21695	Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic	0.00	1.67612656
19	4 P52209	6-phosphogluconate dehydrogenase, decarboxylating	0.00	1.5123946
19	5 P08758	Annexin A5	0.00	1.34505287
19	6 P98095	Fibulin-2	0.00	1.52848235
19	7 P31151	Protein S100-A7	0.00	1.96941755
19	8 P06576	ATP synthase subunit beta, mitochondrial	0.00	1.43120446
19	9 P13671	Complement component C6	0.00	1.20230055
20	0 060306	Intron-binding protein aquarius	0.00	1.59890077
20	1 Q15404	Ras suppressor protein 1	0.00	
	2 P18206	Vinculin	0.00	
	3 P07738	Bisphosphoglycerate mutase	0.00	
	4 P02745	Complement C1g subcomponent subunit A	0.00	
	5 Q9Y4L1	Hypoxia up-regulated protein 1	0.00	
	6 Q9UNF1	Melanoma-associated antigen D2	0.00	
	7 Q9NTJ3	Structural maintenance of chromosomes protein 4	0.00	
	8 P05090	Apolipoprotein D	0.00	
	9 P02686	Myelin basic protein	0.00	
	0 Q6VY07	Phosphofurin acidic cluster sorting protein 1	0.00	
	1 094804	Serine/threonine-protein kinase 10	0.00	
	2 P14324	Farnesyl pyrophosphate synthase	0.00	
	3 Q16775	Hydroxyacylglutathione hydrolase, mitochondrial	0.00	
	4 Q9UI26	Importin-11	0.00	
	5 Q9BXK5	Bcl-2-like protein 13	0.00	
	6 Q00610	Clathrin heavy chain 1	0.00	
	7 P22061	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	0.00	
	8 Q96KP4	Cytosolic non-specific dipeptidase	0.00	1.85759165
	9 P01033	Metalloproteinase inhibitor 1	0.00	1.7805183
	0 014745	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	0.00	
	1 P36959	GMP reductase 1	0.00	
	2 P62937	Peptidyl-prolyl cis-trans isomerase A	0.00	
	3 Q15274	Nicotinate-nucleotide pyrophosphorylase [carboxylating]	0.00	
	4 Q06033	Inter-alpha-trypsin inhibitor heavy chain H3	0.00	
	5 P09467	Fructose-1,6-bisphosphatase 1	0.00	
22	6 P42785	Lysosomal Pro-X carboxypeptidase	0.00	1.95230786
22	7 P49454	Centromere protein F	0.00	1.54823534
22	8 Q7Z794	Keratin, type II cytoskeletal 1b	0.00	0.5833744
22	9 P05062	Fructose-bisphosphate aldolase B	0.00	1.4181499
23	0 P10809	60 kDa heat shock protein, mitochondrial	0.00	1.3748600
23	1 P35858	Insulin-like growth factor-binding protein complex acid labile subunit	0.00	0.7873795
23	2 P02760	Protein AMBP	0.00	1.2485428
23	3 Q9BUF5	Tubulin beta-6 chain	0.00	1.4783373
23	4 075369	Filamin-B	0.00	1.5402354
23	5 Q8IUX7	Adipocyte enhancer-binding protein 1	0.00	2.3875640
23	6 P02647	Apolipoprotein A-I	0.00	0.8400323
	7 Q9HDC9	Adipocyte plasma membrane-associated protein	0.00	
	8 Q99674	Cell growth regulator with EF hand domain protein 1	0.00	
	9 Q92841	Probable ATP-dependent RNA helicase DDX17	0.00	
	0 P04430	Immunoglobulin kappa variable 1-16	0.00	

Row		Peak Name	Group	p-value	Fold Change
		P35573	Glycogen debranching enzyme	0.00	1.65443
		P20933	N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase	0.00	
		P30153	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform	0.00	
		Q16706	Alpha-mannosidase 2	0.00	
		075340	Programmed cell death protein 6	0.00	
		Q14258	E3 ubiquitin/ISG15 ligase TRIM25	0.00	1.5499430
		PODJI8	Serum amyloid A-1 protein	0.00	
		P21333	Filamin-A	0.00	
	249	Q6XQN6	Nicotinate phosphoribosyltransferase	0.00	1.5055483
	250	P07333	Macrophage colony-stimulating factor 1 receptor	0.00	1.7273520
	251	A5A3E0	Cytosolic non-specific dipeptidase	0.00	
	252	015523	ATP- dependant RNA helicase DDx3y	0.00	2.0215918
	253	P00746	Complement factor D	0.01	1.3550830
	254	P02766	Transthyretin	0.01	0.7666167
	255	P61160	Actin-related protein 2	0.01	1.6794357
	256	P00390	Glutathione reductase, mitochondrial	0.01	1.4220705
	257	095479	GDH/6PGL endoplasmic bifunctional protein	0.01	1.7990386
	258	Q9NQR4	Omega-amidase NIT2	0.01	1.4850422
	259	P01903	HLA class II histocompatibility antigen, DR alpha chain	0.01	1.946682
	260	Q9H3U1	Protein unc-45 homolog A	0.01	1.3659728
	261	P05060	Secretogranin-1	0.01	1.8794463
	262	Q12913	Receptor-type tyrosine-protein phosphatase eta	0.01	1.7427174
	263	P10599	Thioredoxin	0.01	1.7030727
	264	Q9UQ35	Serine/arginine repetitive matrix protein 2	0.01	1.597016
	265	P39060	Collagen alpha-1(XVIII) chain	0.01	1.5005936
	266	Q99829	Copine-1	0.01	1.6802948
	267	Q9Y376	Calcium-binding protein 39	0.01	1.4778740
	268	Q14914	Prostaglandin reductase 1	0.01	1.5405350
	269	P14868	AspartatetRNA ligase, cytoplasmic	0.01	1.3907986
	270	P21912	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial	0.01	1.3911462
	271	P63241	Eukaryotic translation initiation factor 5A-1	0.01	1.7233038
	272	Q16853	Membrane primary amine oxidase	0.01	1.4226204
		P19012	Keratin, type I cytoskeletal 15	0.01	
		000462	Beta-mannosidase	0.01	
		015144	Actin-related protein 2/3 complex subunit 2	0.01	0.2112947
		P29622	Kallistatin	0.01	
		Q8N2S1	Latent-transforming growth factor beta-binding protein 4	0.01	2.0859144
		P07858	Cathepsin B	0.01	
		Q96PD5	N-acetylmuramoyl-L-alanine amidase	0.01	1.205547
		000750	Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit beta	0.01	
		Q15582	Transforming growth factor-beta-induced protein ig-h3	0.01	
		Q1KMD3	Heterogeneous nuclear ribonucleoprotein U-like protein 2	0.01	
		P36952	Serpin B5	0.01	1.7024033
		015347	High mobility group protein B3	0.01	
		P51888	Prolargin	0.01	
		P00450	Ceruloplasmin	0.01	1.2532407
			Heat shock protein 75 kDa, mitochondrial	0.01	
		Q12931 Q8N392	Rho GTPase-activating protein 18	0.01	1.284729
		Q9HBB8	Cadherin-related family member 5	0.01	
		Q9Y5C1	Angiopoietin-related protein 3	0.01	
		Q13148	TAR DNA-binding protein 43	0.01	1.595159
		075116	Rho-associated protein kinase 2	0.01	
		075594	Peptidoglycan recognition protein 1	0.01	2.001808
		Q15185	Prostaglandin E synthase 3	0.01	1.441282
		Q6NZI2	Polymerase I and transcript release factor	0.01	1.431961
		P01861	Ig gamma-4 chain C region	0.01	
		P22392	Nucleoside diphosphate kinase B	0.01	2.620247
		Q16539	Mitogen-activated protein kinase 14	0.01	
	299	P78386	Keratin, type II cuticular Hb5	0.01	1.9637
	300	O60610	Protein diaphanous homolog 1	0.01	1.3231012

ow	Peak Name	Group	p-value	Fold Change
301	Q99436	Proteasome subunit beta type-7	0.01	1.643184
302	Q8N5P1	Zinc finger CCCH domain-containing protein 8	0.01	1.4235049
303	O00299	Chloride intracellular channel protein 1	0.01	1.489707
304	P47897	GlutaminetRNA ligase	0.01	1.228707
305	P10768	S-formylglutathione hydrolase	0.01	1.4816903
306	Q9Y265	RuvB-like 1	0.01	1.3287219
307	P06396	Gelsolin	0.01	0.8266146
308	P04075	Fructose-bisphosphate aldolase A	0.01	1.276459
309	P80108	Phosphatidylinositol-glycan-specific phospholipase D	0.01	0.7550549
310	O43488	Aflatoxin B1 aldehyde reductase member 2	0.01	1.4789179
311	P08473	Neprilysin	0.01	1.6781452
312	P30084	Enoyl-CoA hydratase, mitochondrial	0.01	1.501137
313	P30740	Leukocyte elastase inhibitor	0.01	1.471697
314	Q15485	NA	0.01	0.532957
315	P38646	Stress-70 protein, mitochondrial	0.01	1.347054
316	Q01459	Di-N-acetylchitobiase	0.01	1.669887
	P05109	Protein S100-A8	0.01	1.911121
318	Q6YN16	Hydroxysteroid dehydrogenase-like protein 2	0.01	1.827806
	P05067	Amyloid beta A4 protein	0.01	1.831212
	P35613	Basigin	0.01	1.491486
	P12429	Annexin A3	0.01	1.700243
	P60903	Protein S100-A10	0.01	1.60285
	Q9Y2G3	Probable phospholipid-transporting ATPase IF	0.01	2.022161
	P14136	Glial fibrillary acidic protein	0.01	2.074835
	P14150 P48681	Nestin	0.01	1.320972
	P48681 P13611		0.01	2.668194
	P13011 P01717	Versican core protein	0.01	1.623744
		immunoglobulin lambda variable 3-25		
	043837	Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial	0.01	1.375686
	P04275	von Willebrand factor	0.01	1.406888
	P15144	Aminopeptidase N	0.01	1.383858
	P69905	Hemoglobin subunit alpha	0.01	1.819876
	Q6P179	Endoplasmic reticulum aminopeptidase 2	0.01	1.680448
	P07911	Uromodulin	0.01	1.466042
	P13645	Keratin, type I cytoskeletal 10	0.01	0.709350
	P48426	Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha	0.01	1.645968
	Q5HYJ3	Protein FAM76B	0.01	2.251668
337	P22626	Heterogeneous nuclear ribonucleoproteins A2/B1	0.01	1.374846
338	Q9UKX7	Nuclear pore complex protein Nup50	0.01	1.835263
339	Q16181	Septin-7	0.01	1.614578
340	P12035	Keratin, type II cytoskeletal 3	0.01	1.935731
341	Q92835	Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1	0.01	1.457899
342	P31150	Rab GDP dissociation inhibitor alpha	0.01	1.468565
343	Q562R1	Beta-actin-like protein 2	0.01	1.77963
344	Q15080	Neutrophil cytosol factor 4	0.01	1.793396
345	Q9BQE3	Tubulin alpha-1C chain	0.01	1.926043
346	P02788	Lactotransferrin	0.01	1.311475
347	Q12841	Follistatin-related protein 1	0.01	1.830026
348	P68104	Elongation Factor 1 alpha 1	0.01	1.386994
349	P35269	General transcription factor IIF subunit 1	0.01	1.701056
350	Q13509	Tubulin beta-3 chain	0.01	1.394469
351	075822	Eukaryotic translation initiation factor 3 subunit J	0.01	1.554316
	P51610	Host cell factor 1	0.01	1.611776
	P54802	Alpha-N-acetylglucosaminidase	0.01	1.33944
	Q10567	AP-1 complex subunit beta-1	0.01	1.56085
	060716	Catenin delta-1	0.01	1.347209
	Q92945	Far upstream element-binding protein 2	0.01	1.360566
	Q16877	6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4	0.01	1.60486
	P04278	Sex hormone-binding globulin	0.01	1.617609
359	Q5VUA4	Zinc finger protein 318	0.01	2.20875

