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Abstract

Object tracking is a typical application of Wireless Sensor Networks (WSNs), which

refers to the process of locating a moving object (or multiple objects) over time using

a sensor network. Object tracking in WSNs can be a time consuming and resource

hungry process due to factors, such as the amount of data generated or limited resources

available to the sensor network.

The traditional centralised approaches where a number of sensors transmit all informa-

tion to a base station or a sink node, increase computation burden. More recently static

or dynamic clustering approaches have been explored. Both clustering approaches suf-

fer from certain problems, such as, large clusters, redundant data collection and exces-

sive energy consumption. In addition, most existing object tracking algorithms mainly

focus on tracking an object instead of predicting the destination of an object.

To address the limitations of existing approaches, this thesis presents a novel framework

for efficient object tracking using sensor networks. It consists of a Hierarchical Hybrid

Clustering Mechanism (HHCM) with a Prediction-based Algorithm for Destination-

estimation (PAD). The proposed framework can track the destination of the object

without prior information of the objects movement, while providing significant reduc-

tion in energy consumption. The costs of computation and communication are also

reduced by collecting the most relevant information and discarding irrelevant informa-

tion at the initial stages of communication. The contributions of this thesis are:

Firstly, a novel Prediction-based Algorithm for Destination-estimation (PAD) has

been presented, that predicts the final destination of the object and the path that

particular object will take to that destination. The principles of origin destination

(OD) estimation have been adopted to create a set of trajectories that a particular

object could follow. These paths are made up of a number of mini-clusters, formed

for tracking the object, combined together. PAD also contains a Multi-level Recovery

Mechanism (MRM) that recovers tracking if the object is lost. MRM minimises the

number of nodes involved in the recovery process by initiating the process at local level

and then expanding to add more nodes till the object is recovered.

Secondly, a network architecture called Hierarchical Hybrid Clustering Mechanism

(HHCM) has been developed, that forms dynamic mini-clusters within and across static

clusters to reduce the number of nodes involved in the tracking process and to distribute

the initial computational tasks amoung a larger number of mini-cluster heads.



Lastly, building upon the HHCM to create a novel multi-hierarchy aggregation and

next-step prediction mechanism to gather the most relevant data about the movement

of the tracked object and its next-step location, a Kalman-filter based approach for

prediction of next state of an object in order to increase accuracy has been proposed.

In addition, a dynamic sampling mechanism has been devised to collect the most

relevant data.

Extensive simulations were carried out and results were compared with the existing

approaches to prove that HHCM and PAD make significant improvements in energy

conservation. To the best of my knowledge the framework developed in unique and

novel, which can predicts the destination of the moving object without any prior historic

knowledge of the moving object.



Contents

Acknowledgements i

Abstract iii

Contents v

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11

2.1 Object Tracking Considerations . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Protocols for Object Tracking Networks . . . . . . . . . . . . . . . . . . 13

2.2.1 Tree-Based Protocols . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Cluster-Based Protocols . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Self-organisation Based Protocols . . . . . . . . . . . . . . . . . 20

2.3 Object Tracking Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Bayesian Framework Based Tracking Algorithm . . . . . . . . . 22

2.3.2 Graph-based Tracking Algorithms . . . . . . . . . . . . . . . . . 23

2.3.3 Graph-based Event Boundary Detection Algorithms . . . . . . . 23

v



Contents vi

2.3.4 Markov Network . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Object Tracking Sampling Techniques . . . . . . . . . . . . . . . . . . . 25

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Proposed Hierarchical Hybrid Clustering Mechanism (HHCM)
for Object Tracking 28

3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The Proposed Hierarchical Hybrid Clustering Mechanism (HHCM) . . 30

3.3 Efficient Data Collection Mechanism . . . . . . . . . . . . . . . . . . . 32

3.3.1 The HHCM Model . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Next State Prediction . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 The Dynamic Sampling Mechanism . . . . . . . . . . . . . . . . 37

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Prediction-Based Algorithm for Destination-Estimation (PAD) 40

4.1 Requirements for Destination Estimation . . . . . . . . . . . . . . . . . 41

4.2 A Prediction-based Algorithm for Destination- estimation (PAD) . . . 41

4.2.1 The Proposed Mechanism . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Importance Matrix for Destination Estimation . . . . . . . . . . 46

4.2.3 A Multi-level Object Recovery Mechanism . . . . . . . . . . . . 49

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Experimental Evaluation 54

5.1 Software and Hardware Environments . . . . . . . . . . . . . . . . . . . 54

5.1.1 Software Environments . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 Hardware Environments . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 60

5.5.1 Experimental rationale . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.2 Energy Consumption of mini-clusters at Different Movement Speeds 62

5.5.3 Average Energy Consumption With PAD . . . . . . . . . . . . . 66

5.5.4 Energy Consumption Over Time With PAD . . . . . . . . . . . 67

5.5.5 Energy Consumption at Different Movement Speeds With PAD 68

5.5.6 Amount of Data Generated . . . . . . . . . . . . . . . . . . . . 69

5.5.7 The Number of Nodes Used During Object Tracking . . . . . . 70

5.5.8 Average Duration of Node Activity . . . . . . . . . . . . . . . . 71

5.5.9 Localisation Accuracy . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.10 Localisation Accuracy Over Time . . . . . . . . . . . . . . . . . 74



Contents vii

5.5.11 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . 75

5.5.12 Destination Estimation Accuracy . . . . . . . . . . . . . . . . . 76

5.5.13 Tracking Accuracy And Energy Consumed With Different Node
Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion and Future Work 80

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86



List of Figures

1.1 Probable paths available to the moving enemy within the observed area 6

2.1 Classification of object tracking protocols . . . . . . . . . . . . . . . . . 14

2.2 Representation of Deviation-Avoidance Tree (DAT)[1] . . . . . . . . . . 15

2.3 Classification of cluster-based Protocols . . . . . . . . . . . . . . . . . . 16

2.4 Dynamic Cluster representation highlighting the formation of clusters . 17

2.5 Representation of junction tree . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Relationship between energy consumption, number of nodes and data
collected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Network hierarchy of HHCM . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Network architecture of HHCM . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Mini-cluster formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 HHCM data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Information flow during object tracking . . . . . . . . . . . . . . . . . . 43

4.2 Local search recovery mechanism . . . . . . . . . . . . . . . . . . . . . 51

4.3 Cluster search recovery mechanism . . . . . . . . . . . . . . . . . . . . 52

4.4 Multi-cluster search recovery mechanism . . . . . . . . . . . . . . . . . 53

5.1 Comparison of energy consumption as the object moves at the speed of
1 m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Comparison of energy consumption as the object moves at the speed of
5 m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Comparison of energy consumption as the object moves at the speed of
10 m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Comparison of energy consumption as the object moves at the speed of
13 m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Comparison of average energy consumption of PAD against CODA . . 67

5.6 Comparison of energy consumption of PAD against PES over time . . . 67

5.7 Comparison of energy consumption by PAD and PES at different move-
ment speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Average amount of Data generated by a zone/cluster during the duration
of the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 The Number of nodes used during object tracking . . . . . . . . . . . . 70

5.10 Average awake time for a zone/cluster . . . . . . . . . . . . . . . . . . 72

5.11 Accuracy of predicted location against the actual location . . . . . . . . 73

5.12 Accuracy of tracking data through the duration of the experiment . . . 73

viii



List of Figures ix

5.13 Localisation accuracy Over the course of a journey . . . . . . . . . . . 74

5.14 Kernel density estimate of the accuracy of collected location data . . . 75

5.15 Accuracy of the destination estimation mechanism of PAD through the
duration of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.16 Comparison of the tracking accuracy with different node density . . . . 77

5.17 Comparison of energy consumption at different node density . . . . . . 78



List of Tables

2.1 Comparison of Protocols against Accuracy and Energy Efficiency . . . 21

4.1 M Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 M Matrix sample data . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Node Distribution in all Mini-clusters . . . . . . . . . . . . . . . . . . . 61

x



Abbreviations

WSN Wireless sensor network

BS Base station

WAL Weighted average localization

MSSL Maximum signal strength localization

OCO Optimized Communication and Organization

HPS Hierarchical prediction strategy

LSM Least square method

PAD Prediction-based mechanism for destination-estimation

HHCM Hierarchical hybrid clustering mechanism

KF Kalman Filtering

MDP Markov Decision Process

STUN Scalable tracking using Networked Sensors

DCTC Dynamic convoy tree-based collaboration

DAB Drain and balance tree structure

DAT Deviation-avoidance tree

CH Cluster head

DPT Distributed Predictive Tracking

DSTC Dynamic space-time clustering

PES Prediction-based energy saving scheme

CODA Continuous object detection and tracking algorithm

HCCT Hybrid cluster-based target tracking

LESOP Low energy self-organising protocol

IDSQ Information-driven sensor querying



Chapter 1

Introduction

Wireless sensor networks (WSNs) have been widely used in military and non-military

environments due to the advancement in wireless communications, microelectronics,

embedded microprocessors and networking technologies. Some typical examples of

WSNs are environmental monitoring, battlefield surveillance, space exploration, health

care, emergency response, disaster discovery, tracking of humans in crowded and re-

stricted areas, tracking of vehicles such as cars in highways, hazardous environment

exploration and seismic sensing [2, 3].

Object tracking is an important topic in WSNs, it is the process of locating a mov-

ing object (or multiple objects) over time using a sensor network with heterogeneous

sensors. Object tracking can be a time consuming and resource hungry process due to

multiple factors, such as the amount of data that can be generated and coordination

with other nodes in the network through communication.

Due to the nature of WSNs, when tracking an object, the limitations of a typical

sensor must be considered. A typical sensor node is made up of five components,

battery, memory, processor, transceiver and a sensor. All five components have limited

resources and any WSN system would have to utilise all of these resources efficiently

for the network’s longevity and efficiency. Sensing the environment incurs significant

energy costs where as collection of large amounts of data during object tracking can

lead to reduction in memory and processing efficiencies incurring delays. Whereas,

transmitting large amounts of data can lead to excessive energy consumption by the

1
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transceiver. Any efficient object tracking network should be able to track an object

with minimal delay and errors while also conserving energy.

1.1 Motivation and Background

Traditional object tracking methods for Wireless Sensor Networks make use of a cen-

tralized approach [4–6]. As the number of sensors rise in the network, more messages

are passed on towards the Base Station (BS) and will consume additional bandwidth.

In [4, 5], the authors have proposed two mechanisms, utilizing the centralized method,

called weighted average localization (WAL) and maximum signal strength localization

(MSSL) to evaluate their performance over WSN [7]. In these mechanisms, all sensor

nodes are kept in active state to monitor the target that passes by within their sensing

area. The nodes that detect the mobile target should forward their data directly to

the base station to estimate the target. However, a major drawback of the centralized

approaches is that the energy consumption per node is high resulting in unacceptable

overall system energy consumption. Thus, this approach is not fault tolerant as there

is a single point of failure at the nodes near the BS and lacks scalability. Moreover in

traditional object tracking methods, sensing task is usually performed by one node at

a time resulting in less accuracy and heavy computational burden on that node. With

limited energy resources available to the node, traditional tracking methods based on

a complex signal processing algorithm are not useful.

To overcome the shortcomings of the traditional approaches more complex object trac-

ing techniques have been proposed in the recent years. These approaches are based on

collaborative node arrangements such as clustering [8–15] or tree structures [1, 5, 13–

20], bringing significant improvements to the traditional approaches.

Within Tree-based approaches, the hierarchical trees are formed dynamically accord-

ing to the target movement in a networked area. A well-known tree-based tracking

approach is Optimized Communication and Organization (OCO) [4, 5, 12] which pro-

vides self-organizing and routing capabilities of sensor nodes during the tracking pro-

cess. The tracking process is performed in four phases, position collecting, processing,

tracking, and maintenance. The major drawback of this approach is that the border
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sensor nodes are activated permanently. Therefore, the energy of these nodes may

be depleted rapidly. Generally, tree-based approaches are not scalable and need to be

evaluated from tracking accuracy perspective. In prediction-based approaches, a sensor

can predict the future movement of the target based on a history of its past locations

over time. Thus, the sensors’ states (active, sleep) can be easily controlled [18, 21–24].

The main idea of these approaches is that the sensor nodes use past estimated loca-

tions collected during the target movement to activate a specific set of nodes in a range

where the target may move toward. In [25, 26], maneuvering target tracking-Mobicast

(MTT-Mobicast) algorithm is proposed to utilize the mobicast message target tracking

approaches. It is a spatio-temporal multicast algorithm that distributes messages to

the sensor nodes located in spatial zones that evolve over time in a predictable manner.

However, the design of the MTT-Mobicast protocol faces challenges [27] in developing

a fully distributed scheme to construct some special zones that can limit unnecessary

retransmissions and ensure receiving the required message by all participating nodes.

Within clustering approaches, nodes are arranged into clusters which are either static

or dynamic. Static clusters contain nodes within a region with a fixed structure [28–

33]. Other attributes of the network remain static as well, such as, size, coverage area

and member nodes. Static clustering architecture [27, 31–34], however, suffers from

several drawbacks, such as, fixed membership is not fault tolerant. Also, the cluster

can only exist as long as the cluster head is active, in case of power depletion of the

cluster head, all the sensors in the cluster are rendered useless. Fixed membership

also prevents sensor nodes in different clusters from sharing information and conduct

collaborative data computation. For object tracking this approach can lead to excessive

use of certain nodes where as certain nodes in a cluster could remain under utilised

[34]. Dynamic clusters provide a mechanism where clusters are formed for a specific

activity and are then dissolved. This provides a mechanism where nodes are equally

used based on available resources, however, creation and dissolution of clusters itself

can incur excessive overheads. While based on the size, each cluster can also incur

noticeable communication costs [9, 35, 36].

Not many object tracking techniques have been proposed based on purely static cluster-

ing. However, mechanism in combination with dynamic clustering have been proposed
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[1, 9, 28, 35, 36], refereed to as hybrid clustering. Hybrid tracking approaches for

target tracking merge more than one approach, of previously described ones, for the

sake of mitigating their individual drawbacks as much as possible. A well-known algo-

rithm that follows these approaches is Hierarchical Prediction Strategy (HPS) which

combines a cluster approach along with a certain prediction algorithm [37]. In HSP,

the cluster is formed using Voronoi division and the next location of mobile target is

predicated upon least square method (LSM) [38]. The major disadvantage of such algo-

rithms is the extra complexity added upon combing target tracking approaches based

on the application requirements leading to an additional increase in the system energy

consumption. Although, the existing approaches have their merits and demerits but in

the context of object tracking, node organisation does not guarantee efficient resource

utilisation. For this purpose the tracking mechanism must also be able to collect data,

carry-out computation and transmission of the relevant time-sensitive data, efficiently.

