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Abstract   33 

Protected areas (PAs) are currently the cornerstones for biodiversity 34 

conservation in many regions of the world. Within Africa’s moist forest areas, 35 

however, numerous PAs are under significant threats from anthropogenic 36 

activities. Adequate technical and human resources are required to manage the 37 

wildlife within PAs satisfactorily. SMART (Spatial Monitoring And Reporting 38 

Tool) software has been developed to aid in fluidly displaying, managing, and 39 

reporting on ranger patrol data. These data can be analysed using spatial 40 

modelling to inform decision-making. Here we use Favourability Function 41 

modelling to generate risk maps from the data gathered on threats (fire, 42 

poaching and deforestation) and the presence of Western gorilla (Gorilla gorilla 43 

gorilla), chimpanzee (Pan troglodytes) and African forest elephant (Loxodonta 44 

cyclotis) in the Dja Forest Reserve (DFR), southern Cameroon. We show that 45 

the more favourable areas for the three study species are found within the core 46 

of the DFR, particularly for elephant. Favourable areas for fires and 47 

deforestation are mostly along the periphery of the reserve, but highly 48 

favourable areas for poaching are concentrated in the middle of the reserve, 49 

tracking the favourable areas for wildlife. Models such as the ones we use here 50 

can provide valuable insights to managers to highlight vulnerable areas within 51 

protected areas and guide actions on the ground.   52 

  53 

  54 

  55 

  56 

    57 

1.  Introduction  58 

Protected areas (PAs) aim to conserve nature by minimizing human 59 

pressures and threats operating within their boundaries. Although PAs are 60 

known to perform better than the broader landscape (Barnes et al., 2016; Gray 61 

et al., 2016), numerous studies suggest that biodiversity continues to decline 62 

within them (Craigie et al., 2010; Geldmann et al., 2013). Numerous PAs within 63 

Africa’s moist forest regions, often created to safeguard large charismatic 64 

fauna and other natural resources, are under significant threats from 65 

anthropogenic activities such as deforestation, fires and hunting (Joppa and 66 



Pfaff, 2011; Nelson and Chomitz, 2011; Tranquilli et al., 2014). The persistence 67 

of wildlife in PAs ultimately depends on increasing conservation efforts to 68 

combat such threats (Arcese et al., 1995; Jachmann and Billiouw 1997; Bruner 69 

et al., 2001; de Merode and Cowlishaw, 2006; de Merode et al., 2007).   70 

  71 

Law enforcement in PAs in the Congo Basin is notoriously underfinanced 72 

(Wilkie et al., 2001). Thus, tools that enable the often, resource-limited (in 73 

technology, weapons and personnel) site-based staff, to better patrol more 74 

areas with greater regularity, have been developed recently. These have 75 

resulted from the increased accessibility of geospatial technologies associated 76 

with Global Positioning Satellites (GPS), remote sensing and Geographic 77 

Information Systems (GIS) (O’Neil 2005). Two applications, CyberTracker and 78 

SMART (Spatial Monitoring And Reporting Tool), are now available to improve 79 

the effectiveness of wildlife law enforcement patrols and site-based 80 

conservation activities on the ground. SMART contains a suite of programs that 81 

can use mobile data collected with the CyberTracker App (CyberTracker, 2018). 82 

CyberTracker operates within a GPS enabled mobile device e.g. smartphone or 83 

a Personal Digital Assistant (PDA) to collect observation and GPS data in a 84 

single unit. On return from their patrols, data collected by rangers as part of their 85 

daily work (e.g. wildlife observations, poaching encounters) can be transferred 86 

to directly into the SMART database in a semi-automated process. These tools 87 

are open source and non-proprietary and are currently deployed in hundreds of 88 

sites around the world. (Henson et al., 2016, SMART, 2017, 2018).  89 

  90 

Spatial modelling of observation data gathered using CyberTracker and 91 

SMART over a relevant period of time can be used to predict significant areas of 92 

threats relative to areas of abundance of the target species across a PA 93 

including in unpatrolled areas. Increasing the probability of detecting illegal 94 

