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Abstract 

Research into alternative renewable energy generation is a priority, due to the ever-

increasing concern of climate change. Microbial fuel cells (MFCs) are one potential avenue 

to be explored, as a partial solution towards combating the over-reliance on fossil fuel based 

electricity. Limitations have slowed the advancement of MFC development, including low 

power generation, expensive electrode materials and the inability to scale up MFCs to 

industrially relevant capacities. However, utilisation of new advanced electrode-materials 

(i.e. 2D nanomaterials), has promise to advance the field of electromicrobiology. New 

electrode materials coupled with a more thorough understanding of the mechanisms in which 

electrogenic bacteria partake in electron transfer could dramatically increase power outputs, 

potentially reaching the upper extremities of theoretical limits. Continued research into both 

the electrochemistry and microbiology is of paramount importance in order to achieve 

industrial-scale development of MFCs. This review gives an overview of the current field and 

knowledge in regards to MFCs and discusses the known mechanisms underpinning MFC 

technology, which allows bacteria to facilitate in electron transfer processes. This review 

focusses specifically on enhancing the performance of MFCs, with the key intrinsic factor 

currently limiting power output from MFCs being the rate of electron transfer to/from the 

anode; the use of advanced carbon-based materials as electrode surfaces is discussed.  

 

Keywords: Microbial Fuel Cells; Electromicrobiology; Microbiology; Electrochemistry; 

Graphene. 
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Adenosine Tri-Phosphate ATP 
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Nicotinamide Adenine Dinucleotide NADH 

Nicotinamide Adenine Dinucleotide Phosphate NADPH 

Normalised Energy Recovery NER 

Oxygen Reduction Reaction ORR 

Phosphate Buffer Solution PBS 

Proton Exchange Membrane  PEM 

Scanning Electron Microscopy SEM 

Sediment Microbial Fuel Cell SMFC 

Single-Wall Carbon Nanotubes  SWCNTs 

Three-Dimensional 3D 

Transmission Electron Microscopy  TEM 

Tricarboxylic Acid Cycle TCA 

Two-Dimensional  2D 
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1. Introduction 

Energy generation, storage and consumption are topics that are increasingly prevalent 

within modern research fields and are of global interest and importance [1, 2]. Research into 

alternative renewable energy generation sources are increasing exponentially, with vast 

research showing promising results, in an abundance of areas including: solar [3], wind [4], 

tidal [5], geothermal [6] and biomass energy generation (Figure 1) [7, 8]. Currently no 

individual renewable energy source has the ability to compete with and replace the 

conventional fossil-fuel based energy generation approach, however, combining renewable 

energy sources such as, solar-wind hybrids and/or solar-hydrogen fuel cells may be 

alternative routes to be explored [9, 10].  

  One potential alternative energy source is the use of microbial fuel cells (MFCs). 

MFCs follow a similar concept to traditional fuel cells (Figure 2). However, MFCs utilise the 

bio-catalytic capabilities of viable microorganisms and are capable of using a range of 

organic fuel sources, by converting the energy stored in the chemical bonds, to generate an 

electrical current instead of relying for example, on the use of metal catalysts [1]. 

Microorganisms, such as bacteria, can generate electricity by utilising organic matter and 

biodegradable substrates such as wastewater, whilst also accomplishing 

biodegradation/treatment of biodegradable products, such as municipal wastewater [1, 11]. 

Table 1 provides an overview of the current literature of MFCs. Clearly, significant attention 

has been given to MFCs cells due to their ambient operating conditions (e.g. utilisation at low 

temperatures) and a variety of biodegradable substrates as fuel. This review aims to highlight 

the current understanding of MFCs, whilst giving a thorough overview of the field. Particular 

emphasis is placed upon the fundamentals of MFC technologies, electrode materials, 

mechanism of electron transport and field standardisation. Further, this review focusses 

specifically on enhancing the performance of MFCs via the optimisation of specific 

parameters, with the hope of highlighting the main limiting factors and bringing them to the 

forefront of future investigations. 

 

1.1 History of MFCs 

The first recorded occurrence of electrochemical activity between bacterial/fungal 

(yeast) species and electrodes can be traced back to the early 20th century, reported by Potter, 

where live cultures of Escherichia coli and Saccharomyces spp., produced electricity using 

platinum macro-electrodes in a battery type setup with sterile media [12]. This was later 

confirmed by Cohen in 1931, who reported a voltage of 35 V at a current of 0.2 mA from a 
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stacked bacterial fuel cell system [13]. Although these publications are often referred to as 

the origin of electromicrobiology, it was not until 1963 when a National Aeronautics and 

Space Administration (NASA) space program demonstrated the opportunity to recycle and 

convert human waste to electricity during space flights [14-16]. In 1990, pioneering work 

from Habberman and Pommer first reported a long-term MFC. In this study, the MFC in 

question was employed in continuous service, for 5 years (i.e. from 1986), utilising municipal 

wastewater, without malfunction or maintenance [11]. Further, this study for the first time 

reported indirect electron transfer (a mechanism of electron transfer, which allows specific 

bacteria to donate electrons) via soluble mediators, the example in this study was 

sulphate/sulphide [11]. To the best of the authors’ knowledge, this study was also the first 

time that the treatment of domestic wastewater was reported [11, 17]. In 1999, it was 

discovered that mediators were not an essential component within MFC configurations, this 

allowed MFCs to be developed without the need for expensive mediators [18-20]. Following 

this, an exponential increase in interest occurred within the field of electromicrobiology 

research, which now boasts over a thousand energy-generation-cells reported in the literature, 

and the first commercial prototypes are expected soon [21].  

 

1.2 Fundamental Bioelectricity Generation in MFCs 

The development of a bio-potential, due to the bacterial metabolic activity in the 

anodic compartment (i.e. reduction reactions, generating both electrons and protons), and 

electron acceptor conditions in the cathode (which are separated by a membrane), leads to the 

generation of bioelectricity in MFCs [22, 23]. In the anodic compartment, the 

electrochemically active microorganisms can donate electrons to an anode, which are 

liberated by oxidising organic/inorganic waste (e.g. the fuel), thus producing a source of 

energy [1]. An example of an oxidation reaction that takes place by electrochemically active 

bacteria in the anodic compartment, using acetate as a fuel source can be summarised as [24]: 

                                  𝐶𝐻3𝐶𝑂𝑂− + 4𝐻2𝑂 →  2𝐻𝐶𝑂3
− + 9𝐻+ +  8𝑒−                          (1)  

Electrochemically active microorganisms capable of donating electrons have been 

previously defined by Logan as exoelectrogens [25]. Other synonyms used throughout the 

literature include, anode respiring bacteria, [26] electrochemically active bacteria [27, 28] and 

electricigens [29, 30]. Microorganisms capable of accepting electrons have been termed, 

exoelectrotrophs [31, 32]. Protons produced via the electrochemically active bacteria in the 

anode diffuse through a half-cell separator (e.g. proton exchange membrane (PEM)) into the 

cathodic compartment. In the cathodic compartment, oxygen is primarily used as the oxidant, 
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due to its abundance and high reduction potential [33, 34]. However, the oxygen reduction 

reaction (ORR), remains one of the contributing bottleneck factors which is inhibiting further 

optimisation and therefore improvement of MFC configurations, due to both high over-

potentials and low kinetics observed [33, 35]. Other studies have shown the application of 

metal oxidants in the cathodic compartment, examples include, copper, cadmium and 

chromium [35-40]. Once the protons have diffused through the PEM into the cathode they 

can combine with oxygen that is present, leading to the generation of water via the following 

oxygen reduction reaction (ORR), which can be summarised as [41, 42]: 

                    𝑂 2 + 4𝐻+ + 4𝑒−  → 2𝐻2𝑂    (2) 

In order to be classified as an MFC, a device must be capable of having its fuel 

source, which is oxidised at the substrate-anode interface (e.g. wastewater), replenished either 

intermittently or continuously, otherwise the system is not referred to as a MFC, but rather, it 

is bio-battery [24]. The majority of MFC configurations are often utilised as anaerobic 

devices. This is due to the anaerobic conditions required by bacterial species’ currently seen 

as the “gold standard” in regards to electron transfer properties e.g. Geobacter sulfurreducens 

[21].  

MFCs are routinely operated as closed-system devices, where the anodic 

compartment is kept under anaerobic conditions. This is required in order to facilitate the 

growth of obligatory anaerobic bacteria capable of electron transfer, such as G. 

sulfurreducens [21]. To date, fuel sources with bacteria that have been identified as being 

capable of partaking in electron transfer include wastewater, marine sediment soil, freshwater 

sediment, soil and activated sludge (Table 1) [43, 44]. Bacteria in such systems are able to 

produce electrons by oxidising substrates that are isolated in the anodic compartment. These 

electrons flow from the anode to the cathode (positive terminal) via an external circuit, this 

leads to the production of electricity due to the difference in potential coupled to the electron 

flow [24, 45]. Protons that are produced at the anode are able to migrate through the solution 

and across the PEM [46]. PEMs are the most frequently used separators in MFCs due to their 

desirable properties such as, high conductivity to cations, selective permeability to protons, 

low internal resistance and the ability to undergo long periods of inactivity without having a 

detrimental effect on the MFC [47-49]. Once at the cathode, the electrons are able to combine 

with both protons and water to form oxygen. Currently, the maximum power densities that 

microorganisms are theorised to be capable of producing have not yet been reached. 

Theoretically, a single Escherichia coli cell that replicates twice every hour with a volume of 

0.491 µm3 has the potential to produce ca. 16,000 kW m-3 [50]. Depending on the energy gain 



7 
 

by the bacteria and the loss of energy at the cathode, a voltage of between 0.3 V and 0.5 V is 

usually obtained when using energy sources (fuels) such as glucose and acetic acid [50]. The 

current produced from a MFC is dependent on the rate of substrate biodegradation, whilst the 

maximum theoretical cell voltage also known as the electromotive force, is dependent on the 

Gibbs free energy (a thermodynamic quantity equal to the enthalpy of a system, plus the 

temperature and entropy) of the overall reaction [51]. This can be calculated as the difference 

between the standard reduction potentials of the specific anodic substrate and the cathodic 

oxidant [17, 24, 52]. However, a MFCs electromotive force does not factor in internal losses 

(i.e. resistance) and therefore experimental values are subsequently always significantly 

lower than theoretically obtained values [24, 51]. 