Moreover, data collection process for object tracking involves sensing environment

around active nodes at certain intervals referred to as the sampling rate. Sampling

rate can directly affect the precision of location data. Lower sampling rate can save

energy by reducing sensing costs but can lead to data with low level of accuracy and

may even miss the object completely [34, 39]. On the other hand, high level of sampling

improves the tracking accuracy but can generate excessive amounts of data [40]. Tra-

ditionally, in target tracking schemes sampling rate is determined either for the next

time of tracking or for the next several time steps of tracking. For both schemes, the

sampling rate or the number of samples taken within a certain time period are fixed

and known [39, 40]. However, it carries significant demerits when considered for object

tracking, target loss can be exaggerated if the moving target changes speed or direction

suddenly. Also fixed sampling rate for tracking an object moving at a very slow pace

can collect excessive amounts of data which results in increased computational and

transmission costs.

The data collected by each sensor node also has to be processed to extract the most

relevant data. Timely computation of the most relevant data is an important aspect

of a WSN for object tracking [41]. Any delays in computation can lead to time-

sensitive data being rendered obsolete and hence consumption of resources for no gain
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from the network [42]. Traditionally, all data is transmitted to the base station to be

processed but recent researches [10, 43–45] have shown that a distributed approach for

an in-network data processing and aggregation reduces the computational times and

discarding the irrelevant data close to its source can save the communication costs of

the network.

In-network processing of the location data can lead to reduced delay in object local-

isation, one of the core functions of a WSN for object tracking. Through performing

this core function periodically, the trajectory of the object over time can be tracked.

Sensing nodes that detect the object send reports towards the base station. However,

knowing just the location of the object or its immediate next location is not acceptable

for requirements in the areas of security and surveillance [46]. A tracking mechanism

should not only be able to compute the location of the object but should also be able

to analyse the data and predict the destination of the object. Recent research in the

fields of vehicular networks [2, 47] and traffic management systems [2, 47], object des-

tinations and paths to any particular destination are predicted. however, that requires

prior information about the object’s movement. This prior information is not avail-

able for a system developed for object tracking within security, intrusion detection or

surveillance domains. Use of sensors in modern cities around the world has increased

exponentially over time and sensors, such as, cameras and acoustic sensors are deployed

for surveillance and security. Within these modern cities security implications are also

a reality and prior knowledge of a security threat is not always available, also, object

tracking is done by human subjects from sensor feedback like CCTV feeds. Thus, there

is a need to develop a new framework for accurate object tracking.

1.2 Aim and Objectives

The aim of this research project is to accurately track an object and predict its des-

tination without using prior historic information in an energy efficient manner using

wireless sensor networks.
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Figure 1.1: Probable paths available to the moving enemy within the observed
area1

Given a security scenario in Fig 1.1 where a potential hostile enemy has invaded from

a point O and are planning to reach one of the five (5) destinations (D1, D2, ..., D5).

Enemy has more than one routes available to them towards any destination. As the

enemy moves from the origin O to any of the five destinations, circular mini-clusters are

formed within and across the larger static clusters. In order to capture the enemy and

stop them from reaching their destination the proposed mechanism needs to predict

their location based on speed and direction. Then basing on their movement through

the observed area their eventual destination would be predicted. Within this security

scenario, no prior information about the enemy is available as they may never have

invaded this region before and even if they did invade before their motives about that

invasion would have been completely different, making any prior information irrelevant

to the current invasion. To provide adequate security any law enforcement organisation

would require the movement information about the enemy, ranging from the likely

destination of the enemy to reinforce security at that point or along the path the

enemy would take to attempt to apprehend the enemy before it reaches its destination.

The enemy, however, would try to evade capture and can move in a manner where they

1Map image source from Pirate Maps: http://www.yarrmaps.com/
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might abruptly change direction or change the speed at which they move within the

field which can lead to collection of inaccurate data or wrong destination predictions.

In order to make sure that the most relevant and accurate data about the movement of

enemy is collected, the network should provides the next state prediction of the enemy,

meaning it provides the movement predictions in terms of time+1 as the enemy move

through the observed area, while maintaining an acceptable level of data accuracy.

Based on the scenario above it can be extrapolated that the enemy’s movement is

driven by intelligence and hence the enemy makes decisions about their movements

based on a predetermined destination. They move through an observed region while

avoiding obstacles and keeping to the minimum distance they have to travel. In or-

der to determine the destination of the enemy their motivation for moving towards

a certain destination must be ascertained. Although it is assumed that there is no

prior knowledge about the enemy available but prior knowledge of the terrain and po-

tential destinations is known. Existing approaches where destination of the object is

predicted such as in vehicular networks and traffic management, historic data about

the movement patterns is used. However, this historic data or prior data about the

objects movement is not available within the security scenario. Within the scope of

this research this historic data is referred to as prior data.

While keeping this security scenario as a guide the following objectives have been

researched through this project.

1. To accurately predict destination of object without any prior historic information

about the object’s movement.

2. To develop an efficient network architecture to reduce the number of nodes in-

volved in object tracking, making sure that the least number of nodes are involved

in the data collection process to maintaining energy efficiency.

3. To obtain the most relevant information from the network by reducing the amount

of data collected to reduce the communication and computational costs while

maintaining the required level of data accuracy.
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1.3 Contributions

To address the objectives mentioned above, a novel framework for efficient object track-

ing has been proposed. The main contribution of this work include:

1. A New Prediction-Based Algorithm for Destination-Estimation (PAD)

To predict the destination of the object (objective 1), we have developed a

prediction-based mechanism for destination-estimation (PAD) based on Origin-

Destination Estimation [47–49], which not only calculates destination of the ob-

ject but also the trajectory that the object would follow, without any prior infor-

mation about the object. Any set of origin and destination can contain multiple

paths and to calculate the likely path the object is going to take, a set of environ-

mental and physical attributes must be considered. The object’s determination to

take any particular path without the knowledge of any prior information about

the object must be ascertained, which is almost never available in a security

related or surveillance scenarios. In order to predict a path based on these at-

tributes we have created a novel matrix of conditions that can be modified for any

given scenario. As the object moves along those paths, more paths are added or

discarded . Availability of these paths provides the possible geographic movement

predictions that can then be used to calculate the possible location of the object

at a future time which in itself is a significant aid for the purposes of security

scenarios.

2. A New Hierarchical Hybrid Clustering Mechanism (HHCM)

To achieve objective 2, a hierarchical hybrid clustering mechanism (HHCM) [50]

has been proposed, where, nodes are placed in a multi-tier hierarchy forming dy-

namic mini-clusters within static clusters. The aim here is to reduce the number

of nodes involved in the tracking process by keeping the largest number of nodes

in a dormant or sleep mode and activating only the most relevant nodes for the

purpose of tracking task. As the object moves within the observed field, mini-

clusters are formed along the terrain where the object can move, all nodes within

a mini-cluster are activated to observe the field and once the object moves out of

the observed region of that mini-cluster, it is dissolved.
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3. Dynamic Sampling and Bayesian Filtering for Extraction of Most Relevant Data

and Prediction of Next State Location

For objective 3, an adaptive dynamic sampling mechanism to reduce the amount

of data collected has been proposed. In addition, a Bayesian filtering mecha-

nism, in the form of Kalman filter, is used to extract the most relevant data

and the prediction of next state for accuracy [50, 51]. In contrast to the existing

approaches, where sampling is at a fixed rate, a dynamic sampling scheme has

been devised, which dynamically increases or decreases the sampling rate till a

balance is achieved where the observed data about the object movement is to

an acceptable level of accuracy while keeping the sampling rate to a minimum.

Furthermore, taking inspiration from Markov Decision Process (MDP) which pro-

vides a mechanism of determining the decision making process without any prior

data, Kalman Filtering (KF) has been implemented. KF calculates the next state

of the object while also determining the accuracy of the data collected. KF uses

a series of tracking data observed over time by nodes within the mini-clusters and

generates an estimates of time+1 location. KF not only calculates the next state

of the object but also assigns weight to the data based on accuracy and based on

that weight the most relevant data can then be transmitted to the higher level

within the hierarchy of HHCM and less relevant data is discarded.

1.4 Thesis Structure

The thesis is organised as follows:

Chapter 2 contains a comprehensive literature review concerning all types of algorithms

and protocols that have been proposed in recent research. The scope of the research has

been defined and description of the limitations of those approaches have been discussed

and how this research distinguishes itself the existing approaches. Current advances

have been critically analysed and evaluated for their limitations.

Chapter 3 presents the description of the problem area within the scope of this research.

The novel network architecture for object tracking, HHCM and its constitution has
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been discussed in detail. This chapter also explains the object tracking technique that

has been employed to track the next state of the object, which provides the observed

data quality that is essential to this research. Sampling mechanism has also been

discussed which has been developed to further conserve energy.

Chapter 4 introduces the novel Prediction-based Algorithm for Destination-estimation

(PAD). PAD mechanism is analysed and how it determines the eventual destination of

the object as it moves through the observed field is discussed in detail. The destination

estimation model and the path determination model of PAD has also been discussed.

The novel matrix that has been developed to determine the importance of one destina-

tion over the other is also explained in detail. In this chapter, the recovery mechanism

has also been presented, which is based on a combination of HHCM and PAD.

Chapter 5 includes the experimental evaluation. In this chapter, the experimental set-

up and the experiments that have been performed to prove the validity of our research

are discussed along with the results of the experiments and an explanation of the

results.

Chapter 6 summarises the contributions of this work, discuss the limitations that war-

rant further research and provides directions for future areas of research that can benefit

from this project.



Chapter 2

Literature Review

When tracking objects using WSNs the current approaches [18, 21, 22, 36, 52, 53] mostly

try to resolve the challenges around energy-efficient sensor deployment, computing

and processing energy consumption, communication energy consumption and sensing

energy utilization. While other tracking mechanisms try to enhance the localization

accuracy and tracking quality [24, 53, 54]. To better understand the problem of object

tracking in WSNs and the proposed solutions in the literature, various literature review

and survey articles have been published recently [29, 31, 32, 34, 55]. Some of these

studies discussed the proposed algorithms for localizations; while other papers study the

energy consumption enhancement of the tracking algorithms. In this chapter various

protocols, sensing techniques and algorithms have been highlighted that have been

proposed for target tracking using WSNs.

Before the approaches are discussed the criteria for evaluating those techniques has

also been discussed. For that purpose the considerations that are vital for any object

tracking mechanisms are highlighted.

2.1 Object Tracking Considerations

Design of object tracking protocols for WSNs is dependent on efficiency of a number

of factors, the most relevant and widely discussed factors are presented in this section.

11
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2.1.1 Energy

Whenever a node detects and object and reports that to other nodes it consumes en-

ergy. The lifetime of the network is dependent on the efficient management of the

overhead communications. energy savings can be achieved by reducing the communi-

cation and sensing costs, however, that can result in reduced data accuracy. Hence, a

tracking mechanism needs a robust mechanism to achieve the most accurate data while

consuming the least amounts of energy.

2.1.2 Accuracy

Tracking accuracy can be defined at the difference between the actual location of the

object and the the detected or predicted location of the object. Since object localisation

is achieved through sensing the environment by a number of nodes it is desirable that

the computational and communication load is kept to a minimum while collecting the

most relevant data. This relationship would also effect the accuracy of data in relation

to the loss of target [21, 56].

2.1.3 Scalability

Scalability can be defined as the capability of the object tracking sensor network to

adapt to the increasing demands from the tracking mechanism and the the ability to

deal with the increase in size of the network. Tracking protocols, inherently, require a

system to be scalable as the demands of the tracking mechanism can vary depending

on the environment and scenario. A scalable mechanism should be able to maintain

energy efficiency and energy conservation even if the network increases in size or even

if it is required to perform multiple tasks. Cluster-based protocols tend to be more

scalable to network density variations as compared to other approaches [25, 26].

Review of existing approaches has exposed many drawbacks, specifically the ability of

existing approaches to maintain energy efficiency while tracking an object [5, 8, 9, 13,

15–18]. Energy efficiency is of extreme important to any sensor network as individual
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nodes have limited resources and maintaining energy efficiency extends the life of the

network. Apart from energy efficiency, the accuracy of detection and prediction mech-

anism also suffers from drawbacks [1, 8, 9, 18, 57] within existing approaches. Data

accuracy is vital in security and intrusion detection mechanisms. Accurate data can

be used to intercept the intruding enemy, however, less accurate data can lead to false

location estimates and resource wastage [21, 56]. Another aspect of object tracking

with sensor networks is the scalability of the network, its ability to engage more nodes

to carry out the process or the ease with which a network can be extended [25, 26]. An

efficient object tracking mechanism would, however, have to be energy efficient, while

maintaining an acceptable level of data accuracy within a scalable network architecture.

In the following sections we discuss different object tracking protocols and algorithms

and discuss their efficiency based on the considerations discussed above.

2.2 Protocols for Object Tracking Networks

Object tracking protocols that have been proposed by researchers can be classified

based on the network architecture. Network architectures such as tree-based architec-

ture, where nodes are organised into logical trees, cluster-based architectures where

nodes are organised into clusters and self-organising architectures. Energy efficiency

and information accuracy are the two most important issues to be considered in the de-

sign of any object tracking approach. Sensors provide useful information about objects

within its sensing region, like its source, destination, movement path and time. Sensors

and sink nodes maintain that information and provide the updated information about

the tracked object when needed [10, 58]. Figure 2.1 shows the high level classification

of different protocols

2.2.1 Tree-Based Protocols

Tree-based tracking protocols are based on tree network structure. Tree structure is

established when a node detects an object and as a target is detected the tracking

information of the target is sent back to the root node through the parent nodes. The
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Figure 2.1: Classification of object tracking protocols

advantage of tree structure is that it creates a direct to root path without any loops

in transmission. However that can lead to issues, such as, scalability, as adding more

nodes to the tree can lead to excessive communication and set-up overheads.

A number of protocols built on tree-based architecture have been proposed. This

literature review has focused mostly on the mechanisms that have focused on the

research considerations mentioned in the previous section.

In [15] Scalable Tracking Using Networked Sensors (STUN) is proposed, which is a

hierarchical structure for tracking a large number of objects. STUN is based on a tree

structure, which is based on the premise that the target does not move in a uniform

path in an observed environment [59, 60]. The underlying structure is a tree and the

maintenance of object’s data, such as its identification, is mostly done by the nodes

near the edge of the tree. This is done through the detected set, where each node in

the tree keeps the detected object’s information that was detected by its child node.