activities improves the efficacy of PA law enforcement (Leader-Williams and 95 

Milner-Gulland, 1993), leading managers to target areas where threats are most 96 

likely to occur (Campbell and Hofer, 1995). Mapping and predictions of threat 97 

occurrence can be effective in helping law enforcement reduce deforestation 98 

threats (Linkie et al., 2010) and can result in cost-efficient prevention of illegal 99 

activities (Plumptre et al., 2014).   100 



  101 

In this paper, we focus attention on understanding the distribution of and 102 

threats affecting the Endangered chimpanzee (Pan troglodytes), the Critically 103 

Endangered Western lowland gorilla (Gorilla gorilla gorilla), and the Endangered  104 

African forest elephant (Loxodonta cyclotis)1 within the Dja Forest Reserve 105 

(DFR) in southern Cameroon.  The DFR is a key stronghold for these flagship 106 

species and is one of Africa's most biodiverse rainforests. Despite its 107 

importance, the state of conservation of the reserve is precarious, due to the 108 

continuing impact of uncontrolled commercial hunting and other illegal activities.  109 

As a result, the DFR is likely to be inscribed on the List of World Heritage in 110 

Danger (UNESCO, 2018). A number of measures have been proposed to 111 

strengthen the institutional and operational framework for management of the  112 

DFR, including the strengthening of technical and logistical capacities 113 

(UNESCO, 2018).   114 

  115 

Adequate law enforcement patrolling within the DFR is restricted by the 116 

terrain’s inaccessibility and by the small (75-man) ranger force currently in 117 

place. Given this situation, timely analyses of data gathered by these patrols 118 

can be used to assist the ranger force become more strategic. Here, we utilise 119 

patrol data on the distribution of the target species and pressures on these, to 120 

generate maps of high-pressure areas for wildlife. These maps are created 121 

using Favourability Function (FF) modelling (Real et al., 2006; Acevedo and 122 

Real, 2012).  FF is a procedure based on logistic regression that removes the 123 

effect of species prevalence from presence probabilities, thus evening out 124 

model predictions for different species and factors so that they can be directly 125 

combined.  FF modelling has been used to resolve species conservation issues 126 

(e.g. Estrada et al., 2008; Fa et al., 2014).  Based on the results of our 127 

modelling we discuss possible management and conservations interventions 128 

that could be applied to better protect large mammals in protected areas.  129 

  130 

                                            
1 Although there is still some debate over the distinction of the African Forest 

Elephant, here we follow Wittemyer (2011) and refer to the elephant species in 

the DFR as L. cyclotis.  



2.  Material and methods  131 

2.1.  Study area  132 

The DFR (2°50 – 3°30 N, 12°20 – 13°40 E) in southeastern Cameroon is 133 

bounded on three sides by the Dja River (Figure 1), a major tributary of the 134 

Congo River. The DFR was designated as a Biosphere Reserve under the  135 

UNESCO Man & Biosphere Programme in 1981 and is classified as an IUCN 136 

Management Category VI: Managed Resource Protected Area. At the time of 137 

the World Heritage listing, 90% of the area was considered intact and human 138 

pressure was low.  139 

   140 

Our study area comprised the entire DFR and up to 21 km around the 141 

limits of the reserve so as to include the tracks followed by ranger patrols (see 142 

Supplementary Figure 1). Covering 5,260 km2 and 600–700 m above sea level, 143 

the DFR is one of the largest protected areas of lowland rainforest across 144 

tropical Africa. Monthly average temperature in the region is 23.5 - 24.5 °C and 145 

annual rainfall 1,180 – 2,350 mm. Vegetation in the DFR lies within a 146 

transitional zone between the Atlantic equatorial coastal forests of southern 147 