Most modern MFC technologies developed thus far utilise wastewater as a fuel 

source, working on the basis of recovering energy via the biodegradation of organic-rich 

waste [1]. The ability to generate electricity from wastewater could play a pivotal role in the 

production of renewable energy. In 2012, it was reported that 5 % of the USA’s total energy 

consumption was used to facilitate water and wastewater treatment facilities [53]. However, 

for the adequate treatment of wastewater (to relevant regulations and standards), issues 

surrounding the effluent quality of MFC treated wastewater are yet to be addressed 

sufficiently [54]. The treatment of wastewater by MFCs alone, may not be a viable option 

due to stringent effluent quality requirements [54]. Therefore, the addition of other steps such 

as MFCs integrated with membrane technology and conventional treatment technology (post 

MFC stage) may also be required [54-56]. MFCs offer a significant advantage over other 

renewable energy sources, as they can be applied towards wastewater treatment. Another 

advantage of MFC technologies is it is less dependent in comparison to other renewable 

energy technologies (i.e. solar and wind) upon geographical location and seasonal change 

[17]. Ye et al (2016) have previously demonstrated a sediment MFC which was capable of 

power output in temperatures ranging from 4 °C to 35 °C [57]. Further, MFCs can generate 

hydrogen from the fermentation of sugars in wastewaters, which can then in turn be utilised 

as a fuel source in other renewable energy technologies [29]. Oh et al (2005), investigated 

hydrogen production from food processing wastewaters in conjunction with electricity 

production [58]. 

The model bacterial species currently used in MFCs are iron-reducing species such as 

Shewanella spp., and Geobacter spp [25]. These bacteria have the  ability to degrade organic 

matter for nutrient cycling, for example iron oxides found in both soil and sediments [59]. 
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Graphite macro-electrodes (unpolished; grade G10, geometry: sticks) have been used to grow 

such bacterial species as G. sulfurreducens, where acetate was used as an electron donor (2 

mM) [60]. 

 

1.3 Structural Configurations 

The structural configuration of MFCs varies considerably, ranging from single and 

two-chamber configurations and with or without the utilisation of a PEM [46, 61, 62]. Figure 

2 provides a schematic presentation of a typically utilised MFC configuration which 

comprises of two-chambers, an anodic chamber and a cathodic chamber which are connected 

by a half-cell separator, with the most commonly utilised separators being, PEM’s, salt 

bridges and ceramics [41, 63, 64]. This allows protons to move freely to the cathode due to a 

potential gradient, whilst inhibiting the diffusion of oxygen (or the electron acceptor utilised 

in the cathodic compartment) to the anode where it can have a potential detrimental effect on 

the bacteria present.  

The structural design of the compartments can vary dramatically in order to enhance 

power outputs of MFCs. Two-compartment MFCs are typically utilised with a defined 

medium (such as glucose or acetate) and ran in batch mode. MFCs can also be operated in a 

continuous mode) and are currently used in laboratories to optimise MFC power outputs [1]. 

Examples of two-compartment MFC designs include, conventional rectangular shaped 

MFCs, [1, 65, 66] cylindrical shaped MFCs, [67-70] miniature MFCs, [71-73] up-flow mode 

configurations [74, 75] and flat plate MFCs [76, 77].  

Miniature MFCs are receiving considerable attention in both fundamental and applied 

studies, due to their intrinsic advantages [71]. Miniature MFCs are capable of generating 

electricity at the millilitre to microlitre scale [71]. One example of a miniaturised MFC has 

been demonstrated by Mink et al (2014) [78]. In this study, a MFC was fabricated with a 

graphene anode and an air cathode, with a working volume of 25 µL, whilst utilising human 

saliva as a fuel source [78]. This configuration produced a maximum current density of 1190 

A m-3, this was higher than any previous air-cathode micro-sized MFC [78]. Interestingly, in 

this study, the utilisation of graphene resulted in a 40 times increase in power than that of the 

carbon cloth control [78]. These findings could potentially result in saliva-powered 

appliances, utilising MFC technology for both Lab-on-a-Chip and point-of-care diagnostic 

devices [78]. Further, miniature MFC configurations have shown potential promise as power 

sources for long-term underwater or littoral autonomous sensors, as MFCs can scavenge 

nutrients from the environment allowing for the electrogenic biofilm to be sustained at the 
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anode [1, 79]. Miniature MFC configurations would be particularly beneficial in isolated 

regions as Ringeisen et al have shown that the power output of MFCs is more sensitive to 

diffusion distance through the PEM, rather than electrode size, thus allowing for more 

effective power outputs in miniaturised configurations [80].  

Up-flow mode MFC configurations have received vast attention, due to their 

increased suitability for application in wastewater treatment, due to their relative ease to 

scale-up to industrially relevant sizes [1]. Min and Logan developed the flat plate MFC, in 

order to replicate the parameters utilised in traditional hydrogen fuel cells, where the 

electrodes are usually combined into a single strip separated by a PEM; thus allowing the 

electrodes to be kept in close proximity to enhance proton conduction between the two 

electrodes [76]. However, in the case of MFCs, PEMs such as Nafion are often utilised which 

are permeable to oxygen, this could have a detrimental effect on obligate anaerobes if used as 

the bacteria of choice in the anodic compartment [76]. Therefore this prototype was tested to 

evaluate if the design was more beneficial than the risk of oxygen permeation to the anode 

[76]. The results from this flat plate MFC configuration showed a maximum power density of 

72 mW m-2 when domestic waste water was utilised as the fuel source, this represents a 2.8 

times increase in power output when compared to that of a single chambered MFC design, 

tested by the same research group [76]. Other structural configurations have been utilised 

throughout MFC technologies, and designs such as tubular configurations have been 

developed and shown to be advantageous towards increasing power outputs [81, 82]. 

Sediment microbial fuel cells (SMFCs) have been intensively explored for energy 

generation from natural sediment, with recent focus in particular on their application for 

wastewater treatment [83]. SMFCs produce electrical current from the organic matter content 

of sediments using bacterial metabolism. SMFCs differ from other MFCs due to their 

essentially complete anoxic conditions at the anode and their membrane-less structure, where 

the sediment/water interface acts as the membrane [84, 85]. However, SMFCs have been 

criticised, as such set ups are unlikely to generate considerable amounts of electrical energy 

in order to compete with other energy sources. This is due to their reported limitations, such 

as large internal resistance and issues arising from scaling up, as increasing electrode size can 

result in a decrease in power density [83, 86]. Despite this, research into SMFCs has 

intensified recently due to their realised dual functionalities allowing for electricity 

generation and wastewater treatment via the removal of specific contaminations [83]. A study 

in 1989, using a non-corrosive stainless steel mesh that was plated with platinum black and 
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utilised as the anode, produced a current density of (ca. 60 µA cm-2) with Enterobacter 

aerogenes [87].  

Due to their complex architectural designs, it is difficult to scale up two chambered 

MFC configurations [1]. Single chamber configurations offer simpler designs and eliminate 

the need for a cathodic chamber, as the cathode is exposed directly to the air [1]. This allows 

for greater financial efficiency, due to the lack of requirement for a cathodic compartment 

and electron acceptors. Note, because passive oxygen transfer to the cathode does not require 

air sparging of the catholyte, which is an energy intensive process, this further reduces 

financial expenditure [88]. The protons produced in the anodic compartment are transferred 

from the anolyte solution to the porous air-cathode [88]. The first reported single chamber 

MFC was developed in 2003 by Park and Zeikus [89]. This comprised of a rubber bunged 

bottle with a centrally-inserted anode and a window-mounted cathode which contained an 

internal proton-permeable porcelain layer, when sewage sludge was used as the biocatalyst, a 

maximum power density of 788 mW m-2 was obtained [89]. 

In order to attempt to scale up MFC technologies to an industrially-relevant level, it 

has been previously demonstrated that a miniaturisation and multiplication approach is one 

viable route to scale up power output, as opposed to merely increasing the reactor size [90-

93]. In light of this, stacked MFCs have been developed. Stacked MFCs allow multiple, 

individual MFCs to be connected in series or parallel allowing power outputs produced to be 

enhanced [94]. Aelterman et al, connected six individual continuous MFC units and produced 

a maximum hourly average of 258 W m-3, whilst utilising a hexacyanoferrate cathode and 

identical graphite granule electrodes (type00514, diameter between 1.5 and 5 mm, Le 

Carbone, Belgium) [94]. However, Oh and Logan revealed that when multiple MFCs are 

stacked together a charge reversal can occur and this can result in a reverse in polarity for one 

or more of the cells and a reduction in power outputs [95]. Voltage reversal generally occurs 

when one or more cells in a stacked MFC configuration experiences a more extreme 

condition (with one example being fuel starvation) compared to the other cells [95]. More 

specifically, this phenomenon occurs when excessive current is drawn from the fuel cell, at a 

higher rate than its fuel delivery can support, subsequently this leads to an increase in the 

anode potential and thus voltage reversal occurs [94]. 

Other conditions that can result in voltage reversal and therefore impair power outputs 

include, lack of oxygen at the cathode, impedance differences, lack of a catalyst and 

insufficient fuel [95]. However, a number of studies have demonstrated MFC stacks that have 

overcome this issue [95-97]. One example of this is by short-circuiting a cell demonstrating 
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voltage reversal, researchers have used diodes connected in parallel in a hydrogen fuel cell 

due to their low ohmic resistance, therefore when one or more of the cells are defective, the 

MFC can automatically short-circuit [95]. Avoiding fuel starvation i.e. ensuring there is 

sufficient substrate at the anode and oxygen at the cathode (for air-cathodes) has also been 

shown to reduce the possibility of voltage reversal [95]. Further, operating the MFC 

configuration at lower current densities has also shown to inhibit voltage reversal [95]. 

One material with the potential of advancing the field of MFCs are ceramics [98, 99].  

Research thus far demonstrates that when this material is used as a half cell separator, results 

obtained are comparable to more conventional ion exchange membranes, with the added 

benefit of being considerably less expensive [98]. The first demonstration of ceramic 

materials utilised in a MFC configuration was reported in 2003 by Park and Zeikus [89]. In 

this study, a proton permeable porcelain separator was employed and positioned between 

graphite electrodes [89]. The graphite electrodes contained surface bound mediators, with the 

anode containing Mn4+ and the cathode Fe3+ [89]. With E. coli as the biocatalyst the 

maximum current density and power density were, 1,750 mA m-2 and 788 mW m-2, 

respectively [89]. The use of ceramic membranes has allowed for MFCs to be used in field 

trials, with one example being by Ieropoulos et al (2016) [100]. In this study, the application 

of ceramic membranes allowed the cost of the structural materials to be decreased to as low 

as 4.14 GBP per m2 [101]. This is directly comparable with conventional cation exchange 

membrane, which in 2016 cost 79.17 GBP per m2 [101]. 