Row	Peak Name	Group	p-value	Fold Change
361	Q14141	Septin-6	0.01	1.7214313
362	095373	Importin-7	0.01	1.5718666
363	Q12884	Prolyl endopeptidase FAP	0.01	2.527079
364	P62277	protein YIBO	0.01	1.6712140
365	Q99714	3-hydroxyacyl-CoA dehydrogenase type-2	0.01	1.5760615
366	P01859	Ig gamma-2 chain C region	0.01	3.3640875
367	P36873	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit	0.01	2.2379348
368	P35579	Myosin-9	0.01	1.2575959
369	Q9UHA4	Ragulator complex protein LAMTOR3	0.01	3.95238
370	P0DJI9	Serum amyloid A-2 protein	0.01	1.8513245
371	P38606	V-type proton ATPase catalytic subunit A	0.01	1.6885012
372	P04434	NA	0.01	2.373157
373	Q14116	interleukin 18	0.01	1.412392
374	P40939	Trifunctional enzyme subunit alpha, mitochondrial	0.01	1.379872
375	P00813	Adenosine deaminase	0.01	1.5761082
376	P14550	Alcohol dehydrogenase [NADP(+)]	0.01	1.624327
377	P04406	Glyceraldehyde-3-phosphate dehydrogenase	0.01	1.4489002
378	P50454	Serpin H1	0.01	0.653778
379	P32754	4-hydroxyphenylpyruvate dioxygenase	0.01	1.631948
380	Q9H0W9	Ester hydrolase C11orf54	0.01	1.77543
381	P62888	60S ribosomal protein L30	0.01	1.670763
382	Q9ULV4	Coronin-1C	0.01	1.474701
383	P33176	Kinesin-1 heavy chain	0.01	1.310826
384	P29279	Connective tissue growth factor	0.01	1.489981
385	075356	Ectonucleoside triphosphate diphosphohydrolase 5	0.01	1.639067
386	014786	neuropilin-1	0.02	1.344999
	Q9UI17	Dimethylglycine dehydrogenase, mitochondrial	0.02	1.570369
	P04216	Thy-1 membrane glycoprotein	0.02	1.770835
	095445	Apolipoprotein M	0.02	0.712043
	P26373	60S ribosomal protein L13	0.02	2.358180
	P02746	Complement C1g subcomponent subunit B	0.02	1.342907
	P24592	Insulin-like growth factor-binding protein 6	0.02	1.621148
	Q9UL46	Proteasome activator complex subunit 2	0.02	1.530386
	P01833	Polymeric immunoglobulin receptor	0.02	2.465539
	Q7KZF4	Staphylococcal nuclease domain-containing protein 1	0.02	1.513278
	P33992	DNA replication licensing factor MCM5	0.02	1.253527
			0.02	1.787211
	Q15365	Poly(rC)-binding protein 1 Radixin		
	P35241		0.02	1.509064
	Q9H0P0	Cytosolic 5'-nucleotidase 3A	0.02	1.56678
	Q9UJJ9	N-acetylglucosamine-1-phosphotransferase subunit gamma	0.02	2.134706
	P09211	Glutathione S-transferase P	0.02	1.444367
	P30481	HLA class II histocompatibility antigen, B-44 alphachain	0.02	1.790245
	P68871	Hemoglobin subunit beta	0.02	1.880845
	Q9NZP8	Complement C1r subcomponent-like protein	0.02	1.19470
	P15880	405 ribosomal protein S2	0.02	1.50277
	Q9NQC3	Reticulon-4	0.02	2.202388
	Q96EY7	Pentatricopeptide repeat domain-containing protein 3, mitochondrial	0.02	1.583133
	P00338	L-lactate dehydrogenase A chain	0.02	1.547063
	Q07960	Rho GTPase-activating protein 1	0.02	1.46177
	000743	Serine/threonine-protein phosphatase 6 catalytic subunit	0.02	1.517100
	P41250	GlycinetRNA ligase	0.02	1.443734
412	014776	Transcription elongation regulator 1	0.02	1.34741
413	P61158	Actin-related protein 3	0.02	1.249580
414	P35442	Thrombospondin-2	0.02	2.199681
415	P08195	4F2 cell surface Ag heavy chain	0.02	1.548443
416	P08697	Alpha-2-antiplasmin	0.02	0.840697
417	P07478	Trypsin-2	0.02	1.585756
418	P11226	Mannose-binding protein C	0.02	1.501492
419	075131	Copine-3	0.02	1.264190
420	P28072	Proteasome subunit beta type-6	0.02	1.790895

Row Peak Na	me Group	p-value	Fold Change
421 P09496	Clathrin light chain A	0.02	1.3223780
422 Q06187	Tyrosine-protein kinase BTK	0.02	1.3714740
423 P37235	Hippocalcin-like protein 1	0.02	1.4273786
424 P29350	Tyrosine-protein phosphatase non-receptor type 6	0.02	1.4572254
425 Q9NYL9	Tropomodulin-3	0.02	1.7307563
426 P18669	Phosphoglycerate mutase 1	0.02	1.6396380
427 Q7LDG7	RAS guanyl-releasing protein 2	0.02	2.2079038
428 O15212	Prefoldin subunit 6	0.02	1.7474976
429 075874	Isocitrate dehydrogenase [NADP] cytoplasmic	0.02	1.2851884
430 Q14525	Keratin, type I cuticular Ha3-II	0.02	1.6140129
431 P04040	Catalase	0.02	1.2699676
432 Q05707	Collagen alpha-1(XIV) chain	0.02	1.2967527
433 P01743	Immunoglobulin heavy variable 1-46	0.02	2.144054
434 Q16658	Fascin	0.02	1.3248057
435 O43866	CD5 antigen-like	0.02	2.1713580
436 P01621	IG kappa variable 3-20	0.02	2.1535866
437 P11586	C-1-tetrahydrofolate synthase, cytoplasmic	0.02	1.267306
438 Q9BVG4		0.02	1.8164143
439 P26641	Elongation factor 1-gamma	0.02	1.6831498
440 Q96C90	Protein phosphatase 1 regulatory subunit 14B	0.02	1.523602
441 Q5JSH3	WD repeat-containing protein 44	0.02	1.381803
442 P04424	Argininosuccinate lyase	0.02	1.240218
442 004424 443 Q8NE71		0.02	1.482603
443 Q8NE73	Nucleobindin-2	0.02	1.482010
444 P80303 445 P00918	Carbonic anhydrase 2	0.02	
445 P00918 446 P11940	Polyadenylate-binding protein 1	0.02	
446 P11940 447 P07339	Cathepsin D	0.02	1.307193
447 P07339 448 Q9Y4E8		0.02	1.345493
	Ubiquitin carboxyl-terminal hydrolase 15 C-C motif chemokine 15	0.02	1.72338
449 Q16663			
450 P20742	Pregnancy zone protein	0.02	
451 P54886	Delta-1-pyrroline-5-carboxylate synthase		1.326531
452 Q92954	Proteoglycan 4 Platelet factor 4	0.02	1.290810
453 P02776		0.02	1.832272
454 P06310	Immunoglobulin kappa variable 2-30	0.02	
455 P49327	Fatty acid synthase	0.02	1.196442
456 P00747	Plasminogen	0.02	
457 P98179	RNA-binding protein 3	0.02	1.653077
458 O95678	Keratin, type II cytoskeletal 75	0.03	1.341084
459 O15067	Phosphoribosylformylglycinamidine synthase	0.03	1.403556
460 P48444	Coatomer subunit delta	0.03	1.229683
461 Q15366	Poly(rC)-binding protein 2	0.03	1.438504
462 Q5JRA6	Melanoma inhibitory activity protein 3	0.03	1.402024
463 P42574	Caspase-3	0.03	1.469934
464 Q3LXA3	Triokinase/FMN cyclase	0.03	1.416345
465 Q13601		0.03	1.732408
466 Q9HC38	Glyoxalase domain-containing protein 4	0.03	1.370446
467 Q9UL25	Ras-related protein Rab-21	0.03	1.274657
468 P22792	Carboxypeptidase N subunit 2	0.03	0.872490
469 Q9BQE5	Apolipoprotein L2	0.03	1.45397
470 O43505	Beta-1,4-glucuronyltransferase 1	0.03	5.33961
471 P49753	Acyl-coenzyme A thioesterase 2, mitochondrial	0.03	1.935222
472 P06703	Protein S100-A6	0.03	1.974068
473 P02749	Beta-2-glycoprotein 1	0.03	1.164188
474 Q9P260		0.03	
475 Q86WR		0.03	
476 Q99729		0.03	
477 Q86V81		0.03	
478 P09455		0.03	
479 Q9Y5K5		0.03	
480 Q15063		0.03	

p-value	Fold Change
0.03	1.66745198
0.03	1.48483847
-like 0.03	1.6505832
0.03	1.38440352
0.03	1.3373233
0.03	1.8417122
0.03	1.2926318
0.03	1.5752517
0.03	1.3618748
0.03	1.39181124
0.03	1.5531018
0.03	1.4494743
0.03	
0.03	1.1931512
0.03	1.4786619
0.03	1.3898275
0.03	6.3899293
0.03	1.6097176
0.03	1.4107255
0.03	3.4606046
0.03	3.9885182
0.03	1.46620
0.03	1.6329699
0.03	0.7965134
0.03	1.3017793
0.03	1.2607681
0.03	1.6849294
0.03	1.377375
0.03	1.4645851
0.03	1.9724247
in 8 0.03	2.3056871
0.03	2.9866456
0.03	5.1614529
0.03	1.3186300
0.03	1.4828542
0.03	1.4251924
0.03	1.6105617
0.03	
rial 0.03	
0.03	
0.03	
0.04	
0.04	
0.04	
0.04	
0.04	
0.04	
0.04	
0.04	
ial 0.04	
0.04	
0.04	
0.04	
like 2 0.04	
0.04	
protein 1 0.04	
0.04	
0.04	
0.04	
	0.04

w	Peak Name	Group	p-value	Fold Change
541	P17948	Vascular endothelial growth factor receptor 1	0.04	1.719992
542	043143	Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15	0.04	1.285022
543	P60981	Destrin	0.04	1.387188
544	P04179	Superoxide dismutase [Mn], mitochondrial	0.04	1.287128
545	Q14019	Coactosin-like protein	0.04	1.409707
546	P31949	Protein S100-A11	0.04	1.514092
547	P36980	Complement factor H-related protein 2	0.04	1.331170
548	P08123	Collagen alpha-2(I) chain	0.04	1.379246
549	P04217	Alpha-1B-glycoprotein	0.04	1.120322
550	P03951	Coagulation factor XI	0.04	1.267652
551	P05388	60S acidic ribosomal protein P0	0.04	1.599780
552	P05787	Keratin, type II cytoskeletal 8	0.04	1.368279
553	P39059	Collagen alpha-1(XV) chain	0.04	1.418199
554	043390	Heterogeneous nuclear ribonucleoprotein R	0.04	1.423579
555	P06331	IGHv4-34	0.04	2.989821
556	Q9UGM3	Deleted in malignant brain tumors 1 protein	0.04	1.643005
557	P40926	Malate dehydrogenase, mitochondrial	0.04	1.361008
558	P49588	AlaninetRNA ligase, cytoplasmic	0.04	1.187711
559	P51858	Hepatoma-derived growth factor	0.04	1.39221
560	Q9GZT8	NIF3-like protein 1	0.04	1.817208
561	000391	Sulfhydryl oxidase 1	0.04	1.196209
562	Q6IBS0	Twinfilin-2	0.04	1.267384
563	P55209	Nucleosome assembly protein 1-like 1	0.04	1.376637
564	Q14240	Eukaryotic initiation factor 4A-II	0.04	1.503251
565	P17813	Endoglin	0.04	1.513463
566	P60866	405 ribosomal protein S20	0.04	1.321733
567	P78371	T-complex protein 1 subunit beta	0.04	1.308311
568	P55786	Puromycin-sensitive aminopeptidase	0.05	1.455684
569	P09651	Heterogeneous nuclear ribonucleoprotein A1	0.05	1.484061
570	P11171	Protein 4.1	0.05	1.623828
	P84098	60S ribosomal protein L19	0.05	1.649387
	Q7Z3U7	Protein MON2 homolog	0.05	1.686445
	P02549	Spectrin alpha chain, erythrocytic 1	0.05	1.226047
	Q9H910	Hematological and neurological expressed 1-like protein	0.05	
	P61088	Ubiquitin-conjugating enzyme E2 N	0.05	
	Q96JB5	CDK5 regulatory subunit-associated protein 3	0.05	
	P36578	60S ribosomal protein L4	0.05	1.326886
	P54819	Adenylate kinase 2, mitochondrial	0.05	
	P05165	Propionyl-CoA carboxylase alpha chain, mitochondrial	0.05	1.258876
	043451	Maltase-glucoamylase, intestinal	0.05	1.49712
	P02794	Ferritin heavy chain	0.05	2.98309
	Q8N163	Cell cycle and apoptosis regulator protein 2	0.05	
	P09619	Platelet-derived growth factor receptor beta	0.05	
	P50990	T-complex protein 1 subunit theta	0.05	1.36016
	P03950	Angiogenin	0.05	
	Q9UKY7	Protein CDV3 homolog	0.05	
	Q9UPT8	Zinc finger CCCH domain-containing protein 4	0.05	
		Protein S100-A14	0.05	
	Q9HCY8			
	P04003	C4b-binding protein alpha chain	0.05	
	P01591	Immunoglobulin J chain	0.05	
	Q9Y5L4	Mitochondrial import inner membrane translocase subunit Tim13	0.05	
	Q15075	Early endosome antigen 1	0.05	
	Q03154	Aminoacylase-1	0.05	
	P06454	Prothymosin alpha	0.05	
	Q9GZZ8	Extracellular glycoprotein lacritin	0.05	1.79881
	P99999	Cytochrome c	0.05	
	Q9UK76	Hematological and neurological expressed 1 protein	0.05	
	Q969P0	Immunoglobulin superfamily member 8	0.05	
599	P05156	Complement factor I	0.05	1.147321
600	P01860	Immunoglobulin heavy constant gamma 3	0.05	2.773914

