

Please cite the Published Version

Deng, Zhuqing, Lloyd, Huw, Xia, Canwei, Li, Donglai and Zhang, Yanyun (2019) Within-season decline in the call consistency of individual male Common Cuckoo (Cuculus canorus). Journal of Ornithology, 160 (2). pp. 317-327. ISSN 2193-7192

DOI: https://doi.org/10.1007/s10336-019-01631-4

Publisher: Springer Verlag

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/621918/

Usage rights: O In Copyright

Additional Information: This is an Author Accepted Manuscript in Journal of Ornithology published by Springer.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

1	Within-season decline in the call consistency of individual male Common Cuckoo (Cuculus
2	canorus)
3	Authors: Zhuqing Deng ¹ , Huw Lloyd ² , Canwei Xia ^{1*} , Donglai Li ³ , Yanyun Zhang ¹
4	1. Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life
5	Sciences, Beijing Normal University, Beijing 100875, China.
6	2. School of Science and Environment, Manchester Metropolitan University, Manchester M1 5GD,
7	UK.
8	3. Provincial Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life
9	Sciences, Liaoning University, Shenyang 110036, China.
10	* Corresponding author, Telephone: 0086-18901376801, ORCID: 0000-0003-1432-1019
11	Email: Zhuqing Deng (dengzhuqing@mail.bnu.edu.cn)
12	Huw Lloyd (H.Lloyd@mmu.ac.uk)
13	Canwei Xia (xiacanwei@bnu.edu.cn)
14	Donglai Li (lidonglaibnu@163.com)
15	Yanyun Zhang (zhangyy@bnu.edu.cn)
16	Acknowledgements
17	We thank Xiaomeng Zhao, Boning Xue, Qi Wang, Qi Luo, Qingbin Wang, Shuang Guan, Ziqiang
18	Huang, Linyu Jin and Juan Chen for assistance in the field work. Comments from anonymous
19	reviewers greatly improved the manuscript. This study was supported by the National Natural Science
20	Foundation of China (No. 31872243, No. J1210075, No. 31601868, No. 31672316), National Key
21	Technology R&D Program of China (No. 2016YFC0503200), State Forestry Administration of China
22	(No. KJHX2016135), Beijing Natural Science Foundation (No. 5173030).

24	Within-season decline in the call consistency of individual male Common Cuckoo
25	(Cuculus canorus)
26	Abstract
27	Numerous studies have identified individually distinctive vocal characteristics and call consistency in
28	different bird species. If these are to be utilised as non-invasive markers for monitoring purposes, then
29	these vocal characteristics must remain stable over time. Three recent studies have shown that it is
30	possible to identify individual male Common Cuckoo (Cuculus canorus) based on vocal characteristics
31	but whether these are stable over the duration of a breeding season, remains unknown. We recorded
32	1032 syllables from 30 male Common Cuckoos in a Northeast Asian population. We colour-banded six
33	of these males and made repeated recordings of their cu-coo advertisement call across a 19-day period
34	of the breeding season in China. We used three methods to identify individuals: discriminant function
35	analyses (DFA), correlation analysis (CA) and spectrographic cross-correlation (SPCC). We also used
36	repeatability analysis to test whether call consistency (the number of syllables in each calling bout) was
37	repeatable within individuals. Based on the same day recordings, calls from the same male were more
38	similar in their characteristics than those of different males, and yielded correct rates of classifying
39	individuals of 93.6% (SPCC), 90.8 % (DFA), and 71.5% (CA). However, these rates declined to 40.5%
40	(SPCC), 40.7% (DFA) and 27% (CA) when using recordings over the 19-day period. Call consistency
41	was repeatable within individuals across two successive calling bouts, but this individual repeatability
42	disappeared when several (more than two) calling bouts from the same day or bouts from the different
43	days were included in the analyses. Declines in the correct rate of identifying individual male cuckoos
44	and call consistency in this study raises concerns that individual male cuckoo calls may be more
45	variable than previously thought.

46 Key words: call consistency; Common Cuckoo; temporal stability; vocal individuality; vocal signals
47

48 Introduction

49	Recognition based on individually distinctive vocalizations is a functionally important aspect of
50	signaling amongst many animal species (Falls 1982; Stoddard et al. 1996; Tibbets and Dale 2007).
51	Numerous studies have shown the presence of individually distinctive vocal characteristics in different
52	bird species (Terry et al. 2005) i.e. the presence of vocal characteristics that are less variable within
53	individuals than between individuals (e.g. Galeotti and Pavan 1991; Rebbeck et al. 2001; Puglisi and
54	Adamo 2004; Policht et al. 2009). Since bird vocalizations function for the long-distance broadcast of
55	fitness related information (Catchpole and Slater 2008; Cramer 2013a), individual identification may
56	benefit other birds (i.e. the signal receivers) in assessing the quality or behavioural state of individuals,
57	territory occupation, or simply to maintain relationships with neighbouring individuals (e.g. Delgado et
58	al. 2013; Sandoval et al. 2014). Many studies have examined the utility of individual vocal
59	characteristics as non-invasive markers for monitoring individuals or populations (e.g. Laiolo et al.
60	2007; Kirschel et al. 2011; Budka et al. 2015), or as a complimentary method to more traditional forms
61	of monitoring (Blumstein et al. 2011), particularly for secretive or rare bird species (e.g. Kemp and
62	Kemp 1989; Gilbert et al. 1994; Grava et al. 2008) for which monitoring will be essential for effective
63	conservation management (Terry et al. 2005; Klenova et al. 2008). Furthermore, the number of
64	syllables produced by calling males of some passerine and non-passerine bird species has also been
65	found to be remarkably consistent over short periods of time (Catchpole and Slater 2008) suggesting
66	that call length may also serve as a form of signaling for individual fitness during the breeding season
67	(Møller et al. 2016a, b).