Nigeria and western Cameroon, and the evergreen forests of the north-western 148 

Congo lowlands. Atlantic, semi-deciduous, Congolese and monospecific forest 149 

types are present within the DFR but tree cover is dominated by dense 150 

semievergreen Congo rainforest.  151 

  152 

2.2.  Patrol data  153 

Operating under the auspices of an agreement between The African Ape  154 

Initiative (AAI) of the African Wildlife Foundation (AWF) and the Service de 155 

Conservation-DFR (SC-DFR), anti-poaching patrols completed pre-identified 156 

routes within the DFR (see routes in Supplementary Figure 2 and 3). While 157 

AAIsupported anti-poaching patrol efforts started in Sept. 2013, here we use 158 

data for Feb. – Apr. 2015 and Jan. – Mar. 2016. During this period, a total of 15 159 

patrols were deployed, an average of 2.5 patrols per month (range 1 – 4), 160 

covering a distance of 230.7 km (range 72 – 458 km) per patrol, and 22.5 days 161 

per patrol (range 3 -51 days).   162 

  163 



In total, patrols covered 1,384 km over 192 patrol days (Dupain et al., 164 

2017). Each patrol team undertook 10-day missions within pre-determined 165 

itineraries; routes were decided on the basis of knowledge of the terrain, but 166 

were not randomly chosen. Data were gathered from 6h to 17h during patrol 167 

days. Patrols would seize hunting gear and fraudulently collected products, 168 

would destroy traps and camps, collect cartridges and other polluting objects, 169 

and be involved in sensitization and eviction of offenders. Tracklogs, photos and 170 

observations of mammals and human activities were georeferenced and 171 

recorded. For this paper, we used only data of elephant dung, gorilla nests, 172 

chimpanzee nests and encounters with hunting camps, poachers, cartridges 173 

and snares.   174 

  175 

All patrols (each composed of six guards, and four local village porters) 176 

carried a PDA equipped with CyberTracker for download to a computer running 177 

SMART. A total of 60 out of 75 eco-guards were trained in the use of the PDA 178 

and to operate Cyber-Tracker and SMART; all data collection protocols were 179 

approved by the Conservation Department in Cameroon.    180 

  181 

2.3.  Modelling variables  182 

Patrol observations data of the presence of the three species were used to 183 

delimit the distribution of wildlife within the DFR. Threat data based on poaching 184 

signs, forest loss and fires, the latter two derived from remote sensing, were 185 

dependent variables in our models. Independent variables included spatial data 186 

on environmental and anthropogenic factors obtained from non-field based 187 

sources. Records for each variable were assigned to 0.5×0.5-km grid squares 188 

covering the entire study area.  189 

  190 

Dependent variables  191 

We used presence records of chimpanzees, gorillas and elephants 192 

gathered by DFR park personnel during 2015 and 2016. Park personnel 193 

employed CyberTracker hand-held devices, allowing them to record 194 

observations quickly and easily prior to upload into the fully compatible SMART 195 

software. For each positive contact (Supplementary Figure 1), we fixed a 2.5 km 196 



buffer zone for gorillas and chimpanzees, and 5.0 km for elephants. The size of 197 

these buffer zones was based on the average daily distances travelled by each 198 

species in Wilson and Mittermeier (2011) and Mittermeier et al. (2013). For 199 

modelling purposes, we assumed that the species was present in all the  200 

0.5×0.5-km squares included within these buffers.  201 

  202 

Data on poaching consisted of geo-referenced records of traps and 203 

ammunition cartridges found by the DFR staff during their patrols. We assumed 204 

that poachers were active within a maximum of a 10-km radius buffer around 205 

each record from data on the area covered by trappers in Equatorial Guinea 206 

(Kümpel, 2006).  207 

  208 

Forest loss within 0.5×0.5-km squares was derived from comparisons of 209 

newly deforested areas between 2001 and 2014 (i.e. a 15-year period prior to 210 

our wildlife evaluation) available from Hansen (2013) and from the Global Forest 211 