 In order to increase and optimise the efficiency of MFCs utilising ceramic materials, 

it is stipulated that varying the ceramic type (with one example being earthenware), the 

porosity of the clay and the thickness of said ceramic could lead to an increase in power 

output [98]. Ceramic electrodes have also been developed, as well as ceramic chassis/housing 

units, this is beneficial, as it would allow the manufacturing process to be simplified, as the 

entire unit could be manufactured and kilned simultaneously [98, 102]. Throughout the 

literature there are many studies, which describe the coating of ceramics with conductive 

materials [98]. An example of this has been demonstrated by Thorne et al, in this study 

porous ceramic electrodes were developed by coating macroporous titanium dioxide ceramics 

with a thin layer of fluorine-doped tin oxide, by chemical vapour deposition [103]. The power 

density obtained by the modified ceramic electrodes was around 16 times higher than the best 

performing carbon anode [103]. 

 

1.4 Limiting Factors 
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The limiting factors of MFCs are reported to be high-associated costs (most notably 

due to electrode materials and the use of PEMs), low energy outputs and limited life spans; 

the key intrinsic factor currently limiting the power output of  MFC technologies is the rate of 

electron transfer to the anode and the electrochemical properties of the material [104]. 

Further, the PEM has been shown to be the main source of internal resistance (Rin) of MFCs 

[23, 28, 105]. In light of these limiting factors, MFCs are currently unable to attain their 

theoretical power outputs and therefore implementation of this technology into industry is not 

yet feasible.  

The overall efficiency and performance of a MFC can be effected by a vast array of 

factors as depicted in Figure 3. Other performance-limiting factors have arisen whilst trying 

to enhance the performance of MFC for industrial and social applications, these include 

biofouling (leading to electrode surface blockage and ultimately a reduction in surface area), 

catalyst inactivation (if present) and excessive biofilm growth - possibly leading to the 

production of non-conductive debris (Figure 3) [106]. The production of non-conductive 

debris such as polymeric substances and/or dead cells, can isolate the electrochemically 

active biofilm from the electrode surface or with more porous electrodes become entrapped in 

the 3D architecture; leading to a potential reduction in available surface area and ultimately a 

reduction in current generation [106-108]. A study conducted in 2017, used cell viability 

counts and field emission scanning electron microscopy analysis to show that an increase in 

high polarisation resistance correlated with the formation of a dead layer of cells [108]. 

Further, this study also revealed that the use of ultrasonic treatment was a verified method of 

controlling biofilm thickness and enhanced cell viability, maintaining stable power 

generation [108].  

There have been other biofilm related factors that are thought to contribute to the 

performance of a MFC. In a study conducted by Sun et al (2015), it was revealed that when 

the predominant bacteria in an MFC set-up was Geobacter anodireducens, a two-layered 

biofilm developed over time, with an inner dead core and an outer layer of live cells [109]. 

Results suggest that the outer layer was responsible for current generation and the dead inner-

layer continued as an electrically conductive matrix [109]. It could be speculated that this 

continued electrochemical activity could be dependent upon the mechanism of electron 

transfer, for example Geobacter spp., are well known for their electrochemical activity due to 

nanowires - which may still have a viable connection to the electrode surface, even through 

the non-conductive debris. 
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Other attributing factors which can have a detrimental effect on both the power 

outputs and the efficacy of a MFC is the inactivation of electro-catalysts (if present) and the 

crossover of organic compounds or electron acceptors from the anode to the cathode (and 

vice versa). The crossover of electron acceptors from the cathodic compartment into the 

anode has been shown in a previous study to disrupt biofilm formation and lead to biofilm 

inactivation, which can considerably decrease MFC performance, due to the flow of internal 

currents and the formation of mixed potentials (i.e. a system that is short-circuited) [110, 

111]. 

 

1.5 Optimisation of MFC Power Outputs 

The power output obtained via MFC technologies can be improved by a number of 

ways (Table 2): 

 

Table 2. Possible mechanisms by which to improve the power output. 

Mechanism Ref 

Architectural design of the MFC setup [112] 

Alternative electrode material selection [113] 

Improvement of the cathodes (viable alternatives to platinum) [114] 

Closer-spaced electrodes (leading to a decrease in ohmic resistance) [115] 

Solution selection (allowing for increased conductivity) [116] 

Addition of substrates (more acquiescent to energy production) [21] 

Enhancement of appropriate fuel source [117, 118] 

Introduction of a magnetic field to MFC configurations [119, 120] 

 

The introduction of a magnetic field to living microorganisms produces a 

phenomenon known as the magnetic biological effect [121]. This effect has been shown to 

induce a series of biological reactions in microorganisms, for example, magnetic fields effect 

DNA, enzymes and organisational structure of biofilms, which in turn can lead to an 

alteration in the metabolism of the microorganism [122, 123]. The introduction of a high 

static magnetic field inhibits the physiological processes in microorganisms, whilst the use of 

lower static magnetic fields promotes microbial activity/growth [124]. In one study, the 

application of a 100 mT magnetic field increased electricity production of Shewanella-

inoculated MFCs, leading to an increase in the maximum voltage by 20 % - 27 % [125]. This 



14 
 

improvement in electricity production has mainly been attributed to enhanced 

bioelectrochemical activity, possibly due to the induction of oxidative stress mechanisms 

[124, 125].  

The introduction of a magnetic field has also been shown to affect the 

bioelectrocatalytic transformations of several enzymes on the electrode surface, resulting in 

accelerated electron transfer at the electrode-solution interface [126-128]. Yin et al, reported 

that the utilisation of magnetic fields (in the range of 0 mT, 100 mT, 200 mT and 300 mT) 

led to a decrease in start-up periods of the MFCs, with the 100 mT needing the least amount 

of time (7 days) to obtain a stable voltage output [119]. Further, the maximum power density 

reported, was produced by the MFC under a 200 mT magnetic field (1.56 W m-2) compared 

to the control MFC with no magnetic field (1.19 mW m-2) [119]. However, the MFC 

subjected to a 300 mT magnetic field, produced a power density of 0.99 W m-2. Therefore, it 

was suggested that there is an optimal intensity magnetic field range, and this could be 

dependent on the microorganisms utilised in MFC configurations [119]. Thus, it may be 

noted, that the influence of the magnetic field on the cathode of an MFC setup (due to its 

effect on the electrical behaviour towards the ORR) needs to be explored comprehensively in 

order to optimise this method for application within MFCs [119, 129, 130].  

Other studies have reported that the utilisation of low static magnetic fields (≤ 220 

mT) improved the cell performance of a MFC demonstrating that the MFC under a 220 mT 

magnetic field resulted in the best output voltage (756 mV),compared to the control MFC 

which had no magnetic field (360.1 mV). The use of higher magnetic fields with MFCs, such 

as 360 mT have been shown to exhibit negative effects upon cell performance. This may lead 

to a decrease in biomass, lowered maximum voltage (171.8 mV) and lower pollutant removal 

in the case of residual ammonia nitrogen (84.6 ± 0.5 mg L-1) [120]. It is apparent that before 

magnetic fields can be used to optimise MFCs, comprehensive studies must be undertaken in 

order to optimise this technique. 

The use of catalysts and electron acceptors in MFC configurations is non-essential 

and their use is often expensive due to the constant need to replenish exhausted materials. In 

order to avoid expensive costs associated with the use of catalysts/electron acceptors in the 

cathodic compartment, research interest is currently directed to replacing these materials with 

microorganisms, known as biocathodes, which can assist and improve cathodic reactions 

[131]. Both aerobic and anaerobic biocathodes have been explored, this is of paramount 

importance depending on the terminal electron acceptor adopted in the cathode. One example 

of an aerobic biocathode is Thiobacillus ferrooxidans, and this bacteria has been shown to 
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regenerate ferric ions, which have been utilised as electron mediators in the cathodic 

compartment [131]. An example of an anaerobic biocathode is Geobacter metallireducens 

which has the ability to oxidise ammonia and reduce nitrate (to nitrogen), leading to 

denitrification in an MFC configuration [131]. 

 

2. Electrode Materials 

One area which could potentially be explored in order to optimise power output from 

MFCs, are the electrode materials themselves. In order for a material to be effective as an 

electrode, it should have a number of properties. It should ideally be economical and exhibit 

beneficial electrochemical properties (i.e. favourable electron transfer) whilst being 

mechanically stable, in conjunction with a large surface area, giving rise to large current 

densities.  

 

2.1 Materials 

The electrode material is a major constituent of a MFC, determining both the 

performance and the cost [132]. One of the key areas of current research in electrochemistry 

is to develop new materials in order to replace platinum [133]. The urgent need to replace 

platinum is due to the increased global demand as this is a crucial resource within a plethora 

of industries, with major applications in catalysts, electronics and electrodes [133]. This, 

combined with an inadequate supply (approximate annual global supply is about 200 Mg 

(metric ton)), has led to a price surge in platinum making it extremely expensive [133, 134]. 

Platinum may not be suitable as an electrode material for application within MFCs, as this 

metal has shown antimicrobial properties which lead to the inhibition of E. coli division, due 

to products produced (cisplatin) from a platinum electrode during electrolysis [135]. In light 

of this, carbon materials and non-corrosive metals are currently the most widely used base 

electrode materials in MFC configurations, as these materials meet the above requirements 

(Table 1) [136]. The selection and optimisation of suitable electrode materials is essential in 

order to increase power outputs from MFCs, as the selected material has been shown to have 

a significant influence on the release, transfer and acceptance of electrons between the 

electrodes and the bacteria [132, 137, 138].   

 

2.2 Electrode Topography 

Electrodes utilised in MFCs not only function as conductors, as with traditional fuel 

cells, but the anode material also acts as a support for bacterial biofilms and therefore must be 
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biocompatible with the bacterial cells present. A high surface area is desirable, and a 

relatively rough surface is thought to be an ideal surface property in a MFC configuration, as 

it helps with the retention of the bacteria to the surface [136]. Surface roughness/area of the 

electrode materials has also been shown to play an important role in the generation of 

electricity [139]. Walter et al, demonstrated that increasing the total anodic surface area, 

within a fixed volume chamber resulted in an increase in volumetric power density of the 

MFC [139]. Ye et al, demonstrated that when two glassy carbon plates were polished to 

uniform roughness in the order of magnitude of 10’s to 100’s of nanometres, after 275 hours 

of experimentation, the (relatively) rougher electrode surface produced higher power 

densities than its smoother counterpart. Surface roughness is a vital parameter that needs 

appropriate consideration when selecting electrode materials [140].  

 

2.3 Oxygen Reduction Reactions 

Another potential avenue to explore when trying to enhance power density outputs of 

the MFCs is improving the oxygen reduction reaction (ORR). This takes place in the cathode 

(compared to the hydrogen evolution reaction (HER) in microbial electrolysis cells (MECs)) 

[141]. One way to optimise electricity output is to utilise electro-catalysts or electrode 

materials that exhibit enhanced electrochemical properties, such as boron nitride and 

molybdenum disulphide. These materials possess the ability to reduce the over potential of 

the key electrochemical reaction, leading to a marked improvement in efficiency [49, 142-

144].  