68	If unique vocal characteristics are to be used as markers for monitoring purposes, and if call
69	consistency is a reliable indicator of male quality, then it is essential that calls remain unchanged i.e.
70	remain 'stable' over significant periods of time (Terry et al. 2005; Dawson and Efford 2009; Linhart
71	and Šálek 2017) such as the duration of a single breeding season, or even between different seasons.
72	However, demonstrating such vocal stability over time has proven difficult because ideally, the acoustic
73	analyses should be conducted on known individuals that have been individually marked e.g. using
74	colour rings (Terry et al. 2005), but this is not always feasible. Some studies dealing with individual
75	acoustic signals are based on recordings made from only a few days sampling within a single season
76	(e.g. Li et al. 2017). Studies of the European Eagle Owl (Bubo bubo) found that within-year rates of
77	correct classification of individuals varied from 60-100%, but between years, only 41.8% of 'hoots'
78	were correctly attributed to the territory owner in the previous year, with the between-year correct
79	classification ranging from 0 to 100% (Grava et al. 2008). Even studies of the long-term stability of
80	individual vocal characteristics of mammals have recorded reclassification rates of <50% (e.g.
81	Jorgensen and French 1998). This has led some authors to conclude that the correct rate of acoustically
82	identify individual birds over significant time periods will be lower (Linhart and Šálek 2017; Průchová
83	et al. 2017) because of temporal changes in vocal characteristics caused by physiological changes,
84	changes to the physical environment, social status, repertoire size and breeding stage (Delgado et al.
85	2013).
86	The Common Cuckoo (Cuculus canorus) is a highly charismatic species widely known for its
87	parasitic life history (Thorogood and Davies 2012; Yang et al. 2015). Male cuckoo advertisement calls
88	show a highly stereotypical acoustic structure, consisting of two elements ('cu-coo') across their entire
89	geographic range (Wei et al. 2015; Zsebők et al. 2017). Both male and female cuckoos utter loud, far-

90	carrying vocal signals during the breeding season to communicate with conspecifics (Moskát et al.
91	2017) or misdirect hosts (York and Davies 2017; but see Liang et al. 2017). Surveying and monitoring
92	populations of cuckoos during the breeding season using more traditional methods (e.g. point counts,
93	transects) remains problematic due to the secretive life-history traits (Williams et al. 2015), and mist-
94	netting surveys to date, tend to catch so few individuals. Surveys for this species carry added
95	significance because monitoring cuckoo abundance and distribution may serve as an indicator of
96	overall bird community composition (Morelli et al. 2015, 2017; Tryjanowski and Morelli 2015).
97	Identifying individual male cuckoos based on vocal signals may represent a promising method to
98	generate new information on the abundance and life history of this species, and three recent studies
99	have kindled this hope (Jung et al. 2014; Li et al. 2017; Zsebők et al. 2017). These authors found the
100	between-individual variation in male cuckoos' calls was much greater than within-individual variation,
101	and that it was possible to identify individual male cuckoos based on specific call characteristics (Jung
102	et al. 2014; Li et al. 2017; Zsebők et al. 2017). Furthermore, there appears to be a high degree of
103	consistency in the number of syllables produced within individual males (e.g. Møller et al. 2016a, b),
104	and these measures could be utilized to assess environmental conditions (e.g. Møller et al. 2016a, b).
105	Despite these encouraging findings, all surveys to date have been conducted during just a short period
106	of the breeding season, with the longest period of acoustic recordings taken over a 5-day period (Li et
107	al. 2017), whilst the two other studies used recordings of calling males from just one occasion (Jung et
108	al. 2014; Zsebők et al. 2017). One of these studies revealed a rate of correct classification calls to
109	individual male of 91.9% from recordings made on one day, but this declined to 50% for recordings
110	made more than two days apart (Li et al. 2017), suggesting that male vocal characteristics may not be
111	temporally stable within a single breeding season.

112	In this study, we assess the feasibility of using vocal characteristics to identify individual male
113	Common Cuckoos over a 19-day period during the breeding season based on the repeated recordings
114	from male cuckoos in a northeast Asian population. We used three methods to identify individual
115	males: discriminant function analyses, correlation analysis, and spectrographic cross-correlation. We
116	also examined the consistency in the number of syllables produced by calling males during the
117	breeding season by using acoustic data recorded from successive calling bouts, several (more than two)
118	bouts recorded during the same day, and calling bouts recorded from different days during the breeding
119	season.
120	
121	Methods
122	Study area and sound recording
123	Field work was conducted from June 10th to July 29th 2017 in the Liaohe Delta Nature Reserve
124	(41.034°N; 121.725°E), Liaoning Province, northeast China. This region represents one of the most
125	important estuarine wetland in the country, which contains the largest area of reed-bed habitat along the
126	coastal region of China, and consequently, extensive nesting habitat for Oriental Reed Warbler
127	(Acrocephalus orientalis). Here, the Common Cuckoo is a summer breeding species, and
128	predominantly parasitizes Oriental Reed Warbler nests during late May to early August (Li et al. 2016).
129	Using mist nets, we trapped 20 individual cuckoos from June 9th to July 6th 2017. All individuals were
130	banded with a numbered metal band, and fitted with a backpack radio transmitter (Biotrack Co., UK)
131	weighing 2.12g (approximately 2.3% of the cuckoo's weight), using the method described by Rappole
132	and Tipton (1991). This enabled us to track and observe cuckoos during the breeding season to obtain
133	repeated recordings from known individuals.

134	All cuckoo vocalizations were recorded using a TASCAM DR-100MKIII recorder (Tascam Co.,
135	Japan) and a Sennheiser MKH416 P48 external directional microphone (Sennheiser Co., Germany),
136	with a sampling rate of 44.1 kHz and a sampling accuracy of 16 bits. In the study area, male cuckoos
137	regularly call when perching on electrical wires (Li et al. 2016), which enabled us to approach within
138	10-30 m of calling males and obtain the best possible recording with minimal background noise. In
139	total, we recorded vocalizations of 30 different males, six of which were individually marked (banded)
140	before recording. The fate of the other 14 banded cuckoos was unknown. We avoided repeated
141	sampling of the remaining 24 unbanded males by observing the movements of each recorded male, and
142	then travelling by motorcycle along one of the main roads until we encountered another male. We
143	traveled each road only once, so we were sure that we recorded different males. This method for
144	avoiding repeated sampling the same individual was also adopted in previous research (e.g. Li et al.
145	2017; Zsebők et al. 2017). Due to bad weather or a lack of vocalizations on some of the survey days,
146	both the number of days from which vocalizations were recorded, and the duration from the first day of
147	recording to the last day, varied for the six banded males. In summary, we obtained recordings for each
148	of the six banded males from 5 days across a nine day sampling period, 4 days across a ten day
149	sampling period, 5 days across an eleven day sampling period, 7 days across a thirteen day sampling
150	period, 9 days across a thirteen day sampling period, and from 11 days across a twenty day sampling
151	period, respectively.
152	
450	