Change web site (https://earthenginepartners.appspot.com/science2013-global-212 

forest). Fire presence was defined as all 0.5×0.5-km squares containing active 213 

fire observations between 2001 and 2014 in NASA’s FIRMS database 214 

(https://firms.modaps.eosdis.nasa.gov) (Supplementary Figure 2).  215 

  216 

Absences for all variables based on field personnel observations (i.e.  217 

wildlife and poaching) were defined as all non-presence in 0.5×0.5-km squares 218 

within a buffer area around the tracks followed by ranger patrols  219 

(Supplementary Figure 1 and Supplementary Figure 2a). This minimized bias 220 

caused by uneven sampling throughout the study area since models are initially 221 

developed within the regions of the study area that were sampled by ranger 222 

patrols. Buffer width was specific to every variable, according to the above.  223 

Using this criterion, there were 2,388 presences and 7,994 absences for 224 

gorillas, 2,630 presences and 7,752 absences for chimpanzees, 8,542 225 

presences and 6,503 absences for elephants as well as 20,858 presences and 226 

3,047 absences for poaching. For forest loss and fire, all non-presence 227 

0.5×0.5km squares within the study area were considered as absences, given 228 

the unbiased nature of remote sensing observations.  229 



  230 

Independent variables  231 

Predictors on which the models were based, consisted of 39 variables 232 

which described climate, topography, soils, land use and anthropogenic 233 

descriptors (Supplementary Table 1). Variable values per 0.5×0.5-km square 234 

were calculated using the ZONAL tool of the ArcMap v.10.1 (ESRI©2012) 235 

software, starting from 100-m2 resolution raster layers. We computed average 236 

values for each predictor except for the land-use variables, for which 237 

squarearea proportions covered by each use were considered.  238 

  239 

In order to consider autocorrelation resulting from the purely spatial 240 

structure of species distributions (Sokal and Oden, 1978), we designed a purely 241 

spatial independent variable following the ‘trend surface approach’ (Legendre 242 

and Legendre, 1998). To this end, different combinations of average latitude (Y) 243 

and longitude (X) were defined (i.e. X, Y, XY, X2, Y2, X2Y, XY2, X3, Y3), and a 244 

backward-stepwise logistic regression of presences/absences was run on these 245 

combinations. This modelling method commences with the full combinations of 246 

latitude and longitude and then iteratively removes the least significant predictor 247 

variable. Because it is based on the location of presences, and not on variables 248 

that describe possible causes of distribution, this model is more predictive than 249 

explanatory. For that reason, we use backward steps which generates a more 250 

conservative model with respect to the number of variables that remain in the 251 

model. Then we used the logit of this regression as the spatial independent 252 

variable.  253 

  254 

  255 

  256 

  257 

2.4.  Predictive models  258 

Model fitting and evaluation  259 

Models defining the distribution of environmentally favourable areas for 260 

each species and threat were developed using the Favourability Function (FF), 261 

as described by Real et al. (2006) and Acevedo and Real (2012):  262 

  263 



F = (((P)/(1-P))/((n1/n0)+(P/(1-P))))  264 

  265 

where F is environmental favourability (0-1), P is the presence probability, and 266 

n1 and n0 are the numbers of presences and absences, respectively. P was 267 

calculated using forward-backward stepwise logistic regression, according to 268 

the independent variables shown in Supplementary Table 1 and the spatial 269 

variables. We have preferred steps forward, against backward steps, to 270 

minimize the number of variables in the model, thus favouring its explanatory 271 

capacity with respect to the causes of the distribution.  272 

  273 

Type I errors, potentially caused by the large number of variables 274 

employed in the process, were controlled by using Benjamini and Hochberg’s 275 

(1995) False Discovery Rate (FDR).   276 

  277 

To minimise multicollinearity, we applied a three-step procedure. First, we 278 

avoided using variables that had correlation values (Spearman R) greater than 279 

0.8, by removing the least significant within each pair of highly correlated 280 

variables. From these, we accepted only significant variables with a FDR of q < 281 

0.05. Finally, forward-backward stepwise logistic regression will not consider 282 

correlated variables in the final model. Variables enter the equation by forward 283 

selection, so that the first variable explains the highest proportion of the 284 

variation observed, the second variable explains the highest proportion of the 285 

residual variation (i.e. variation not explained by the first variable), and so on. 286 