Feng et al, reported that a nitrogen-doped graphene catalyst (of 2-8 layers) gave rise 

to the oxygen reduction reaction at facile potentials, comparable to that of a platinum catalyst, 

therefore in a MFC configuration this could give rise to beneficial outputs of the MFC [145]. 

The advantages of nitrogen-doped graphene include being less expensive than platinum with 

improved long-term operational stability in comparison to commercial platinum electrodes as 

measured within alkaline electrolytes [145, 146].  

Another example of utilising catalysts to improve the ORR in MFCs has been 

demonstrated by Li et al, [147] using iron and nitrogen functionalised graphene sheets (Fe-N-

G, ca. > 2 μm), which were more disordered than pristine graphene. The sheets were 

synthesised and utilised as a non-precious metal catalyst for use within a single-chamber air-

cathode MFC. This MFC comprised of a cylindrical anode chamber (5 cm diameter and an 

effective volume of 40 mL), a cation exchange membrane and carbon felt electrodes [147]. 

The catalysed cathode was placed at a distance of 1 cm from the anode, with its waterproof 
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layer facing towards air [147]. It was found that when used with MFCs, the Fe-N-G catalyst 

obtained the highest power density (1149.8 mW m-2) in comparison to a pristine monolayer 

graphene catalyst control, (561.1 mW m-2) and a commercial Pt/C catalyst (109 mW m-2) 

[147]. 

 

2.4 Capacitive Layers 

Capacitive bioanodes have been trialled in MFC configurations [148-151]. In one 

study by Deeke et al, (2012), a capacitive layer was coated onto a current collector (plain 

graphite plate electrode). This consisted of a mixture of activated carbon and a polymer 

solution, consisting of N-methyl-2-pyrrolidone and poly(vinylidene fluoride), this capacitive 

bioanode was compared against a plain graphite plate electrode. The cathode utilised in both 

MFCs was a plain graphite electrode plate [148]. During polarization curves, the capacitive 

bioanode maximum current density was 1.02 ± 0.04 A m-2, whilst the control electrode 

reached a maximum of 0.79 ±  0.003 A m-2 [148]. During charge-discharge experiments (with 

5 minutes charging and 20 minutes discharging) the capacitive electrode was able to store a 

total of 22,831 C m-2 compared to the control (non-capacitive) electrode 12,195 C m-2. 

Furthermore, the capacitive electrode was capable of recovering 52.9 % more charge during 

each charge-discharge experiment [148]. This indicated that the application of capacitive 

electrodes in MFCs allowed for simultaneous production and storage of electricity generated 

[148].  

Research from the same group, showed that variation in the thickness of the 

capacitive layer had an effect on the efficacy of the electrode [152]. Of the electrodes tested 

with capacitive layers of, 0.2 mm, 0.5 mm and 1.5 mm, the electrode with a capacitive layer 

of 0.2 mm out-performed the other electrodes in all studies. This electrode produced a 

maximum current density of 2.53 A m−² during polarization curves, and during charge-

discharge experiments stored a cumulative total charge of 96,013 cm−² [152]. This was the 

first study to identify a parameter that can determine the performance of a MFC with a 

capacitor [152].  

 

2.5 Carbon Based Electrodes 

The use of carbon-based electrodes has long been established and has led to the 

production of vast amounts of analytical and industrial applications, due to carbon’s high 

efficacy in heterogeneous electron transfer kinetics. Figure 4 offers a schematic detailing the 
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structure of five allotropes of carbon [153]. Since the discovery of graphene, there has been a 

rapid increase in research interest towards utilising this and other novel 2D-nanomaterials, 

especially in the field of electrochemistry. Nanomaterials, such as carbon nanomaterials, 

possess many reported beneficial properties, which potentially make them ideal for electrode 

materials for use within MFCs. Such properties include a large surface area, enhanced 

electron transfer and promotion of the adsorption of molecules [154]. As microbial growth on 

the surface of metal anodes can accelerate the corrosion of metals in aqueous solutions, 

carbon-based electrodes are currently the material of choice for application with MFCs [155, 

156]. A variety of carbon-based electrode materials have been trialled for use within MFC 

setups;  these include graphite rods [46], carbon felts [157], carbon cloths [136] and carbon 

meshes [158]. 

 

2.5.1 Carbon Cloth and Felt 

Carbon cloth has traditionally been one of the electrode materials of choice for use 

with MFCs due to its reported useful conductivity, stability, commercial availability and 

relatively inexpensive cost, in comparison to other carbon-based electrode materials. [88, 

159] Carbon cloth comprises long individual carbon fibres, between 5 µm to 7 µm in 

diameter and is produced via the thermal decomposition of acrylic. These individual fibres 

are joined together as a bundle and are then weaved together to produce the carbon cloth 

[160].  

Carbon felt has also been utilised as an electrode material in MFCs. One study has 

compared the efficacy of carbon felt anodes, using bacteria isolated from sludge from a 

domestic wastewater plant. The results showed that under anaerobic conditions, a maximum 

power density of 7.07 ± 0.45 mW m-2 was produced [161]. One study, which compared the 

electrochemical performance of 2D carbon cloth against 3D carbon felt (with spaces between 

the carbon fibres ranging from ca. 20 μm to 200 μm), showed that the 2D carbon cloth 

enhanced the retention of bacteria. A 39.3 % microbial volume ratio was demonstrated as 

opposed to the carbon felt, where bacterial retention was only 16.3 % [107]. Denaturing 

gradient gel electrophoresis analysis determined that Delftia acidovorans, Citrobacter 

freundii and Ochrobactrum intermedium were isolated from the sludge and that these 

bacterial species may be potential electrogenic bacterial species [161]. Further, 

electrochemical analysis of the 2D and 3D carbon cloths showed that the 2D carbon cloth 

resulted in similar current densities to that of the 3D carbon felt, around 3.5 A m-2 [107]. This 

work demonstrated that 2D carbon cloth had promising potential as an electrode material for 
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MFCs, offering a large specific surface area reported to be ~ 2500 m2 g-1. Further, there was 

an increased biocompatibility when compared to the more traditional 3D porous carbon felts 

[162].  

 

2.5.1.1 Limitations of Carbon Cloth and Felt 

There are some limitations of the 3D carbon felt electrode, which were not present in 

the 2D carbon cloth, such as the clogging of pores. The clogging of pores in 3D porous 

carbon materials by the entrapment of bacterial cells can ultimately result in cell death. This 

may lead to a significant reduction of the active electrochemical reaction surface area, as well 

as a reduction in viable bacteria, thus reducing power outputs [17]. However, limitations have 

been associated with the use of 2D carbon cloth as an electrode material in MFCs, for 

example there is a poor reaction start-up [163]. This is often attributed to oxygen crossover 

from the cathode to the anode which can lead to the inhibition of current production by 

exoelectrogenic bacteria [163]. Recent research has resolved this problem by using a 

phosphate buffer to increase the solution conductivity. Further, pre-treating carbon cloth 

anodes with ammonia gas, was shown to increase the surface charge of the carbon cloths, by 

increasing the amount of amide groups on the surface [164]. The ammonia treatment of the 

carbon cloth was shown to increase power production by 48 % and reduce start-up time by 50 

% [164]. 

 

2.5.2 Graphite 

Graphite has exceptional electrochemical properties, whilst the biocompatibility of 

graphite has been determined using scanning electron microscopy (SEM), as an abundance of 

a monoculture biofilm (E. coli) can be seen, adhered to a graphitic electrode surface (Figure 

4). A study carried out by Chaudhuri and Lovley, demonstrated that increasing the graphite 

surface area available for microbial colonisation increased power outputs [165]. This was 

also demonstrated, when a two chambered MFC was utilised using a pure culture of 

Rhodoferax ferrireducens (anaerobic conditions for the anodic compartment), with excessive 

amounts of glucose (10 mM) to act as an electron donor. Graphite felt electrodes (with a 

higher surface area) were compared against graphite rods and a threefold increase in current 

was produced (0.57 mA m-2; 620 mV) [165]. The study also compared porous graphite foam 

electrodes against the graphite rods. It was demonstrated that even though the geometric 

surface area was the same, the porous graphite foam produced a 2.4 fold increase in current 
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(74 mA m-2; 445 mV), which was attributed to the higher concentrations of cells which were 

able to adhere to the graphite foam electrodes [165]. 

 

2.5.3 Graphene  

An example of a new research direction that has the potential to overcome some of 

the aforementioned issues would be the use of 2D-nanomaterials, such as graphene, as an 

electrode material/surface coating. Graphene, a two-dimensional (2D) monolayer lattice of 

sp2
 hybridised carbon atoms, has attracted a plethora of interest in both the scientific and 

technological communities due to its reported unique properties [166]. Such properties 

include high physical strength [167], high electron mobility/conductivity at room temperature 

(2.5x 105 cm2 V-1 s-1) [168] and a theoretical surface area estimated at 2630 m2 g-1 [169]. 

Graphene is also able to sustain extremely high densities of current (reported as one million 

times higher than copper) [170]. Such properties are ideal for efficient and effective electron 

transfer, making graphene a prime candidate for use as an electrode material within MFCs.  

Graphene has previously been used as the anode material of an MFC with a pure 

culture of E. coli and delivered a maximum power density of 2668 m Wm−2, which was 18 

and 17 times larger than the stainless steel mesh and polytetrafluoroethylene modified 

electrodes, respectively [171]. Xiao et al, determined the difference between two types of 

graphene with varying, multilayer morphology (ca. 50 μm – 100 μm). These graphene sheets 

were more defective than pristine graphene due to the synthesis method utilised. This 

involved the thermal annealing of graphene oxide via the Hummers’ synthesis, and crumpled 

graphene particles (ca. 0.2 μm – 5.0 μm) produced via an aerosol-assisted capillary 

compression process [172, 173]. These varying graphene morphologies were coated onto 

carbon cloth electrodes (loading rate: ~ 5 mg cm-2) and tested to determine if the difference in 

surface area/surface roughness had a direct effect on the power density produced by the 

MFCs [172]. The results showed that modification of the graphene morphology from 

graphene sheets to crumpled graphene particles led to an increase in both surface area and the 

power density (3.6 W m-3). This was twice that of the activated carbon modified electrode 

(1.7 W m-3) [172]. Figure 5 offers an insight into this modification of graphene electrode 

morphology, showing how by increasing the surface area, an increase in the power density 

may be achieved.  