Important information, such as the speed and pattern of object’s movement or the

details of topology set-up are described in detail [16, 61, 62]. STUN does provide a

high level of data accuracy, however, the energy requirements for keeping the network

updated are excessive, which can lead to reduced network life-time.

With Dynamic Convoy Tree-Based Collaboration (DCTC) [1, 17], the network is set-up

in a grid like topology and the nodes use Geographic Adaptive Fidelity (GAF) protocol

for sleep scheduling. Nodes keep a direct communication link with only its neighbouring

nodes and wake up periodically to observe the environment, however, the grid head
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stays awake at all times. All nodes in the grid have the location information of all other

nodes in the grid. DCTC relies heavily on the mobility prediction algorithm to know the

distance to the centre of the event and is required to keep that knowledge as a necessity

[63, 64]. Also, the network maintenance is dependent on costly communications that

can severely cripple the network, especially when the detected object is moving at a

high speed. Root node is also responsible for adding or removing nodes from the grid

which requires excessive overhead communication from nodes near the edge to the root.

Figure 2.2: Representation of Deviation-Avoidance Tree (DAT)[1]

With Drain and Balance Tree Structure (DAB) a mechanism is proposed where network

overheads are greatly reduced by reducing the number of update and query messages,

while placing all information at the sink hence reducing the need to flood the network

for information [65]. All nodes then transmit the updated information to the sink. But

it has some drawbacks. DAB structure is logical and does not depend on the actual

structure of the sensor network. Also communication cost can be excessive as the nodes

near the edge of the tree depend on a multihop communication model. DAB also does

not account for the communications costs during the querying phase. The proposed

methods to overcome these issues are Deviation-Avoidance Tree (DAT) [18, 66]. DAT

proposes that each node is a tree on its own and multiple trees can be joined together

to formt he extended structure. DAT conserves energy in two stages, by reducing

the update costs and then by reducing the query cost. Although, this approach has
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significant overhead communication reductions, however, as more and more sub trees

are combined the structure becomes more complex and cost of transmissions to the

sink increases, requiring several hops to transmit the data.

On the other hand, Optimised Communication and Organisation (OCO) [5, 67] pro-

poses a low computation overheads on sensor nodes while target objects by providing

self-organisation and routing capabilities. Processes within OCO can be explained as

four distinct stages, these are, localisation, computation, tracking and maintenance.

During the tracking stage OCO uses two different types of sensors, one that can detect

the object and wake up the neighbouring nodes when its about to lose the object and

second that can only detect the object. The maintenance phase is only activated when

the network needs to be reorganised, mainly due to node failure, damage or movement

of the nodes. The biggest demerit of the scheme is that most computation is done at

the root node which leads to excessive communication costs, on top of the excessive

communication that is required for the control messages through all four stages.

2.2.2 Cluster-Based Protocols

Cluster-based methods organise sensor nodes into clusters to support collaborative data

processing. A cluster consists of cluster head (CH) and member sensor nodes. Figure

2.3 shows the classification of cluster-based protocols.

Figure 2.3: Classification of cluster-based Protocols

Upon target detection any node can declare itself as a cluster head. Depending on

the approach used for target tracking, no particular election mechanism is required
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for cluster head selection, which limits the communication costs. If more than one

node detects an object, multiple volunteer nodes may exist, hence, a decentralized

mechanism is required to make sure that only one cluster head is involved in object

tracking process at a time to avoid redundancy. Figure 2.4 shows the how the basic

structure of the network would look like.

Figure 2.4: Dynamic Cluster representation highlighting the formation of clusters

If the structure is already established, then with Distributed Predictive Tracking (DPT)

[8, 9, 68], One the target is acquired a four stage sensing, prediction, communicating

and then then sensing again is performed. The algorithm is made of four distinct

mechanisms. TD or target descriptor that contains the target’s identity, its location

and future prediction. Rest are Sensor selection mechanism, recovery mechanism and

energy conservation mechanism. The cluster head uses the TD to activate and track

the object, while the recovery mechanism is used to rediscover the object is the object

is lost or the node tracking the object fails. Target’s future location prediction is

then used to activate the relevant nodes for tracking purposes. Although DPT is a

prediction-based protocol for object tracking, its experiments show that the energy

savings and prediction probabilities are not very encouraging [69]. Also, high overhead

costs are involved when the extensive communication is required for the cluster head to

know the location of all its nodes and the TD is sent back to the sink for every object

being observed.

A CPA or Closest Point of Approach, is used to form the Dynamic Space-Time Clus-

tering (DSTC) [14, 70]. Clusters are formed by sending out a CPA pulse and all nodes
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listen to it, first node to receive four CPAs declares itself a cluster head as it becomes

the receiver of the highest intensity CPA. It then estimated the location of the source

by using the weighted mean of the CPA and the intensity of the CPA ans the weight.

Reliable detection of CPA dictates the area within which the the CPA broadcast is

acknowledged and time stamp is the same as the node traversal time. This is a very

efficient mechanism, however, it fails when the node density becomes too low [68]. Also

the target estimates at maximum area of CPA can be very unreliable and hence, would

require a smaller detection area or increased number of nodes. As more nodes become

part of the cluster communication cost increase exponentially with any assurance of

accuracy gains.

To reduce the number of nodes required to carry-out the tracking, Prediction-based

Energy Saving (PES) scheme has been proposed in [10, 71]. Based on clustering, PES

consists of three mechanisms, prediction mechanism, wake-up mechanism and recovery

mechanism. PES reduces the sampling rate and also tries to reduce the overhead

for object rediscovery. Prediction model activates the future nodes using prediction

probability. Then the wake-up mechanism decides which nodes should be activated

and when based on energy and performance. While, recovery is only initiated when

the object’s track is lost. PES aim to keep the nodes in sleep mode as much as possible

even if they are detecting the object. The node tracking the object tries to predict the

future location of the object and then activates the nodes in that region. As with any

object tracking system a recovery mechanism is available as the object loss is always

possible and the possibility of that cannot be reduced to zero.The recovery mechanism

tried to recover the object locally by only activating the neighbouring nodes and only

in case of failure to recover, the whole network id activated. Activating a flooding

mechanism for recovery can cause excessive communication, computation and sensing

costs.

Redundant data produced by a sensor network can lead to excessive energy consump-

tion and delays and to reduce this redundant data two protocols have been proposed,

RARE-Area (Reduced Area Reporting) [15, 72] and RARE-Node (Reduction of Active

Node Redundancy) [15]. Both the approaches are based on clustering mechanism ,
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where, RARE-Area tries to reduce the nodes available for target tracking and RARE-

Node further tries to reduce the amount of data collected by the network itself. RARE-

Area reduces the participating nodes in the tracking activity by measuring the weight

of the data they generate, only nodes with more accurate data are allowed to track the

object. RARE-Node determines the quality of data collected [71] base on the relevance

of data. Nodes check their immediate neighbourhood for other nodes and if none are

found then the data is considered to be important. If other nodes exist then the node

nearest to the object and with ample communication resources transmits its data and

rest of the nodes discard the data they collected.

Redundant data is not generated only while the object is being tracked but also during

the discovery process. The Continuous Object Detection and Tracking mechanism

(CODA) [11, 73] enables each sensor node to detect and track the moving boundaries

of objects in the sensing field. At deployment stage static clusters are formed which

remain active while they have energy resources. One an object is detected within a

static cluster, that information is send to the cluster head, which then forms the a

dynamic cluster around the boundary of the continuous object being detected, this

information is also shared with the sink. CODA has two advantages [74], it reduces

the overhead costs by forming the dynamic clusters at the static cluster head level

which reduces the redundant communication costs of the local nodes and, secondly,

also the dynamic clusters do not need to elect a cluster head which furhter reduces the

communication overheads.

Uneven load distribution within a sensor network can lead to certain nodes depleting

their energy resources quicker than others and can create holes within the sensed region.

Hybrid Cluster-based Target Tracking (HCTT) is specifically designed to even load

distribution. HCTT [13, 67, 75], consists of a hybrid clustering mechanism where all

nodes are part of static clusters and are aware of their location in terms of geography.

Static cluster is responsible for object tracking until the tracked object reaches the

boundary of the static cluster, This is when a dynamic cluster is formed among the

boundary nodes of the existing static cluster and that of the static cluster where the

object is moving towards. Once the dynamic cluster is formed it is responsible for

handing off the tracking of the object from one static cluster head to the other. Nodes
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determine if they are a boundary node by asking their neighbours about their static

cluster, once a node establishes that it is the boundary node it forms the dynamic

cluster with boundary nodes of the other cluster. Object tracking is carried out by a

single node till the object reaches the boundary and that is when the dynamic cluster

takes over the tracking duties. Once the object moves into the next static cluster a

hand-off mechanism is triggered which hand over the tracking duties to the next static

cluster, at which point the dynamic cluster is dissolved. This handing-off mechanism

makes it difficult tot lose the object tracking when an object moves from one static

cluster to another.

2.2.3 Self-organisation Based Protocols

As discussed earlier, self-organising sensor networks protocols for object tracking are

generally lightweight and are mostly capable of tracking single objects.

In Low Energy Self-Organising Protocol (LESOP), the first node to detect the object

declares itself as the leader node. At this stage the node with the second best estimate

of the object is declared as the surrogate leader [18, 76]. The neighbouring nodes then

observe the object and send the tracking data to the surrogate leader. The number

of nodes that track the object is determined by the required level of accuracy. More

nodes are added if the minimum threshold of accuracy gain has not been achieved but

is achievable. The surrogate then with the help of the leader builds objects movement

trajectory. As the minimum time already defined for the current set-up expires the

surrogate becomes the leader and the whole process is repeated [18]. LESOP combines

the application-layer with the MAC and physical layer to form a light weight mecha-

nism, but the communication is limited to single hop due to the lack of a transport

layer definition. Also, the process of leader hand-over is core to the system but it does

not bring any benifit to the tracking activity which is the primery responsibility of the

system.

Information-driven approach is used by Information-Driven Sensor Querying (IDSQ) to

track targets and direct queries [77]. Within IDSQ, a leader is elected at the set-up of

the network but it remains dormant until activated by the application. Once a leader is
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activated it asks the member nodes to sample the environment and report to the leader.

The state of the object is recorded by the leader and any addition to that information

is made by the leader, this state update is made only after a predefined threshold of

accuracy of data is achieved [1]. One downside to IDSQ is that only one node detects

the object and no collaboration takes place to improve the detection accuracy. Thus,

any inaccurate data introduced in the initial stages of tracking has a huge impact on

the remaining tracking process.

More recently, Distributed Event Localisation and Tracking Algorithm (DELTA) method

[57, 78] has been proposed. It form groups within the detecting nodes dynamically.

The nodes are arranged in a grid with local information about the node’s location is

already known. The leader announces its existence with a HEARTBEAT broadcast

that is transmitted to two hops of the leader. DELTA is developed to track a single

target and no multi-target mechanism has been defined. Also node recovery mechanism

is non-existent in case of target loss.

The following Table 2.1 shows how the protocols discussed above provide energy saving

and tracking accuracy and if the protocols provide predictive information about the

future position of the tracked object.

Table 2.1: Comparison of Protocols against Accuracy and Energy Efficiency

Protocols Accuracy
Energy

Efficiency
Tracking Algorithm

Tree-based
protocols

STUN[15, 16] high low non prediction-based
DCTC[1, 17] high low non prediction-based

DAT[18] low low non prediction-based
OCO[5] high non prediction-based

Cluster-based
protocols

DPT[8, 9] low low prediction-based
RARE[15] high high
CODA[11] high high non prediction-based
DSTC[14] low low

HCTT[13, 75] high low prediction-based
PES[10] low high prediction-based

Self-organisation
based protocols

LESOP[18] prediction-based
IDSQ[1] low

DELTA[57] low
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2.3 Object Tracking Algorithms

In this section, some of the latest WSN target tracking algorithms are discussed. Many

different algorithms have been proposed over the years and they can be easily organised

into two broad categories, Bayesian Framework based tracking algorithms and Graph-

based tracking algorithms.

2.3.1 Bayesian Framework Based Tracking Algorithm

The Multiple Hypothesis Tracking (MHT) is one of the most fundamental tracking

algorithms in sensor networks [56]. It is a Bayesian filtering mechanism which tries

to calculate every possible probability about the object movement. However, as the

object spends more time within the observed region, the probabilities become more

complex and can lead to excessive computational load.

The Joint Probabilistic Data Association (JPDA) algorithm is another Bayesian filter

based algorithm [79]. In the JPDA algorithm, the possible target actions are again

enumerated for each time frame, but an action will be selected before making any

further hypotheses, Which helps to limit the number of hypotheses that are generated.

The Particle filter is another way to reduce the cost of Bayesian filter based algorithms.

Particle filters collect as much data as possible from a wide range of sensors and com-

press it into a single distribution. As more information is collected form the network,

the amount of samples considered remain the same and hence reduce the data explosion

over prolonged tracking. This data containment leads to reduced communication costs

and transmission overheads. In [80, 81] extensive accuracy analysis is discussed. In [82]

a distributed particle filtering mechanism is discussed where the network is divided into

cliques and particle filtering takes place in all cliques at the same time.The mechanism

presented in [83] aims to extend the mechanism in [82] by further compressing the data

from multiple cliques.

When multiple targets present, data association problem is used to associate the mea-

surements to the corresponding target trajectory. Typical Bayesian filter approaches

require a known number of targets, and the initial state of the target in order to start
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the association iteration. Markov Chain Monte Carlo Data Association (MCMCDA)

algorithms solved this problem. Framework of MCMCDA algorithm can be found in

[84], where the target trajectories (tracks) are modeled as Markov Chain, and random

sampling is used rather than iterative Bayesian filter, hence relaxed the dependency of

the prior information.

2.3.2 Graph-based Tracking Algorithms

There are not many graph-based tracking algorithms developed, and most of these

graph-based tracking approaches nowadays are focused on topology to physical location

manipulation. In [85], for example, the rooms and the hallways are modeled as nodes

in the graph, the doors and passages are modeled as links in the graph, and the target

is assumed to transit from node to node. The actual tracking algorithm is still under

Bayesian framework, and the graph part of the algorithm is to maintain the sensors

(RFID readers) to be linked in such a topology.

Another graph-based tracking mechanism is presented in [4]. This tracking method is

another implementation of the Bayesian framework. In this algorithm, binary sensor

data is used, and the topology information is only used to provide neighbouring infor-

mation and information routing paths [86, 87]. All mechanism discussed here require

extensive knowledge of the network set-up and also the location of the nodes within

the network,

2.3.3 Graph-based Event Boundary Detection Algorithms

There are some algorithms developed for detecting event boundary in sensor networks

that are also graph-based. Differ from a single point target, an event is usually an area

of interests, and tracking of such area is a boundary detection process. In [88] and [89],

a minimum level of accuracy is the requirement for a node to decide to track on object.