153 Sound measurements

154 We used Avisoft-SASLab Pro software (Avisoft Bioacoustics, Berlin, Germany) to resample the

recordings with 6 kHz and created spectrograms with the following settings: sample size, 16 bits; Fast

156	Fourier transform length 256 points; Hamming window with a frame size of 100% and an overlap of
157	50%; frequency resolution 23 Hz; and time resolution of 21.3 ms. Male cuckoo advertisement calls
158	consist of a repeated series of 'cu- coo' syllables, with each syllable composed of two distinctive
159	elements (Møller et al. 2016a, b; Møller et al. 2017). We manually separated each element of each
160	syllable (see Fig. 1) represented by a continuous trace in the spectrogram, and used Avisoft-SASLab
161	Pro software to measure call features automatically following Li et al. (2017). We first automatically
162	search the maximum amplitude in each element, and then determine the start and end points of each
163	element at 19 dB lever lower than the maximum amplitude. We selected 19 dB (rather than 16 dB in Li
164	et al. 2017) because the characteristics of all syllables were explicit and clearly audible above the
165	background noise on all recordings, allowing us to obtain comparable syllable parameters
166	independently of the absolute intensity of the calls and the background noise level (Zollinger et al.
167	2012). The following variables were then measured: duration of the element (Tdur1, Tdur2); duration
168	from the start of element to the point of maximum amplitude within that element (Tdis1, Tdis2);
169	frequency at the start point of the element (Fsta1, Fsta2); frequency at the end point of the element
170	(Fend1, Fend2); minimum frequency of the element (Fmin1, Fmim2); maximum frequency of the
171	element (Fmax1, Fmax2); frequency of the maximum amplitude within the element (Fpeak1, Fpeak2);
172	time interval between the first and second element (Tint) (Supplementary Material Fig. 1). In total, we
173	measured 1032 syllables from 30 males: 750 syllables for 6 banded males and 282 syllables for 24 un-
174	banded males (all original measurements of call features can be seen in Supplementary Material file 1).
175	We count the number of syllables within each calling bout based on the number visible from the
176	spectrograms. The pause between successive bouts was always larger than 2 s, which is obvious greater
177	than pause between successive syllables within one calling bout (see Fig. 1). We were unable to obtain

178	a complete calling bout for 8 unbanded males. Consequently, we measured a total of 317 calling bouts
179	from 22 males (6 banded and 16 unbanded). The data on syllable numbers for each calling bout are
180	presented in Supplementary Material file 2.
181	
182	Data analyses – identification of vocal individuality
183	We separated our acoustic data into two data sets. The first of these contained 368 syllables from 6
184	banded males and 24 un-banded males, and every syllable from each individual in this data set was
185	recorded on the same day. This first data set was used to construct discriminant functions, and to
186	calculate the correct rate of acoustically identify individuals within one day (see below). The second
187	data set contained 664 syllables recorded from the 6 banded males from all other days of field work.
188	This second set was used to calculate the within-season correct rate of acoustically identify individuals
189	(i.e. more than one day). All analyses were performed using R v. 3.4.1 (R Core Development Team,
190	2017) with significance assumed at $P < 0.05$.
191	Discriminant function analyses (DFA) is a multivariate technique widely used to identify vocal
192	individuality in birds (e.g. Delgado et al. 2013; Linhart and Šálek 2017) by combining variables with
193	weighting coefficients to create a set of functions that can discriminate groups and classify new data
194	into one of any number of pre-existing groups (Williams and Titus 1988; Mundry and 2007). We used
195	calls from the first cuckoo data set to construct discriminant functions and examined the power of
196	functions to correctly classify each syllable to an individual using a jack-knife analysis (Manly 1986;
197	Galeotti and Sacchi 2001). The prior probability for each individual was set equal in DFA. For the
198	second data set, we used the 30 discriminant functions constructed (corresponding to 30 males) based
199	on the first data set to classify syllables of 6 banded males recorded across different days. The number

200 of syllables was not equal for each male in the first set, and varied from 6 to 20, with a mean of 12 201 syllables per male. Due to the possibility that the variables used for identifying individuality in males 202 from the first data set were not similar to those necessary for identifying males over the duration of the 203 breeding season, we calculated the rate of correct classification in the second data set using the 30 204 discriminant functions constructed from the first data set based on all combinations of variables (each 205 time, only a subset of variables were used in discriminant functions). The highest correct rate and their 206 corresponding combinations of variables were reported. 207 Correlation analysis (CA) was used to calculate the similarity of all pairs of syllables using 208 Pearson's R based on call variables, and then identified individuals based on this similarity value 209 (Budka et al. 2015). Using the first data set, we calculated coefficients of variation (CV) for each 210 variable to compare differences within (CVw) and between (CVb) individuals (Robisson et al. 1993). 211 We computed CV for each male based on syllables belonging to that male, and then calculated the 212 mean CV for each male as CVw. We used the average value for each male to compute CVb. The ratio 213 of CVb / CVw is the measurement of potential individual coding (PIC) which shows the importance of 214 each variable used in identifying individuals (Charrier et al. 2001; Charrier et al. 2003). PIC value of 215 Tdis2, Tdur1 and Tdis2 were less than or nearly equal to one (Table 1), meaning that these variables showed greater or similar variation within an individual than between individuals. Consequently, these 216 217 three variables were not included in the subsequent analysis. Since call variables have different orders 218 of magnitude e.g. the frequency of cuckoo syllables range in the hundreds Hz, while duration of 219 syllables last nearly a tenth of a second, we standardized the variables using the formula: (value – 220 mean) / standard deviation, and used these standardized variables to calculate the similarity of all pairs 221 of syllables using Pearson correlation for both within male and between males. Based on the first data