The highest recorded power density produced to date, 5.61 W m-2 / 11 220 W m-3, was 

achieved using a 3D multilayer graphene macroporous scaffold anode. The power density 

produced a 3.3 fold increase when compared to its planar single-layer 2D control counterparts 
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[174]. Ren et al, demonstrated the ability to produce highly effective MFCs whilst utilising 

advanced 2D nanomaterials, such as graphene, as the anode/cathode material (Figure 6 and 7) 

[174]. It should be noted that the 2D nanomaterials must be correctly analysed and 

characterised for application as MFC electrodes. Raman spectroscopy is a powerful tool 

which can be used to effectively identify and characterise the number of layers of graphene-

based electrode materials [175]. One of the challenges in the advancement of MFCs for 

industrial/social end-point applications (e.g. wastewater treatment) is both the cost and the 

reliability. Unfortunately, the production of 2D-nanomaterials such as graphene is 

unsustainable for this application, however it is expected that as more research is invested 

into the area of nanomaterials, the production costs will decrease significantly [176]. 

 

2.5.4 Carbon Nanotubes 

Carbon nanotubes (CNTs) are another allotrope of carbon, where the carbon atoms 

are arranged in hexagons, like graphite. However, unlike graphite, the structure of CNTs 

consist of enrolled tubular graphene in the configuration labelled armchair. This is where the 

hexagons are orientated parallel to the axis of the nanotube arranged as a seamless cylinder 

[174, 177, 178]. CNTs can consist of one or more layers of graphene, which can then be 

denoted as either single-wall, (SWCNT), or multiwall, (MWCNT), with either open or closed 

ends [179]. CNTs have demonstrated excellent electrochemical activity due to a variety of 

factors. These include, their edge plane site/defects to basal plane ratio, chirality, relative size 

to surface area ratio and nanometre-sized diameter and micrometre-sized length, (where the 

length of the CNT exceeds the width ratio by one thousand times) [179-181]. SWCNTs and 

MWCNTs typically have diameters of 0.8 nm to 2 nm and 5 nm to 20 nm, respectively, 

although the diameter of MWCNT may exceed 100 nm and have a hollow geometry [179, 

180].  

CNTs have demonstrated enhanced electrochemical performance, in comparison to 

more traditional electrodes when utilised within MFC technologies [182]. Cyclic 

voltammetry was utilised to compare the electrochemical activity of a glassy carbon electrode 

(GCE), with its surface modified with MWCNTs, using Shewanella oneidensis [182]. The 

results found that the use of CNTs raised the current density to 9.70 ± μA cm-2, 82 times 

greater than the GCE control [182]. This was further confirmed when CNT mat-modified air-

cathodes produced a maximum power density of 329 mW m-2, which was more than twice 

the amount of peak power obtained with carbon cloth cathodes (151 mW m-2) [183].  
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The activity of single-walled CNTs with carboxyl groups, multi-walled CNTs with 

carboxyl groups and multi-walled CNTs with hydroxyl-groups as anodes have also been 

compared [184]. Multi-walled CNTs have been reported to provide better results than single-

walled CNTs; a power density of 167 mW m-2 was achieved by the multi-walled CNT with 

hydroxyl groups, which was 130 % more effective than the carbon cloth control [184]. 

MWCNTs with hydroxyl functional groups are a possible alternative anode material to 

traditionally used carbon cloth, due to their greatly improved performance in electron transfer 

capabilities, microbial attachment and substrate diffusion/oxidation rates [184]. 

 

2.6 Non-Carbon Based Electrodes 

Despite carbon-based electrodes being the electrode of choice in MFC configurations due 

to their versatility in structure, non-carbon based electrodes have also been utilised in MFCs. 

In 2007, Dumas et al, produced a MFC that consisted of a stainless steel anode and cathode. 

The anode was embedded into marine sediment, which was coupled to the cathode in the 

overlying seawater [84]. The maximum power density produced by this SMFC configuration 

resulted in a lower output (4 mW m-2) than the laboratory control (23 mW m-2) [84]. It was 

suggested that this might be due to biofilm damage on the cathode, due to grazing fish and 

possible damage to electrical connections by waves [84]. These results can be compared 

against carbon-based electrodes utilised within SMFCs (with similar-sized anodes: ~ 0.18 m2) 

with a graphite plate anode with a stainless steel cathode (12 mW m-2), plain graphite 

electrodes (28 mW m-2) and a single graphite rod anode with a carbon brush cathode (34 mW 

m-2) [84, 185-187].  

Commercial platinum-coated titanium metal (deposited by electroplating) and uncoated 

titanium have also been trailed as non-porous bioanodes, and were compared against flat and 

roughened graphite [188]. Polarization curves and impedance spectroscopy showed that 

bioanode performance decreased in the order roughened graphite > platinum coated titanium 

> flat graphite > uncoated titanium [188]. The uncoated titanium anode produced the lowest 

current, whilst the anode potential was considerably higher than the other electrodes (> -150 

mV vs. Ag/AgCl at R = 1000 Ω) [188]. This result may have been due to anodic passivation 

of the titanium, suggesting that uncoated titanium is an unsuitable anode material for MFC 

set-ups [188].  

A study by Baudler et al, in 2015 compared the performance of gold, silver, copper, 

nickel, cobalt and titanium electrodes against a graphitic benchmark (Figure 8) [189]. The 
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average maximum current densities demonstrated that of the three most noble metals, copper 

produced the highest maximum current density (1515 µA cm-2), followed by gold (1175 µA 

cm-2) and silver (1119 µA cm-2), which were slightly higher than that of the graphite control 

(984 µA cm-2) [189]. The results for silver and copper are surprising, as these metals are well 

established in their application as antimicrobial metals, and have been studied extensively i.e. 

for implementation as surface coatings for medical devices/equipment [190-192]. However, it 

was demonstrated that electrochemically active, electrode respiring bacteria from secondary 

biofilms (which are highly Geobacter dominated) have the ability to adhere to, colonise and 

form highly active biofilms on both copper and silver electrodes. These produced biofilm 

thicknesses of 249 ± 21 µm and 154 ± 10 µm, respectively [189]. In light of this, copper and 

silver electrodes could play a pivotal role in the optimisation of MFCs. Of the non-noble 

metals (titanium, cobalt, nickel and stainless steel) stainless steel produced the highest 

average maximum current density (674 µA cm-2) followed by nickel (384 µA cm-2). 

However, the current densities produced by cobalt and titanium were negligible in 

comparison to the other electrode materials [189]. This marked decrease in current density by 

the non-noble metals may be attributed to the formation of metal oxides, acting as a barrier in 

charge transfer processes between the biofilms and the metals [189, 193].  

The suitability of gold electrodes for use within MFCs has also demonstrated by Ritcher 

et al, which were used in conjunction with G. sulfurreducens (ATCC 51573), with 10 mM 

acetate as the electron donor and 40 mM fumarate as the electron acceptor [194]. The results 

showed that the current stabilised at 0.4 mA – 0.7 mA after ca. 6 – 10 days and that this 

maximum current was comparable to carbon fibre anodes under the same conditions [194, 

195]. The ability to transfer electrons to the gold anode was postulated to be due to the direct 

contact between G. sulfurreducens via micro-nanowires (pili). However, work by others has 

suggested that using gold electrodes with Shewanella putrefaciens, was not suitable for use 

within MFCs [196]. A possible explanation for this variation in electrochemical response 

between the bacterial species’ could be due to the differences in electron transfer 

mechanisms, as G. sulfurreducens is associated with direct electron transfer, whilst S. 

putrefaciens is associated with redox proteins displayed on the surface of bacterial cells, such 

as c-type cytochromes [60, 194, 197]. Thus, the interactions of the different electrochemical 

pathways of the bacteria with the surfaces may have resulted in the conflicting results.  

 

3. Mechanisms of Electron Transport 
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Exoelectrogenic bacterial species have the ability to facilitate electron transfer via two 

mechanisms, direct and indirect electron transfer [198]. Direct electron transfer requires a 

physical connection between the bacterial cell and the electrode surface, namely nanowires 

and/or redox-active proteins. Indirect electron transfer does not require a physical connection 

but instead this mechanism relies on electron shuttling molecules [199]. There are currently 3 

established methods of electron transfer (e.g. nanowires, membrane bound cytochromes and 

electron mediators) which bacteria can utilise to donate electrons to the anode in a MFC 

configuration (Figure 9) [200].  

 

3.1 Direct electron transfer via conductive pili 

Bacterial colonies isolated in the anodic chamber of a fuel cell are incapable of 

transferring electrons directly to the electrode [1]. However, anodophiles have the ability to 

use electrons (in the anode) as their end electron acceptor. Thus, these specific bacterial 

species are involved in electron transfer, leading to the generation of an electrical charge 

[201]. A major breakthrough in MFC technology was observed by Kim et al, who 

demonstrated that electron transfer does not always need mediator (electron transfer) 

compound molecules [157]. The bacterial cell surface of specific isolated bacterial species, 

such as Shewanella spp., and Geobacter spp., have micrometre long proteinaceous filaments 

that extend from their outer surface into the extracellular matrix. These appendages are 

thought to be involved in extracellular electron transport processes, referred to as microbial 

nanowires – due to their long filament-like appearance and conductive attributes [202].  

Nanowires can be either flagella or pili, both of which have very distinct properties, 

and therefore we propose the terms micro-nanowires and macro-nanowires (Figure 10). 

Traditionally, the major role of the flagellum of bacteria is to mediate the motility of the cell 

via swarming and swimming, allowing for colony expansion on a surface. One of the roles of 

Type IV pili is to mediate twitching to pull the cell across a surface (often in dense 

aggregates) [203]. Nanowires have the ability to partake in direct electron mediated transfer. 

Type IV pili play vital roles in secretion systems for effectors, microbial adherence and 

bacterial movement, establishing contact between the bacterial species and the electrode 

surface [204]. Reguera et al, showed that wild type G. sulfurreducens could attach to Fe(III) 

oxides after 48 hours, as demonstrated by an increase in biomass. However, in the same time 

period, the pilA-deficient strain could not grow, which was indicated by a decrease in 

biomass [205]. In regards to the bacterial species evaluated for electricity generation for 

potential application in microbial fuel cell technologies, G. sulfurreducens is currently the 
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“gold standard”, producing the highest recorded current densities of any known pure culture, 

utilising micro-nanowires (Figure 10) [206-208]. 