The algorithm proposed in [43] arranges the nodes in clusters based on the nearest

neighbour and the whole event area has to be covered by the cluster. Nodes on the

boundary of the event are dismissed as false alarms. Another mechanism presented in
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[90] divides the whole sensing region into smaller chunks, till these sub-regions either

completely detect the event or not at all.

2.3.4 Markov Network

Although Markov Network based tracking algorithms are graph-based, they did not

fully utilize the data fusion, data correlation and clustering features offered by graph-

ical model. In order to fully utilize inter-sensor correlation, cliques and junction tree

algorithms should be considered.

In a graphical model, a clique is a group of fully inter-connected nodes. it is usually

used to subdivide the graph into subgraphs. The cliques are independent to each other

given the shared nodes, and the statistical property of the clique is described in terms

of clique potentials, which is usually the joint probability of all the enclosed node.

Clique tree is a tree that all of the nodes are cliques. It provides an overview of the

graph after the graph is been subdivided using cliques [91, 91]. Junction tree is a special

case of clique tree that obeys the running intersection property [91, 92]. The running

intersection property basic dictate the locality property in the clique tree, it requires

that for any pair of cliques U and V, the cliques between U and V must contain U \V.

While the cliques provide clustering and joint probability of a small group of nodes,

the junction tree provide a fast route to propagate information through the network,

and it is also statistically sufficient to represent the original graph.

Figure 2.5: Representation of junction tree
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Markov network is a special type of graph, where the edges correspond to direct prob-

abilistic interaction between neighboring nodes, and is not to be intervened by other

nodes, e.g. the Markov property [93, 94]. It is commonly used for segmentation in im-

age processing [95–98]. For tracking and detection applications in sensor networks, the

target is usually concerned by a small set of local sensors, hence Markov network is es-

pecially suitable for such situation. Combine Markov network, junction tree and clique

concept, a randomly deployed sensor network can be converted into a more structured

form, and greatly simplify the collective process and data propagation.

2.4 Object Tracking Sampling Techniques

Sampling methods can be classified based on their activity structures as naive sampling

where all nodes remain active and perform tracking tasks. Continuous sampling, where

one node continuously monitors the object and scheduled sampling, where certain

nodes sample the object based on a predefined mechanism. Energy efficiency and

data accuracy are the prime considerations when a sampling mechanism is devised.

Sensors provide useful information about the observed region but too much data an

lead excessive energy consumption and too less data can lead to inaccurate information

from the system.

Naive sampling is known as the all-in mechanism where every possible node is activated

and to object tracking. As an object moved into the sensed region it is detected and

continuously sampled and all data is then communicated to the root of the sink [29,

31, 34]. It is, however, a naive system and data generated through this system can be

extensive which increases the energy requirements for communication and computation

exponentially. Naive method is not suitable for modern requirements where sensors

have limited energy reserves and network longevity is a primary requirement.

One way to reduce the cost sampling is to employ continuous sampling where only a

single node samples the environment till the tracked object leaves its detection zone in

a continuous and consistent manner. As the object transitions to the detection zone

of another node the responsibility of tracking is handed over to the next node and the

first node drops to a dormant state [39]. This method provides energy conservation,
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however, data accuracy and tracking loss are increased. This method is not fault

tolerant and hence, modern applications of object tracking cannot possibly use this

method.

To mitigate the demerits of naive and continuous sampling, scheduled sampling meth-

ods have been proposed, where a cluster of tree of nodes collectively tracks the object,

where as rest of the nodes remain in inactive state. Scheduled sampling can be clas-

sified into prediction-based and non-prediction-based. Non-Prediction-Based sampling

refers to methods where the sensor nodes alternate between active and inactive states

based on a predefined mechanism to conserve energy [24]. However, this method can

have certain drawbacks like the sensors could miss the event that occurred while the

sensor was not sampling the environment. To reduce the chances of missing an even

prediction-based sampling has been introduced [18, 22]. Prediction-based sampling

activated the nodes for object tracking based on a predictive algorithm and the nodes

stay active under this method’s instructions. With predictive activation only a small

number of nodes at a particular region become active while all other nodes remain

dormant. Once the object moves out of the region the nodes in the next predicted

region are activated [18, 22, 24].

2.5 Discussion

Based on the analysis of this extensive background research, it is ascertained that the

tracking mechanisms share some inherent characteristics:

1. An efficient mechanism limits the number of nodes involved in object tracking

and sample the environment selectively for energy efficiency.

2. All tracking mechanisms strive to eliminate the redundant and inaccurate data

to reduce the communication overheads.

Based on the above findings it has been learned that object tracking mechanism should

be able to not only efficiently detect the object but also be able to reduce the energy

consumption by keeping most nodes in sleep mode to conserve energy. An efficient
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protocol should also be able to reduce the amount of data collected by reducing the

time nodes spend in sampling the environment while maintaining a high rate of tracking

accuracy.

With the deficiencies of the existing approaches highlighted within this chapter, this

research is directed towards developing an object tracking mechanism which should be

able to track an object within a certain threshold of acceptable accuracy and carry out

the tracking process while maintaining a high energy efficiency and ability to manipu-

late the number of nodes involved in the tracking process keeping the network scalable.

While object tracking has seen significant research in the last few decades there exists

a gap within the field of security management, although the object can be tracked to

an acceptable level of accuracy the destination estimation of the intruding object or an

enemy has not been the focus of research. Review of existing work has thus highlighted

the research gap that would also be the focus of this research.

Keeping this research direction within focus a novel object tracking mechanism has been

proposed that maintains a low number of active nodes at the most optimum sampling

rate, while maintaining high tracking data accuracy. This approach is based on a

Hierarchical Hybrid Clustering Mechanism (HHCM), an adaptive sampling mechanism

that dynamically adjusts the sampling rate to maintain data accuracy and a Prediction-

based Algorithm for Destination-estimation (PAD) that predicts the final destination

of the object without any prior information.



Chapter 3

The Proposed Hierarchical Hybrid

Clustering Mechanism (HHCM) for

Object Tracking

The goal of this research is not only to minimise energy consumption and accurately

predict the object’s future location but also aims to predict the destination of the

object. The factors affecting target tracking and destination estimation include the

amount of data collected and the number of nodes active at any given time. Excessive

data collection leads to higher processing and transmission costs in terms of energy and

high number of active nodes lead to excessive data collection and sensing energy costs.

In this chapter, a hierarchical hybrid clustering-based approach for object tracking is

presented, While a destination estimation mechanism is presented in Chapter 4. The

proposed mechanism leads to reduced data collection while obtaining the most relevant

data and prediction of next state of the object as it moves within the observed field.

3.1 Problem Description

Sensor nodes inherently have limited energy supplies and these energy supplies are not

only required for sensing the environment but also to compute the data collected and

transmission of that data. So as a network the energy consumption increases if more

28
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nodes are in active state or if they are collecting excessive amounts of data through

sensing operation.

Figure 3.1: Relationship between energy consumption, number of nodes and data
collected

Figure 3.1 shows that the ideal object tracking mechanism would be at the green area

where least number of nodes are used to collect the least amount of data and yet be able

to track the object accurately. Although, that ideal state is very difficult to achieve

and several mechanisms discussed earlier have tried to get as close to that green area

as possible.

Referring to the security scenario explained in Chapter 1 Section 1.2, the ideal tracking

situation would be where enemy moving within the observed region can be tracked while

using the least number of nodes at any given time and least amount of data is collected,

all the while maintaining a high level of data accuracy.

In this chapter HHCM and a computation mechanism that filters out any irrelevant

data has been discussed. Based on the security scenario, the following network archi-

tecture has been proposed.



Chapter 3. Hierarchical Hybrid Clustering Mechanism (HHCM) for object tracking 30

3.2 The Proposed Hierarchical Hybrid Clustering

Mechanism (HHCM)

A hybrid model of clustering can be explained as a technique to create and dissolve

clusters that contain a mix of both static and dynamic clusters. Sensor networks are

organised into clusters to spread the responsibility of carry-out any task among nodes

to reduce load from any particular node with limited resources. Traditional hybrid

clustering mechanisms [43, 75, 79, 99] have mostly tried to solve the problem of inter-

cluster communication of static clusters by forming dynamic clusters from boundary

nodes of multiple static clusters. Hence, the focus of hybrid clustering has been to

reduce redundant communication costs associated with static clustering. Static clusters

can contain a large number of nodes, which, in turn leads to collection of a huge amount

of data. Therefore, a Hierarchical Hybrid Clustering Mechanism (HHCM) for object

tracking has been proposed. Within HHCM, dynamic clustering is used to reduce the

number nodes directly responsible for object tracking. Figure 3.2 shows the hierarchy

of the nodes.

Figure 3.2: Network hierarchy of HHCM

HHCM’s dynamic mini-clusters are formed within static clusters and across static clus-

ters along the predicted future location of the object that is being tracked and a mini-

cluster head then collect the information from its neighbouring nodes. HHCM is split
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across triple level hierarchy, where ordinary nodes form part of the dynamic mini-

cluster which are managed through a mini-cluster head. This mini-cluster head itself

reports to the cluster head of the larger static cluster. Mini-clusters perform a dual role

in HHCM, not only do mini-clusters help to reduce the number of nodes made active

at any given time to perform tracking which reduces the data collection and processing

costs in terms of energy but also carry out part of the computation to reduce amount

of data that is transmitted by filtering out the redundant data. This data is then

sent to the static cluster head which not only receives the most useful data from the

mini-cluster but also the most useful data, hence, reducing the load from the cluster

head.

Figure 3.3: Network architecture of HHCM

Mini-clusters are formed based on the information received form Prediction-base Al-

gorithm for Destination-estimation (Discussed in Chapter 4). A node is selected as a

mini-cluster head and asked to form a mini-cluster by the cluster head based on the

predicted path of the object being tracked. Mini-cluster head then forms a mini-cluster

of its one hop neighbours, these participating nodes then collect the tracking informa-

tion and pass that information to the mini-cluster head. Figure 3.3 shows the pictorial

representation of cluster formation. The mini-cluster head collects information from its

member nodes and then performs predictive computation and pass that information on
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to the cluster head. Mini-cluster is dissolved as soon as the future predictions suggest

that the object being tracked has moved out of its tracking range.

3.3 Efficient Data Collection Mechanism

The purpose of any object tracking sensor network is to track the object in the most

efficient manner, for this purpose the network needs to collect as little as possible

amount of data to reduce the energy costs that are incurred during data collection,

processing and transmission. To achieve that goal a robust network architecture is

required which reduces the number of nodes involved in object tracking, an efficient

prediction mechanism that can predict the next location of the object to activate the

most appropriate nodes and an effective data sampling mechanism is required which

only collects data at the most appropriate intervals to maintain the quality of tracking

while avoiding redundant or unnecessary data.

While developing this tracking model, Markov Decision Process (MDP) has been used

as inspiration for the predictive process to anticipate the future position of the target.

MDP believes that at any time the process is in some state s, and the decision maker

may choose any action that is available in state s. The process responds at the next

time step by randomly moving into a new state s′, and giving the decision maker a

corresponding reward r. The probability that the process moves into its new state s′ is

influenced by the action a. Thus, the next state s′ depends on the current state s and

the decision maker’s action a. But given s and a, it is conditionally independent of all

previous states and actions; in other words, the state transitions of an MDP depends

on the current state and not on any of the previous states.

MDP can be carried out with the use of Kalman Filter. The Kalman Filter is an

algorithm that uses a series of measurements observed over time, containing random

variations and other inaccuracies, and produces estimates of unknown variables that

tend to be more precise than those based on a single measurement alone. The Kalman

Filter works in a two-step process. In the prediction step, the Kalman filter produces es-

timates of the current state variables, along with their uncertainties. Once the outcome
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of the next measurement is observed, these estimates are updated using a weighted av-

erage, with more weight being given to estimates with higher certainty. Because of

the algorithm’s recursive nature, it can run in real time using only the present input

measurements and the previously calculated state. Based on the principles of MDP

and Kalman Filtering, HHCM mechanism has been proposed.

3.3.1 The HHCM Model

Within the proposed mechanism of HHCM in this thesis, we analyse the procedure

explained in Figure 3.4, states are observed by the nodes and that data is transferred

over to the mini-cluster head, which then uses the Kalman filter to predict the future

state using the observed data and assign weight to that information. Based on the

weight of the information it is then decided that the higher weighted information is

sent to the cluster head and low weighted information is then discarded to reduce the

communication costs.

Figure 3.4: Mini-cluster formation

In order to carry-out that process of tracking the object Kalman Filter is employed to

determine the time+1 prediction and to also predict the movement even if the object

moves into a zone with no sensors or unreliably low number of sensors.
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It is assumed that every object being tracked would move about in the observed field

with a purpose hence it would move along a certain direction and at a certain speed.

This information once collected by the sensor network is then used to predict the future

location of the object and new mini-clusters are formed at that predicted location. We

can explain the stages of our process as follows:

1. Object is observed within the sensor field at an entry point.

2. A mini-cluster is formed by the first node that observed the object by inviting

its one-hop neighbours.

3. These mini-clusters would then observe the field and transfer the observation

information to the mini-cluster head.

4. Mini-cluster heads filter and aggregate the data and pass the most relevant data

to the cluster head.

5. Cluster head would receive information from multiple mini-cluster heads. It

would then filter and aggregate that data before passing in on to the base station.

Based on this mechanism the next state of the object is calculated in combination with

HHCM as demonstrated in Figure 3.5.

Figure 3.5: HHCM data transfer sequence
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Keeping the stages of tracking mentioned above in mind, the Algorithm 1 can be

visualised as:

Algorithm 1: Mini-cluster formation mechanism for next state prediction

1 Object observed;

2 if closest node then

3 form mini-cluster;

4 end

5 Observe field;

6 Send object location to mini-cluster head;

7 if mini-cluster head then

8 aggregate data;

9 end

10 return Location data;

3.3.2 Next State Prediction

For next state prediction a mechanism in combination with a HHCM has been proposed.

The aim of the next state prediction is to estimate the moving target’s position xk at

time k, from the measurement history up to time k within a field monitored by a

sensor network in order to activate the relevant nodes and collect the most relevant

data. Assuming that all nodes know their own position, zk is a vector that contains the

measurements of the mini-cluster head and its neighbours at time instant k. Kalman

Filter has been employed to compute the corresponding Bayesian estimates and target

prediction. It approximates the belief by a set of particle streams or sensor readings xmk ,

m=1, 2, ....., M, and their weights Wm
k , which are normalized such that

∑M
m=1W

(m)
k =

1.