222	set, independent samples t-test were used to compare the similarity of pairs of syllables from the same
223	male to similarity of pairs of syllables from the different males. Each syllable was assigned to an
224	individual, whose syllable (except the one being classified) has the maximum similarity value with the
225	syllable to be assigned. The correct classification of individuals within a single day was expressed as
226	the percentage of syllables correctly assigned. To calculate the correct rate of acoustically identify
227	individuals within the breeding season, we first calculated the similarity of all pairs of syllables, one
228	from the first data set and one from the second data set. We then assigned the syllable in the second set
229	to one male in the first set, whose syllable has the maximum similarity value with the syllable to be
230	assigned. The correct rate was expressed as the percentage of syllables correctly assigned.
231	Spectrographic cross-correlation (SPCC) is another widely used technique for identifying vocal
232	individuality in bird species (e.g. McDonald and Wright 2011; Cramer 2013a). SPCC involves cross-
233	correlating two spectrograms frame by frame as matrices of amplitude values that are incrementally
234	overlapped over time (Clark et al. 1987; Radford 2005), then using the resultant peak correlation scores
235	as measures of similarity (Khanna et al. 1997; Terry et al. 2001). We conducted the SPCC using the
236	'template cross correlation on short files' function in Avisoft-SASLab Pro software. Firstly, we
237	intercepted every syllable in the spectrograms and saved as .son files, and calculated peak similarity
238	values for all pairs of syllables within the first data set, and between both sets. The sound used in SPCC
239	was removed the background noise bellow 400 Hz, and the frequency deviation was set as 0 Hz in
240	SPCC. Based on the first data set, we used independent samples t-test to compare the SPCC similarity
241	of pairs of syllables from the same male to similarity of pairs of syllables from different males. Each
242	syllable was assigned to an individual, whose syllable (except the one being classified) has the
243	maximum SPCC similarity value with the syllable to be assigned. The correct classification of

244	individuals within a single day was expressed as the percentage of syllables correctly assigned. To
245	calculate the correct rate of individual identification within the breeding season, we assigned the
246	syllable from the second data set to one male in the first set, whose syllable has the maximum SPCC
247	similarity value with the syllable to be assigned. The correct rate was expressed as the percentage of
248	syllables correctly assigned.
249	
250	Data analysis - call consistency ('repeatability') of syllable numbers
251	We estimated repeatability in the number of syllables within bout using the <i>rpt</i> function in the R
252	package $rptR$ (Stoffel et al. 2017), which estimates repeatability as the proportion of among-individual
253	variance out of the total variance (the sum of among-individual variance and within-individual
254	variance), using a generalized linear mixed model framework (Nakagawa and Schielzeth 2010; Stoffel
255	et al. 2017). The number of syllable recorded from all calling bouts followed a Poisson distribution
256	(Supplementary Material Fig. 2), so we used a logit link function with individual males as the random
257	effect. We used parametric bootstrapping (1000 iterations) to evaluate standard errors (SE), and
258	likelihood-ratio test to evaluate the statistical significance of repeatability > 0 against the null
259	hypothesis repeatability = 0 as suggested by Stoffel et al. (2017). We calculated the repeatability (R) of
260	the number of syllables from: (1) two successive calling bouts (using 44 bouts from the 22 males); (2)
261	several (more than two) calling bouts from the same day (using 159 bouts from 22 males); (3) calling
262	bouts from different days across the breeding season surveys (using 256 bouts from 6 males)
263	respectively.
264	

265 Results

266 Acoustic identification of individuals from one day of sampling

267	Based on the first data set, both CA and SPCC revealed a higher similarity value of pairs of syllables
268	from the same individual than different individuals (Figs. 2 and 3). Pearson correlation similarity of
269	paired syllables from the same male was 0.66 \pm 0.30 (mean \pm SD) which was significantly higher
270	(independent samples t-test, $t_{2634} = 102.95$, P < 0.001) than the similarity of paired syllables from
271	different males (0.00 \pm 0.45). SPCC similarity of paired syllables from the same male was 0.87 \pm 0.08,
272	which was significantly higher (independent samples t-test, $t_{2864} = 194.29$, P < 0.001) than the
273	similarity of paired syllables from different males (0.50 \pm 0.18). The rate of correct classification of all
274	30 individual males based on DFA, CA and SPCC was 90.8%, 71.5 % and 93.6 %, respectively
275	(Supplementary Material Fig. 3). The rate of correct classification of the six banded males based on
276	DFA, CA and SPCC were quite similar at 87.2 %, 75.6 % and 92.8 %, respectively.
210	,
277	,
	Acoustic identification of individuals within the breeding season
277	
277 278	Acoustic identification of individuals within the breeding season
277 278 279	Acoustic identification of individuals within the breeding season The correct rate of individual identification decreased with increasing number of days from which
277 278 279 280	Acoustic identification of individuals within the breeding season The correct rate of individual identification decreased with increasing number of days from which recordings were made within the breeding season, for DFA (Fig. 4a), CA (Fig. 4b), and SPCC (Fig. 4c).
277 278 279 280 281	Acoustic identification of individuals within the breeding season The correct rate of individual identification decreased with increasing number of days from which recordings were made within the breeding season, for DFA (Fig. 4a), CA (Fig. 4b), and SPCC (Fig. 4c). The correct rate of individual identification based on recordings across multiple days within the
277 278 279 280 281 282	Acoustic identification of individuals within the breeding season The correct rate of individual identification decreased with increasing number of days from which recordings were made within the breeding season, for DFA (Fig. 4a), CA (Fig. 4b), and SPCC (Fig. 4c). The correct rate of individual identification based on recordings across multiple days within the breeding season from all three measures declined significantly to 40.7 % (DFA), 27.0 % (CA) and

286

287 Call consistency ('repeatability') of syllable numbers

288	We found significant repeatability in the number of syllables within individual male cuckoos when
289	analyzing data from recordings of two successive calling bouts (repeatability = 0.55 ± 0.18 mean \pm SE;
290	95% confidence interval range from 0.22 to 0.73; $P = 0.001$). However, analyses of several (more than
291	two) calling bouts from the same day (repeatability = 0 ± 0.02 ; 95% confidence interval range from 0
292	to 0.06; $P = 0.436$) and calling bouts from different days (repeatability = 0 ± 0.01 ; 95% confidence
293	interval range from 0 to 0.02; $P = 0.500$) revealed that the number of syllables were not significantly
294	repeatable. In other words, we found that syllable number was not stable within individual males within
295	the breeding season.
296	
297	Discussion
298	Based on the same day recordings, we found that syllables from the same calling male were more
299	similar in their characteristics than syllables from different males, and our analyses yielded high correct
300	rates of classification of individuals from 93.6% (SPCC), 90.8 % (DFA), and 71.5% (CA). These
301	results support the findings of the three previous studies (Jung et al. 2014; Li et al. 2017; and Zsebők et
302	al. 2017) which found inter-individual variation of male cuckoo calls was much greater than intra-
303	individual variation, and it was possible to identify individual male cuckoos based on call
304	characteristics within one day. However, our results failed to provide evidence that male call structure
305	is sufficiently stable to allow re-identification of individuals even within the same breeding season.
306	Based on repeated recordings from the 6 banded males, we found the correct rate of classifying
307	syllables to individual males declined dramatically to 40.7 % from the DFA, 27.0 % from the CA, and
308	40.5 % from the SPCC. Thus, male cuckoos recorded singing across the longer duration of the breeding
309	season were more likely to have their calls incorrectly assigned than were males recorded from the