G. sulfurreducens is a Gram – negative, δ-proteobacterium, and is a rod shaped, non-

fermentative, obligate anaerobe, with flagella and type IV pili production. G. sulfurreducens 

is able to generate energy in the form of adenosine triphosphate, due to its ability to reduce 

metals such as Fe(III), by using metal ion-mediated electron transport mechanisms to oxidise 

organic compounds to CO2 [209]. The electrically conductive pili of G. sulfurreducens play a 

pivotal role in long-range electron transfer. Pilus conductivity is dependent upon pH levels, 

with a reduction in conductivity observed in a higher pH (pH 10) - 37 ± 15 μS cm−1. 

However, a marked increase was noted at pH 2, where the electrical conductivity of 188 ± 33 

mS cm−1 was also produced from individual pili [210]. 

It is thought that the reduction of iron (and other metal) oxides by G. sulfurreducens 

requires direct contact between the bacteria and the Fe(III) oxides. This is in order to reduce 

equivalents from the tricarboxylic acid cycle (TCA), also known as the Krebs cycle [211]. 

This ability to locate (via chemotaxis) and reduce Fe(III) oxides in order to use them as 

terminal electron acceptors is advantageous in subsurface environments due to the abundance 

of Fe(III) oxides [209, 212]. Both nicotinamide adenine dinucleotide phosphate (NADPH) 

and nicotinamide adenine dinucleotide (NADH) have the capability to transfer reducing 

equivalents to the electron transport chain, during fumarate reduction by G. sulfurreducens.  

This provides a source of ATP from the iron oxides [211].  

The current density generated by a monolayer of planktonic cells attached to the 

surface of an electrode is limited by the surface area of the electrode. It is thought that this is 

presumably due to a lack of available space for the nanowires to adhere to, thus leading to a 

reduction in direct electron transfer [213]. Therefore, it is of little surprise that conductive 

biofilms (which are many layers thick) have the ability to produce much higher power and 

current densities, due to multiple layers of bacteria contributing to the overall net energy 

generation. Friman et al, described a current generation (under a constant external resistor of 

1 kΩ) of 125 mA m-2 from planktonic cells as opposed to 541 mA m-2 from an established 

biofilm, where acetate was used as the substrate with a pure culture of Cupriavidus basilensis 

[213]. Conductivity measurements with G. sulfurreducens in biofilm formulations have 

shown high conductivities, even rivalling those of synthetic conductive polymers [207]. G. 

sulfurreducens, in multi-layered biofilms of an average height of 40 μm (± 6 μm), produced a 

maximum current of 12 mA, while the planktonic cells produced a maximum current of 2.5 

mA, [205] after 4 days of incubation using a continuous batch method [214].   
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3.2 Direct electron transfer via redox-active proteins 

Most studies suggest that the direct contact by pili of the conductive bacterial biofilms 

and the iron oxides is essential for the reduction of iron oxides. However, another mechanism 

of electron transfer requires redox active proteins and allows for short-range electron transfer 

to take place [215]. C-type cytochromes are commonly known for their primary function in 

mitochondria, as these molecules play a pivotal role in ATP synthesis [216]. Smith et al, 

revealed that deletion of the gene encoding for PilA, a structural pilin protein in the KN400 

strain of G. sulfurreducens inhibited iron oxide reduction [217]. One possible explanation for 

the continued iron reduction even with structurally damaged pili is the utilisation of c-type 

cytochromes, such as OmcS and OmcE [218]. 

C-type cytochromes were found in abundance on the surface of G. sulfurreducens 

cells, with OmcS and OmcE being the most commonly isolated. It has been shown that when 

either omcS or omcE genes were deleted, reduction of iron (III) oxides could no longer take 

place [219]. Immunolocalization and proteolysis studies have also demonstrated that the 

cytochrome, OmcB is essential for optimal Fe (III) reductions, it is both highly expressed 

during growth upon electrode surfaces and is embedded in the outer membrane of the cell 

[220-222]. It has been suggested that bacteria such as G. sulfurreducens developed this 

ability to reduce metal oxides such as iron, due to being isolated in harsh environments 

surrounded by large quantities of insoluble materials. Therefore, natural selection and 

evolution have led to the production of effective strategies to overcome the lack of ATP 

production that is usually achieved by more conventional methods, i.e. aerobic respiration 

[223, 224]. Thus, the genome of G. sulfurreducens gained the ability to reduce iron oxides 

due to selection pressure. Therefore, it may be speculated that such mutations may lead to 

improved degradation of iron oxides, in order to increase ATP production [225, 226]. 

 

3.3 In-direct electron transfer via electron shuttles 

Bacteria can generate electricity due to the production of secondary metabolites, 

which are able to act as endogenous redox mediators, often referred to as electron shuttles. 

Electron shuttles are organic molecules with a low molecular weight that have the ability to 

catalyse both reduction and oxidation reactions, using for example phenazines and quinones 

[227]. Bacterial cells can utilise both added/in solution (exogenous) or self-produced/on 

bacterial cell surface (endogenous) shuttle compounds for extracellular electron transfer. 
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However, for effective electron transfer to take place, electron shuttles must be both 

chemically-stable and not easily biologically degraded (Figure 11) [227]. 

 Unlike conductive pili, electron shuttles eliminate the need of direct contact between 

the bacterial cell and the electron acceptor (which in the case of MFCs is the electrodes) 

[202]. Within the bacterial cells, electrons are first transported to the cell surface via a 

metabolic pathway, which involves redox-active proteins and low molecular weight 

compounds. Subsequently, electrons are then transported to cytochromes or potential shuttles 

in either the periplasm or the outer-membrane [227]. Soluble electron shuttles can diffuse into 

the medium surrounding the bacterial cell, and once outside, the electrons can be transferred 

to suitable external acceptors, with examples including insoluble Fe (III) oxides or a MFC 

anode [227]. Some compounds shown to be effective electron shuttles include thionine, 

methyl viologen, 2-hydroxy-1,4-naphtoquinone, methylene blue, humic acids and 

anthraquinone-2,6-disulfonic acid [228-231]. Other more common examples of electron 

shuttles are molecules known as flavins. 

 Flavins demonstrate enhanced efficiency when partaking in bio-geochemical iron 

cycles, and redox potentials, which improves electron transfer. Thus, flavins have the 

potential to be applied to MFC technologies as such molecules can be used as endogenous 

electron transfer mediators [232]. Further, the importance of flavins as electron shuttles, have 

been shown, as the concentration of flavins increased from 0.2 μm – 0.6 μm to 4.5 μm – 5.5 

μm the peak current produced by S. oneidensis became four times greater [227].  

Flavins are often produced as secondary metabolites in bacteria, for example, 

riboflavin which is also known as vitamin B2. This compound has been shown to act as an 

electron shuttle by Marsili et al, when S. oneidensis biofilms were analysed [233]. Results 

showed that the removal of riboflavin from biofilms resulted in a reduction of electron 

transfer rate to the electrodes by more than 70 % [233]. Another example of a flavin is 

pyocyanin, this has been shown to mediate electron transfer in MFCs [234]. The 

concentration of pyocyanin in an anodic culture has shown a direct correlation to power 

generation efficiency, due to its ability to transport electrons through the cell membrane 

[235]. Pyocyanin is produced as a secondary metabolite by Pseudomonas aeruginosa, it is a 

water-soluble blue green phenazine compound, responsible for the green pigmentation often 

associated with infected wounds [236]. The production of pyocyanin by P. aeruginosa is of 

paramount importance due to its versatile nature. Pyocyanin has multiple functions including 

antimicrobial activity against a range of microorganisms (including bacteria, fungi and 
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protozoa), an electron shuttle and a key sensing molecule to upregulate the transcription of 

quorum sensing genes, leading to biofilm formation [237-245]. 

 

3.4 Mixed community microbial fuel cells 

The different mechanisms in which bacteria can facilitate electron transfer has been 

considered, however, few monoculture strains have the capacity to produce power densities 

as great as strains that are inoculated in mixed communities. For example, enriched anodic 

biofilms have previously been shown to generate power densities as high as 6.9 W per m2 

(projected anodic area) [25]. Some bacteria found in MFC biofilms have shown that the cells 

do not interact directly with the anode, however through interactions with other bacteria they 

can still contribute indirectly to the production of electricity. One example of this has been 

demonstrated by Brevibacillus spp., (strain PTH1), which was found in abundance in a MFC 

community. Power production from this bacterial subclass alone is low, however when co-

cultured with Pseudomonas spp., (or supernatant from an MFC community containing 

Pseudomonas spp.,) there was a marked increase in electricity generation [246].  

Specific members of fluorescent Pseudomonads can produce and secreet phenazines 

i.e. pyocyanin production by P. aeruginosa strains [243]. The effect of pyocyanin addition to 

non-pyocyanin producing MFC biofilms has shown varying results. Rabaey et al, 

demonstrated that the addition of pyocyanin to a pure culture of Enterococcus faecium (strain 

KRA3), led to a peak power increase from 294 ± 49 µW m-2 to 3977 ± 612 µW m-2, a 13-fold 

increase [246]. However, against E. coli (ATCC 4157), the power output showed a reduction 

by 50 %, after the addition of pyocyanin (117 ± 16 µW m-2 to 50 ± 53 µW m-2 [246]. A 

possible explanation for this could be due to the selective antimicrobial activity of redox-

active proteins such as pyocyanin [237, 238]. Pyocyanin, has shown greater antimicrobial 

activity against aerobic bacterial strains; in 1981 Baron and Rowe showed that facultative 

anaerobes were two-fold (or more) resistant [237]. The addition of pyocyanin (or pyocyanin 

producing strains of bacteria e.g. P. aeruginosa) to non-pyocyanin producing biofilms could 

therefore be used to increase power outputs. One example, where this approach could be 

applied is the degradation of waste/toxic matter (such as toluene) to efficiently convert 

organic matter to electricity in a MFC set-up [247]. However, significance should be placed 

upon the selection of bacteria utilised within mixed community biofilms MFC configurations, 

ensuring resistance to the antimicrobial effects of exogenous redox mediators. 
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The interactions of mixed community biofilms is complex and is yet to be fully 

understood. However, the use of mixed community biofilms, both inter-bacterial and other 

microorganisms (i.e. fungi such as yeast) for MFCs, has vast potential. A pure culture MFC 

(G. sulfurreducens) was shown to produce a maximum power of 461 ± 8 mW m-2, compared 

to a mixed community biofilm MFC that produced a maximum power of 576 ± 25 mW m-2 

under the same conditions [248]. Another study, which used the fungus Trametes versicolor 

and S. oneidensis in combination, showed that the bacterial-fungal interactions enhanced 

power generation, producing a maximum power density of 0.78 W m-3 [249]. Fernández de 

Dios et al, suggested that the bacterium was capable of both adhering to and transporting 

electrons from the T. versicolor filamentous networks. Further, T. versicolor can produce 

oxidative enzymes, which provide an oxidoreductase mechanism, which involves the 

transportation of electrons from donor to acceptor [249]. Clearly mixed biofilm communities, 

that have the ability to generate electricity by more than one mechanism, will play a pivotal 

role in the improvement of MFCs [250]. 