For this reason, the final model does not usually include correlated variables, 287 

and if two correlated variables enter it is because one explains part of the 288 

variation not explained by the other.   289 

  290 

The classification capacity of the models obtained was evaluated using 291 

four indices: sensitivity (proportion of correctly classified presences), specificity 292 

(proportion of correctly classified absences), correct classification rate (CCR: 293 

proportion of presences and absences correctly classified) and Cohen’s Kappa 294 

(proportion of specific agreement; Fielding and Bell, 1997). We used the area 295 

under the receiver operating characteristic curve (AUC) to assess the 296 



discrimination capacity of the models (Lobo et al., 2008). The significance of 297 

every independent variable in the model was assessed using the Wald test.  298 

  299 

Model extrapolation  300 

Wildlife and threat of poaching models, fitted in training areas constrained 301 

to buffers around ranger patrol tracks, were extrapolated to the whole of the 302 

study area using the following equation (Real et al., 2006):  303 

  304 

F = ey/[(n1/n0) + ey]  305 

  306 

where n1 and n0 are presence and absence numbers within the training area, e 307 

is the base of the natural logarithms, and y is the linear combination of predictor 308 

variables (i.e. the logit) of the logistic regression defining P (see above).   309 

  310 

Model extrapolations were made only to the 0.5×0.5-km squares whose 311 

variable values were within the dominion of the Favourability Function, i.e. were 312 

in the range of values shown by the model variables within the training area. We 313 

only accepted a 10% tolerance above and below. This precaution avoided 314 

projections to zones that were not environmentally represented in the area used 315 

for model training.  316 

  317 

2.5.  Wildlife and risk maps  318 

In this paper we define threat as an action (poaching, fire, forest loss) 319 

likely to cause damage, harm or loss. We define risk as the potential or 320 

possibility of an adverse consequence resulting from the combined effects of 321 

one or more threats.   322 

  323 

Using the average of favourability models obtained for the three target 324 

species we calculated a "Wildlife Index (WI)". A “Threat Index (TI)” was derived 325 

from the average of the three threat models. We employed the average rather 326 

than the sum so as to maintain the range of resulting values between 0 and 1. 327 

We combined the threat and wildlife indices to derive an overall map (which we 328 

call a risk map) to show where wildlife was more likely to be affected by threats 329 



either separately or combined. We divided the study area by the following 330 

favourability values for each index: High (H): index values ≥0.8. 331 

IntermediateHigh (IH): indices values between 0.5 and 0.8. Intermediate-Low 332 

(IL): indices values between 0.5 and 0.2. Low (L): indices values ≤ 0.2.   333 

  334 

3.  Results  335 

3.1.  Wildlife models  336 

We obtained significant favourability models for all three species (Table 1,  337 

Figure 2). These models had acceptable values of discrimination capacity (AUC 338 

>0.745), and fair classification capacity values (Cohen's Kappa value >0.300) 339 

as shown in Table 2. All showed a fairly high proportion of correctly classified 340 

presences and absences; values being ≥0.635 for sensitivity and specificity.  341 

The correct classification rate was always ≥0.670.  342 

  343 

Table 1 and 2 around here  344 

  345 

Greater distances to the nearest road were associated with higher 346 

favourability for the presence of all species, but larger distances from towns and 347 

villages were also significantly related to more favourable areas for gorillas. 348 

Maps showed that highly favourable areas within the core of the DFR were 349 

typical for all three species. Highly favourable areas for gorillas and elephants 350 

were also found along the northern part of the DFR (Figure 2a, 2c), but not for 351 

chimpanzees (Figure 2b). The latter species had highly favourable areas along 352 

the south-eastern area of the park as well as in the central region. Overall, 353 

larger highly favourable areas within the centre of the DFR were more typical for 354 

elephants (Figure 2c) than for the other two species. For all three species 355 

combined, more favourable areas were within the interior of the DFR (Figure 356 

2d), with less favourable areas along a ring from the west to the east of the 357 

park.   358 

  359 

3.2.  Threat models  360 

Significant favourability models were also obtained for the three threat 361 

variables considered in this study (Table 3). Discrimination capacity was 362 



acceptable (AUC >0.749; Table 2) but classification capacity was low for fire 363 