Particles structure is:

x
(m)
k = [x

(m)
1,k , x

(m)
2,k , ........., x

(m)
n,k ] (3.1)
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1. Initialization: States xmk , m=1, 2, . . . , M, are initially drawn from a prior distri-

bution, and the weights are set to 1/M.

2. New state generation: A new set of states, xmk , m=1, 2, . . . , M, is computed

according to the posterior distribution

p(xk|xk−1) (3.2)

x
(m)
k =

∫
(x

(m)
k−1) + nk (3.3)

where nk is a zero-mean Gaussian noise component with variance, which injects

the randomness of the states observed by multiple sensors keeping the data true

to the observations.

3. Weights update: Weights are updated by means of the likelihood, more relevant

information is awarded higher weight

W
(m)
k = W

(m)
k−1p(zk|x(m)

k ) (3.4)

4. Position estimate: Based on the information received the target position is esti-

mated as,

xk ≈
M∑
m=1

W
(m)
k x

(m)
k (3.5)

Note that weights are normalized to sum up to 1.

5. Re-sampling: It takes samples with replacement from the set

(x
(m)
k )Mm=1 (3.6)

Where the reason for taking sample m is W
(m)
k . Hence, states with the largest

weights (W
(m)
k ) are retained and those with the smallest ones are removed.

6. If the object is still within the observed field, reset time to latest and repeat the

process from step 2.
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While reducing the number of nodes involved in tracking process significantly reduces

the data collected, however, a significant number of nodes must still be involved to

increase data accuracy. In order to make sure that the nodes involved in object tracking

do not collect excessive data a robust sampling mechanism is required so that nodes can

be placed in a sleep mode to conserve energy while still maintaining a data collection

rate that can be used to accurately detect and predict the object behavior. This thesis

presents the following sampling mechanism, which dynamically adjusts the sampling

rate to collect the least amount of data.

3.3.3 The Dynamic Sampling Mechanism

As the tracked object moves through the mini-clusters, it is important that the object’s

accurate location is observed. However, the limited energy reserves of a sensor node

necessitate that the object is not observed in a naive continuous manner. There can be

certain constraints when observing the object as it moves through the mini-cluster, like,

level of accuracy needed, speed of the object, direction of the object and more. The

objective is to meet the constraints by minimizing the average sampling rate. Each

node must adjust its sampling rate to observe the object. Traditionally centralised

optimisation is used to adjust the sampling rate, however, that requires an excessive

number of control transmissions which in itself can lead to energy depletion in a sensor

node. The alternative is a distributed approach where the sampling rates are adjusted

locally while making sure that it meets the requirements of the constraints.

After carrying out extensive simulations it is determined that the sensing rate should

be determined by the required accuracy of data in comparison with the least number

of sensing acts performed. Sampling rate is a trade-off between data accuracy and

number of sensing sessions performed. Data accuracy can be examined by calculating

the average variation from the actual location of the object. In order to meet the

accuracy of data piece wise fitness function has been integrated with HHCM.

Lets assume that Qa is the observed accuracy of the sensor data and if it is within the

required range of accuracy Ra then sampling rate satisfies data accuracy.
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F =



∑N
1 (Si)

2 : Qa = Ra

Si + + : Qa < Ra

Si −− : Qa > Ra

(3.7)

Algorithm 2: Sampling Mechanism

1 if Qa = Ra then
2 Maintain sampling rate Si;
3 end
4 if Qa < Ra then
5 Increase sampling rate Si + +;
6 else
7 Reduce sampling rate Si −−;
8 end

However, as in Algorithm 2, if Qa is lower than Ra then a sampling rate is increased,

however, if the Qa is higher than Ra then the sampling rate is decreased, where Si is

the sampling rate per period of time for the mini-cluster.

This sampling mechanism dynamically increases and decreases the sampling rate of

any given mini-cluster based on the requirements, such as, the level to data accuracy

required, or the amount of energy available to name a few.

3.4 Discussion

In this chapter, a novel tracking mechanism based on HHCM and a sampling mecha-

nism to decrease the sensing energy consumption of the network during object tracking

have been proposed. This mechanism, takes advantage of a robust network architec-

ture combined with an aggregation mechanism that not only proposes to reduce the

energy consumption of the WSN but also collects the most relevant data about the

objects movement through the sensed environment. The object tracking mechanism

also predicts the next location of the target and wakes up the sensor nodes at the next

predicted location to form the next mini-cluster and to detect the target. it has been

argued that this reduction of the energy consumption provides more alive sensor nodes

to locate the target as the network ages. Hence, the object tracking mechanism based
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on HHCM not only prolongs the life time of the network but it also collects the least

amount of data required for accurate object tracking based on the constraints. Also,

a sampling mechanism that dynamically changes the rate of sampling based on the

movement of the object has been proposed.

In the following chapter the task of object tracking is further enhanced by building

on HHCM mechanism to predict the destination of the object. HHCM defines the

underlying network and the next state prediction mechanism where as PAD predicts

the probability of the destination of the object and the path it would take towards that

destination.



Chapter 4

Prediction-Based Algorithm for

Destination-Estimation (PAD)

In recent years significant research has taken place to on the subject of object tracking

using sensor networks and that research has been aimed to several different fields, such

as, health, traffic management, animal migration trends. Several of those researches

[2, 23, 24, 48, 49] aim to not only track the object as it moves through a sensed

field but also to ascertain the destination or an exit point of the tracked object from

the sensor field. Most of these research areas have focused on building models that

track the object over a period of time and then use the information collected as the

basis for future predictions. However, when we talk about the security and intrusion

detection systems that prior information about the movement of the object is not only

unavailable but also every tracking scenario within those areas can be vastly diverse

and hence cannot be used as prior information.

In this chapter a Prediction-based Algorithm for Destination-estimation (PAD) is being

introduced that will not only predict the destination of the object but will also predict

the paths the object would take to that destination without prior information about

the movement of the object.

40
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4.1 Requirements for Destination Estimation

Carrying on from the security scenario presented in Chapter 1, here, a scenario where

the enemy is moving towards a specific destination is being discussed. As the enemy

enter the observed field from origin O and move towards the Destination D3 on the

map there are several paths available to the enemy. While they move within the

observed field they are being tracked by HHCM described in Chapter 3. The choice

of destination is based on a set of parameters that the enemy has, for example, D3

might be the location of an important installation within the city or a hiding place from

security. Although, the objectives that the enemy is unknown, however, a profile of the

possible locations towards which the enemy is moving can be deduced. As the enemy

moves within the fieldthe movement pattern is analysed and based on the possible

importance of the locations, the final destination of the enemy can be predicted. Once

the final destination has been ascertained the system would then predict the path or

paths that the enemy could take to that particular destination.

4.2 A Prediction-based Algorithm for Destination-

estimation (PAD)

To achieve the objectives mentioned above within the problem area and track the

object inspiration has been drawn from Origin-Destination (OD) Estimation model

from traffic management systems [18, 48, 100]. In OD traffic flows are considered time-

independent and an average OD demand is determined for long-time transportation

planning and road design purpose. For this purpose OD needs prior knowledge like

prior traffic counts and prior destinations of the objects. It estimates the destination

of the traffic by observing the traffic within segments of the paths known as traffic

links, it then infuses the current traffic data with prior knowledge to determine where

the traffic is headed. This model is used for road traffic management and future needs

prediction.
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4.2.1 The Proposed Mechanism

Within a security environment, prior information about the object is not available and

hence, Kalman Filter has been employed to determine the time+1 prediction and to

also predict the movement even if the object moves into a zone with no sensors or

unreliably low number of sensors as explained in Chapter 3. The principles of Origin-

Destination (OD) estimation have been inherited to create a set of trajectories that a

particular object would follow which is then used as the basis to form the topology of

sensor nodes for object tracking. It is assumed that every object being tracked would

move about in the observed field with a purpose hence it would move along a certain

path. These paths are made up of segments. These predicted paths can be more

than one at any given time. To calculate the importance of one path over the other

assumptions binomial distribution has been implemented to predict the most likely

destination of the object based on the information available about the destinations,

as it moves along the segments within a particular path. The whole process can be

explained within the following stages:

1. Object is observed within the sensor field at an entry point.

2. Next state of the object or time+1 state of the object is calculated using HHCM

as explained in Chapter 3.

3. Mini-clusters are formed over the observed field in the regions where the object

has access.

4. Probable trajectory of the moving object is calculated by stitching together the

mini-clusters within an observed field.

5. These mini-clusters would then observe the field and transfer the observation

information to the mini-cluster head.

6. Mini-cluster heads aggregate the data and pass the most relevant data to the

cluster head.
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7. The cluster head further aggregates the data received from multiple mini-clusters

then calculate the destination of the moving object based on the tracking infor-

mation and required percentage chance of binomial distribution.

Figure 4.1 shows the flow of information as an object is observed.

Figure 4.1: Information flow during object tracking
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Algorithm 3: Prediction-based Algorithm for Destination-estimation

1 An object detected;

2 Activate mini-cluster;

3 loop:

4 Observe field;

5 Send object location to mini-cluster head;

6 if mini-cluster head then

7 Calculate position estimate: xk;

8 Aggregate data;

9 end

10 Send aggregated date to cluster head;

11 if Cluster head then

12 Collect information from all mini-clusters;

13 Aggregate data;

14 end

15 if Destination path unknown then

16 Calculate Q;

17 (Path from an origin O to destination D)

18 else

19 Update P (Q);

20 (Probability of the path being a true path) Update P (D);

21 (Probability of the object moving to the destination D)

22 end

23 goto loop

Algorithm 3 explains the general flow of PAD as the object is first observed and the and

its location estimate xkis calculated, that location data is then aggregated by the mini-

cluster and sent to the cluster head which aggregates data from multiple mini-clusters

and transmits the data to the sink. At sink the paths Q are computed based on each

origin O and destination D. Once the paths that an object can take are computed the

probability P (D) of the object going to a particular destination D is calculated.

Keeping the stages of tracking mentioned above in mind, the destination estimation
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approach is divided into three levels, dynamic clustering, next state prediction and

path prediction.

Assume that a network of sensors monitoring the movement of an object in a scenario

based on the Figure 1.1 from Chapter 1 is deployed. The observed field has entry point

referred to as the origin, and exit points denoted as the destinations. A particular

destination of the object is predicted by identifying the paths which connect the sectors

beginning at the origin O and ending at a destination D. The number of intermediate

sectors linked to obtain these paths depends on the density of the sensor network. Each

sector of O is observed at an entrances into the observed region, and a destination track

in D is observed at one of the many destinations. A group of interlinked sectors S

obtained by sensing the environment. A set of paths Q, where each path q is a subset

of Q are ascertained and are represented as a set of sectors, (oq,Sq; dq), with oqis a

subset of O and dq is a subset of D representing the origin and destination sectors

of the Path. Similarly, Sq = (s
(1)
q ,......s

(n)
q ) is an ordered set of intermediate segments

which are linked to form the trajectory. These segments are ordered by the time of

initiation.

Q = maxQP (S|Q)P (Q) (4.1)

Where P (S|Q) is the probability of the segments in S being true segments.

P (S|Q) =
∏
qεQ

∏
sεSq

P tp(s)

P fp(s)
(4.2)

Where P tp(s) and P fp(s) are probabilities of the segment being a true positive and false

positive respectively. It is assumed that a Markov-chain model connects intermediate

segment s
(i)
q in a trajectory Q, to the subsequent s

(i+1)
q with a probability given by

P (s(i+1)s(i)q ) (4.3)



Chapter 4. Prediction-Based Algorithm for Destination-Estimation 46

This leads to probability of the trajectory as

P (Q) =
∏
qεQ

P (q) (4.4)

Once the next state prediction is incorporated within the segments of the path gen-

erated, a binomial distribution of the probability of the object moving towards any

particular destination can be calculated. If the probability has to be determined that

the moving object would move towards a destination then certain information relating

to the importance of a particular destination for a tracked object has to be known. In

case of a mall,a person who travelled to the mall by car would prefer a destination that

leads to the car park through a lift. This information is combined together by creating

a matrix M which takes into account the importance of a certain destination or why a

certain destination could be preferred over any other.

So to calculate the chance percentage b that the tracked object would chose a certain

destination from a point in the observed location while following a certain probable

path.

P (D) =
∑
i=b

(b)M b(1−M)b (4.5)

Where b is the percentage of chance we want to calculate, like if there is a 80% chance

that the object would move to a particular destination, M is the matrix of importance.

4.2.2 Importance Matrix for Destination Estimation

In order to calculate the binomial distribution prediction of the the enemy movement

within the observed field a comprehensive knowledge of the observed field is obtained.

As explained the previous sections that PAD assumes that the object moving within

the observed field has a purpose behind it and without any prior information about

the movement of the object,the destination could then be determined based on how
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important a certain destination is to the object. For that purpose a matrix of impor-

tance has been developed for any certain destination called the M Matrix. It can be

represented as:

Table 4.1: M Matrix representation

D1 D2 D3 D4 D5
A1 mD1A1 mD2A1 mD3A1 mD4A1 mD5A1

A2 mD1A2 mD2A2 mD3A2 mD4A2 mD5A2

A3 mD1A3 mD2A3 mD3A3 mD4A3 mD5A3

A4 mD1A4 mD2A4 mD3A4 mD4A4 mD5A4

This matrix contains information about the destination and why a certain destination

is more desirable than others. Based on the location of the objects and its movement

within the field a preference value can be attached to any destination. For example,

in Figure 1.1, as the enemy move towards a destination D from the origin O the value

of the M matrix would increase or decrease based on the movement of the object in

combination with other conditions A, such as, time of day, importance of a destination,

level of security, weather and more. These conditions mentioned here are not fully

inclusive and depending on the scenario different conditions could effect the probability

calculations. A sample data can be shown in the following form:

Table 4.2: M Matrix sample data

D1 D2 D3 D4 D5
Vulnerability 0.25 0.5 0.75 0.25 0.25

Weather 0.75 0.75 0.5 0.75 0.6
Time of day 1 1 0.5 0.75 0.25
Importance 1 0.5 0.75 0.25 0.25

As the above Table 4.2 shows that the values of any condition can be different for any

destination. For example, in the scenario described in Chapter 1, it can be assumed

that the enemy is moving towards D1 because of the importance of the location, which

can be a more likely destination for the enemy than a military base which would

be heavily protected by armed security. The importance of that destination is then

combined together with other factors like time of the day, weather conditions among

others. Although the enemy may be going towards D1 but during afternoon hours on

a clear sunny day it would be difficult to move in a city undetected so the enemy would
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most likely want to go to a destination that has more cover for them to hide till a more

suitable time.