ow	Peak Name	Group	p-value	Fold Change
601	P35542	Serum amyloid A-4 protein	0.05	0.587077
602	P84243	Histone H3.3	0.05	2.8299290
603	P07451	Carbonic anhydrase 3	0.05	1.8425935
604	P09382	Galectin-1	0.05	1.2907068
605	Q08554	Desmocollin-1	0.05	1.5458817
606	014672	Disintegrin and metalloproteinase domain-containing protein 10	0.05	1.4535389
607	P07148	Fatty acid-binding protein, liver	0.05	1.5017978
608	P07919	Cytochrome b-c1 complex subunit 6, mitochondrial	0.06	1.6995629
609	Q9H6X2	Anthrax toxin receptor 1	0.06	1.7684771
610	Q15113	Procollagen C-endopeptidase enhancer 1	0.06	1.3652841
611	P12277	Creatine kinase B-type	0.06	1.3336802
612	Q07954	Prolow-density lipoprotein receptor-related protein 1	0.06	1.2185518
613	Q9BRP8	Partner of Y14 and mago	0.06	1.4747683
614	P26196	Probable ATP-dependent RNA helicase DDX6	0.06	1.2375593
615	P07195	L-lactate dehydrogenase B chain	0.06	1.3322088
616	Q06481	Amyloid-like protein 2	0.06	1.3427028
617	P00325	Alcohol dehydrogenase 1B	0.06	1.7975603
618	P07358	Complement component C8 beta chain	0.06	1.1527693
	P58546	Myotrophin	0.06	1.4484308
	Q9UNZ2	NSFL1 cofactor p47	0.06	1.514689
	Q8IWV7	E3 ubiquitin-protein ligase UBR1	0.06	1.652405
	Q9BRX8	Redox-regulatory protein FAM213A	0.06	1.625454
	P02790	Hemopexin	0.06	1.149564
	Q9Y3I0	tRNA-splicing ligase RtcB homolog	0.06	1.326453
	015394	Neural cell adhesion molecule 2	0.06	1.476818
	P50914	60S ribosomal protein L14	0.06	1.546562
	P20700	Lamin-B1	0.06	1.273120
	Q13177	Serine/threonine-protein kinase PAK 2	0.06	1.25095
	015269	Serine palmitoyltransferase 1	0.06	1.243500
	P04156	Major prion protein	0.06	2.068079
	Q9NYL2	Mitogen-activated protein kinase kinase kinase MLT	0.06	1.491699
	Q12907	Vesicular integral-membrane protein VIP36 Ouinone oxidoreductase	0.06	1.788797
	Q08257		0.06	1.295369
	Q15428	Splicing factor 3A subunit 2	0.06	1.776362
	P08575	Receptor-type tyrosine-protein phosphatase C	0.06	1.275183
	P01780	Immunoglobulin heavy variable 3-7	0.06	1.905286
	Q99733	Nucleosome assembly protein 1-like 4	0.06	1.307997
638	075531	Barrier-to-autointegration factor	0.06	1.549400
	015231	Zinc finger protein 185	0.06	1.282968
	095810	Serum deprivation-response protein	0.06	1.34584
	P80188	Neutrophil gelatinase-associated lipocalin	0.06	1.294344
642	Q93088	Betainehomocysteine S-methyltransferase 1	0.06	1.272334
643	P51991	Heterogeneous nuclear ribonucleoprotein A3	0.07	1.762790
644	Q9Y3C4	EKC/KEOPS complex subunit TPRKB	0.07	1.348092
645	P17927	Complement receptor type 1	0.07	1.349556
646	P19823	Inter-alpha-trypsin inhibitor heavy chain H2	0.07	0.883920
647	P17050	Alpha-N-acetylgalactosaminidase	0.07	1.406690
648	P01611	Immunoglobulin kappa variable 1D-12	0.07	1.280635
649	P29401	Transketolase	0.07	1.270385
650	Q9Y617	Phosphoserine aminotransferase	0.07	1.478453
651	P01602	Immunoglobulin kappa variable 1-5	0.07	1.640910
652	P49591	SerinetRNA ligase, cytoplasmic	0.07	1.35768
653	043707	Alpha-actinin-4	0.07	1.288070
654	P26038	Moesin	0.07	1.303036
	P09622	Dihydrolipoyl dehydrogenase, mitochondrial	0.07	1.371903
	Q86VB7	Scavenger receptor cysteine-rich type 1 protein M130	0.07	1.29329
	P00915	Carbonic anhydrase 1	0.07	1.286525
	P04206	Immunoglobulin kappa variable 3-20	0.07	1.360118
	P78417	Glutathione S-transferase omega-1	0.07	1.353266
	P62750	60S ribosomal protein L23a	0.07	1.231598

	Peak Name	Group	p-value	Fold Chang
661	P20618	Proteasome subunit beta type-1	0.07	1.298363
662	P13667	Protein disulfide-isomerase A4	0.07	1.230172
663	P54578	Ubiquitin carboxyl-terminal hydrolase 14	0.07	1.568105
664	P28070	Proteasome subunit beta type-4	0.07	1.55697
665	P08519	Apolipoprotein(a)	0.07	1.43728
666	P01764	Immunoglobulin heavy variable 3-23	0.07	1.812585
667	P46777	60S ribosomal protein L5	0.07	1.24527
668	Q04695	Keratin, type I cytoskeletal 17	0.07	1.342681
669	P02655	Apolipoprotein C-II	0.07	0.73109
670	P00558	Phosphoglycerate kinase 1	0.07	1.285058
671	P11279	Lysosome-associated membrane glycoprotein 1	0.07	1.28795
672	P20774	Mimecan	0.07	1.81334
673	060294	tRNA wybutosine-synthesizing protein 4	0.07	1.87299
674	P29966	Myristoylated alanine-rich C-kinase substrate	0.08	1.46386
675	P53602	Diphosphomevalonate decarboxylase	0.08	1.4098
676	Q13740	CD166 antigen	0.08	2.83136
677	Q9UBX5	Fibulin-5	0.08	1.41240
678	P43121	Cell surface glycoprotein MUC18	0.08	1.41319
679	Q9Y446	Plakophilin-3	0.08	1.41489
680	P19013	Keratin, type II cytoskeletal 4	0.08	1.29956
681	Q86UX7	Fermitin family homolog 3	0.08	1.36557
682	Q9Y263	Phospholipase A-2-activating protein	0.08	1.4051
683	Q13103	Secreted phosphoprotein 24	0.08	0.70797
684	Q6UX71	Plexin domain-containing protein 2	0.08	1.65853
	P06748	Nucleophosmin	0.08	1.41402
	P36969	Phospholipid hydroperoxide glutathione peroxidase, mitochondrial	0.08	
	P01034	Cystatin-C	0.08	
	P12931	Proto-oncogene tyrosine-protein kinase Src	0.08	
	P16435	NADPHcytochrome P450 reductase	0.08	1.19087
	Q9HBR0	Putative sodium-coupled neutral amino acid transporter 10	0.08	1.47619
	P30613	Pyruvate kinase PKLR	0.08	1.53161
	P00740	Coagulation factor IX	0.08	1.11106
	Q9H3K6	BolA-like protein 2	0.08	1.32826
	P01009	Alpha-1-antitrypsin	0.08	
	P08709	Coagulation factor VII	0.08	
	075122	CLIP-associating protein 2	0.08	
	P48740	Mannan-binding lectin serine protease 1	0.08	
	P02545	Prelamin-A/C	0.08	1.24204
	Q15102	Platelet-activating factor acetylhydrolase IB subunit gamma	0.09	1.50665
	Q9HCB6	Spondin-1	0.09	1.33344
	P05556	Integrin beta-1	0.09	1.25820
	P06309	Immunoglobulin kappa variable 2D-28	0.09	
	Q9NYU2	UDP-glucose:glycoprotein glucosyltransferase 1	0.09	
	P67936	Tropomyosin alpha-4 chain	0.09	
	P30044	Peroxiredoxin-5, mitochondrial	0.09	
	P55957	BH3-interacting domain death agonist	0.09	
	P98160	Basement membrane-specific heparan sulfate proteoglycan core protein	0.09	
	P62314	Small nuclear ribonucleoprotein Sm D1	0.09	
	Q96HR3	Mediator of RNA polymerase II transcription subunit 30	0.09	
	Q96FV2	Secernin-2	0.09	
	Q9UBQ7	Glyoxylate reductase/hydroxypyruvate reductase	0.09	
	Q99497	Protein deglycase DJ-1	0.09	
	P08637	Low affinity immunoglobulin gamma Fc region receptor III-A	0.09	
	P35232	Prohibitin	0.09	
715	P23470	Receptor-type tyrosine-protein phosphatase gamma	0.09	1.93661
716	P36542	ATP synthase subunit gamma, mitochondrial	0.09	1.27276
717	Q9Y2T3	Guanine deaminase	0.09	1.57279
718	043852	Calumenin	0.09	1.23675
719	P30050	60S ribosomal protein L12	0.09	1.48967
720	Q8N423	Leukocyte immunoglobulin-like receptor subfamily B member 2	0.09	1.35922

w	Peak Name	Group		Fold Chang
721	Q9H299	SH3 domain-binding glutamic acid-rich-like protein 3	0.09	1.47489
722	Q14103	Heterogeneous nuclear ribonucleoprotein D0	0.09	1.358648
723	P28482	Mitogen-activated protein kinase 1	0.10	1.305670
724	B9A064	Immunoglobulin lambda-like polypeptide 5	0.10	1.713387
725	P09936	Ubiquitin carboxyl-terminal hydrolase isozyme L1	0.10	1.432551
726	075882	Attractin	0.10	1.126896
727	P07954	Fumarate hydratase, mitochondrial	0.10	1.316571
728	P04792	Heat shock protein beta-1	0.10	1.575684
729	Q5TFE4	5'-nucleotidase domain-containing protein 1	0.10	1.377104
730	P68036	Ubiquitin-conjugating enzyme E2 L3	0.10	1.478574
731	P78347	General transcription factor II-I	0.10	1.220954
732	Q7L8L6	FAST kinase domain-containing protein 5, mitochondrial	0.10	0.514468
733	P49368	T-complex protein 1 subunit gamma	0.10	1.176434
734	Q86VM9	Zinc finger CCCH domain-containing protein 18	0.10	1.29758
735	015264	Mitogen-activated protein kinase 13	0.10	1.32215
736	P54136	ArgininetRNA ligase, cytoplasmic	0.10	1.18379
737	015031	Plexin-B2	0.10	1.229679
	Q9Y244	Proteasome maturation protein	0.10	1.36308
	P42765	3-ketoacyl-CoA thiolase, mitochondrial	0.10	1.39985
	P49720	Proteasome subunit beta type-3	0.10	1.51383
	Q8IZA0	Dyslexia-associated protein KIAA0319-like protein	0.10	1.346792
	Q7Z4W1	L-xylulose reductase	0.10	1.45307
	P61764	Syntaxin-binding protein 1	0.10	1.44562
	Q9UBP6	tRNA (guanine-N(7)-)-methyltransferase	0.10	0.34872
	Q865Q4	Adhesion G-protein coupled receptor G6	0.10	0.60326
			0.10	
	Q9Y2H5	Pleckstrin homology domain-containing family A member 6		1.49887
	P04632	Calpain small subunit 1	0.11	1.32539
	P30086	Phosphatidylethanolamine-binding protein 1	0.11	1.78520
	P25815	Protein S100-P	0.11	1.52918
	P17655	Calpain-2 catalytic subunit	0.11	1.20613
	P04066	Tissue alpha-L-fucosidase	0.11	0.79771
	Q9UJU6	Drebrin-like protein	0.11	1.26068
	075083	WD repeat-containing protein 1	0.11	1.26974
	P62820	NA	0.11	1.25174
	P32004	Neural cell adhesion molecule L1	0.11	1.39510
	Q96CP6	GRAM domain-containing protein 1A	0.11	1.21210
	P25789	Proteasome subunit alpha type-4	0.11	1.51440
758	Q8IZ83	Aldehyde dehydrogenase family 16 member A1	0.11	1.51022
759	043169	Cytochrome b5 type B	0.11	1.48117
760	Q9Y2Z0	Protein SGT1 homolog	0.11	1.21558
761	Q02809	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	0.11	1.33944
762	P11766	Alcohol dehydrogenase class-3	0.11	1.30073
763	Q9UBR2	Cathepsin Z	0.12	1.27545
764	P50395	Rab GDP dissociation inhibitor beta	0.12	1.40703
765	P02679	Fibrinogen gamma chain	0.12	1.17666
766	Q53FA7	Quinone oxidoreductase PIG3	0.12	1.38786
767	P33151	Cadherin-5	0.12	1.35369
768	Q13283	Ras GTPase-activating protein-binding protein 1	0.12	1.27422
769	Q9Y4Y9	U6 snRNA-associated Sm-like protein LSm5	0.12	1.37286
770	Q99439	Calponin-2	0.12	1.37558
	Q13790	Apolipoprotein F	0.12	0.84258
	Q16363	Laminin subunit alpha-4	0.12	0.81269
	000410	Importin-5	0.12	1.204372
	P16157	Ankyrin-1	0.12	1.52827
	P50281	Matrix metalloproteinase-14	0.12	1.33779
	P27169	Serum paraoxonase/arylesterase 1	0.12	0.86900
	P16930	Fumarylacetoacetase	0.12	1.29573
	P18950	•	0.12	
		Integrin alpha-IIb		1.42379
//5	Q9UGM5 P31025	Fetuin-B Lipocalin-1	0.12	0.80001