310 same day. Furthermore, based on all combinations of variables used to construct discriminant 311 functions, the highest correct rate of individual identification during the breeding season was only 312 43.0 % from the DFA, suggesting that there is no single call variable or combination of variables that 313 can be used to consistently identify individuals in this study. Among the 6 banded males, two males 314 (represented by circle and reversed triangle symbols in Fig. 4) had consistently reported higher correct 315 rate of classification than other males. So Thus, in our study population, average call individuality 316 doesdid not seem to decline in all males, but that. Instead, there are were males with more consistent 317 and males with less consistent calls. 318 We used three methods to identify individual male cuckoos based on vocal characteristics. Among 319 these methods, DFA is the most popular analytical method applied to classify bird individuals based on 320 call characteristics (Terry et al. 2005). The use of DFA is dependent on collecting an adequate number 321 of calls per male to get a robust discriminant function (Williams and Titus 1988), so individuals with an 322 insufficient number of calls were removed from the DFA, e.g. three males with less than ten calls were 323 not include in the analysis in Zsebők et al. (2017). CA can SPCC can be conducted with much smaller 324 sample sizes (two calls for each individual in theory) (Budka et al. 2015), thus reducing the need to 325 omit males with fewer recordings from the analyses. The advantage of using SPCC is that whole 326 spectrograms are used for the analyses (Terry et al. 2001), while CA use only the partial information 327 (the measurement variables) (Budka et al. 2015), so the discriminative power of SPCC is always better 328 than other methods (Xia et al 2011; Cramer 2013b; but not in Rogers and Paton 2005). However, SPCC 329 is easily affected by background noise (Khanna et al 1997), and consequently only high signal-to-noise 330 recordings can be used, which may limit the usage of SPCC.

331 Despite the use of different analytical techniques, we found that the correct rate of acoustic

332	identification is highly consistent across all three techniques based on the recordings from a single day,
333	but quickly declines when using recordings from multiple days within the same breeding season.
334	Studies have identified vocal individuality and stability within a single breeding season for a number of
335	different bird species (e.g. Kennedy et al. 2009; Wilson and Mennill 2010) or over subsequent breeding
336	seasons for the same species (e.g. Kirschel et al. 2011). However, other studies have failed to find these
337	stability (e.g. Feher et al. 2009; Kipper and Kiefer 2010; Zdenek et al. 2017). E.g. DFA correctly
338	assigned 59% of female White-throated Magpie-Jay (Calocitta formosa) begging calls to individual
339	females, but this correct rate declined sharply to less than 20% for some individuals when using
340	recordings made over seven days within the same season (Ellis 2008). Calls of individual European
341	Bitterns (Botaurus stellaris) recorded on a single day can be used to distinguish individual males but
342	this discrimination by DFA declines when vocalisations from multiple days within the same season
343	were used (Puglisi and Adamo 2004). DFA correctly assigned 65% of calls of American Crows
344	(Corvus brachyrhynchos) to the correct individuals but these calls varied even over a period of just a
345	few days (Yorzinski et al. 2006).
346	Temporary or permanently changes to vocal features does not necessarily prevent the
347	identification and monitoring of individuals (Fox 2008; Kirschel et al. 2011). For example, Brownish-
348	flanked Bush Warbler (Horornis fortipes) songs show variation in song characteristics, but the correct
349	rate of acoustically identify individuals across the whole breeding season using DFA was 98% (Xia et
350	al. 2010). Further, the coefficients of variation between individual bush warblers was always larger
351	than 0.1 for 46 of the 52 measured variables (Xia et al. 2012), while the coefficients of variation
352	between individuals in cuckoos was less than 0.07 in ten of 12 variables demonstrating the potential
353	individual coding based on the first data set. Examination of the calls from the six banded males from

354	all recording days suggests that only 7 variables show potential individual coding (with PIC value > 1),
355	and 6 of these have a coefficients of variation between individuals of less than 0.04 (Supplementary
356	Material Table 1), confirming that calls from different male cuckoos are very similar (see also the
357	spectrograms in Supplementary Material Fig. 4). It is possible that slight changes of acoustic features
358	within individual males may result in declines in correct rate of acoustically identify individuals in a
359	long term (e.g. Průchová et al. 2017). Poor weather conditions throughout a breeding season can also
360	modify the reliability of acoustic information contained within an individual's vocalizations,
361	influencing their calling behaviour (e.g. Lengagne and Slater 2002) and this merits further investigation
362	within our study population.
363	We found that the number of syllables produced by male cuckoos from two successive bouts was
364	strongly repeatable within individual males, matching the findings of Møller et al. (2016a, b), but the
365	consistency declined when using data from several (more than two) bouts within the same day, or when
366	bouts from the different days were considered. These declines could be attributed to differences in the
367	motivation for calling from one recording period to another, depending on the male's status in the
368	breeding cycle. Call consistency in male cuckoos can vary in response to the number of males and
369	females present in the immediate neighbourhood, with males able to increase the number of syllables in
370	the presence of females or conspecific males (Møller et al. 2016a, b) and discriminate between
371	neighbour and stranger males based on their calls (Moskát et al. 2017). Density of cuckoos is high in
372	our study population (Li et al. 2016), where several individuals often occur in close proximity (less
373	than 10 m) to each other (Supplementary Material Fig. 5). Thus, female choice, male-male competition
374	and density may play a significant role in syllable repeatability in our male cuckoo population (e.g.
375	Moskát et al. 2017). Male call consistency is also known to vary with environmental conditions (Møller