 

4.  Field standardisation and comparison techniques 

Differences in MFC configurations, including architectures, anode/cathode/PEM 

materials and solution chemistries have hindered the progression of MFC technologies, due 

to the lack of direct comparisons of power production available [117]. In the late 1980’s, 

Bennetto et al studied synthetic mediators, and this resulted in the development of the 

“analytical MFC” that is still used by a number of research groups to date [35, 251]. 

Furthermore, over the last decade researchers have also started to use another MFC design 

whilst carrying out experiments [88, 117, 252-256]. This design utilises a single-chamber 

cube shaped MFC (4 cm) with a 3 cm (diameter) analyte chamber, a graphite fibre brush 

anode and a platinum cathode catalyst [117]. This configuration usually uses 50 mM 

phosphate buffer solution and acetate as a fuel source [117]. The use of identical MFC 

designs and conditions throughout the field allows for direct comparisons between energy-

generation results from a wide array of laboratories [117]. In order to improve power outputs 

from MFC technologies, the design of the MFCs need to be detailed (e.g. distance between 

electrodes, PEM type etc.), allowing for appropriate comparisons and identification of factors 

capable of improving energy generation.  

One issue that greatly hinders the advancement of MFC technologies is the lack of 

consistency and standardisation in regards to stringent comparisons of energy outputs of 

MFCs (Table 1) [257]. Current density is the most typically used performance indicator of 
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MFCs at a set potential which is typically calculated in watts per square meter (W m-2), and 

measures power output in relation to the surface area of the anode [257, 258]. However, the 

use of surface based power density has many limitations, making it unsuitable for measuring 

MFC energy generation. One major limitation is that it is difficult to measure the exact 

surface area of porous electrodes, and therefore it is often estimated as the projected surface 

area [257]. Further, surface areas of porous electrodes of identical size could vary drastically 

between similar electrodes [257]. Another way to quantify energy outputs from MFCs is 

watts per cubic meter (W m-3), which takes into account the anode liquid volume but 

excludes variation in the electrode size and configuration [257]. Traditional performance 

indicators such as current/power density, resistance, impedance and capacitance testing can 

all provide vital information [259]. Ge et al, proposed a new parameter in order to effectively 

describe energy generation from MFCs, and this term is the normalised energy recovery 

(NER), which gives energy generation in kWh m-3 [257, 260]: 

 

𝑁𝐸𝑅 =
𝑝𝑜𝑤𝑒𝑟 × 𝑡𝑖𝑚𝑒 (𝑡)

𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑖𝑚𝑒 (𝑡))
  =  

𝑃𝑜𝑤𝑒𝑟

𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
                                               (3) 

 

However, this calculation assumes that all MFC technologies are wastewater 

treatment systems but this is not the case [260]. Equation (3) can be modified in order to take 

into account the organic substrates present in solution, based on the removed chemical 

oxygen demand (COD) in kilowatt hours per kilogram of COD [kWh (kg COD)-1] [257]: 

 

𝑁𝐸𝑅 =  
𝑝𝑜𝑤𝑒𝑟 × 𝑡𝑖𝑚𝑒 (𝑡)

𝐶𝑂𝐷 (𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑖𝑚𝑒 (𝑡))
=  

𝑝𝑜𝑤𝑒𝑟

𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 × ∆𝐶𝑂𝐷
             (4) 

 

Such performance power indicators will allow for a better understanding of organic 

compound conversion to energy via MFCs.  

 

5.  Conclusions 

MFC technologies have the potential to play a pivotal role in the transition from fossil 

fuel based technologies to more renewable energy sources. Research into this area is clearly 

progressing but there is still much more to do in order for MFC technologies to be routinely 

adapted into industry and society. This review provides an overview of MFC technologies 

thus far, whilst benchmarking MFC performance and limitations. Currently the highest power 

output from an MFC is comparable to that of a PEM hydrogen fuel cell; however, further 
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progression of this field is expected. This expected advancement will be due to the 

optimisation and tailored development of individual parameters such as, enhanced electrode 

materials that are more suitable for this application. This, alongside interdisciplinary research 

intoexoelectrogenic bacteria, their biochemical pathways and the influence of secondary 

metabolites that underpin electron transfer mechanisms, could lead to power outputs much 

closer to that of the theoretical limits, as well as furthering the advancing field of 

electromicrobiology. 
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Table 1: Overview of the state of the current literature of  MFC performance with respect to the variable electrochemical-biology mechanisms and 

carbon-based electrodes. The best output by an MFC known to date is, 5.61 w m-2 (11,200 W m3) this can be compared to the US national average 

of solar power which is estimated to be between 100 W m-2 and 150 W m-2 [174, 261]. Note, that in regards to the energy output, the 

units/benchmarking are not consistent therefore comparison between MFCs is difficult.  

Anode Material Cathode material 
Microbial 

Composition 
Fuel / Substrate 

Suggested 

Mechanism 
Energy Output Reference 

3D few-layer 

graphene macroporous 

scaffolds 

Glass slide coated with a 

layer of Cr/Au or Ti/Pt 

Mixed community 

– Geobacter spp., 

enriched 

- 
Cytochrome c 

activity 
11, 2000 W m-3 [174] 

2D monolayer 

graphene sheet 

Glass slide coated with a 

layer of Cr/Au or Ti/Pt 

Mixed community 

– Geobacter spp., 

enriched 

- 
Cytochrome c 

activity 
8, 840 W m-3 [174] 

Carbon felt 

Activated carbon, carbon 

black and 

poly(vinylideneflouride) 

binder 

Aerobic mixed 

community 

‘High strength’ 

swine wastewater 
- 750 ± 70 mW m-2 [262] 

Carbon felt Graphite felt 
Anaerobic mixed 

community 

Sludge from 

domestic 

wastewater 

- 7.07 mW m-2 [161] 

Carbon felt Graphite felt 
Anaerobic mixed 

community 

Sludge from 

domestic 

wastewater 

- 2.34 mW m-2 [161] 
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Carbon cloth Carbon cloth/carbon felt Mixed community - 
Direct – nanowires 

and c cytochrome 
3.5 A m2 [107] 

Graphite felt Graphite felt R. ferrireducens - 

Direct contact 

mediated - 

nanowires 

0.57 mA m2 / 620 

mV 
[165] 

Graphite foam Graphite foam R. ferrireducens - 

Direct contact 

mediated - 

nanowires 

74 mA m2 /  445 

mV 
[165] 

Multilayer graphene 

coating on stainless 

steel electrode 

Carbon paper E. coli Glucose - 2668 mW m-2 [171] 

Reduced graphene 

oxide (particles) 
Carbon cloth Mixed community 

Anaerobic sludge 

from wastewater 
- 3.6 W m-3 [172] 

Activated carbon 

modified electrode 
Carbon cloth Mixed community 

Anaerobic sludge 

from wastewater 
- 1.7 W m-3 [172] 

Reduced graphene 

oxide (sheets) 
Carbon cloth Mixed community 

Anaerobic sludge 

from wastewater 
- 2.7 W m-3 [172] 

Glassy carbon coated 

with MWCNTs 
Glassy carbon 

Shewanella 

oneidensis 
- - 9.70 µA cm2 [182] 

MWCNTs with 

hydroxyl groups 

Carbon cloth coated with 

platinum 
Mixed community - - 167 mW m2 [184] 
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Carbon paper 

carbon paper coated with 

Pt catalyst (0.35 mg/cm2 

; 10% Pt, E-TEK) 

Geobacter spp,. Glucose - 40.3 ± 3.9 mW m-2 [263] 

Graphite plate Graphite plate 
Saccharomyces 

cerevisiae 
Glucose - 16 mW m-2 [264] 

Carbon paper 

carbon paper coated with 

Pt catalyst (0.35 mg/cm2 

; 10% Pt, E-TEK) 

G. sulfurreducens Acetate - 48.4 ± 0.3 mW m-2 [263] 

Carbon paper 

carbon paper coated with 

Pt catalyst (0.35 mg cm-2 

; 10% Pt, E-TEK) 

Geobacter spp,. Lactate - 52 ± 4.75 mW m-2 [263] 

Graphite Graphite 
Deltaproteo 

bacterium 

Marine sediment 

in acetate 
- 14 mW m-2 [265] 

Carbon paper 

Carbon paper containing 

either 0.35 mg/cm2 of Pt, 

or 0.50 mg cm-2 Pt/Ru 

(1:1 molar ratio) 

Gammaproteo and 

Shewanella affinis 
Cyctenin - 36 mW m-2 [266] 

Carbon paper 

Carbon paper containing 

a Pt catalyst 

(0.35 mg/cm2; 10% Pt; 

E-Tek, NJ) 

Betaproteobacteria Ethanol - 40 ± 2 mW m-2 [267] 
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Graphite with neutral 

red (NR) 

Graphite coated with a 1 

mm thick porcelain 

septum made from 100% 

kaolin 

E. coli  Sewage sludge - 152 mW m-2 [89] 

Graphite with Mn4+ 

Graphite coated with a 1 

mm thick porcelain 

septum made from 100% 

kaolin 

E. coli Sewage sludge - 91 mW m-2 [89] 

Graphite plates Graphite plates Mixed community Glucose - 283 Mw m-2 [268] 

Composite electrode 

(graphite/PTFE) 

Graphite air-cathode with 

a Pt/C catalyst layer 

(40 wt% of Pt) 

E. coli Glucose - 760 mW m-2 [269] 

Non-wet-proof carbon 

paper 

Non-wet-proof carbon 

paper 
Mixed community Cellulose - 188 mW m2 [270] 

Carbon paper with 

polypyrrole coated-

CNTs 

Non-wet-proof carbon 

paper 
E. coli Glucose - 228 mW m-2 [271] 

Teflon treated carbon 

fibre paper 
Graphite plate Mixed community Glucose - 15.2 mW m-2 [272] 

Teflon treated carbon 

fibre paper 

Carbon cloth coated with 

a Pt catalyst (ETEK, 0.5 

mg cm-2) 

Mixed community Lactose - 17.2 mW m-2 [273] 
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Graphite Graphite Mixed community Glucose - 3.6 W m-2 [274] 

Graphite fibre brush 

anodes 

30 wt % wet-proofed 

carbon cloth (type B-1B, 

E-TEK) with platinum 

(0.5 mg cm-2) 

Mixed community 

1 g L-1 acetate in 

50 mM phosphate 

buffer 

- 1430 mW m-2 [275] 

Reduced graphene 

oxide and polyaniline 

nanofibers coated onto 

carbon cloth 

Carbon felt Mixed community Anaerobic sludge - 1390 mW m-2 [276] 