(Kappa = 0.088), moderate for poaching (Kappa = 0.422) and fair for 364 

deforestation (Kappa = 0.269). The three models showed a fairly high 365 

proportion of correctly classified presences and absences (sensitivity and 366 

specificity values were always ≥0.685).  367 

  368 

Table 3 around here  369 

  370 

Proximity to roads and to towns and villages were significantly related to 371 

high favourability values for forest loss and fire; proximity to agriculture was also 372 

relevant. However, environmental variables defining high favourability for 373 

poaching were a combination of climatic variables (mainly high precipitation in 374 

the wettest month and low precipitation in the warmest quarter), 375 

topohydrography (greater distance from navigable streams) and soil (low sand 376 

percentage). Favourable areas for poaching were largely concentrated around 377 

the centre of the reserve (Figure 2e), but favourable areas for forest loss and 378 

fires were found outside the DFR (Figure 2f, 2g). The combined TI (Figure 2h) 379 

indicated that areas that were most favourable for all threats were along the 380 

western boundary and to a lesser extent just outside the eastern border of the 381 

DFR.  382 

  383 

3.3.  Combining wildlife and threat models  384 

TI-WI maps for each threat factor indicated that the more favourable areas 385 

for poaching actually overlapped considerably with the more favourable areas 386 

for wildlife, in fact occupying most of the DFR (Figure 3a). In contrast, the 387 

highest risk from forest loss and fires were concentrated along the western 388 

region of the study area, but always outside the DFR (Figure 3b, 3c).   389 

  390 

The combined TI-WI map showed that the highest levels of risk for wildlife 391 

were found along the western and the northern sectors of the DFR (Figure 3d).  392 

Along the east of the DFR, high-risk areas are found just outside the park.  393 

  394 



4.  Discussion  395 

Electronic monitoring tools such as SMART and CyberTracker have been 396 

instrumental in empowering protected area managers to record and assess the 397 

state of faunal or other elements under their care. Nonetheless, the use of these 398 

tools is only effective if the plethora of law enforcement monitoring data that 399 

they are able to generate can be analysed promptly to guide management on 400 

the ground. Both SMART and CyberTracker, which are free and open-source, 401 

are highly configurable and therefore widely accessible to the conservation 402 

community, which often has widespread data-management needs. Although 403 

SMART is a relatively new piece of software that will no doubt develop further, 404 

the conservation community would benefit from parallel initiatives for 405 

development of analyses that integrate patrol data with independent data 406 

sources to inform more effective targeting of limited management assets. 407 

Together, CyberTracker and SMART provide an integrated and accessible 408 

platform for systematic collection and aggregation of structured, actionable 409 

wildlife and threat distribution data from protected area patrols and monitoring 410 

programmes. Spatial modelling can add value to these data enabling managers 411 

to better understand events occurring within the protected areas and facilitate 412 

decision-making, whether in response to issues arising or in measuring the 413 

impact of new initiatives. Examples of the use of ranger patrol data alongside 414 

spatial modelling are still relatively scarce (but see Critchlow’s et al. 2015 use of 415 