376	et al. 2016a, b), as individuals compete for better quality sites with greater primary productivity i.e.
377	better soil quality, food resources and an abundance of potential hosts. Little is known about the
378	distribution of individual males across different gradients of habitat and soil conditions at our study
379	site, but it remains plausible that male cuckoos may need more variable vocal signals in our population
380	in order to adjust to changing social relationships and across a gradient of different environmental
381	conditions.
382	
383	Authors' contributions
384	Zhuqing Deng, Huw Lloyd, Canwei Xia, Donglai Li, Yanyun Zhang
385	CX, YZ designed the experiments; ZD, DL participated in the field work; ZD, CX carried out the analyses;
386	ZD, CX drafted the earlier version of the manuscript and HL, DL, YZ revised it. All authors have read
387	and approved the final manuscript.
388	
389	Availability of data and materials
390	Data generated or analysed during this study can be seen in Supplementary Material file 1 and
391	Supplementary Material file 2. All recordings in this study are available from the corresponding author
392	(xiacanwei@bnu.edu.cn) on reasonable request.

Competing interests

395 The authors declare that they have no competing interests.

397 Ethical standards

398	Our research protocol was approved by the Animal Management Committee at the College of Life
399	Sciences, Beijing Normal University under license number CLS-EAW-2016-017. Bird capture and
400	banding were permitted by the National Bird-banding Center of China under license number
401	H20110042. The experiments comply with the current laws of the country in which they were
402	performed.
403	
404	References
405	Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C,
406	Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in
407	terrestrial environments using microphone arrays: Applications, technological considerations and
408	prospectus. J Appl Ecol 48: 758-767
409	Budka M, Wojas L, Osiejuk TS (2015) Is it possible to acoustically identifyindividuals within a
410	population? J Ornithol 156: 1-8
411	Catchpole CK, Slater PJB (2008) Bird Song: Biological Themes and Variations. Cambridge Univ
412	Press, Cambridge
413	Charrier I, Mathevon N, Jouventin P, Aubin T (2001) Acoustic communication in a black headed gull
414	colony: how do chicks identify their parents? Ethology 107: 961-974
415	Charrier I, Mathevon N, Jouventin P (2003) Individuality in the voice of fur seal females: an analysis
416	study of the pup attraction call in Arctocephalus tropicalis. Mar Mamm Sci 19: 161-172
417	Clark CW, Marler P, Beeman K (1987) Quantitative analysis of animal vocal phonology: an application
418	to swamp sparrow song. Ethology 76: 101-115
419	Cramer ERA (2013a) Physically challenging song traits, male quality, and reproductive success in house

- 420 wrens. PLoS ONE 8: e59208
- 421 Cramer ERA (2013b) Measuring consistency: spectrogram cross-correlation versus targeted acoustic
- 422 parameters. Bioacoustics 22: 247-257
- 423 Dawson DK, Efford MG (2009) Bird population density estimated from acoustic signals. J Appl Ecol
- **424** 46: 1201-1209
- 425 Delgado MM, Caferri E, Méndez M, Godoy JA, Campioni L, Penteriani V (2013) Population
- 426 characteristics may reduce the levels of individual call identity. PLoS ONE 8: e77557
- 427 Ellis JMS (2008) Decay of apparent individual distinctiveness in the begging calls of adult female white-
- 428 throated magpie-jays. Condor 110: 648-657
- 429 Falls JB, Krebs JR, Mcgregor PK (1982) Song matching in the great tit (*Parus major*): The effect of
- 430 similarity and familiarity. Anim Behav 30: 997-1009
- 431 Feher O, Wang HB, Saar S, Mitra PP, Tchernichovski O (2009) De novo establishment of wild-type song
- 432 culture in the zebra finch. Nature 459: 564-568
- 433 Fox EJS (2008) A new perspective on acoustic individual recognition in animals with limited call
- 434 sharing or changing repertoires. Anim Behav 75: 1187-1194
- 435 Galeotti P, Pavan G (1991) Individual recognition of male Tawny owls (Strix aluco) using spectrograms
- 436 of their territorial calls. Ethol Ecol Evol 3: 113-126
- 437 Galeotti P, Sacchi R (2001) Turnover of Territorial Scops Owls Otus scops as Estimated by
- 438 Spectrographic Analyses of Male Hoots. J Avian Biol 32: 256-262
- 439 Gilbert G, McGregor P, Tyler G (1994) Vocal individuality as a census tool: Practical considerations
- 440 illustrated by a study of two rare species. J Field Ornithol 65: 335-348
- 441 Grava T, Mathevon N, Place E, Balluet P (2008) Individual acoustic monitoring of the European Eagle

- 442 Owl Bubo bubo. Ibis 150: 279-287
- Jorgensen DD, French JA (1998) Individuality but not Stability in Marmoset Long Calls. Ethology 104:
 729-742
- Jung WJ, Lee JW, Yoo JC (2014) "cu-coo": can you recognize my stepparents? A study of host-
- 446 specific male call divergence in the common cuckoo. PLoS ONE 9: e90468
- 447 Khanna H, Gaunt SLL, McCallum DA (1997) Digital spectrographic cross-correlation: tests of
- 448 sensitivity. Bioacoustics 7: 209-234
- 449 Kemp AC, Kemp MI (1989) The use of sonograms to estimate density and turnover of wood Owls in
- 450 riparian forest. Ostrich 14: 105-110
- 451 Kennedy RAW, Evans CS, McDonald PG (2009) Individual distinctiveness in the mobbing call of a
- 452 cooperative bird, the noisy miner Manorina melanocephala. J Avian Biol 40: 481-490
- 453 Khanna H, Gaunt SLL, McCallum DA (1997) Digital spectrographic cross-correlation: tests of sensitivity.
- 454 Bioacoustics 7: 209-234
- 455 Kipper S, Kiefer S (2010) Age-Related Changes in Birds' Singing Styles: On Fresh Tunes and Fading
- 456 Voices? Adv Stud Behav 41: 77-118
- 457 Kirschel ANG, Slabbekoorn H, Blumstein DT, Cohen RE, Kort STD, Buermann W, Smith TB. (2011)
- 458 Testing alternative hypotheses for evolutionary diversification in an African songbird: rainforest
- 459 refugia versus ecological gradients. Evolution 65: 3162-3174
- 460 Klenova AV, Volodin IA, Volodina EV (2008) Duet structure provides information about pair identity in
- 461 the red-crowned crane (*Grus japonensis*). J Ethol 26: 317-325
- 462 Laiolo P, Vögeli M, Serrano D, Tella JL (2007) Testing Acoustic versus Physical Marking: Two
- 463 Complementary Methods for Individual-Based Monitoring of Elusive Species. J Avian Biol 38:

- **464** 672-681
- 465 Lengagne T, Slater PJB (2002) The effects of rain on acoustic communication: tawny owls have good
 466 reason for calling less in wet weather. Proc R Soc Lond B 269: 2121-2125
- 467 Li D, Ruan Y, Wang Y, Chang A, Wan D, Zhang Z (2016) Egg-spot matching in common cuckoo
- 468parasitism of the oriental reed warbler: effects of host nest availability and egg rejection. Avian

469 Res 7: 199-209

- 470 Li Y, Xia C, Lloyd H, Li D, Zhang Y (2017) Identification of vocal individuality in male cuckoos using
- different analytical techniques. Avian Res 8: 21
- 472 Liang W (2017) Crafty cuckoo calls. Nat Ecol Evol. 1: 1427-1428
- 473 Linhart P, Šálek M (2017) The assessment of biases in the acoustic discrimination of individuals. PLoS
- 474 ONE 12: e0177206
- 475 Manly BFJ (1986) Randomization and regression methods for testing for associations with geographical,
- 476 environmental and biological distances between populations. Res Popul Ecol 28: 201-218
- 477 Mcdonald PG, Wright J (2011) Bell miner provisioning calls are more similar among relatives and are
- 478 used by helpers at the nest to bias their effort towards kin. Proc R Soc Lond B 278: 3403-3411
- 479 Møller AP, Morelli F, Mousseau TA, Tryjanowski P (2016a) The number of syllables in Chernobyl
- 480 cuckoo calls reliably indicate habitat, soil and radiation levels. Ecol Ind, 66: 592-597
- 481 Møller AP, Morelli F, Tryjanowski P (2016b) Cuckoo folklore and human well-being: cuckoo calls
- 482 predict how long farmers live. Ecol Ind 72: 766-768
- 483 Møller AP, Morelli F, Benedetti Y, Liang W (2017) Multiple species of cuckoos are superior predictors
- 484 of bird species richness in Asia. Ecosphere. 8: e02003
- 485 Morelli F, Jiguet F, Reif J, Plexida S, Valli AS, Indykiewicz P, Simova P, Tichit M, Moretti M,

- 486 Tryjanowski P (2015) Cuckoo and biodiversity: testing the correlation between species occurrence
- 487 and bird species richness in Europe. Biol Conserv 190: 123-132
- 488 Morelli F, Møller AP, Nelson E, Benedetti Y, Liang W, Šímová P, Moretti M, Tryjanowski P (2017a)
- 489 The common cuckoo is an effective indicator of high bird species richness in Asia and Europe. Sci
- **490** Rep 7: 4376
- 491 Morelli F, Mousseau TA, Møller AP (2017b) Cuckoos vs. top predators as prime bioindicators of
- 492 biodiversity in disturbed environments. J Environ Radioactiv 177: 158-164
- 493 Moskát C, Elek Z, Bán M, Geltsch N, Hauber M (2017) Can common cuckoos discriminate between
- 494 neighbours and strangers by their calls? Anim Behav 126: 253-260
- 495 Mundry R, Sommer C (2007) Discriminant function analysis with nonindependent data: consequences
 496 and an alternative. Anim Behav 74: 965-976
- 497 Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide
- 498 for biologists. Biol Rev 85: 935-956
- 499 Policht R, Petru M, Lastimoza L, Suarez L (2009) Potential for the use of vocal individuality as a
- 500 conservation research tool in two threatened Philippine hornbill species, the Visayan Hornbill and
- the Rufous-headed Hornbill. Bird Conserv Int 19: 83-97
- 502 Průchová A, Jaška P, Linhart P (2017) Cues to individual identity in songs of songbirds: testing general
- 503 song characteristics in Chiffchaffs *Phylloscopus collybita*. J. Ornithol 158: 911-924
- 504 Puglisi L, Adamo C (2004) Discrimination of Individual Voices in Male Great Bitterns (*Botaurus*505 *stellaris*) in Italy. Auk 121: 541-547
- 506 Radford AN (2005) Group-specific vocal signatures and neighbour-stranger discrimination in the
- 507 cooperatively breeding green woodhoopoe. Anim Behav 70: 1227-1234

- 508 Rappole JH, Tipton AR (1991) New Harness Design for Attachment of Radio Transmitters to Small
- 509 Passerines (Nuevo Diseño de Arnés para Atar Transmisores a Passeriformes Pequeños). J Field
- **510** Ornithol 62: 335-337
- 511 Rebbeck M, Corrick R, Eaglestone B, Stainton C (2001) Recognition of individual European Nightjars
- 512 Caprimulgus europaeus from their song. Ibis 143: 468-475
- 513 Robisson P, Aubin T, Bremond JC (1993) Individuality in the Voice of the Emperor Penguin Aptenodytes
- forsteri: Adaptation to a Noisy Environment. Ethology 94: 279-290
- 515 Rogers DJ, Paton DC (2005) Acoustic identification of individual rufous bristlebirds, a threatened
- 516 species with complex song repertoires. Emu 105: 203-210
- 517 Sandoval L, Mennill DJ (2014) A quantitative description of vocalizations and vocal behavior of the
- 518 rusty-crowned groundsparrow (*Melzozone kieneri*). Ornitol Neotropl 25: 219-230
- 519 Stoddard PK, Campbell ES, Horning CL (1996) Repertoire matching between neighbouring song
- **520** sparrows. Anim Behav 51: 917-923
- 521 Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition
- 522 by generalized linear mixed- effects models. Methods Ecol Evol 8: 1639-1644
- 523 Terry AMR, McGregor PK, Peake TM (2001) A comparison of some techniques used to assess vocal
- 524 individuality. Bioacoustics 11: 169-188
- 525 Terry AMR, Peake TM, McGregor PK (2005) The role of vocal individuality in conservation. Front Zool
- **526** 2: 1-16
- 527 Tibbetts EA, Dale J (2007) Individual recognition: it is good to be different. Trends Ecol Evol 22: 529-
- **528** 537
- 529 Thorogood R, Davies NB (2012) Cuckoos combat socially transmitted defenses of reed warbler hosts