In order to calculate the value of the M matrix, first and foremost, the level of vul-

nerability of each destination must be known. Several research works have focused on

calculating the vulnerability of any particular location [101, 102]. Once the threat of an

enemy is identified, a vulnerability assessment must be performed. The vulnerability

assessment considers the potential impact of loss from a successful attack as well as

the vulnerability of the destination to an attack. Impact of loss is the degree to which

the working of a destination is impaired by a successful attack. A key component

of the vulnerability assessment is properly defining the ratings for impact of loss and

vulnerability [101, 102]. These definitions may vary greatly from destination to desti-

nation. Vulnerability of any destination would be a combination of the attractiveness

of a destination as a target and the level of defence provided by the existing security.

Target attractiveness can be a measure of a destination in the eyes of an enemy and

is influenced by the function or the symbolic importance of the facility. For example,

in a military base an ammunition storage facility would be an attractive target for the

enemy, so as to disable the defences but on the other hand attacking the command

centre within the base can be a moral success for the enemy.

Once a destination’s vulnerability has been identified, other factors are then taken into

account, for example, the time of day, weather conditions, distance from a particular

destination, etc. Time of day can have an impact on which destination is more accessi-

ble, for example, during afternoon hours on a sunny day a structure like an Air Hanger

would be difficult to access, however, day time hours might be more desirable for a

target like a busy market place. Likewise, as an object moves within an observed field

its direction of movement can also be an indicator to its potential destination so the

distance in combination with direction of movement can also be an important factor

in determining the M matrix value of any destination from a given point during the

tracking process. The conditions that would make any given destination a target for

the enemy can be numerous and would depend on the a particular scenario. Suppose

there are 5 destination D1, D2, ....D5, in order to calculate the probable target for the

enemy, sum of m values for each pair of destination D and condition A.
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ma =
n∑
i=1

mDjAi
(4.6)

This M is then normalised to 1 to manage the variations is data

M =
ma −min(m)

max(m)−min(m)
(4.7)

Where min(m) would be 0 but the value of max(m) would depend on the number

of conditions A that have been employed for calculation in any given scenario. PAD

would then assign the normalised value of M to every single mini-cluster for every

possible destination.

As the object then moves through the observed field its destination is estimated while

making adjustments to the estimates based on further movements. However, any object

tracking system can suffer from missed prediction leading to missing the object as

tracking of the object is dependent on the destination estimation and the next state

predictions. In that case the object has to be rediscovered, for that purpose we have

developed an energy efficient Multi-level Recovery Mechanism.

4.2.3 A Multi-level Object Recovery Mechanism

As the object moves through the observed field any number of problems can lead to

loss of object. This could occur because of many reasons including but not limited to:

1. Localization faults: Localisation is a complicated procedure and any fault can

result in the estimated location being the wrong one. These faults may have a

collective effect on the overall mechanism of object tracking.

2. Network Failure: The WSN may fail because of communication breakdown, com-

putational overload, environmental factors and etc.

3. Node Failures: WSNs have limited basis and nodes have limited battery. Node

defeat may happens because of hardware defeat, battery discharge, enemy para-

site, etc.
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4. Prediction Errors: The mini-cluster heads are activated as the object moves into

its range. This activation is initiated by the static cluster head. If activation

of the mini-cluster is affected for any reason, communication failure, inaccurate

state prediction, etc., and cluster activation is delayed then that can lead to loss

of object.

There can be more reasons, such as, but not limited to, object trying to evade detection,

object being lost behind an obstacle, etc. for the loss of object. In order to regain

tracking of the object recovery process is then initiated. The recovery mechanism is

initiated when a mini-cluster cluster head and its nodes cannot detect the object. This

loss of object is then reported to the Cluster head by the mini-cluster head. If the

mini-cluster head does not regain tracking of the object within a stipulated interval of

time, the cluster head would then initiate the recovery procedure. The recovery process

is based on four stages:

1. Local Search: As the object loss is reported further mini-clusters are formed

by the cluster head and instructed to sense the environment around them to

recover the object. The mini-clusters formed in all four directions of the last

known location of the object which then initiate search. If the object is detected,

it is reported to the cluster head and the location estimates of the object track-

ing are updated. In Figure 4.2 as the object is lost from cluster C1 subsequent

mini-clusters are formed (C2, C3, C4 and C5) and they sense the environ-

ment around them to recover the object. Depending on the speed of the object’s

movement, most objects lost at a certain point within the observed field should

lie within the proximity of the previous known location and hence forming ad-

ditional mini-clusters should lead to object recovery. Local search mechanism

keeps the activated nodes to the minimum while trying to recover the object.

Object recovery is a redundant task that can lead to energy inefficiency, hence,

activating the smallest number of nodes for recovery maintains energy efficiency.
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Figure 4.2: Local search recovery mechanism

2. Cluster Search: If the object is not detected by the local search mechanism

within a fixed amount of time the mini-clusters are dissolved and a larger cluster

wide search is initiated, where every node in the static cluster then senses the

environment around it in an attempt to detect the object and reports directly to

the cluster head. For example in Figure 4.3 the whole static cluster has been acti-

vated to track the object. Upon object detection a mini-cluster is formed around

the object and location estimates are updated. Cluster search mechanism con-

tains a larger number of nodes and hence can lead to more energy consumption

during the recovery process. This method is less efficient as compared to Lo-

cal search but in a security scenario object recovery and detection has a higher

priority than energy conservation if the object is lost.
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Figure 4.3: Cluster search recovery mechanism

3. Multi-Cluster Search: If the cluster fails to recover the object being tracked

then a distress message is sent to all accompanying static cluster heads. These

static clusters then initiate the search for the object by activating all nodes and

observing the environment as shown in Figure 4.4. If the object is detected the

state estimates are updated after forming mini-cluster around the object. Multi-

cluster search enhances the redundancy of the recovery mechanism. A large

number of nodes are activated, which leads to not only increase in the sensing

cost of the network but also the transmission and computational costs as the

data is transmitted to the cluster head which could be several hops away from

the farthest nodes of the cluster.

4. General Search: In the event that multi-cluster search fails a general distress

message is transmitted through-out the network and a network wide search is

initiated, where all nodes in the network are activated. This is the least desired

recovery mechanism and a matter of last resort. If the object is still within

the observed field is would be detected by at least one node in the network.

However, this method reduced the network to a naive tracking approach, where

energy efficiency is not desired in favour of locating the object. General search
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Figure 4.4: Multi-cluster search recovery mechanism

would lead excessive overhead communication and redundant data collection and

transmission.

4.3 Discussion

In this chapter a novel object tracking mechanism called Prediction-Based Algorithm

for Destination-Estimation (PAD) has been proposed. PAD calculates the destination

of the object based on the reasons why the object might want to move within an

observed field. That reasoning is calculated based on the importance matrix called the

M Matrix value of a certain destination. M matrix becomes the importance parameter

in the binomial distribution which predicts that the destination of the object. In order

to calculate the path of the object to any particular destination, the mini-clusters that

have been created for object tracking are stitched together to form paths from any

point within the field to any possible destination. The information about the possible

destination and the paths that are available to an object within the observed field, can

then be, in a security scenario, used to intercept the moving object.



Chapter 5

Experimental Evaluation

In this chapter, the performance of HHCM and PAD are evaluated using extensive

simulations. Tracking parameters and assumptions are defined which then leads to the

comparisons of the HHCM and PAD against the existing approaches.

In order to set-up our experiments, first the existing hardware and software environ-

ments that are available for wireless sensor networks for object tracking are briefly

discussed.

5.1 Software and Hardware Environments

It is important to be aware of the software and hardware environment that are available

for sensor networks to build an experimental set-up that complements the available

technologies. Here, software and hardware systems are discussed.

5.1.1 Software Environments

Several software environments have been researched and developed in the last two

decades. Some of the popular Operating Systems and their main features are discussed

in this section.

54
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TinyOS

TinyOS is a open source operating system with flexible component based design. It

has very low memory requirements with only 400bytes for the core system. It also

contains an extensive library of network protocols and drivers for different sensors.

As a component based system, it can be modified based on application requirements

[103]. More recent versions of TinyOS provide multi-threading support along side an

event driven programming model. TinyOS also provides a wide range of communica-

tion protocols including but not limited to TDMA, Z-MAC, B-MAC and DIP. With

scarce memory availability it is designed to operate one application at a time. Other

features include support for simulation environments, communication security and C

programming language through NesC.

Contiki

Contiki is another light weight open source operating system. Major features include

a multitasking kernel, pre-emptive multi-threading, TCP/IP networking, a personal

web server through a simple telnet client [104]. Contiki provides access to a wide

array of communication protocols including TCP/IP, UDP, ICMP. However, contiki

does not provide support for real-time applications and also lacks inherent support for

communication security.

MANTIS

The MultimodAl system for NeTworks of In-situ wireless Sensors (MANTIS) is a multi-

threaded operating system for sensor network hardware [105]. MANTIS does provide

support for real-time applications albeit to a limited levels. However, it provides robust

simulation support through AVRORA with C programming language. LiteC++ is used

for programming applications.

LiteOS

LiteOS is a University of Illinois developed operating system similar to Unix [106].

LiteOS provides support for multi-threading and can run multiple applications at the

same time. LiteOS like MANTIS also supports AVRORA for simulation support.
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5.1.2 Hardware Environments

For object tracking in an security and surveillance systems the choice of sensor hardware

is limited due to very specific requirements, such as low power, wide capture area, low

processing time, and high data reliability. Different sensor types that fit this set-up

are:

Passive Infra-red Sensors (PIR)

PIR is a thermal sensor that detects the heat in the infra-red spectrum [107]. As the

wavelength of normal light is a lot less than that of infra-red, which means it is not

visible to naked eye, however, a pro-electric sensor can detect it through its crystalline

materials that produce a charge when exposed of infra-red radiation. PIR can be very

precise with the distance measurements and provide a wide range of 30 degrees of

detection angle.

Ultrasound Sensors

Ultrasound sensors are some of the most simple sensors for object tracking with low

computation overheads [108]. Recent researches have shown that ultrasound sensors

can be used to precisely determine the shape of an object while it moves at high

speeds. It emits sound waves that bounce back from the object and can then be used

to determine the distance and shape based on the returning sound waves. Ultrasound

sensors can have large detention range but data precision is effected at larger distances.

Optical Sensors

Optical sensors unlike PIR capture the visible light spectrum [109]. They capture the

entire field of view and are some of the most commonly used sensors in security and

surveillance environments. However, they pose some exciting research opportunities

due to the recording of information in frames that can then be used to detect the

movement of an object as it changes position from one frame to the other. They tend

to generate a large amount of data and can be computationally heavy for an object

tracking environment.
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5.2 Experimental Set-up

A large number of nodes are deployed over a geographical area. Although, nodes are

deployed in a specific area for object detection, however, any specific node placement

is not assumed and the nodes are mostly deployed randomly. This random deployment

does, however, makes sure that the nodes are distributed evenly and there are enough

nodes available in any sub region for object tracking. It also assumes that there is a

localisation service that can provide absolute location to a certain number of nodes

from where other nodes can determine their relative location.

The medium of communication between these nodes is wireless and broadcast is the

basic communication method. These nodes have limited communication range and

hence, multi-hop communication may be required to transmit data from one location

to the other. For the purposes of reporting results of the tracking activity, one or more

node may be attached to a relay which can transmit to a base station or sink.

Each node in the network has a unique identity and consists of a processor, memory,

transceiver, battery, and a sensing unit. Some nodes also contain a localization unit

such as a GPS system. These nodes have limited energy resources and hence perpetual

active state is not advisable for network longevity. A single node has limited processing

power, memory, and hence, computationally intensive processes are not advisable at

any single node.

In order for sensor nodes to localise an object being tracked, they must know their own

location. For that purpose it is assumed that small percentage of nodes are capable

of determining their own location with the help of GPS units built in to the node.

Although, GPS units tend to have a margin of error, the GPS signal in space has a

global average user range error of <7.8 meters (25.6 feet), with 95% probability 1. For

the purpose of determining the accuracy of the proposed protocols it is assume that

the location determined from the GPS is absolute and the rest of the network can also

determine the absolute location of every node. In the experiments the GPS margin of

1Official U.S. government information about the Global Positioning System (GPS):
http://www.gps.gov/systems/gps/performance/accuracy/



Chapter 5. Experimental Evaluation 58

error has not been taken into account when the difference between the actual location

and the location is computed by our protocols.

Based on the experimental setup and node design the following assumptions are made.

5.3 Assumptions

For the algorithm proposed in this research, the following assumptions are used regard-

ing the sensor nodes and the underlying network:

• The WSN consists of one sink and a large number of immobile sensor nodes.

The sensor nodes are randomly deployed over a 2D square area to monitor the

environment.

• All nodes have the same radio, battery, memory, and processing capabilities at

the start of the experiment to make sure that any node in the experiment can

assume the role of mini-cluster head without being at any disadvantage.

• Each node is aware of its location’s coordinates and the coordinates of its neigh-

bouring sensor nodes.

• The communication links between sensors are bi-directional.

• Sensor nodes are capable of multi-hop communication to relay data.

• The sensor are not affected when exposed to the environmental elements, such

as, water, air temperature, humidity, direct sunlight, etc.

Based on the above assumptions, the basic network set-up can be viewed as:

5.4 Evaluation Metrics

In order to evaluate the robustness and efficiency of PAD, HHCM and the sampling

mechanism we have established the following evaluation metrics:
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Table 5.1: Simulation Parameters

Parameters Values
Node density 1/6m2

Number of nodes 270
Total area 100m2

Distribution of nodes Random
Sensing range 15m

Communication range 60m
Average sampling duration 0.5 seconds

1. Energy Consumption

Energy consumption is one of the most important evaluation metric because of

the limited energy reserves that a sensor has at its disposal. Energy consump-

tion, however, can be expanded for different tasks. For that reason the energy

consumption during communication, sampling the environment and computation

are calculated. Excessive sampling can lead to energy depletion due to sensing

of the environment, computation of the collected data and transmission of that

data.

2. Amount of Data Generated

Another important aspect of sensor network is the amount of data generated. In

the scope of this research data refers to the localisation information of the moving

object. Date is generated by individual nodes and mini-clusters. This data is then

used to predict the future location and eventually the destination that the object

is moving towards. Excessive data generation can lead to transmission costs and

sensing costs that reduce the life-time of the network.