Reduced graphene 

oxide coated onto 

carbon cloth 

Carbon felt Mixed community Anaerobic sludge - 1003 mW m-2 [276] 

Carbon cloth Carbon felt Mixed community Anaerobic sludge - 468 mW m-2 [276] 

Three-dimensional 

(3D) reduced 

graphene oxide–nickel 

foam anode 

Carbon cloth 
Shewanella 

oneidensis MR-1 

25 mL solution of 

50 mM 

ferricyanide in 

100 mM PBS -pH 

7.4 

- 661 mW m-3 [277] 

Hierarchically porous 

chitosan/vacuum 
Carbon cloth P. aeruginosa Glucose 

Endogenous 

phenazine mediator 
1530 mW m-2 [278] 
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stripped graphene 

scaffold 

Multilayer graphene - 

sponge composite 

anode with stainless 

steel current collectors 

carbon cloth electrode 

coated with platinum 

catalyst 

Mixed community 
Waste water with 

glucose 

Nanowires 

observed by SEM – 

direct transfer 

1.57 W m-2 [279] 

Multilayer graphene 

with iron 

tetrasulfophthalocyani

ne (FeTsPc) 

FeTsPc-graphene 

cathode (0.2 mg cm-2) 
E. coli 

Culture medium 

(PBS, 10.0 g of 

peptone, 5.0 g of 

NaCl and 3.0 g of 

beef powder L−1) 

- 817 mW m-2 [280] 

Nitrogen-doped 

graphene 

Carbon paper coated with 

Pt/C or nitrogen 
Mixed community 

Activated sludge 

from a municipal 

sewage treatment 

plant 

- 
776 ± 12 mW m−2 

 
[281] 

1-(3-aminopropyl)-3-

methylimidazolium 

bromide 

functionalized graphe

ne nanosheets 

Carbon paper 
Shewanella 

oneidensis MR-1 

18 mM lactate 

substrate 

Outer 

membrane cytochr

ome proteins and 

excreted redox 

mediators 

(riboflavin) 

601 mW m−2 [282] 
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Carbon paper Carbon paper 
Shewanella 

oneidensis MR-1 

18 mM lactate 

substrate 

Outer 

membrane cytochr

ome proteins and 

excreted redox 

mediators 

(riboflavin) 

142 mW m−2 [282] 

Graphene nanosheets 

coated onto carbon 

paper 

Carbon paper 
Shewanella 

oneidensis MR-1 

18 mM lactate 

substrate 

Outer 

membrane cytochr

ome proteins and 

excreted redox 

mediators 

(riboflavin) 

203 mW m−2 [282] 

Carbon paper Carbon paper Mixed community 
Anaerobic sludge, 

with glucose 

Direct electron 

transfer 
182 mW m−2 [283] 

Layer by layer 

addition of graphene 

monolayers onto 

carbon paper 

Carbon paper Mixed community 
Anaerobic sludge, 

with glucose 

Direct electron 

transfer 
368 mW m−2 [283] 

MnO2 treated graphite 

felt 
Carbon felt Mixed community 

Sludge and 

sediment with 

sodium acetate 

substrate 

- 83 W m-3 [284] 
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Platinum loaded 

carbon cloth 

carbon-cloth electrode 

containing 0.5 mg/ cm2 

of Pt catalyst (E-Tek) 

Mixed community 
Waste water with 

glucose substrate 
- 262 ± 10 mW m-2 [88] 

Platinum loaded 

carbon paper 
Carbon paper 

Geobacter 

metallireducens 
Acetate - 38 mW m-2 [28] 

Crumpled graphene 

coating on carbon 

cloth electrodes 

Carbon cloth Anaerobic sludge Sodium acetate - 3300  mW m-2 [172] 

Carboxyl graphene 

coated onto stainless 

steel fibre felt 

Carbon felt Mixed community Acetate - 2143 mW m-2 [285] 

Carboxyl graphene 

coated onto carbon 

cloth 

Carbon felt Mixed community Acetate - 1018 mW m-2 [285] 

Graphene micro-

sheets 

electrochemically 

exfoliated onto carbon 

cloth 

Graphite rods Mixed community 
Domestic waste 

water – Glucose 
- 2850 mW m-2 [286] 

Graphene oxide 

coated onto carbon 

cloth 

Carbon cloth coated with 

Pt catalyst (20% Pt/C, E-

Tek) at a loading of 0.5 

mg/cm2 

E. coli 

Activated 

anaerobic sludge 

– sodium acetate 

- 1905 mW m-2 [287] 
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Graphene oxide 

coated onto carbon 

cloth 

Carbon cloth P. aeruginosa Glucose 
Electron shuttle – 

pyocyanin 
52.5 mW m-2 [159] 

Polyaniline/graphene 

foam coated onto 

carbon cloth 

Carbon cloth S. oneidensis Lactate - 768 mW m-2 [270] 

Polypyrrole/oxidised 

graphene coated onto 

graphite felt 

Carbon felt S. oneidensis Lactate - 1326 mW m-2 [288] 

MnO2/functionalised 

graphene nanosheets 

Stainless steel net with 

wet-proof gas diffusion 

layers, and a catalyst 

layer (86 wt% activated 

carbon powder, 12 wt% 

PTFE, and 2 wt% 

acetylene black powder, 

containing 5 mg cm-2 

MnO2/GNS catalyst) 

Mixed community 
Anaerobic sludge 

– Acetate 
- 2083 mW m-2 [289] 

Graphene oxide/SnO2 

composites coated 

onto graphite 

Platinum rod E. coli Glucose - 1624 mW m-2 [290] 

MWCNTs coated onto 

carbon cloth 

Carbon cloth coated with 

CNTs or Carbon cloth 

coated with CNTs  and 

0.5 mg cm−2 of Pt 

Mixed community 

Domestic 

wastewater – 

Acetate 

- 65 mW m-2 [291] 
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catalyst or Carbon cloth 

coated with CNTs  and 

0.5 mg cm−2 of Pt 

catalyst and PEM fused 

directly 

Graphene/TiO2 

composites coated 

onto carbon paper 

Carbon paper S. oneidensis Lactate - 1060 mW m-2 [292] 

Graphene oxide/CNTs 

coated onto hydrogel 
Carbon cloth E. coli Glucose - 434 mW m-2 [293] 

 

Key: CNTs – carbon nanotubes; MWCNT – multi-walled carbon nanotube; N/A – not available; PBS – phosphate buffer solution.
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Figure 1 

A) Average power outputs of a range of fuel technologies, including both traditional energy 

sources (i.e. coal and natural gas) and alternative/renewable energy sources. B) Shows the 

average efficiency range of these fuel sources. Note that MFCs require further and sustained 

research to compare with other energy sources. Data obtained from [106, 112, 294-296]. 
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Figure 2  

Schematic of a typically employed two-chamber microbial fuel cell highlighting the various 

electrochemical and electro-microbiological processes. Figure adapted from reference [1]. 
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Figure 3 

A schematic depicting a number of ways in which performance of MFC technologies can 

degrade. Examples here include biofouling (electrode blockage), inactivation of catalysts and 

excessive growth of bacterial biofilms leading to the production of non-conductive debris. 

Figure adapted from [106]. 
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Figure 4  

A) Five allotropes of carbon: (a) graphite (b) diamond (c) C60 buckminsterfullerene (d) single-

walled nanotube (SWCNT), and (e) graphene. These materials are used extensively within 

microbial fuel cells. Reproduced with permission from [153]. B) SEM showing the abundant 

coverage of an E.coli biofilm adhered to the surface of a carbon-paste graphite electrode (Figure 

5B is courtesy of Whitehead et al, MMU, UK). 

 . 
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Figure 5  

SEM showing varying morphologies of carbon – based electrodes: (A) carbon fibres in 

unmodified carbon cloth; (B) regular r-GO sheets deposited on carbon cloth; (C) crumpled r-

GO particles before being applied onto carbon cloth; and (D) crumpled r-GO particles stacked 

on carbon cloth. E) The polarisation curves (below the SEM images) show the electricity 

generation from the carbon - based electrodes, indicating that the reduced graphene oxide 

particles produced the highest power density, possibly due to the higher electrode surface area 

as observed in the SEM images (D). Figure adapted from reference [172]. 

 



61 
 

Figure 6 

SEM showing A) 3D graphene macroporous scaffold fabricated via chemical vapour deposition, 

B) monolayer graphene, C) morphology of biofilm adhered to the 3D graphene macroporous 

scaffold anode and E) morphology of biofilm adhered to monolayer graphene anode. Optical 

profilometry images of both the 3D graphene macroporous and monolayer anodes with biofilms 

adhered are shown, D) and F) respectively, this allowed the biofilm thickness to be quantified before 

SEM was utilised to show morphological differences – C) and E). Figure adapted from [174]. 
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Figure 7 

The MFC with the largest power output reported to date. A) A plot of power density versus 

current density, B) A plot of current density against voltage. Varying anodes were utilised 

throughout this study: control, 2D single layer graphene, and 3D graphene macroporous 

scaffold; unless specified, all data collected at 18 µL min-1 (via flow cell set-up). Reproduced 

with permission from [174]. 
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Figure 8 

Comparison of a selection of metal electrodes utilised in MFC configurations compared to a 

graphite control. A) Electrochemical performance, with the red columns showing average 

maximum current densities achieved and the blue columns showing the mean values of the 

slopes of the turnover cyclic voltammograms. B) Correlation of the electro-catalytic current 

density against biofilm thickness (as determined via confocal laser scanning microscopy). 

Figure adapted from [189].  
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Figure 9  

Three methods of electron transfer demonstrated by exoelectrogenic bacteria, including; direct 

electron transfer – conductive pili denoted within the literature as nanowires and redox-active 

proteins, and indirect electron transfer by electron shuttles. Reproduced with permission from 

[200]. 
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Figure 10  

A) SEM showing the difference in morphology of flagella and pili on the surface of E. coli. 

Due to this distinct difference in properties, we propose the terms “micro-nanowires” and 

“macro-nanowires” in order to describe pili and flagella, respectively, in terms of electron 

transfer properties in MFC configurations. Section A image, courtesy of Whitehead et al, MMU, 

UK. B) Transmission electron microscopy showing G. sulfurreducens strain GUP, (top part of 

the image), expressing abundant micro-nanowires. This allows the bacteria to reduce metals, 

such as iron oxide, and donate electrons to the anode in a MFC set-up. Section B, adapted from 

[208].  
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Figure 11 

Schematic depicting a range of exogenous and endogenous redox mediators, capable of 

partaking in electron transfer. Original image adapted from [297]. 

 

 

 

 

 

 