Row	Peak Name	Group	p-value	Fold Change
781	P02538	Keratin, type II cytoskeletal 6A	0.12	1.499033
782	P81605	Dermcidin	0.12	1.2759719
783	Q8NBP7	Proprotein convertase subtilisin/kexin type 9	0.12	1.6706717
784	P23297	Protein S100-A1	0.12	1.5855144
785	P68133	Actin, alpha skeletal muscle	0.12	1.3992922
786	P50213	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	0.12	1.4227551
787	Q14353	Guanidinoacetate N-methyltransferase	0.12	1.4168708
788	P35555	Fibrillin-1	0.12	1.3243052
789	Q12906	Interleukin enhancer-binding factor 3	0.12	1.1766017
790	P52790	Hexokinase-3	0.12	1.5675887
791	P12110	Collagen alpha-2(VI) chain	0.12	1.7520842
792	P19022	Cadherin-2	0.13	1.3783295
793	Q9NY33	Dipeptidyl peptidase 3	0.13	0.5318418
794	014818	Proteasome subunit alpha type-7	0.13	2.3177931
795	P09543	2',3'-cyclic-nucleotide 3'-phosphodiesterase	0.13	1.2216408
796	Q9BXX0	EMILIN-2	0.13	1.2540918
797	P04433	Immunoglobulin kappa variable 3-11	0.13	1.4267087
798	000305	Voltage-dependent L-type calcium channel subunit beta-4	0.13	1.415268
799	P02675	Fibrinogen beta chain	0.13	1.171090
800	Q6ZVX7	F-box only protein 50	0.13	1.3849329
	Q86VI3	Ras GTPase-activating-like protein IQGAP3	0.13	1.2186368
	Q9H008	Phospholysine phosphohistidine inorganic pyrophosphate phosphatase	0.13	1.7473556
	P50452	Serpin B8	0.13	1.612192
	Q04446	1,4-alpha-glucan-branching enzyme	0.13	1.289741
	Q9P0L0	Vesicle-associated membrane protein-associated protein A	0.13	1.244327
	P04259	Keratin, type II cytoskeletal 6B	0.13	1.408782
	P07602	Prosaposin	0.13	1.544609
	Q15375	Ephrin type-A receptor 7	0.13	1.466571
	Q9Y4I1	Unconventional myosin-Va	0.13	1.306104
	Q15833		0.13	1.174070
	P62910	Syntaxin-binding protein 2	0.13	
	000592	60S ribosomal protein L32		1.182407
		Podocalyxin Serotransferrin	0.13	1.325912
	P02787		0.14	0.711781
	Q8WXI9	Transcriptional repressor p66-beta	0.14	1.339148
	P04118	Colipase	0.14	1.410543
	Q5QJE6	Deoxynucleotidyltransferase terminal-interacting protein 2	0.14	
	Q9UIF8	Bromodomain adjacent to zinc finger domain protein 2B	0.14	2.953793
	Q9Y608	Leucine-rich repeat flightless-interacting protein 2	0.14	1.335916
	P41240	Tyrosine-protein kinase CSK	0.14	1.290945
	P23229	Integrin alpha-6	0.14	1.342325
	P06744	Glucose-6-phosphate isomerase	0.14	1.187603
	P15924	Desmoplakin	0.14	1.131306
823	P06727	Apolipoprotein A-IV	0.14	0.820054
824	P54289	Voltage-dependent calcium channel subunit alpha-2/delta-1	0.14	1.289792
825	Q13200	265 proteasome non-ATPase regulatory subunit 2	0.14	1.248531
826	P16035	Metalloproteinase inhibitor 2	0.14	1.392208
827	Q15848	Adiponectin	0.14	1.422961
828	Q14126	Desmoglein-2	0.14	1.271264
829	Q96BZ4	Phospholipase D4	0.14	1.567807
830	P07305	Histone H1.0	0.14	0.685766
831	Q14515	SPARC-like protein 1	0.14	1.622145
832	094760	N(G),N(G)-dimethylarginine dimethylaminohydrolase 1	0.14	1.517426
833	P43251	Biotinidase	0.14	0.720914
834	Q96FW1	Ubiquitin thioesterase OTUB1	0.14	1.753480
	P15104	Glutamine synthetase	0.14	1.447254
	P00441	Superoxide dismutase [Cu-Zn]	0.14	1.257780
	P13716	Delta-aminolevulinic acid dehydratase	0.15	1.215647
	Q9BS26	Endoplasmic reticulum resident protein 44	0.15	1.320250
	P13489	Ribonuclease inhibitor	0.15	1.319116
	P05160	Coagulation factor XIII B chain	0.15	1.196906

ow	Peak Name	Group	p-value	Fold Chang
841	P22352	Glutathione peroxidase 3	0.15	0.870724
842	P23284	Peptidyl-prolyl cis-trans isomerase B	0.15	1.208150
843	Q15370	Transcription elongation factor B polypeptide 2	0.15	1.639296
844	075376	Nuclear receptor corepressor 1	0.15	1.315982
845	Q01995	Transgelin	0.15	1.40032
846	Q92820	Gamma-glutamyl hydrolase	0.15	1.201811
847	P27824	Calnexin	0.15	1.259738
848	P25325	3-mercaptopyruvate sulfurtransferase	0.15	1.362615
849	Q2PZI1	Probable C-mannosyltransferase DPY19L1	0.15	1.326903
850	P32942	Intercellular adhesion molecule 3	0.15	1.328179
851	Q9BTY2	Plasma alpha-L-fucosidase	0.15	1.3605
852	P20810	Calpastatin	0.15	0.584525
853	P09493	Tropomyosin alpha-1 chain	0.15	1.516041
854	075144	ICOS ligand	0.16	0.670885
855	Q10588	ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2	0.16	1.470340
	P83731	605 ribosomal protein L24	0.16	1.340155
857	Q9NZ08	Endoplasmic reticulum aminopeptidase 1	0.16	1.183704
	P17174	Aspartate aminotransferase, cytoplasmic	0.16	1.389707
	P28062	Proteasome subunit beta type-8	0.16	1.246316
860	Q96D15	Reticulocalbin-3	0.16	1.290429
	P09104	Gamma-enolase	0.16	1.33460
	P16671	Platelet glycoprotein 4	0.16	1.222096
	060234	Glia maturation factor gamma	0.16	1.503939
	P17931	Galectin-3	0.16	1.261021
	P12821	Angiotensin-converting enzyme	0.16	1.292201
	Q10471	Polypeptide N-acetylgalactosaminyltransferase 2	0.16	
	P09110	3-ketoacyl-CoA thiolase, peroxisomal	0.16	1.262437
	P53667	LIM domain kinase 1	0.16	
	P13591	Neural cell adhesion molecule 1	0.16	
	Q06278	Aldehyde oxidase	0.17	1.407077
	Q9BRX5	DNA replication complex GINS protein PSF3	0.17	1.512577
	P46939	Utrophin	0.17	1.126083
	P34932	Heat shock 70 kDa protein 4	0.17	1.205530
	Q96PK6	RNA-binding protein 14	0.17	1.215504
	P54760	Ephrin type-B receptor 4	0.17	1.263513
	Q02952	A-kinase anchor protein 12	0.17	
	P35908	Keratin, type II cytoskeletal 2 epidermal	0.17	0.87359
878	P00326	Alcohol dehydrogenase 1C	0.17	1.246963
879	P31944	Caspase-14	0.17	1.404139
880	P47756	F-actin-capping protein subunit beta	0.17	1.378862
881	P02765	Alpha-2-HS-glycoprotein	0.17	1.09757
882	Q15942	Zyxin	0.17	1.585805
883	075475	PC4 and SFRS1-interacting protein	0.17	1.297811
884	P42330	Aldo-keto reductase family 1 member C3	0.17	2.25402
885	P62873	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1	0.17	1.34653
886	Q9BRF8	Serine/threonine-protein phosphatase CPPED1	0.17	1.276591
887	P16949	Stathmin	0.18	2.10327
888	P31939	Bifunctional purine biosynthesis protein PURH	0.18	1.221642
889	P30101	Protein disulfide-isomerase A3	0.18	1.14899
890	P42166	Lamina-associated polypeptide 2, isoform alpha	0.18	1.16083
891	P11142	Heat shock cognate 71 kDa protein	0.18	1.21796
892	Q4VC31	Coiled-coil domain-containing protein 58	0.18	1.269542
	P04180	Phosphatidylcholine-sterol acyltransferase	0.18	
	P25311	Zinc-alpha-2-glycoprotein	0.18	
	P26639	ThreoninetRNA ligase, cytoplasmic	0.18	1.216670
	043399	NA	0.18	1.348630
	P22692	Insulin-like growth factor-binding protein 4	0.18	1.35549
	P06865	Beta-hexosaminidase subunit alpha	0.18	1.182310
	Q9BY67	Cell adhesion molecule 1	0.18	1.244884
033	P06753	Tropomyosin alpha-3 chain	0.18	1.268854

ow	Peak Name	Group	p-value	Fold Change
901	P42680	Tyrosine-protein kinase Tec	0.19	1.659612
902	Q9UMX5	Neudesin	0.19	1.4787659
903	Q15555	Microtubule-associated protein RP/EB family member 2	0.19	1.325575
904	P23526	Adenosylhomocysteinase	0.19	1.2001426
905	P00742	Coagulation factor X	0.19	0.899807
906	P48147	Prolyl endopeptidase	0.20	1.180753
907	P52888	Thimet oligopeptidase	0.20	1.289097
908	Q9Y2E5	Epididymis-specific alpha-mannosidase	0.20	1.2864943
909	P15291	Beta-1,4-galactosyltransferase 1	0.20	1.6835598
910	P53634	Dipeptidyl peptidase 1	0.20	0.7804979
911	P06400	Retinoblastoma-associated protein	0.20	1.227788
912	Q6YHK3	CD109 antigen	0.20	1.467477
913	000533	Neural cell adhesion molecule L1-like protein	0.20	1.218128
914	P21926	CD9 antigen	0.20	1.493703
915	P05186	Alkaline phosphatase, tissue-nonspecific isozyme	0.20	1.277716
	P20851	C4b-binding protein beta chain	0.20	
	Q14314	Fibroleukin	0.20	1.332922
	Q8NC51	Plasminogen activator inhibitor 1 RNA-binding protein	0.20	0.78484
	P30043	Flavin reductase (NADPH)	0.20	
	P11532	Dystrophin	0.20	1.240003
	095336	6-phosphogluconolactonase	0.20	1.43745
	P55290	Cadherin-13	0.21	1.254695
	Q9BRK5	45 kDa calcium-binding protein	0.21	1.325742
	Q15056		0.21	
		Eukaryotic translation initiation factor 4H		
	P00751	Complement factor B	0.21	1.126137
	Q15121	Astrocytic phosphoprotein PEA-15	0.21	
	Q02818	Nucleobindin-1	0.21	1.262168
	P16233	Pancreatic triacylglycerol lipase	0.21	
	P23142	Fibulin-1	0.21	1.146002
	P02654	Apolipoprotein C-I	0.21	
	Q13308	Inactive tyrosine-protein kinase 7	0.21	1.364326
932	P27105	Erythrocyte band 7 integral membrane protein	0.21	1.291830
	Q15149	Plectin	0.21	1.113724
934	Q27J81	Inverted formin-2	0.21	1.182148
935	A6NL28	NA	0.21	1.587995
936	P15169	Carboxypeptidase N catalytic chain	0.21	0.856514
937	P52566	Rho GDP-dissociation inhibitor 2	0.21	0.654777
938	P62805	Histone H4	0.22	1.363173
939	Q7Z7G0	Target of Nesh-SH3	0.22	1.303453
940	P01042	Kininogen-1	0.22	0.919595
941	Q9H4B7	Tubulin beta-1 chain	0.22	1.300512
942	Q03591	Complement factor H-related protein 1	0.22	1.247269
943	Q9UHG3	Prenylcysteine oxidase 1	0.22	1.189886
944	P22897	Macrophage mannose receptor 1	0.22	1.588469
945	P00738	Haptoglobin	0.22	1.262580
946	P26927	Hepatocyte growth factor-like protein	0.22	1.248598
947	P53779	Mitogen-activated protein kinase 10	0.22	1.381558
	P40121	Macrophage-capping protein	0.22	
	P08134	Rho-related GTP-binding protein RhoC	0.22	
	Q8NHP8	Putative phospholipase B-like 2	0.23	
	P26572	Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase	0.23	
	P31948	Stress-induced-phosphoprotein 1	0.23	
	P35237	Serpin B6	0.23	
	P07686	Beta-hexosaminidase subunit beta	0.23	
	Q15257	Serine/threonine-protein phosphatase 2A activator	0.23	
	P19367	Hexokinase-1	0.23	
	P49189	4-trimethylaminobutyraldehyde dehydrogenase	0.23	
	P98082	Disabled homolog 2	0.23	
	P00505	Aspartate aminotransferase, mitochondrial	0.24	1.134749

	Name Group	p-value	Fold Change
961 Q136	30 GDP-L-fucose synthase	0.24	1.532487
962 P612	47 40S ribosomal protein S3a	0.24	1.187627
963 P221	05 Tenascin-X	0.24	1.099283
964 P010	40 Cystatin-A	0.24	1.284570
965 P622	63 40S ribosomal protein S14	0.24	1.171730
966 P077	11 Cathepsin L1	0.24	1.371343
967 Q9U	Q80 Proliferation-associated protein 2G4	0.24	1.208233
968 P241	58 Myeloblastin	0.24	1.465495
969 Q135	64 NEDD8-activating enzyme E1 regulatory subunit	0.24	1.286544
970 Q047	56 Hepatocyte growth factor activator	0.24	1.089595
971 P785	27 DNA-dependent protein kinase catalytic subunit	0.25	1.106270
972 P632	44 Receptor of activated protein C kinase 1	0.25	1.205263
973 P194	40 Gamma-glutamyltranspeptidase 1	0.25	2.066417
974 P039		0.25	0.912599
975 Q8N1		0.25	
976 Q9H4		0.25	
977 0435		0.25	
978 P626		0.25	
979 Q9Y6		0.25	
980 Q9U		0.25	
981 Q138		0.25	
982 P079		0.26	
983 P257		0.26	
		0.26	
984 P027			
985 Q926			
986 P629		0.26	
987 P496		0.26	
988 0153		0.26	
989 P010		0.26	
990 P185		0.26	
991 P070		0.26	
992 P606		0.26	
993 P497		0.26	
994 Q960	06 Perilipin-4	0.26	1.33164
995 P027		0.27	1.17110
996 P086	48 Integrin alpha-5	0.27	1.226460
997 P357	54 Glutaredoxin-1	0.27	1.501776
998 Q9N	PDZ and LIM domain protein 7	0.27	1.155616
999 P628	99 60S ribosomal protein L31	0.27	1.248010
1000 Q5KU	26 Collectin-12	0.27	1.177847
1001 0152	04 ADAM DEC1	0.28	1.410762
1002 0002	44 Copper transport protein ATOX1	0.28	1.221077
1003 P066	81 Complement C2	0.28	1.075948
1004 P266	40 ValinetRNA ligase	0.28	1.117083
1005 P052		0.28	1.742081
1006 P264	47 Protein S100-A4	0.28	1.409182
1007 Q530	iG5 PDZ and LIM domain protein 3	0.28	1.528506
1008 P134		0.28	
1009 Q9Y5		0.28	
1010 P145		0.28	
1011 P117	-	0.28	
1011 (11) 1012 Q76L			
1012 Q/01		0.28	
1013 P213 1014 P051		0.28	
1014 P051 1015 P082		0.28	
1016 P179		0.29	
1017 P074		0.29	
1018 Q9H0		0.29	
1019 P622	58 14-3-3 protein epsilon	0.29	1.162389