Bayesian methods to improve ranger patrols within protected areas).  416 

  417 

Species distribution models (SDMs) are widely used in the fields of 418 

macroecology, biogeography and biodiversity research for modelling species 419 

geographic distributions based on correlations between known occurrence 420 

records and the environmental conditions at occurrence localities (Elith and 421 

Leathwick, 2009). Although a number of SDMs such as Ecological Niche Factor  422 

Analysis (ENFA), Maximum Entropy Approach (MaxEnt) and FF (Hirzel et al.,  423 

2002; Phillips et al., 2006; Real et al., 2006; Elith and Leathwick, 2009) are 424 

commonly used, only favourability values for different modeled units (in our 425 

case study species and threats) can be compared in absolute terms.  426 



Favourability provides commensurate values and is independent from presence 427 

prevalence (Acevedo and Real, 2012). Such characteristics are particularly 428 

useful in conservation biology such as in defining areas where a group of 429 

species may be more vulnerable to different factors (Fa et al., 2014) or when 430 

models for a large number of species need to be combined to define relevant 431 

areas for conservation (Estrada-Peña et al., 2008). In this paper, we apply FF 432 

modelling which is an approach that has advantages over other more widely 433 

used spatial methods (see Olivero et al., 2016; Acevedo and Real, 2012). FF 434 

like logistic regression relies on assumptions such as the independence of 435 

observations, and limited multicollinearty which are not always restricted met. 436 

We show how ranger and satellite data can be effectively overlaid to model the 437 

distribution of animal species of conservation interest, to determine areas likely 438 

to be more at risk from poaching and other anthropogenic factors.  439 

  440 

Scarce technical and human resources and inadequate resource 441 

management are among the main reasons for the decline in wild populations of 442 

many threatened large mammal species across the Congo Basin, both inside 443 

and outside protected areas (Campbell et al., 2008; Kühl et al., 2017). Because 444 

of this, the more effective application of existing resources could benefit from 445 

the use of suitable tools for wildlife management and conservation. In this study, 446 

we propose a conservation biogeography approach to assist in the protection of 447 

wild populations of three threatened, iconic African mammal species. Our 448 

models clearly suggest that the most favourable areas for gorillas, chimpanzees 449 

and elephants are found within the core of the studied protected area, the DFR. 450 

According to this, isolation is a highly relevant factor, since the most important 451 

variable explaining the presence of the three species in our wildlife models was 452 

"distance to roads". This also explains why large areas located within the core 453 

of the DFR, at least during our study period, are highly favourable for the three 454 

species (Figure 4). These results are corroborated by field work undertaken by 455 

one of our authors, (JD) who undertook a transect of 98 km through the middle 456 

of the DFR, and who found higher levels of wildlife signs, particularly of 457 

elephants, within the core of the reserve (Dupain et al., 2017). Our models 458 

clearly suggest that favourable areas for poaching, as expected, correspond 459 



with the more favourable areas for wildlife. In both cases, areas that are more 460 

distant from roads, from navigable rivers and from human settlements, hence 461 

more remote, were more favourable to poaching and wildlife.  Also, these areas, 462 

primarily along the north-western region of the reserve, are those with a higher 463 

proportion of soil. This may point to the fact that more sandy soils are linked to 464 

poorer forests, in terms of plant and animal diversity, so naturally poachers are 465 

likely to search for animals to hunt in remote forests in deeper soils.  466 

  467 

Our results confirm the findings of regional analyses of the spatial 468 

relationship between the distribution of gorillas, chimpanzees and elephants and 469 

human activities in other parts of the Congo Basin (Stokes et al., 2010; Maisels 470 

et al., 2013; Strindberg et al., 2018). In the case of the great apes, Strindberg 471 

et al. (2018) showed that human-related variables (in particular distance to 472 

roads and human population densities) as well as canopy height and Ebola 473 

(natural variables) were important predictors of great ape density and 474 

distribution. Stokes et al. (2010) also indicated that chimpanzees show a clear 475 

preference for unlogged or more mature forests and human disturbance had a 476 

negative influence on chimpanzee abundance, in spite of anti-poaching 477 

interventions. Similarly, proximity to the single integrally protected area in the 478 

landscape maintained an overriding positive influence on elephant abundance, 479 

and logging roads (exploited by elephant poachers) had a major negative 480 

influence on the species’ distribution (Stokes et al., 2010).  481 

  482 

In our study area (DFR and buffer zone) we show that there are clear 483 

spatial differences in the distribution of threats.  Areas outside the DFR are 484 

mostly affected by forest loss and, secondarily modified by fire. In contrast, 485 

wildlife risk areas, due to poaching, are concentrated inside the DFR, where 486 

high-diversity areas (according to the WI) overlap with zones where poaching 487 

occurs. However, the three threat models combined indicated that the areas 488 

outside the DFR (principally in the west but also in the north and the east, see 489 