3. Number of Nodes Used

The importance of this evaluation metric is that if an excessive number of nodes

are used for data collection, then the activity of all those would result in not only

excessive sensing costs but also the increase the communication costs for that

data. Within the proposed mechanisms nodes become part of the mini-clusters

based on their location.
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4. Duration of Node Activity

Although, nodes are activated and deactivated during the course of the tracking

process, it is an important statistic to know the the duration that any single node

stays in active state. This metric would be used to prove that the load of tracking

process is more evenly distributed among the nodes and no single node or group

of nodes is taxed more than others.

5. Localisation Accuracy

The localisation accuracy is calculated as the difference between the real loca-

tion of the object and the predicted location of the object as determined by the

proposed approach. When tracking an object, the accuracy of information is

important, especially in security environment so that the appropriate security

measures can be taken. Within the scope of this research, accuracy of tracking is

required to be at the confidence level of 80% that the object would be moving to

a certain destination. To achieve that level of accuracy the sampling rate of the

environment changes dynamically. Sampling rate can have a significant impact

on the localisation accuracy of the object as a conservative sampling rate can

lead to object being missed or faulty data generated which reduces the accuracy

of the whole tracking process. This sampling rate is dependent on the speed of

movement of the tracked object and the required tracking accuracy.

5.5 Simulation Results and Analysis

This section explains the simulation conducted and the scenarios considered to evaluate

the efficiency of HHCM, PAD and the Sampling mechanism. Based on the parameters

in Table 5.1 and the evaluation metrics following experiments to evaluate PAD, HHCM

and the sampling mechanism have been devised.

During the simulation it was observed that on average of just above four (4.09) nodes

formed a mini-cluster, however, each mini-cluster had different number of nodes with

the largest cluster containing eight nodes and the smallest cluster containing 2 nodes.

Table 5.2 shows the nodes in any given mini-cluster during one of our test runs:
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Table 5.2: Node Distribution in all Mini-clusters

Mini-cluster Number Nodes in mini-cluster
1 4
2 3
3 7
4 3
5 8
6 4
7 5
8 4
9 2
10 2
11 3

Based on the information mentioned above it can also be highlighted that as these

mini-clusters are formed within and across static clusters, the number of nodes in any

mini-cluster is not dependent on the size of the static cluster. Hence, the mini-clustering

structure of HHCM is independent of the underlying static structure.

5.5.1 Experimental rationale

Before the experiments were carried-out to compare the performance of HHCM and

PAD against existing approaches, it was determined that the proposed framework

has certain unique features which pose difficulty in comparing the proposed protocols

directly against existing approaches. In order to make sure that we carried out compar-

ison to highlight the efficiency gains, it was decided to compare parts of the proposed

protocols against the existing approaches.

HHCM is compared against the naive activation approach [110] and zonal activation

approach [111] of object tracking. Naive approach gives us a comparison point where

all nodes are activated. Naive activation leads to high energy consumption and hence,

provides a point of reference. Zonal activation is closely matched to HHCM where only

a small number of nodes are activated within a zone and hence, provides a compar-

ison when only a small number of nodes track an object and they are activated and

deactivated as the object moves through the field. Several zonal approaches have been

proposed in literature [112–114].
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PAD is compared against two major protocols CODA and PES. Although, they do

not predict the destination of the object, however, both these approaches have been

known to provide wide ranging energy efficiency. CODA [12, 23, 24] is based on hybrid

clustering model, where, dynamic clusters are formed to track the object continuously

within dynamic clusters and provides a point of comparison for the proposed hybrid

structure. PES [11, 44] provides a robust energy efficiency mechanism that is based on

collecting the most relevant information from the network and discarding the irrelevant

information which is one of the basis over which PAD has been based. PES also

implements a wake-up mechanism that activates and deactivates the nodes based on

the position of the object and accuracy requirements.

By comparing the proposed protocols against the above two approaches we aim to

compare the basic features of this research. Results will prove that the proposed

approach has performed better against the energy efficiency of PES when compared in

conjunction with the proposed dynamic sampling mechanism. HHCM and PAD also

provide tracking accuracy gains against the two existing approaches while maintaining

energy efficiency.

Results of the experiments have also been compared under different conditions like

change in node density, accuracy of probability in-terms of time and accuracy of data

collected in-terms of its deviation from the actual location of the object. These results

explain the scalability and robustness of the network and its ability to perform under

different conditions.

5.5.2 Energy Consumption of mini-clusters at Different Move-

ment Speeds

This experiment measures the energy consumption based on the speed of the object’s

movement. In this experiment the consumption of energy is computed by every single

mini-cluster that is formed. It would prove that as the object moves through the

observed field it enters mini-clusters are have varying number of nodes and that the

individual nodes are not excessively used for the tracking of the object.
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Energy Consumption at 1 m/sec

In this experiment, the object is moving at 1 meter per second, which is the aver-

age walking speed of a human. As Figure 5.1 shows, the proposed approach reduces

the sensing and the cost associated with it has reduced considerably as compared to

Continuous sensing and time-cycle sensing of 50%.

Figure 5.1: Comparison of energy consumption as the object moves at the speed
of 1 m/sec

On average the proposed sensing scheme consumed 0.8 Joules of energy per cluster

as compared to 7.3 Joules and 3.6 Joules by continuous and time-cycle mechanisms

respectively. This reduction in energy consumption is due to the fact that the sampling

rate of the environment within our mechanism is dynamically adjusted as the object

moves through the environment. Hence, as the object moves slowly and remains at a

steady pace the confidence level of the data accuracy remains stable and hence sampling

rate is maintained at the minimum level leading to energy savings as compared with

the static sampling rates of the other two approaches.

Energy Consumption at 5 m/sec

In this scenario, the object moves at 5 meters per second which the average cycling

speed of a person.
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Figure 5.2: Comparison of energy consumption as the object moves at the speed
of 5 m/sec

Figure 5.2 shows the energy consumed at each cluster as the object moves at 5 m/s.

As the object moves faster it spends less time in each cluster and hence the energy

consumed by the continuous sensing and time-cycle sensing is reduced but the energy

consumed by our approach increases. This is due to the fact that the adaptive sampling

mechanism of our approach increases the sampling rate to maintain data accuracy,

where as the fixed sampling rate of the other two approaches would result in reduced

data accuracy and increase the chances of object loss. However, our approach still

consumes less energy than the other two approaches as it consumes 0.9J, but the

continuous scheme consumes 2.04J and time cycle scheme consumes 1.02J.

Energy Consumption at 10 m/sec

As the object moves at the speed of a galloping horse, which is approximately 10 m/s

it is observed that the energy consumption trends show a different picture.

As the object moves at 10 m/s (Figure 5.3) it is further observed that the time-cycle

scheme consumes less energy than the proposed scheme this is because of the fact that

the object spends only 2.5s in a cluster on average and that leaves it to only sense

the space less times than our scheme. Thus, consuming less energy at 0.5 Joules per

cluster as compared to 0.9J and 1.0J by our scheme and continuous scheme respectively.
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Figure 5.3: Comparison of energy consumption as the object moves at the speed
of 10 m/sec

This result shows that although our approach does not bring the most energy savings,

however, it does maintain the data accuracy. In object tracking data accuracy to a

required threshold is more important than the energy savings as the loss of object due

to reduced sampling could result in higher energy consumption of rediscovery of the

object.

Energy Consumption at 13 m/sec

As the object moves at the speed of an average speed limit for motor vehicles in urban

areas it is observed that the results have changed even more. As the object moves

at higher speed the continuous sensing and the proposed approach consume the same

amount of energy, as time-cycle scheme consumes less because at this speed in our

scenarios the object spends only 1.5 seconds in a mini-cluster on average, which leaves

the proposed approach and the continuous approach to only sense the region three

times at the very most (Figure 5.4).

Even though the object spends less and less time in a cluster as it moves faster through

the sensed field it can be seen that if the simulation is run at 13 m/sec speed, the

required object detection accuracy of 70% to 80% (distance between the actual location
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Figure 5.4: Comparison of energy consumption as the object moves at the speed
of 13 m/sec

and predicted location), remains consistent even though the energy consumption is not

the most economical.

5.5.3 Average Energy Consumption With PAD

In this scenario the proposed approach is compared against CODA. CODA is an energy

efficient system for object tracking. The results of this experiments show that the PAD

in combination with HHCM has a considerable low energy consumption.

Figure 5.5 shows that the energy consumed is considerably low with almost 20% differ-

ence on average energy consumed. Although, the energy consumption over 200 minutes

does show varied results which can be explained by the fact that HHCM inherently

does not have a consistent number of nodes within mini-clusters and this variation in

node density and any sudden change in objects direction as the object moves results in

variable energy consumption. However, the the average energy consumption remains

low.
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Figure 5.5: Comparison of average energy consumption of PAD against CODA

5.5.4 Energy Consumption Over Time With PAD

Figure 5.6 shows the comparison between PAD and PES in terms of average energy

consumed over time as the object moves at a consistent speed. This comparison ex-

plains that the as time progresses PAD remains efficient and average energy consumed

over a period of time is less than PES. This comparison also shows that our network

uses less energy over time and hence, remains available for a lot longer.

Time (m)

5 10 15 20 25 30

E
n
e
rg

y
 C

o
n
s
u
m

e
d
 (

J
)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

PES

PAD

Figure 5.6: Comparison of energy consumption of PAD against PES over time
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5.5.5 Energy Consumption at Different Movement Speeds With

PAD

Figure 5.7 demonstrates the comparison between PAD and PES where the object moves

at different speeds. As an object moves through the sensed field nodes are activated

and deactivated to detect its location, however, as the object increases its speed a

higher rate of sampling is required to make sure that the sensing nodes do not lose the

object.
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Figure 5.7: Comparison of energy consumption by PAD and PES at different
movement speeds

Figure 5.7 shows that as the object’s speed increases PAD manages to keep the energy

consumption to a reduced rate. As the speed of the moving object increases PES can

be seen as experiencing sudden rise in energy consumption levels, however, due to the

adaptive sampling mechanism of PAD the energy consumption remains steady. The

increase in energy consumption is due to the increase in the sampling rate which not

only results in higher sensing cost, but also increased communication and computa-

tional costs in term of energy consumed.
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5.5.6 Amount of Data Generated

A very significant aspect of object tacking in real time is that sensor networks can

generate a large amount of data, which result in computational delays and higher

transmission energy consumption.
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Figure 5.8: Average amount of Data generated by a zone/cluster during the dura-
tion of the simulation

Figure 5.8 shows that with our approach the number of packets generated for tracking

an object are kept to a minimum. As the nodes are distributed randomly no two mini-

clusters or zones are alike and hence each zone or cluster generates different amount of

data. However with our approach the largest mini-cluster , while tracking the object,

generated considerably less amount of data i.e. 42 packets while in zonal approach

that largest zone generated 110 packets of data. On average our approach generates

less than 25 packets while zonal approach generates more than 75 packets per zone.

This reduced data generation is due to lesser number of nodes becoming part of a

mini-cluster while a larger number of nodes become part of a zone and hence generate
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more data. Less data generation leads to lesser computational load at the mini-cluster

head and lesser communication costs, both these aspects reduce energy consumption.

5.5.7 The Number of Nodes Used During Object Tracking

One of the major factors in for efficient tracking of an object is to make sure that

enough nodes are available for tracking an object while making sure that redundancy

is kept to a minimum. This approach has two major advantages, (a) less number of

nodes utilised mean that more of the network is kept in a sleep state which minimized

energy consumption and (a) also means that the amount of data generated by the

network is kept to a minimum which in turn reduces delay due to computation and

also reduces the energy consumed during transmission.
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Figure 5.9: The Number of nodes used during object tracking

Figure 5.9 shows that with our approach the number of nodes associated with tracking

at any given time are less than that of zonal and the näıve approach. The maximum

number of nodes within a cluster always remains lower than in the other two approaches
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showing that at any given time our approach uses less number of nodes. Although,

the total number of nodes utilized during the course of the simulation is higher than

the zonal approach but it shows that the load is more evenly distributed among nodes

during the course of the simulation. This even distribution of load among a larger

number of nodes mean that no single node is utilised in excess and hence reducing

the change of node failure. Within the naive and zonal approaches a smaller number

of nodes are utilised putting more pressure on a smaller group of nodes. This result

demonstrates that by even distribution of load not only energy consumption during

tracking is split across a larger number of nodes but also that the mini-cluster head in

HHCM has a small number of nodes to receive data from for computation and hence

does not get taxed excessively for computation.

5.5.8 Average Duration of Node Activity

One of the major factors for a sensor network is that no one node should be required to

do more work than the other nodes and the work load of the network should be divided

almost equally among all nodes. If one single node or a group of nodes is allocated

too many responsibilities then that node or group is more likely to run out of energy

quicker than the rest of the network thus potentially creating holes in the sensing field.

Figure 5.10 shows that with our approach a single mini-cluster spends considerably less

time in the awake state as compared to a zonal approach. Which highlights that no

one mini-cluster stays awake for a long period of time and thus the nodes within that

mini-cluster stay less time in sensing state and as the object moves out of mini-cluster

that particular mini-cluster is dissolved and thus all nodes retreat to the sleep mode.

In comparison with the zonal approach this result shows that no single group is awake

for an extended period of time reducing the energy consumption of individual nodes

and also distributing the tracking responsibility more evenly than the zonal approach.

Less time in awake means that the energy consumption while sensing environment is

reduced making the network more resistant to node failure due to energy depletion.



Chapter 5. Experimental Evaluation 72

HHCM Zonal
0

1

2

3

4

5

6

T
im

e
 (

m
in

u
te

s
)

Figure 5.10: Average awake time for a zone/cluster

5.5.9 Localisation Accuracy

The main objective of any tracking technique is to track an object with a high certainty

of accuracy while consuming the least amount of resources. It has already been observed

in the previous sections that the proposed approach utilises less resources than other

approaches. In this scenario, the path of the object can be observed as the object is

tracked and the observed path of the object by the sensor network.

Figure 5.11 shows the path the object took while it was being tracked and two different

angles of change of path. As the object moves in a circular path during the initial stages

of the simulation HHCM computes the path and records that information and as the

object changes its path in an unexpected way HHCM manages to adjust the readings

and keep track of the object.

Figure 5.12 shows that the standard deviation of the difference between the actual

location and the detected location is 1.1 with an average of 2.4. This means that the

moving object is detected to within a standard deviation of 1.1 meters of the actual
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Figure 5.11: Accuracy of predicted location against the actual location
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Figure 5.12: Accuracy of tracking data through the duration of the experiment

location of the object. Another aspect to be noted is that with our approach not all

mini-clusters are of the same size because of the random distribution of nodes. The

smallest mini-cluster formed during the course of the simulation consisted of only two

nodes and yet even with that small number of nodes the tracking accuracy of the
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network is not compromised. Although there are spikes in the data which are caused

by the varying number of nodes in a given mini-cluster and also due to the movement

pattern of the object. With the highest difference between the actual and predicted

location being close to 6 meters, however, the variation in the accuracy remains within

a standard deviation of 1.1 meters.