low	Peak Name	Group	p-value	Fold Change
	P62424	60S ribosomal protein L7a	0.29	1.3473165
1022	P49643	DNA primase large subunit	0.29	1.1743758
1023	Q16851	UTPglucose-1-phosphate uridylyltransferase	0.29	1.2559400
1024	Q9Y624	Junctional adhesion molecule A	0.29	1.9325979
1025	P08572	Collagen alpha-2(IV) chain	0.29	1.278
1026	P52907	F-actin-capping protein subunit alpha-1	0.29	1.4373445
1027	Q9NZD4	Alpha-hemoglobin-stabilizing protein	0.29	1.674840
1028	P09497	Clathrin light chain B	0.30	0.7585935
1029	P46783	40S ribosomal protein S10	0.30	1.241409
1030	Q14508	WAP four-disulfide core domain protein 2	0.30	1.2239786
1031	Q6PKG0	La-related protein 1	0.30	0.9101050
1032	Q16819	Meprin A subunit alpha	0.30	1.5715018
1033	P07357	Complement component C8 alpha chain	0.30	1.1031579
1034	P46781	40S ribosomal protein S9	0.30	1.1854383
1035	P80511	Protein S100-A12	0.30	1.3188301
1036	P30040	Endoplasmic reticulum resident protein 29	0.31	1.1504906
1037	Q6PI48	AspartatetRNA ligase, mitochondrial	0.31	1.168160
1038	P27487	Dipeptidyl peptidase 4	0.31	1.1424808
1039	043396	Thioredoxin-like protein 1	0.32	1.4044503
	P08581	Hepatocyte growth factor receptor	0.32	1.1961435
	Q9Y646	Carboxypeptidase Q	0.32	1.1408446
	Q16610	Extracellular matrix protein 1	0.32	1.102183
	P04114	Apolipoprotein B-100	0.32	0.9372744
	09NP97	Dynein light chain roadblock-type 1	0.32	1.304729
	P07900	Heat shock protein HSP 90-alpha	0.32	1.162762
	P16070	CD44 antigen	0.33	
	P54727	UV excision repair protein RAD23 homolog B	0.33	
	Q9UBG0	C-type mannose receptor 2	0.33	
	Q86YZ3	Hornerin	0.33	1.342606
	Q5D862		0.33	1.492657
		Filaggrin-2		
	Q9HBI1	Beta-parvin	0.33	1.1993297
	Q15904	V-type proton ATPase subunit S1		1.5141984
	P05019	Insulin-like growth factor I	0.33	0.819412
	P15328	Folate receptor alpha	0.33	
	P12081	HistidinetRNA ligase, cytoplasmic	0.33	
	P00533	Epidermal growth factor receptor	0.33	
	Q04760	Lactoylglutathione lyase	0.33	1.195488
	P04054	Phospholipase A2	0.33	1.256632
	P30679	Guanine nucleotide-binding protein subunit alpha-15	0.33	1.219765
	Q10472	Polypeptide N-acetylgalactosaminyltransferase 1	0.33	
	Q01581	Hydroxymethylglutaryl-CoA synthase, cytoplasmic	0.34	1.1816122
1062	Q99969	Retinoic acid receptor responder protein 2	0.34	1.166247
1063	Q01130	Serine/arginine-rich splicing factor 2	0.34	
	Q6UWP8	Suprabasin	0.34	0.483850
1065	P46926	Glucosamine-6-phosphate isomerase 1	0.34	1.137806
1066	P26599	Polypyrimidine tract-binding protein 1	0.34	0.902279
1067	P02743	Serum amyloid P-component	0.34	1.145362
1068	P05387	60S acidic ribosomal protein P2	0.35	1.260693
1069	P30405	Peptidyl-prolyl cis-trans isomerase F, mitochondrial	0.35	1.2203254
1070	P00966	Argininosuccinate synthase	0.35	1.22208
1071	075636	Ficolin-3	0.35	1.113166
1072	Q05639	Elongation factor 1-alpha 2	0.35	1.142730
1073	095817	BAG family molecular chaperone regulator 3	0.35	0.799148
1074	P16403	Histone H1.2	0.35	1.289631
	P27348	14-3-3 protein theta	0.35	
	P02649	Apolipoprotein E	0.35	
	015400	Syntaxin-7	0.35	
	P13521	Secretogranin-2	0.36	
	P06132	Uroporphyrinogen decarboxylase	0.36	
	P21283	V-type proton ATPase subunit C 1	0.36	

	Peak Name	Group	p-value	Fold Chang
1081 0	213443	Disintegrin and metalloproteinase domain-containing protein 9	0.36	1.186988
1082 P	935052	Glypican-1	0.36	1.155675
1083 P	24928	DNA-directed RNA polymerase II subunit RPB1	0.36	0.85311
1084 0	Q9HAT2	Sialate O-acetylesterase	0.36	1.16805
1085 P	28799	Granulins	0.36	1.351364
1086 P	P09486	SPARC	0.36	0.766368
1087 F	P39687	Acidic leucine-rich nuclear phosphoprotein 32 family member A	0.37	0.823072
1088 0	Q9NZT1	Calmodulin-like protein 5	0.37	0.670055
1089 0	207654	Trefoil factor 3	0.37	1.258144
1090 C	075832	26S proteasome non-ATPase regulatory subunit 10	0.37	0.123982
1091 F	P80723	Brain acid soluble protein 1	0.37	1.330180
1092 F	P01880	Ig delta chain C region	0.37	1.188799
1093 P	P13688	Carcinoembryonic antigen-related cell adhesion molecule 1	0.38	1.34669
1094 P	935637	RNA-binding protein FUS	0.38	1.102452
1095 0	D43639	Cytoplasmic protein NCK2	0.38	1.248703
1096 P	P53597	SuccinateCoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	0.38	1.13199
1097 0	213185	Chromobox protein homolog 3	0.38	0.843567
1098 0	29P1Y5	Calmodulin-regulated spectrin-associated protein 3	0.38	1.142546
	202774	Vitamin D-binding protein	0.38	
	P00748	Coagulation factor XII	0.39	
	210589	Bone marrow stromal antigen 2	0.39	1.405800
	204196	Histidine-rich glycoprotein	0.39	
	249593	Protein phosphatase 1F	0.39	
	Q8TAD4	Zinc transporter 5	0.39	
	231997	Carcinoembryonic antigen-related cell adhesion molecule 8	0.39	
			0.39	
1106 P		Apolipoprotein C-III		
	299832	T-complex protein 1 subunit eta	0.40	
1108 F		Tetranectin	0.40	
	29P2T1	GMP reductase 2	0.40	
	Q969E8	Pre-rRNA-processing protein TSR2 homolog	0.40	
	241439	Folate receptor gamma	0.40	
	296DA0	Zymogen granule protein 16 homolog B	0.40	
	29UJC5	SH3 domain-binding glutamic acid-rich-like protein 2	0.40	
	Q9BRA2	Thioredoxin domain-containing protein 17	0.40	
	214520	Hyaluronan-binding protein 2	0.40	
	209960	Leukotriene A-4 hydrolase	0.40	
1117 F	P01889	HLA class I histocompatibility antigen, B-7 alpha chain	0.41	1.22564
	23396	40S ribosomal protein S3	0.41	
1119 0	Q6EMK4	Vasorin	0.41	1.08711
1120 P	P61106	Ras-related protein Rab-14	0.41	1.16140
1121 0	299627	COP9 signalosome complex subunit 8	0.41	0.83577
1122 P	P21810	Biglycan	0.41	0.91244
1123 P	931937	3-hydroxyisobutyrate dehydrogenase, mitochondrial	0.41	1.15046
1124 0	Q96G03	Phosphoglucomutase-2	0.41	1.1595
1125 0	095831	Apoptosis-inducing factor 1, mitochondrial	0.41	1.12868
1126 0	D14907	Tax1-binding protein 3	0.41	0.35005
1127 0	213867	Bleomycin hydrolase	0.41	1.2027
1128 P	P14927	Cytochrome b-c1 complex subunit 7	0.41	1.22341
1129 0	Q8N6Q3	CD177 antigen	0.41	0.28619
	213557	Calcium/calmodulin-dependent protein kinase type II subunit delta	0.42	1.0985
	Q9NZK5	Adenosine deaminase CECR1	0.42	
	P30520	Adenylosuccinate synthetase isozyme 2	0.43	
	000233	26S proteasome non-ATPase regulatory subunit 9	0.43	
	P13797	Plastin-3	0.43	
	250552	Vasodilator-stimulated phosphoprotein	0.43	
	P36955	Pigment epithelium-derived factor	0.43	
	P13598	Intercellular adhesion molecule 2	0.44	
	27L1Q6	Basic leucine zipper and W2 domain-containing protein 1	0.44	
	271108	Collagen alpha-1(I) chain	0.44	
	P37837	Transaldolase	0.44	

Row Peak Nar	e Group	p-value	Fold Change
1141 P27635	60S ribosomal protein L10	0.44	1.24581383
1142 Q15717	ELAV-like protein 1	0.44	0.70665287
1143 P46109	Crk-like protein	0.44	1.65360808
1144 Q9P1F3	Costars family protein ABRACL	0.44	1.4555348
1145 Q9Y6C2	EMILIN-1	0.45	1.1620145
1146 P48506	Glutamatecysteine ligase catalytic subunit	0.45	1.12763817
1147 P50750	Cyclin-dependent kinase 9	0.45	1.27157741
1148 Q14315	Filamin-C	0.46	1.10601813
1149 P02753	Retinol-binding protein 4	0.47	0.92866253
1150 O75970	Multiple PDZ domain protein	0.47	1.28735694
1151 P23141	Liver carboxylesterase 1	0.47	1.23779482
1152 P31040	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	0.47	0.8649153
1153 Q13884	Beta-1-syntrophin	0.47	1.2265216
1154 Q92686	Neurogranin	0.47	1.2832819
1155 P27918	Properdin	0.47	0.9134565
1156 P49736	DNA replication licensing factor MCM2	0.48	0.9129052
1157 P09417	Dihydropteridine reductase	0.48	1.1513149
1158 Q9NTX5	Ethylmalonyl-CoA decarboxylase	0.48	0.8437842
1159 P19957	Elafin	0.48	1.2717912
1160 P00739	Haptoglobin-related protein	0.48	0.8869256
1161 P08311	Cathepsin G	0.48	1.080629
1162 Q99683	Mitogen-activated protein kinase kinase kinase 5	0.48	1.0846036
1163 P05106	Integrin beta-3	0.48	
1164 P35900	Keratin, type I cytoskeletal 20	0.49	
1165 Q9P0Z9	Peroxisomal sarcosine oxidase	0.49	
1166 P62158	Calmodulin	0.49	
1167 P07359	Platelet glycoprotein Ib alpha chain	0.49	
1168 P30530	Tyrosine-protein kinase receptor UFO	0.49	
1169 Q9BR76	Coronin-1B	0.50	
1170 P62906	60S ribosomal protein L10a	0.50	
1170 P82900	Zinc phosphodiesterase ELAC protein 2	0.50	
1171 Q98Q92	Collagen alpha-1(V) chain	0.50	
1172 P20508	Mesencephalic astrocyte-derived neurotrophic factor	0.50	
1173 P35145		0.50	
	Plasminogen activator inhibitor 1		
1175 Q9NQ79	Cartilage acidic protein 1	0.51	
1176 P19827	Inter-alpha-trypsin inhibitor heavy chain H1	0.51	
1177 Q96BY6	Dedicator of cytokinesis protein 10	0.51	
1178 Q7Z7M0	Multiple epidermal growth factor-like domains protein 8	0.51	
1179 P17661	Desmin	0.51	
1180 P62081	40S ribosomal protein S7	0.51	
1181 P62269	405 ribosomal protein S18	0.52	
1182 Q9Y3D6	Mitochondrial fission 1 protein	0.52	
1183 P04083	Annexin A1	0.52	
1184 P62280	405 ribosomal protein S11	0.52	
1185 P31146	Coronin-1A	0.52	
1186 Q14247	Src substrate cortactin	0.53	0.8916789
1187 P00734	Prothrombin	0.53	0.9666017
1188 P02751	Fibronectin	0.53	0.8166450
1189 P08727	Keratin, type I cytoskeletal 19	0.53	1.0750613
1190 Q9Y5K8	V-type proton ATPase subunit D	0.53	1.1460690
1191 P07585	Decorin	0.53	1.2719843
1192 P35659	Protein DEK	0.53	1.2499958
1193 Q07820	Induced myeloid leukemia cell differentiation protein Mcl-1	0.53	1.2534505
1194 [RT-Cal ;	rote Retention time calibration protein	0.53	0.9504642
1195 P62857	405 ribosomal protein 528	0.53	1.2647549
1196 Q9Y613	FH1/FH2 domain-containing protein 1	0.54	1.0847915
1197 P05089	Arginase-1	0.54	
1198 P27797	Calreticulin	0.54	
1199 Q969H8	Myeloid-derived growth factor	0.54	
1200 Q99784	Noelin	0.54	