Figure 2h) were the areas with the highest overall risk, with areas within the 490 

protected area itself presenting intermediate risk values. This is a consequence 491 



of integrating two threat factors that occur principally outside the DFR margins 492 

(i.e. forest loss and fire), and only one factor affecting the inside of the DFR (i.e.  493 

poaching).   494 

  495 

Model-based approaches have clearly demonstrated that in Central Africa 496 

poaching and disease are the main threats affecting the survival of great apes, 497 

whereas poaching is the prime menace against elephants (Walsh et al., 2003; 498 

Stokes et al., 2010; Maisels et al., 2013; Fa et al., 2014; Wich et al., 2014; 499 

Critchlow et al., 2015; Gong et al., 2017; Strindberg et al., 2018). Such models 500 

are useful tools for determining the impact of anthropogenic disturbances on 501 

protected species on a broad biogeographical scale.  However, unlike other 502 

commonly used SDM approaches, FF models and risk maps, as we show in this 503 

paper, can provide easily available rapid assessment tools to highlight the most 504 

vulnerable regions of species of conservation concern. Conservation managers 505 

and planners are able to use these maps to allow a more effective application of 506 

human and technical resources and implement more effective conservation 507 

measures. Although we have shown that data gathered in the field can be easily 508 

analysed beyond the SMART platform, the skills required to undertake 509 

modelling such as that performed in this study will require a different staff profile 510 

from those involved in the day-to-day running of a protected area. Currently, the 511 

application of spatial models to real situations is scarce, but we suggest that this 512 

may be possible by finding pragmatic, cost-effective ways in which modelling 513 

(and modellers) can be integrated in the team of experts involved with the 514 

management wildlife and protected areas.  Data input, preparation, and 515 

analyses should be planned by modellers who can harness the growing volume 516 

of field and satellite-derived data to characterize levels of threat and distribution 517 

of wildlife to enable more agile protection of highly threatened species and 518 

spaces.    519 
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FIGURE LEGENDS  779 

  780 

Figure 1. Location of the study area (Dja Forest Reserve), southern Cameroon.  781 

  782 

Figure 2. Environmental favourability models projected to the whole study area 783 

for species and threats (favourability values: minimum = 0 and maximum = 1). 784 

The grey area was not considered for model projection, because the variables 785 

values in these squares were not represented in the model training area. a) 786 

Western Gorilla, b) Chimpanzee, c) African Forest Elephant, d) combined 787 

species, e) poaching, f) forest loss and g) fire and h) combined threats.  788 

  789 

Figure 3. Map of risk for wildlife based on the combination of the Wildlife index 790 

and a) the threat of poaching (represented by favourable areas for ammunition 791 

and snare), b) threat of forest loss, c) threat of fire and d) three threats 792 

combined. High (H): index values ≥0.8. Intermediate-High (IH): index value 793 

between 0.5 and 0.8. Intermediate-Low (IL): index values between 0.5 and 0.2. 794 

Low (L): index values ≤ 0.2. The grey area was not considered for model 795 

projection.  796 

  797 

Supplementary Figure 1. Area for model training (striped plus dark grey area) 798 

fixed for a) Western Gorilla, b) Chimpanzee and c) African Forest Elephant, and 799 

positive contacts (green points) surrounded by buffer areas suggesting 800 

presence of this species (dark grey).   801 

  802 

Supplementary Figure 2. Area for model training fixed for a) poaching (striped 803 

plus green area), and observation of traps and ammunition cartridges (black 804 

points), surrounded by buffer areas suggesting occurrence of these objects 805 

(green); b) distribution of forest loss events in the study area (red squares) and 806 

c) distribution of fire events in the study area (red points).  807 
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