5.5.10 Localisation Accuracy Over Time

In this scenario the accuracy of the location data is observed. Data accuracy is an

important aspect of object tracking as in a surveillance or security environments data

latency or inaccurate state predictions can lead to security breaches making the system

useless.

Figure 5.13: Localisation accuracy Over the course of a journey

Figure 5.13 show that the predicted location data of the object remains around 1 meter

of the actual location of the data through most of the journey. Although, the data

accuracy remains high during the course of the experiment, however, there are some

spikes in the data showing reduced accuracy. This reduced accuracy is caused by any

sudden change in the direction of the object’s movement. In this experiment the object

changed direction by 90 degrees more than once. The most spike in data comes at the
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initial stage of the tracking when due to lack of data about the object results in lower

accuracy but as the object moves through the observed field the location estimation

becomes stable and accurate.

5.5.11 Kernel Density Estimation

In this scenario the Kernel Density Estimation of the observed data is calculated.

Kernel density estimation is a non-parametric way to estimate the probability density

function of random data. Kernel density estimation smoothes random data to show

data grouping, closer the data is grouped more accurate the original data is perceived

to be.

Figure 5.14: Kernel density estimate of the accuracy of collected location data

Figure 5.14 shows that the data is mostly distributed around the mark of 1 meter. This

further confirms the data accuracy as explained in the previous experiment. Although,

there are instances of reduced accuracy where the data suggest reduced accuracy, how-

ever, that can be explained as the sudden change in objects direction. This reduced

accuracy is corrected quickly, hence, most data residing around the 1 meter mark.
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5.5.12 Destination Estimation Accuracy

PAD has been designed to specifically determine the eventual destination of the object

as it moves through the observed field. As the object moves through the field its

behaviour is observed and then based on a matrix of destination selection the eventual

destination of the object is estimated. In this scenario the object moves within the

observed field the estimate of its eventual destination variates, however, as more data

is gathered about the object the estimates are revised to show the final destination of

the object.
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Figure 5.15: Accuracy of the destination estimation mechanism of PAD through
the duration of the experiment

As the object moves through the observed field it take the object 500 minutes to reach

its destination as shown in Figure 5.15. However, after 220 minutes of its movement

within the field up to 80% certainty can be achieved about the future destination of

the object and eventually 100% certainty can be achieved about the object’s particular

destination once it has made 80% of its journey.
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5.5.13 Tracking Accuracy And Energy Consumed With Dif-

ferent Node Density

In this scenario we look at the accuracy of data when we variate the density of nodes

in the environment. Data accuracy at different node density is tested to prove that the

mechanism is robust and scalable and can deal with different node densities and also

to show what effect change in node density would have on the accuracy of data. We

tested this with three different node densities at 1 nodes per 3 square meters, 1 nodes

per 6 square meters and 1 nodes per 9 square meters.

Time (minutes)

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
n

c
e
 (

m
e
te

rs
)

-1

0

1

2

3

4

5
1 node per 6 squaremeters

1 node per 9 squaremeters

1 node per 3 squaremeters

Figure 5.16: Comparison of the tracking accuracy with different node density

Figure 5.16 show that the predicted location data of the object remains at an average

of 1.15 meters of the actual location of the data through most of the journey when the

node density is at 1 node per 6 square meters. If the number of nodes is reduced in

the same observed environment to 1 node in 9 square meters the data becomes more

erratic and the average data accuracy is reduced to 1.8 meters from the actual location

of the object. Likewise, if the data density is increased to 1 node in 3 square meters

data accuracy is increased to 0.9 meters from the actual location. It must be observed

that as the data accuracy does increase it does not bring much improvement to the

overall accuracy with an increase of 0.25 meters from the actual location, however,
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when the node density is reduced the data accuracy goes down by 0.65 meters from

the actual location. This reduction in accuracy is more significant than the gains made

at higher density. This proves that the data accuracy discussed in Figure 5.13 being of

high significance with an optimum number of nodes.
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Figure 5.17: Comparison of energy consumption at different node density

When the energy consumed is analysed at different node density (Figure 5.17), the

results show that the energy consumption increases when the node density is increased

or decreased. When the node density is increased the energy consumption in increased

due to excessive communication and computational costs, and when the node density

is reduces the energy consumption in increased due to the excessive sampling of the

environment to maintain data accuracy. This result can be used to determine the

optimum node density at which the data accuracy and energy consumption are both

at an acceptable levels.

5.6 Discussion

This chapter performance of PAD, HHCM and the sampling mechanism have been

explored. Three effective parts of the algorithms are examined in a wide range using

simulations to find the most appropriate values as explained in the Evaluation Matrices.
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The proposed approaches have shown to prolong the network life time and increased

the efficiency of the network while tracking the target. In addition, the impact of the

deployed sensor nodes density on data accuracy and energy consumption has also been

explored. Results have also shown that the energy efficiency of the HHCM and PAD

have considerable improvement over the existing approaches. Experiments have also

shown that the accuracy of data can be increased by effective management of sampling

mechanism and results demonstrate that the improvements are significant.

While results of the experiments discussed in this chapter have highlighted the energy

efficiency, data accuracy and future location estimation accuracy, there are certain

aspects of the experiments that can have an adverse effect on the results. One of the

aspects in the M matrix, although, it is assumed in this research that the data about

the observed field is accurate and can be rusted, however, in case of faulty or missing

data from M matrix the results of the destination estimation can be effected. This

aspect of the research, however, was not within the scope of the project and future

work on the project can incorporate this scenario.
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Conclusion and Future Work

In recent years wireless sensor networks have been deployed for many real world applica-

tions like disaster monitoring, security, surveillance, animal migration, health systems

and so on. Sensor networks have become more useful for object tracking and several

modern cities have deployed sensors, such as, optical and acoustic sensors for moni-

toring and crime prevention. However, these systems have several drawbacks, such as,

the monitoring of the system still remains predominantly and human activity. In this

thesis the use of wireless sensor networks for object tracking and destination estimation

within a security scenario has been explored. Object tracking has been researched ex-

tensively in recent years, however, the task of destination estimation has been limited

to certain domains within object tracking like traffic management, vehicular networks,

etc., where destination estimation has been conducted with the aid of prior data about

traffic and vehicle journeys. Destination estimation of a tracked object within security

and surveillance domains has been limited due to lack of prior information. Every se-

curity scenario can be unique and hence, prior information of security breaches cannot

be used to determine future incursions.

6.1 Summary

Within this thesis, the application of wireless sensor networks and important imple-

mentation techniques and protocols have been discussed. The wireless sensor networks,

80
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theoretical characteristics and system constraints, and currently available networking

architectures and deployment topologies have also been introduced.Also, some of the

related protocols and algorithms for object tracking have been discussed.

In this thesis a novel and comprehensive framework for object tracking using sensor

networks has been proposed where not only the object is tracked in real time but

also the destination of the object is determined. In this work, several goals have been

successfully achieved, which are:

1. Accurately predict destination of object without any prior information about the

object’s movement.

2. Develop an efficient network architecture to reduce the number of nodes involved

in tracking process.

3. Obtain the most relevant information from the network by reducing the amount of

data collected to reduce the communication and computational costs while main-

taining the required level of data accuracy.

For this purpose the following approaches have been developed:

1. A novel Prediction-based Algorithm for Destination-estimation (PAD). PAD not

only predicts the destination that an object would take to a particular destination

but also predicts the path(s) that the object could take to that destination. A

traffic management system called Origin-Destination (OD) Estimation has been

the inspiration of this project. OD estimation predicts the destination of the

object with the help of prior data about traffic journeys. However, in a secu-

rity environment the intruder would only make a decision to go to a particular

destination because of its importance. As in security environment the luxury

of prior information about a intrusion is not available, a Matrix of Importance

for any given destination has been proposed. With the help of this matrix and

the movement pattern of the object in the observed space the destination of the

object and the path the would take to that particular destination is computed.
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Experiments have been conducted to determine the accuracy with which PAD

calculates the destination of the object. These experiments have been discussed

in detail in this Chapter 5. Also experiments have been conducted to determine

the energy efficiency of PAD and compared them against the existing approaches

of object tracking. PAD not only predicts the destination with a high degree of

energy efficiency but also maintains a high level of data accuracy. Results of the

experiments have shown that the proposed approach can predict the destination

of the object with 80% accuracy when the object has travelled less than half on

its total journey and with 100% certainty that the object is moving towards a

particular destination once it has made 80% of its journey, maintaining a high

level of energy efficiency.

PAD operates on a new Hierarchical Hybrid Clustering Mechanism (HHCM) that

has been developed for object tracking with wireless sensor networks.

2. A New Hierarchical Hybrid Clustering Mechanism (HHCM). HHCM has been

developed as an underlying network architecture to minimise energy consumption

of the sensor network while it accurately predicts the object’s future location. The

factors affecting energy efficiency include the amount of data collected and the

number of nodes active at any given time. Excessive data collection leads to

higher processing and transmission costs in terms of energy and high number of

active nodes lead to excessive data collection and sensing energy costs. Sensor

nodes inherently have limited energy supplies and these energy supplies are not

only required for sensing the environment but also to compute the data collected

and transmission of that data. So as a network the energy consumption increases

if more nodes are in active state or if they are collecting excessive amounts of

data through sensing operation.

HHCM is designed to form dynamic mini-clusters within and across static clusters

along the predicted future location of the object that is being tracked and a mini-

cluster head then collect the information from its neighbouring nodes. HHCM is

split across triple level hierarchy, where ordinary nodes form part of the dynamic

mini-cluster which are managed through a mini-cluster head. This mini-cluster

head itself reports to the cluster head of the larger static cluster. Mini-clusters
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perform a dual role in HHCM, not only do mini-clusters help to reduce the number

of nodes made active at any given time to perform tracking which reduces the

data collection and processing costs in terms of energy but also carry out part

of the computation to reduce amount of data that is transmitted by filtering out

the redundant data. This data is then sent to the static cluster head which not

only receives the most concise data from the mini-cluster but also the most useful

data, hence, reducing the computational load from the cluster head.

To test the efficiency of this architecture, experiment have been conducted which

measured the number of nodes used during the object tracking, amount of data

generated from within each mini-cluster, average time a particular mini-cluster

spends in active state. In all these experiments the efficiency of the architecture

is measured by comparing it against the naive and zonal node activation mecha-

nisms. The results show that by employing this architecture not only the number

of nodes are reduced which limits the energy consumption of the network during

sensing operations but also spreads the tracking duties amoung various mini-

clusters. This distribution of duty leads to larger collaboration and reduces the

load from any particular node. Reduced amount of data generation from within

a mini-cluster leads to reduced energy consumption during data transmission.

Experimental results show that this architecture has significant energy savings.

3. A dynamic sampling and Bayesian filtering mechanism for extraction of most

relevant data and prediction of next state location.

For an efficient object tracking sensor network, it needs to collect the most rel-

evant data with a mechanism to discard any redundant or excessive data. For

this purpose a sampling and next state prediction mechanism has been developed

that can not only observe the environment selectively but also selects the most

relevant data out of the collected samples. The sampling rate of the observed

environment is dynamically changed to maintain a predetermined level of data

accuracy. This mechanism also predicts the next state of the object which has

multi-fold advantages, not only it provides an estimate of when to observe the

environment again, it also predicts the movement pattern of the object. This ob-

servation of the movement pattern can then be combined with PAD to generate
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more accurate transition predictions, while at the same time filtering the data

for any unwanted information. For this next state prediction we have employed

Kalman filtering which is a Bayesian filtering mechanism. The Kalman Filter is

an algorithm that uses a series of measurements observed over time, containing

random variations and other inaccuracies, and produces estimates of unknown

variables. Once the outcome of the next measurement is observed, these esti-

mates are updated using a weighted average, with more weight being given to

estimates with higher certainty. Because of the algorithm’s recursive nature, it

can run in real time using only the present input measurements and the previ-

ously calculated state. This sampling and prediction mechanism has been built

on top of the HHCM to engage the smallest number of nodes possible for data

reduction and then further curtailing the data with this robust sampling mech-

anism. By further reducing the data with the aid of the Kalman filtering we

reduce the communication costs in terms of energy and by performing this at

mini-cluster head we distribute the computation cost among several nodes.

To analyse the performance of the proposed sampling and next state prediction

mechanism experiments have been conducted to calculate the energy efficiency

and the data accuracy of the next state prediction. The actual location of the

data against the predicted location is analysed, average energy consumed during

this process, and all this while the movement speeds of the object variate to

test the dynamic and adaptive nature of the sampling mechanism. Experimental

results show that the gains in energy saving and at variable movement speeds of

the object are considerable, while maintaining the desired level of data accuracy,

which in our case shows that the location estimates stood at a standard deviation

of 1.1 meters from the actual location.

6.2 Future Work

This research project was set out to develop an object tracking mechanism that can

predict the future location and the destination of the object without any prior infor-

mation about the object, while maintaining energy efficiency to enhance the life of the
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network. Existing approaches make use of the prior or historical date when trying to

determine the destination of an object, however, within security scenarios prior infor-

mation is almost never available. During the course of this research this aim of the

research has been successfully achieved as has been demonstrated through the exper-

imental evaluation. However, this research project has highlighted additional avenues

of research that would enhance the working of this mechanism.

1. Firstly, this project has been developed in a modular form where mini-clusters

can be formed and dissolved as desired by the tracking application. This modular

form not only is capable of tracking a single object but should also be able to

track multiple objects. Multiple object tracking has not been explored as part

of this mechanism and hence provides an opportunity to further develop this

mechanism to incorporate multi-object tracking.

2. Secondly, the M matrix which is proposed within this research project could be

further developed to incorporate the a significant margin of error due to miss-

ing, incomplete or faulty data about the environment. Within the scope of this

research the errors within the M matrix were not explored as that would have de-

viated this project from the intended aim and objectives. Further research within

this domain could reduce the number of assumptions about the environment and

help to make this tracking mechanism more robust and less prone to any errors.

3. Thirdly, within this research project the random node deployment has been

used. Further research into different deployment mechanism could be conducted

to determine if their are any advantages to deploy nodes in any particular topol-

ogy or form. Random node deployment is easier and quicker in real life and hence

has been the choice for this research, however, quick deployment is not always

required. Hence, research into a comparative study of different node deployment

mechanism could highlight if further gains can be made in tracking accuracy and

energy conservation.
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