Row	Peak Name	Group	p-value	Fold Change
1203	L P30048	Thioredoxin-dependent peroxide reductase, mitochondrial	0.54	1.117318793
1202	2 P50991	T-complex protein 1 subunit delta	0.54	0.897546103
1203	3 014618	Copper chaperone for superoxide dismutase	0.54	0.851774014
1204	4 P01031	Complement C5	0.54	1.032629566
1205	5 Q14767	Latent-transforming growth factor beta-binding protein 2	0.54	0.631647967
1206	5 P25705	ATP synthase subunit alpha, mitochondrial	0.55	1.186949276
1207	7 P68366	Tubulin alpha-4A chain	0.55	1.159706315
1208	8 P24821	Tenascin	0.55	1.06935679
1209	9 Q14974	Importin subunit beta-1	0.55	1.073743414
1210	P09429	High mobility group protein B1	0.55	1.105638878
1213	I P62241	405 ribosomal protein S8	0.56	1.193602857
1212	2 Q92496	Complement factor H-related protein 4	0.56	1.118827229
1213	3 P42126	Enoyl-CoA delta isomerase 1, mitochondrial	0.56	1.10235189
1214	4 014791	Apolipoprotein L1	0.57	0.909554663
1215	5 015143	Actin-related protein 2/3 complex subunit 1B	0.57	1.08526464
1216	5 Q9H479	Fructosamine-3-kinase	0.57	0.748103241
1217	7 Q14289	Protein-tyrosine kinase 2-beta	0.58	1.057419195
1218	3 Q14012	Calcium/calmodulin-dependent protein kinase type 1	0.59	0.905285158
1219	Q5T013	Putative hydroxypyruvate isomerase	0.59	1.19268924
1220	Q9Y2B0	Protein canopy homolog 2	0.59	1.146401679
	L Q6UX04	Peptidyl-prolyl cis-trans isomerase CWC27 homolog	0.59	1.109287983
	2 P62244	40S ribosomal protein S15a		1.096757606
	3 P13796	Plastin-2		1.050420811
	4 P51570	Galactokinase		1.196714915
	5 P35611	Alpha-adducin		1.095370538
	5 Q14847	LIM and SH3 domain protein 1	0.60	
	7 Q9UHG2	ProSAAS		0.615716263
	3 Q9H1R3	Myosin light chain kinase 2, skeletal/cardiac muscle		1.129675022
	094985	Calsyntenin-1		1.115231328
	Q04917	14-3-3 protein eta		0.854602762
	L P36871	Phosphoglucomutase-1		1.084051398
	2 Q9NPH3	Interleukin-1 receptor accessory protein		1.052249388
	3 P02814	Submaxillary gland androgen-regulated protein 3B		1.149413345
	4 Q15223	Nectin-1 Ribose-5-phosphate isomerase		0.865697447
	5 P49247			1.109918852
	5 000203	AP-3 complex subunit beta-1	0.62	
	7 P11166	Solute carrier family 2, facilitated glucose transporter member 1		1.099630441
	B QOPNE2	Elongator complex protein 6		1.108064806
	9 095633	Follistatin-related protein 3		0.868095911
	Q9UBW5	Bridging integrator 2		1.113507923
	1 P08133	Annexin A6	0.64	
	2 P41567	Eukaryotic translation initiation factor 1		1.199833864
	3 P12830	Cadherin-1		0.898713872
	4 Q15843	NEDD8		1.081386404
	5 P40925	Malate dehydrogenase, cytoplasmic		1.112044679
	5 P10412	Histone H1.4		1.186201853
1247	7 P60900	Proteasome subunit alpha type-6		0.908625225
1248	8 P16109	P-selectin	0.65	0.806593363
1249	9 Q9NX63	MICOS complex subunit MIC19	0.65	0.877298218
1250	060888	Protein CutA	0.65	1.091352968
125:	L P08185	Corticosteroid-binding globulin	0.65	0.968175046
1252	2 P12109	Collagen alpha-1(VI) chain	0.65	0.956141647
1253	3 P13647	Keratin, type II cytoskeletal 5	0.65	1.069165306
125/	4 Q8WZ74	Cortactin-binding protein 2	0.65	1.123545952
1259	5 Q14624	Inter-alpha-trypsin inhibitor heavy chain H4	0.66	1.028033672
	5 Q5TH69	Brefeldin A-inhibited guanine nucleotide-exchange protein 3	0.66	0.812379392
	7 P62249	40S ribosomal protein S16		1.152364637
	8 P03973	Antileukoproteinase		1.103278856
	P02768	Serum albumin		0.894898614
	P18827	Syndecan-1		1.119945907

Row	Peak Name	Group	p-value	Fold Change
1261	Q9BYE9	Cadherin-related family member 2	0.67	0.9063878
1262	P80404	4-aminobutyrate aminotransferase, mitochondrial	0.67	1.0764271
1263	Q02487	Desmocollin-2	0.67	1.0763793
1264	Q93099	Homogentisate 1,2-dioxygenase	0.67	1.1521035
1265	O60462	Neuropilin-2	0.68	1.2679961
1266	P10586	Receptor-type tyrosine-protein phosphatase F	0.68	0.9249802
1267	Q15828	Cystatin-M	0.68	1.0941582
1268	P10909	Clusterin	0.68	1.0269388
1269	Q9UNW1	Multiple inositol polyphosphate phosphatase 1	0.68	1.088051
1270	Q9HAB8	Phosphopantothenatecysteine ligase	0.69	1.1207457
1271	P53396	ATP-citrate synthase	0.69	0.8048780
1272	P23083	Immunoglobulin heavy variable 1-2	0.69	0.9277714
1273	Q6P9B6	TLD domain-containing protein 1	0.69	0.9045752
1274	P11413	Glucose-6-phosphate 1-dehydrogenase	0.69	1.0906843
1275	Q9Y6U3	Adseverin	0.69	1.0647150
1276	Q9UBP9	PTB domain-containing engulfment adapter protein 1	0.70	0.8811186
1277	Q92673	Sortilin-related receptor	0.70	1.0730261
1278	P24666	Low molecular weight phosphotyrosine protein phosphatase	0.70	0.9273930
1279	A5YKK6	CCR4-NOT transcription complex subunit 1	0.70	1.0536955
1280	Q15691	Microtubule-associated protein RP/EB family member 1	0.71	1.0492676
	Q93063	Exostosin-2	0.71	0.9193423
	Q9NUQ6	SPATS2-like protein	0.71	1.0691775
	P20674	Cytochrome c oxidase subunit 5A, mitochondrial	0.72	1.0772676
	P28074	Proteasome subunit beta type-5	0.72	1.0772770
	P30085	UMP-CMP kinase	0.72	
	P54652	Heat shock-related 70 kDa protein 2	0.72	1.0676433
	000468	Agrin	0.72	1.0505697
	P49908	Selenoprotein P	0.72	0.9575149
	Q9H4A9	Dipeptidase 2	0.72	1.1158343
	P49005	DNA polymerase delta subunit 2	0.73	1.050301
	P53778	Mitogen-activated protein kinase 12	0.73	1.0662729
	P43487		0.73	0.9327548
		Ran-specific GTPase-activating protein		
	POCOL4	Complement C4-A	0.74	0.9694638
	P10155	60 kDa SS-A/Ro ribonucleoprotein	0.74	1.0521385
	000461	Golgi integral membrane protein 4	0.74	1.1039198
	P35268	60S ribosomal protein L22	0.75	
	P28838	Cytosol aminopeptidase	0.75	
	Q96IY4	Carboxypeptidase B2	0.75	0.9809576
	Q9Y3B2	Exosome complex component CSL4	0.75	0.9377054
	Q8NBJ4	Golgi membrane protein 1	0.75	0.9337822
	Q00688	Peptidyl-prolyl cis-trans isomerase FKBP3	0.75	1.0773986
	P61981	14-3-3 protein gamma	0.75	1.0531526
	Q9UDT6	CAP-Gly domain-containing linker protein 2	0.75	1.0892738
	P31943	Heterogeneous nuclear ribonucleoprotein H	0.75	1.046312
	P40763	Signal transducer and activator of transcription 3	0.76	1.0571285
	P14384	Carboxypeptidase M	0.76	0.9403561
	P82979	SAP domain-containing ribonucleoprotein	0.76	1.0563746
1308	Q15029	116 kDa U5 small nuclear ribonucleoprotein component	0.76	0.9679034
1309	Q13442	28 kDa heat- and acid-stable phosphoprotein	0.76	1.0447027
1310	P62942	Peptidyl-prolyl cis-trans isomerase FKBP1A	0.76	0.9194146
1311	Q9NNW7	Thioredoxin reductase 2, mitochondrial	0.76	1.1159137
1312	P05154	Plasma serine protease inhibitor	0.76	1.0317531
1313	P14151	L-selectin	0.76	1.0436094
1314	Q5SSJ5	Heterochromatin protein 1-binding protein 3	0.76	0.9521929
1315	000429	Dynamin-1-like protein	0.76	0.9558185
	Q9Y2S2	Lambda-crystallin homolog	0.76	1.0468821
	Q15369	Transcription elongation factor B polypeptide 1	0.76	1.0612453
	P62913	60S ribosomal protein L11	0.77	1.0464018
	P15151	Poliovirus receptor	0.77	
	P19971	Thymidine phosphorylase	0.78	1.0721173

ow	Peak Name	Group	p-value	Fold Change
1321	P45974	Ubiquitin carboxyl-terminal hydrolase 5	0.78	1.0668126
1322	Q9BYX7	Putative beta-actin-like protein 3	0.78	1.0939971
1323	P10153	Non-secretory ribonuclease	0.78	1.0548699
1324	P08603	Complement factor H	0.78	1.0222894
1325	Q00839	Heterogeneous nuclear ribonucleoprotein U	0.78	1.0914230
1326	Q16531	DNA damage-binding protein 1	0.78	1.0402528
1327	Q92859	Neogenin	0.78	0.9325346
1328	P63279	SUMO-conjugating enzyme UBC9	0.78	1.0433045
1329	P12955	Xaa-Pro dipeptidase	0.78	1.0413251
1330	Q14690	Protein RRP5 homolog	0.79	1.078182
1331	P22891	Vitamin K-dependent protein Z	0.79	0.964109
1332	P01019	Angiotensinogen	0.79	1.025115
1333	P12532	Creatine kinase U-type, mitochondrial	0.79	1.043244
1334	P18621	60S ribosomal protein L17	0.79	1.044621
1335	015240	Neurosecretory protein VGF	0.79	1.109744
1336	P34913	Bifunctional epoxide hydrolase 2	0.79	1.057108
	P60983	Glia maturation factor beta	0.79	1.09999
	P04070	Vitamin K-dependent protein C	0.79	
	Q14112	Nidogen-2	0.79	
	Q9Y230	RuyB-like 2	0.80	1.171733
	P21291	Cysteine and glycine-rich protein 1	0.80	1.095182
	Q14766	Latent-transforming growth factor beta-binding protein 1	0.80	
	Q5ZPR3	CD276 antigen	0.80	1.078752
	Q9UBF2	Coatomer subunit gamma-2	0.80	
	P02461	Collagen alpha-1(III) chain	0.80	0.934828
	P61313	60S ribosomal protein L15	0.81	
	000151	PDZ and LIM domain protein 1	0.81	
			0.81	
	Q9BXN1	Asporin		
	A0PJW6	Transmembrane protein 223	0.81	
	Q9BXS5	AP-1 complex subunit mu-1	0.82	
	P06732	Creatine kinase M-type	0.82	1.042210
	Q9NZN3	EH domain-containing protein 3	0.82	
	P08238	Heat shock protein HSP 90-beta	0.82	1.038262
	P14314	Glucosidase 2 subunit beta	0.82	
	Q96RQ1	Endoplasmic reticulum-Golgi intermediate compartment protein 2	0.82	
	Q13418	Integrin-linked protein kinase	0.83	
	075368	SH3 domain-binding glutamic acid-rich-like protein	0.83	
1358	P07360	Complement component C8 gamma chain	0.83	1.01425
1359	Q9UKV8	Protein argonaute-2	0.84	1.03544
1360	P04211	Immunoglobulin lambda variable 7-43	0.84	0.909093
1361	P19652	Alpha-1-acid glycoprotein 2	0.84	1.023330
1362	P62851	40S ribosomal protein S25	0.84	0.907621
1363	P67809	Nuclease-sensitive element-binding protein 1	0.84	0.92261
1364	Q02880	DNA topoisomerase 2-beta	0.84	0.971062
1365	P43652	Afamin	0.84	1.015885
1366	Q01469	Fatty acid-binding protein, epidermal	0.84	0.9317
1367	P16401	Histone H1.5	0.85	1.0505
1368	P09172	Dopamine beta-hydroxylase	0.85	0.979772
1369	P01344	Insulin-like growth factor II	0.85	1.020235
1370	Q6IQ49	Protein SDE2 homolog	0.86	1.049902
1371	P61224	Ras-related protein Rap-1b	0.86	0.957253
	P63313	Thymosin beta-10	0.86	
	P08670	Vimentin	0.86	
	Q9UNN8	Endothelial protein C receptor	0.86	
	075348	V-type proton ATPase subunit G 1	0.87	
	P46782	40S ribosomal protein S5	0.87	
	Q9ULA0	Aspartyl aminopeptidase	0.87	0.967126
	Q13201	Multimerin-1	0.87	
13/5	P49721	Proteasome subunit beta type-2	0.88	0.968061

<mark>ow Peak Nan</mark>	Group	p-value	Fold Change
1381 Q9BWP8	Collectin-11	0.88	0.9685341
1382 P51452	Dual specificity protein phosphatase 3	0.88	1.0294311
1383 Q9Y2X3	Nucleolar protein 58	0.88	1.0313951
1384 Q9BV36	Melanophilin	0.88	0.9782939
1385 P35520	Cystathionine beta-synthase	0.88	0.9778682
1386 P13646	Keratin, type I cytoskeletal 13	0.88	1.0268787
1387 P06276	Cholinesterase	0.89	1.011151
1388 P62826	GTP-binding nuclear protein Ran	0.89	0.9658377
1389 P39019	405 ribosomal protein S19	0.89	1.019992
1390 P46060	Ran GTPase-activating protein 1	0.89	0.9744329
1391 P11277	Spectrin beta chain, erythrocytic	0.89	1.0181280
1392 Q16643	Drebrin	0.90	0.9848165
1393 P09668	Pro-cathepsin H	0.90	0.9731971
1394 P05546	Heparin cofactor 2	0.91	0.9920916
1395 075380	NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial	0.91	1.0163047
1396 P05155	Plasma protease C1 inhibitor	0.92	1.0079126
1397 P07108	Acyl-CoA-binding protein	0.92	0.9777507
1398 P01767	Immunoglobulin heavy variable 3-53	0.92	1.033991
1399 Q12860	Contactin-1	0.92	0.972169
1400 Q9NTK5	Obg-like ATPase 1	0.92	1.0178176
1400 Q514110	Carboxypeptidase E	0.92	1.0253432
1401 P16870	Platelet endothelial cell adhesion molecule	0.92	0.9745333
1402 P16284 1403 P33908	Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA	0.92	0.9745555
1404 Q13642	Four and a half LIM domains protein 1	0.94	
1405 P0CG05	Ig lambda-2 chain C regions	0.94	1.019843
1406 Q8IXQ3	Uncharacterized protein C9orf40	0.95	
1407 Q99459	Cell division cycle 5-like protein	0.95	0.990697
1408 P39023	60S ribosomal protein L3	0.95	1.0131440
1409 P31947	14-3-3 protein sigma	0.95	0.9904198
1410 P27695	DNA-(apurinic or apyrimidinic site) lyase	0.95	1.0099709
1411 Q02413	Desmoglein-1	0.95	0.992421
1412 Q96T51	RUN and FYVE domain-containing protein 1	0.96	0.99248
1413 P34096	NRibonuclease 4	0.96	1.034113
1414 P17900	Ganglioside GM2 activator	0.96	0.983928
1415 P07225	Vitamin K-dependent protein S	0.97	0.997111
1416 Q9P2E9	Ribosome-binding protein 1	0.97	1.005656
1417 O94776	Metastasis-associated protein MTA2	0.97	1.005786
1418 O15230	Laminin subunit alpha-5	0.98	0.996833
1419 P50895	Basal cell adhesion molecule	0.98	1.005300
1420 Q9NP79	Vacuolar protein sorting-associated protein VTA1 homolog	0.98	0.993583
1421 P07384	Calpain-1 catalytic subunit	0.98	0.996897
1422 P04004	Vitronectin	0.98	0.998378
1423 P07951	Tropomyosin beta chain	0.98	1.004404
1424 Q9NQP4	Prefoldin subunit 4	0.99	1.003762
1425 P56537	Eukaryotic translation initiation factor 6	0.99	1.002424
1426 P20930	Filaggrin	0.99	1.007727
1427 P09326	CD48 antigen	0.99	1.004535
1428 Q15363	Transmembrane emp24 domain-containing protein 2	0.99	
1429 P63220	40S ribosomal protein S21	0.99	
1430 Q8IVL1	Neuron navigator 2	0.99	
1430 QBIVE1	Aldose reductase	0.99	
1431 P13121	Trifunctional purine biosynthetic protein adenosine-3	0.99	
1432 P22102 1433 Q15019	Septin-2	0.99	
1433 Q15019	Laminin subunit beta-2	1.00	
1435 Q01518 1436 Q8IUI8	Adenylyl cyclase-associated protein 1	1.00	
	Cytokine receptor-like factor 3	1.00	1.001015

6. List of Significantly Up Regulated proteins

		Fold
PROTEIN	p-value	Change
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1	0.00	1.58
10 kDa heat shock protein, mitochondrial	0.03	1.61
14-3-3 protein beta/alpha	0.00	1.68
14-3-3 protein zeta/delta	0.00	1.87
26S protease regulatory subunit 6A	0.00	1.76
26S proteasome non-ATPase regulatory subunit 1	0.00	1.58
26S proteasome non-ATPase regulatory subunit 5	0.00	1.67
3-hydroxyacyl-CoA dehydrogenase type-2	0.01	1.58
4-hydroxyphenylpyruvate dioxygenase	0.01	1.63
40S ribosomal protein S12	0.00	2.49
40S ribosomal protein S13	0.01	1.67
40S ribosomal protein S2	0.02	1.50
40S ribosomal protein S24	0.00	1.72
40S ribosomal protein S4, X isoform	0.00	1.87
40S ribosomal protein SA	0.00	1.86
4F2 cell-surface antigen heavy chain	0.02	1.55
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4	0.01	1.60
6-phosphogluconate dehydrogenase, decarboxylating	0.00	1.51
60S acidic ribosomal protein P0	0.04	1.60
60S ribosomal protein L13	0.02	2.36
60S ribosomal protein L19	0.05	1.65
60S ribosomal protein L30	0.01	1.67
60S ribosomal protein L7	0.03	1.58
Acetyl-CoA acetyltransferase, cytosolic	0.04	1.57
Actin-related protein 2	0.01	1.68
Actin-related protein 2/3 complex subunit 5	0.00	1.71
Activated CDC42 kinase 1	0.00	1.60
Acyl-coenzyme A thioesterase 2, mitochondrial	0.03	1.94
Acyl-protein thioesterase 1	0.00	1.65
Acylamino-acid-releasing enzyme	0.00	1.73
Adenosine deaminase	0.01	1.58
Adenylate kinase isoenzyme 1	0.00	1.84
Adipocyte enhancer-binding protein 1	0.00	2.39
Adipocyte plasma membrane-associated protein	0.00	1.51
Alanine aminotransferase 1	0.00	2.04
Alcohol dehydrogenase [NADP(+)]	0.01	1.62
Aldehyde dehydrogenase, mitochondrial	0.03	1.66
Alpha-1-acid glycoprotein 1	0.00	1.73
Alpha-enolase	0.00	1.83
Alpha-mannosidase 2	0.00	2.91
Aminoacylase-1	0.05	1.82
Amyloid beta A4 protein	0.01	1.83

Angiogenin	0.05	1.67
Angiopoietin-related protein 3	0.01	1.82
Annexin A2	0.00	1.51
Annexin A3	0.01	1.70
AP-1 complex subunit beta-1	0.01	1.56
ATP synthase subunit O, mitochondrial	0.03	2.99
ATP-dependent RNA helicase DDX3Y	0.00	2.02
Bcl-2-like protein 13	0.00	2.10
Beta-1,4-glucuronyltransferase 1	0.03	5.34
Beta-2-microglobulin	0.00	1.90
Beta-actin-like protein 2	0.01	1.78
Beta-glucuronidase	0.03	1.84
Beta-mannosidase	0.01	1.71
Bisphosphoglycerate mutase	0.00	1.94
Bone marrow proteoglycan	0.00	1.54
C-C motif chemokine 15	0.02	1.72
C-reactive protein	0.00	3.62
Cadherin-6	0.00	1.86
Cadherin-related family member 5	0.01	1.55
Calcium/calmodulin-dependent protein kinase type II subunit beta	0.00	1.98
Carbonic anhydrase 3	0.05	1.84
Carbonyl reductase [NADPH] 1	0.00	2.07
Cartilage oligomeric matrix protein	0.00	1.97
Cathepsin F	0.00	2.41
CD5 antigen-like	0.02	2.17
CDK5 regulatory subunit-associated protein 3	0.05	1.81
Cell growth regulator with EF hand domain protein 1	0.00	3.38
Centromere protein F	0.00	1.55
Chloride intracellular channel protein 4	0.00	1.68
Cofilin-1	0.00	1.75
Coiled-coil domain-containing protein 25	0.03	1.83
Collagen alpha-1(XVIII) chain	0.01	1.50
Complement C1q subcomponent subunit A	0.00	1.85
Complement C1q subcomponent subunit C	0.00	1.57
Complement C4-B	0.00	1.61
Complement factor H-related protein 5	0.00	1.67
Copine-1	0.01	1.68
Cullin-associated NEDD8-dissociated protein 1	0.00	1.64
Cysteine and histidine-rich domain-containing protein 1	0.00	1.82
Cysteine-rich protein 1	0.03	5.16
Cytosolic 5'-nucleotidase 3A	0.02	1.57
Cytosolic non-specific dipeptidase	0.00	1.86
D-3-phosphoglycerate dehydrogenase	0.00	1.60
Deleted in malignant brain tumors 1 protein	0.04	1.64
Desmocollin-1	0.05	1.55
Di-N-acetylchitobiase	0.01	1.67

Dihydropyrimidinase-related protein 2	0.00	1.75
Dimethylglycine dehydrogenase, mitochondrial	0.02	1.57
Dynamin-2	0.00	1.56
E3 ubiquitin/ISG15 ligase TRIM25	0.00	1.55
Ectonucleoside triphosphate diphosphohydrolase 5	0.01	1.64
EGF-containing fibulin-like extracellular matrix protein 1	0.00	1.62
EH domain-containing protein 1	0.00	1.80
Elongation factor 1-gamma	0.02	1.68
Endoglin	0.04	1.51
Endoplasmic reticulum aminopeptidase 2	0.01	1.68
Enoyl-CoA hydratase, mitochondrial	0.01	1.50
Epsin-1	0.00	1.82
Ester hydrolase C11orf54	0.01	1.78
Eukaryotic initiation factor 4A-I	0.00	2.11
Eukaryotic initiation factor 4A-II	0.04	1.50
Eukaryotic translation initiation factor 3 subunit I	0.00	1.50
Eukaryotic translation initiation factor 3 subunit J	0.01	1.55
Eukaryotic translation initiation factor 4E	0.03	3.46
Eukaryotic translation initiation factor 5A-1	0.01	1.72
Exosome complex component RRP41	0.01	2.31
Exportin-1	0.00	1.58
Extracellular glycoprotein lacritin	0.05	1.80
Ezrin	0.00	1.64
Farnesyl pyrophosphate synthase	0.00	1.56
Fatty acid-binding protein, liver	0.05	1.50
Ferritin heavy chain	0.05	2.98
Ferritin light chain	0.00	1.69
Fibulin-2	0.00	1.53
Filamin-B	0.00	1.54
Focal adhesion kinase 1	0.00	2.16
Follistatin-related protein 1	0.01	1.83
Gamma-aminobutyric acid receptor-associated protein-like 2	0.04	1.62
GDH/6PGL endoplasmic bifunctional protein	0.01	1.80
General transcription factor IIF subunit 1	0.01	1.70
Glial fibrillary acidic protein	0.01	2.07
Glutamate dehydrogenase 1, mitochondrial	0.00	1.87
Glutamyl aminopeptidase	0.00	1.83
Glutathione peroxidase 1	0.00	2.17
Glutathione synthetase	0.00	1.81
Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic	0.00	1.68
Glycogen debranching enzyme	0.00	1.65
Glycogen phosphorylase, brain form	0.00	1.73
Glycogen phosphorylase, liver form	0.00	1.53
GMP reductase 1	0.00	2.18
GTP:AMP phosphotransferase AK3, mitochondrial	0.00	1.64
Guanine nucleotide-binding protein subunit alpha-13	0.00	1.53

Heat shock 70 kDa protein 1A	0.00	1.70
Hematological and neurological expressed 1 protein	0.05	1.58
Hemoglobin subunit alpha	0.01	1.82
Hemoglobin subunit beta	0.02	1.88
Hemoglobin subunit delta	0.00	1.78
Heterogeneous nuclear ribonucleoprotein K	0.04	1.64
Heterogeneous nuclear ribonucleoprotein M	0.00	1.50
High mobility group protein B2	0.00	1.64
High mobility group protein B3	0.01	1.68
Histidine protein methyltransferase 1 homolog	0.00	2.44
Histone H3.3	0.05	2.83
HLA class I histocompatibility antigen, B44 alfa chain	0.02	1.79
HLA class II histocompatibility antigen, DR alpha chain	0.01	1.95
Host cell factor 1	0.01	1.61
Hydroxyacylglutathione hydrolase, mitochondrial	0.00	1.59
Hydroxysteroid dehydrogenase-like protein 2	0.01	1.83
Hypoxanthine-guanine phosphoribosyltransferase	0.03	1.74
Ig alpha-1 chain C region	0.00	3.06
Ig alpha-2 chain C region	0.00	3.01
Ig gamma-2 chain C region	0.01	3.36
Ig gamma-4 chain C region	0.01	4.56
Ig heavy chain constant	0.03	6.39
Ig heavy constant gamma 1	0.00	2.80
Ig heavy constant gamma 3	0.05	2.77
Ig Heavy Variable 3-33	0.00	4.06
Ig heavy variable 3-7	0.00	2.11
Ig HV4-34	0.04	2.99
Ig kappa chain C region	0.00	4.47
Ig kappa variable 3-20	0.02	2.15
lg mu chain C region	0.04	4.10
Immunoglobulin heavy variable 1-46	0.02	2.14
Immunoglobulin heavy variable 3-48	0.00	2.18
Immunoglobulin J chain	0.05	2.95
Immunoglobulin kappa variable 1-16	0.00	2.02
Immunoglobulin kappa variable 2-30	0.02	1.93
Immunoglobulin lambda variable 3-19	0.00	2.74
Immunoglobulin lambda variable 3-21	0.00	3.76
Immunoglobulin lambda variable 3-25	0.01	1.62
Importin-11	0.00	1.88
Importin-7	0.01	1.57
Insulin-like growth factor-binding protein 6	0.02	1.62
Intron-binding protein aquarius	0.00	1.60
Isochorismatase domain-containing protein 2	0.00	1.91
Junction plakoglobin	0.03	1.61
Keratin, type I cuticular Ha3-II	0.02	1.61
Keratin, type I cytoskeletal 15	0.01	1.66

Keratin, type I cytoskeletal 16	0.00	2.08
Keratin, type II cuticular Hb5	0.01	1.96
Keratin, type II cytoskeletal 3	0.01	1.94
KRR1 small subunit processome component homolog	0.03	1.73
L-lactate dehydrogenase A chain	0.02	1.55
Laminin subunit beta-1	0.00	1.62
Latent-transforming growth factor beta-binding protein 4	0.01	2.09
Leucine zipper protein 1	0.00	1.72
Leucine-rich alpha-2-glycoprotein	0.00	1.73
Leucine-rich repeat flightless-interacting protein 1	0.00	1.54
LIM and senescent cell antigen-like-containing domain protein 1	0.04	1.68
Lipopolysaccharide-binding protein	0.00	2.03
LisH domain and HEAT repeat-containing protein KIAA1468	0.03	1.99
Low-density lipoprotein receptor	0.00	1.80
Lysosomal Pro-X carboxypeptidase	0.00	1.95
Lysosomal protective protein	0.00	1.77
Macrophage colony-stimulating factor 1 receptor	0.00	1.73
Maltase-glucoamylase, intestinal	0.05	1.50
Mannose-binding protein C	0.02	1.50
Matrin-3	0.00	1.65
Matrix Gla protein	0.04	2.15
Matrix metalloproteinase-9	0.00	1.95
Mediator of RNA polymerase II transcription subunit 13-like	0.03	1.65
Melanotransferrin	0.00	2.73
Mesothelin	0.03	1.55
Metalloproteinase inhibitor 1	0.00	1.78
Microtubule-associated protein 1B	0.00	1.80
Minor histocompatibility protein HA-1	0.00	1.67
Mitochondrial import inner membrane translocase subunit Tim13	0.05	1.71
Mitogen-activated protein kinase 14	0.01	1.75
Myelin basic protein	0.00	1.98
N-acetylglucosamine-1-phosphotransferase subunit gamma	0.02	2.13
N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase	0.00	1.74
Na(+)/H(+) exchange regulatory cofactor NHE-RF1	0.00	2.09
NADP-dependent malic enzyme	0.00	1.93
Neprilysin	0.01	1.68
Neurogenic locus notch homolog protein 2	0.00	1.54
Neutrophil cytosol factor 4	0.01	1.79
Neutrophil elastase	0.00	1.80
Nicotinate phosphoribosyltransferase	0.00	1.51
Nicotinate-nucleotide pyrophosphorylase [carboxylating]	0.00	2.15
NIF3-like protein 1	0.04	1.82
Nuclear autoantigenic sperm protein	0.00	1.57
Nuclear pore complex protein Nup50	0.01	1.84
Nucleoside diphosphate kinase B	0.01	2.62
obsolete	0.01	2.37

Pancreatic alpha-amylase	0.00	2.87
Pancreatic secretory granule membrane major glycoprotein GP2	0.00	4.31
Pantetheinase	0.03	1.97
PDZ and LIM domain protein 5	0.00	1.68
Pentatricopeptide repeat domain-containing protein 3, mitochondrial	0.02	1.58
Peptidoglycan recognition protein 1	0.01	2.00
Peptidyl-glycine alpha-amidating monooxygenase	0.00	1.62
Peptidyl-prolyl cis-trans isomerase A	0.00	1.59
Peptidyl-prolyl cis-trans isomerase FKBP4	0.00	2.16
Peptidyl-prolyl cis-trans isomerase FKBP5	0.00	1.64
Peroxidasin homolog	0.03	1.67
Peroxiredoxin-2	0.00	1.84
Peroxiredoxin-6	0.00	2.10
Phosphatidylinositol 4-phosp 3-kinase C2 domain-containing		
subunit beta	0.01	1.92
Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha	0.01	1.65
Phosphofurin acidic cluster sorting protein 1	0.00	1.67
Phosphoglycerate mutase 1	0.02	1.64
Phospholipid transfer protein	0.00	1.61
Plastin-1	0.03	1.68
Platelet basic protein	0.00	4.83
Platelet factor 4	0.02	1.83
Platelet-derived growth factor receptor beta	0.05	2.02
Pleckstrin	0.00	1.90
Poly(rC)-binding protein 1	0.02	1.79
Polyadenylate-binding protein 1	0.02	1.61
Polymeric immunoglobulin receptor	0.02	2.47
POTE ankyrin domain family member F	0.00	1.83
POTE ankyrin domain family member J	0.00	2.15
Prefoldin subunit 6	0.02	1.75
Probable ATP-dependent RNA helicase DDX17	0.00	1.63
Probable ATP-dependent RNA helicase DDX5	0.00	1.87
Probable phospholipid-transporting ATPase IF	0.01	2.02
Profilin-1	0.00	1.63
Prolyl endopeptidase FAP	0.01	2.53
Prostaglandin reductase 1	0.01	1.54
Prostaglandin-H2 D-isomerase	0.00	1.66
Proteasome activator complex subunit 2	0.02	1.53
Proteasome subunit alpha type-2	0.04	1.64
Proteasome subunit alpha type-3	0.00	1.70
Proteasome subunit alpha type-5	0.00	1.57
Proteasome subunit beta type-6	0.02	1.79
Proteasome subunit beta type-7	0.01	1.64
Protein 4.1	0.05	1.62
Protein disulfide-isomerase	0.00	1.66
Protein disulfide-isomerase A6	0.00	1.55

Protein FAM3C	0.00	1.69
Protein FAM76B	0.01	2.25
Protein flightless-1 homolog	0.00	1.59
Protein MON2 homolog	0.05	1.69
Protein PBDC1	0.02	1.82
Protein phosphatase 1 regulatory subunit 14B	0.02	1.52
Protein POF1B	0.00	1.99
Protein S100-A10	0.01	1.60
Protein S100-A11	0.04	1.51
Protein S100-A6	0.03	1.97
Protein S100-A7	0.00	1.97
Protein S100-A8	0.01	1.91
Protein S100-A9	0.00	1.94
Protein-L-isoaspartate(D-aspartate) O-methyltransferase	0.00	1.75
Prothymosin alpha	0.05	13.69
Pterin-4-alpha-carbinolamine dehydratase	0.04	1.89
Purine nucleoside phosphorylase	0.00	2.56
Putative ATP-dependent RNA helicase DDX11-like protein 8	0.03	2.31
Pyruvate kinase PKM	0.00	1.69
Radixin	0.02	1.51
Ragulator complex protein LAMTOR3	0.01	3.95
Ras GTPase-activating-like protein IQGAP2	0.04	1.54
RAS guanyl-releasing protein 2	0.02	2.21
Ras suppressor protein 1	0.00	1.60
Ras-related protein Rab-7a	0.00	1.79
Receptor-type tyrosine-protein phosphatase eta	0.01	1.74
Reticulon-4	0.02	2.20
Retinal dehydrogenase 1	0.00	1.52
Retinol-binding protein 1	0.03	1.59
Rho-associated protein kinase 2	0.01	1.54
RNA-binding protein 3	0.02	1.65
RNMT-activating mini protein	0.03	3.99
rRNA 2'-O-methyltransferase fibrillarin	0.00	1.88
Secretogranin-1	0.01	1.88
Septin-6	0.01	1.72
Septin-7	0.01	1.61
Serine/arginine repetitive matrix protein 2	0.01	1.60
Serine/threonine-protein kinase 10	0.00	1.83
Serine/threonine-protein phosp 2A 65 kDa regulatory subunit A alpha		
isoform	0.00	1.91
Serine/threonine-protein phosp 6 catalytic subunit	0.02	1.52
Serine/threonine-protein phosp PP1-gamma catalytic subunit	0.01	2.24
Serpin B3	0.03	1.63
Serpin B5	0.01	1.70
Serum amyloid A-1 protein	0.00	1.73
Serum amyloid A-2 protein	0.01	1.85

Sex hormone-binding globulin	0.01	1.62
Small subunit processome component 20 homolog	0.00	1.97
Sorbitol dehydrogenase	0.00	1.89
Spectrin beta chain, non-erythrocytic 1	0.00	1.54
Sphingomyelin phosphodiesterase 4	0.00	2.28
Staphylococcal nuclease domain-containing protein 1	0.02	1.51
TAR DNA-binding protein 43	0.01	1.60
Thioredoxin	0.01	1.70
Thioredoxin domain-containing protein 5	0.00	1.91
THO complex subunit 4	0.03	1.79
Thrombospondin-1	0.00	3.01
Thrombospondin-2	0.02	2.20
Thy-1 membrane glycoprotein	0.02	1.77
Thymosin beta-4	0.00	2.28
Transcobalamin-1	0.00	1.88
Transcription factor BTF3	0.00	1.67
Transcription intermediary factor 1-beta	0.00	1.61
Transferrin receptor protein 1	0.00	2.13
Transforming growth factor beta-1	0.00	2.06
Transgelin-2	0.00	1.67
Transmembrane glycoprotein NMB	0.00	1.52
Triosephosphate isomerase	0.00	1.53
Tripeptidyl-peptidase 1	0.04	2.32
Tripeptidyl-peptidase 2	0.00	1.53
Tropomodulin-3	0.02	1.73
Trypsin-2	0.02	1.59
TryptophantRNA ligase, cytoplasmic	0.00	1.86
Tubulin alpha-1C chain	0.01	1.93
Tubulin beta chain	0.00	1.60
Tubulin-specific chaperone A	0.04	1.55
Ubiquitin carboxyl-terminal hydrolase isozyme L5	0.03	1.67
Ubiquitin-conjugating enzyme E2 N	0.05	1.63
Ubiquitin-conjugating enzyme E2 variant 2	0.00	2.20
Unhealthy ribosome biogenesis protein 2 homolog	0.00	1.82
UPF0587 protein C1orf123	0.00	3.14
V-type proton ATPase catalytic subunit A	0.01	1.69
Vacuolar protein sorting-associated protein 29	0.00	1.79
Vascular cell adhesion protein 1	0.00	1.76
Vascular endothelial growth factor receptor 1	0.04	1.72
Versican core protein	0.01	2.67
Voltage-dependent anion-selective channel protein 1	0.00	2.44
X-ray repair cross-complementing protein 6	0.00	1.55
Zinc finger CCCH domain-containing protein 4	0.05	1.63
Zinc finger protein 318	0.01	2.21

7. List of Significantly Down Regulated proteins

Group	p-value	Fold Change
Actin-related protein 2/3 complex subunit 2	0.01	0.21
Apolipoprotein A-II	0.00	0.56
Beta-Ala-His dipeptidase	0.00	0.58
Ficolin-2	0.01	0.53
Keratin, type II cytoskeletal 1	0.00	0.56
Keratin, type II cytoskeletal 1b	0.00	0.58
Serpin H1	0.01	0.65
Serum amyloid A-4 protein	0.05	0.59

8. Abstract from The British Society of Haematology Conference 2018-Liverpool

BSH18

General Haematology

BSH18-464

Quantitative Proteomic Studies in Mastocytosis

Robert Graham¹, Amy McMullen², Amy Grayson², Dave Lee¹, Nina Dempsey-Hibbert², Carol Ainley², Bethan Myers³, Ciaren Graham^{* 2}

¹Stoller Biomarker Discovery Centre, University of Manchester, ²Healthcare Science, Manchester Metropolitan University, Manchester, ³Haematology, United Lincolnshire Hospitals NHS Trust, Lincoln, United Kingdom

Please indicate your preferred method of presentation: Poster Has this abstract been presented at a British Haematology meeting before?: No Has this abstract been presented at an overseas meeting?: No

Please select your position from the list: Scientist

Abstract Content: Mastocytosis is a myeloproliferative disease that is characterised by the accumulation of neoplastic mast cells in one or several organs resulting in mediator release symptoms, tissue damage and, in aggressive cases, organ failure. The vast majority of adult patients with mastocytosis present with systemic mastocytosis (SM) and it is defined as mast cell accumulation in one or more visceral organs. Despite advances in the understanding of myeloid neoplasia the aetiology of mastocytosis is poorly understood. Around 80-90% of patients with SM harbour a somatic activating mutation in the c-KIT gene (D816V). The D816V mutation results in the constitutive activation of the c-Kit receptor causing the activation of multiple signalling pathways resulting in an increased proliferative and survival advantage of the mast cell lineage. However, the presence of the c-KIT mutation does not explain the heterogeneous clinical behaviour of the disease, and the molecular mechanisms underlying the different subtypes of SM remain largely elusive. There is a clear need to develop strategies that will aid in the understanding of the molecular pathology of SM. We carried-out a global discovery proteome analysis of the plasma of SM patients (n=3) and compared these to healthy control plasma samples(n=3); using the new high resolution mass spectrometry protocol Sequential Window Acquisition of all Theoretical fragmention spectra mass spectrometry (SWATH MS). SM patients were chosen for eligibility using the WHO selection criteria. Samples were immunodepleted and SWATH MS permanent digital proteomic maps were generated for all samples on an 6600 TripleTOF mass spectrometer (AB Sciex, Warrington, UK) and an Eksigent 1D+ Nano LC systems (Eksigent, Dublin, CA) all samples were run with triplicate mass spectrometry injections per sample. We identified ~1000 proteins in each of the samples at a 5% FDR and they were mapped on to their relevant pathways using KEGG. Heatmaps and volcano plots were generated using the MSstats program in the R environment. Bioinformatic analysis and pathway mapping demonstrated that a number of immunological and metabolic pathways were significantly upregulated in the plasma of the mastocytosis patients including B cell proliferation, phagocytosis response and calcium signalling. Full characterisation of key regulatory pathways in relation to mastocytosis disease aetiology will identify new direct cellular targets potentially paving the way for new bespoke treatment strategies in this blood disorder.

Disclosure of Interest: None Declared

Keywords: None