- 530 with a plumage polymorphism. Science 337: 578-580
- 531 Tryjanowski P, Morelli F (2015) Presence of cuckoo reliably indicates high bird diversity: a case study
- 532 in a farmland area. Ecol Ind 55: 52-8
- 533 Wei C, Jia C, Dong L, Wang D, Xia C, Zhang Y, Liang W (2015) Geographic variation in the calls of the
- 534 Common Cuckoo (*Cuculus canorus*): isolation by distance and divergence among subspecies. J
- **535** Ornithol 156: 533-542
- 536 Williams BK, Titus K (1988) Assessment of Sampling Stability in Ecological Applications of
- 537 Discriminant Analysis. Ecology 69: 1275-1285
- 538 Williams HM, Willemoes M, Klaassen RH, Strandberg R, Thorup K (2015) Common cuckoo home
- ranges are larger in the breeding season than in the non-breeding season and in regions of sparse
- 540 forest cover. J Ornithol 157: 461-469
- 541 Wilson DR, Mennill DJ (2010) Black-capped chickadees, Poecile atricapillus, can use individually
- distinctive songs to discriminate among conspecifics. Anim Behav 79: 1267-1275
- 543 Xia C, Xiao H, Zhang Y (2010) Individual variation in brownish-flanked bush warbler songs. The
- 544 Condor 112: 591-595
- 545 Xia C, Huang R, Wei C, Nie P, Zhang Y (2011) Individual identification on the basis of the songs of
 546 the asian stubtail (*Urosphena squameiceps*). Chin Birds 2: 132-139
- 547 Xia C, Lin X, Liu W, Lloyd H, Zhang Y (2012) Acoustic Identification of Individuals within Large Avian
- 548 Populations: A Case Study of the Brownish-Flanked Bush Warbler, South-Central China. Plos One
 549 7: e42528
- 550 Yang C, Wang L, Cheng S, Hsu YC, Stokke BG, Roskaft E, Moksnes A, Liang W, Møller AP (2015)
- 551 Deficiency in egg rejection in a host species as a response to the absence of brood parasitism. Behav

- **552** Ecol 26: 406-415
- 553 York JE, Davies NB (2017) Female cuckoo calls misdirect host defences towards the wrong enemy. Nat
- 554 Ecol Evol. 1: 1520-1525
- 555 Yorzinski JL, Vehrencamp SL, Clark AB, Mcgowan KJ (2006) The inflected alarm caw of the American
- crow: differences in acoustic structure among individuals and sexes. Condor 108: 518-529
- 557 Zdenek CN, Heinsohn R, Langmore NE (2017) Vocal individuality, but not stability, in wild palm
- 558 cockatoos (*Probosciger aterrimus*). Bioacoustics 2016: 1272004
- Zollinger SA, Podos J, Nemeth E, Goller F, Brumm H (2012) On the relationship between, and
- 560 measurement of, amplitude and frequency in birdsong. Anim Behav 84:e1-e9
- 561 Zsebők S, Moskát C, Bán M (2017) Individually distinctive vocalization in common cuckoos (Cuculus
- *canorus*). J Ornithol 158:213-222

564	Table 1 Coefficients of variation (CV) and potential individual coding (PIC) for 15 acoustic variables
565	based on 368 syllables from 30 males. $CVw = coefficient$ of variation within males; $CVb = coefficient$
566	of variation between males
567	
568	Fig. 1 Spectrogram of male common cuckoo call showing two successive calling bouts and six
569	syllables
570	
571	Fig. 2 Distribution of similarity values for syllable pairs using Pearson's R from the same male (a) and
572	different males (b). Similarity of paired syllables from the same male was higher than the similarity of
573	paired syllables from different males
574	
575	Fig. 3 Distribution of similarity values for syllable pairs calculated by spectrographic cross-correlation
576	from the same male (a) and different males (b). Similarity of paired syllables from the same male was
577	higher than the similarity of paired syllables from different males
578	
579	Fig. 4 Correct rateidentification of acoustic identify individuals based on (a) discriminant function
580	analyses (DFA), (b) correlation analysis (CA), and (c) spectrographic cross-correlation. Different
581	symbol indicates different males
582	
583	Supplementary material figure 1 The measured variables in common cuckoo call (following Li et al.
584	2017 and Møller et al. 2016a, b): duration of the element (t1, t3); time interval between the first and
585	second element (t2); duration from the start of element to the point of maximum amplitude within that

586	element (t4, t5); frequency at the start point of the element (f1, f6); frequency at the end point of the
587	element (f2, f7); minimum frequencies of the element (f3, f8); maximum frequency of the element (f4,
588	f9); frequency of the maximum amplitude within the element (f5, f10).
589	
590	Supplementary material figure 2 The Poisson distribution of syllable numbers within calling bouts of
591	male common cuckoos
592	
593	Supplementary material figure 3 Confusion matrix of classification based on (a) discriminant
594	function analyses (DFA), (b) correlation analysis (CA), and (c) spectrographic cross-correlation.
595	
596	Supplementary material figure 4 Spectrograms of the advertisement call from six banded male
597	cuckoos, showing the variation within and between individuals. Spectrograms represent in one square
598	frame was from the same male, and was recorded on different days.
599	
600	Supplementary material figure 5 Four common cuckoos gathered together in close proximity.
601	
602	Supplementary material Table 1 Coefficients of variation (CV) and potential individual coding (PIC)
603	for 15 acoustic variables based on 750 syllables from 6 banded male cuckoos across all recording days.
604	CVw = coefficient of variation within males; CVb = coefficient of variation between males
605	
606	Supplementary Material file 1 Original measurement data of 1032 syllables from 30 males. See main
607	text for explanations of variables

609 Supplementary Material file 2 Syllable numbers for 317 bouts from 22 males

1	Within-season decline in the call consistency of individual male Common Cuckoo (Cuculus
2	canorus)
3	Authors: Zhuqing Deng ¹ , Huw Lloyd ² , Canwei Xia ^{1*} , Donglai Li ³ , Yanyun Zhang ¹
4	1. Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life
5	Sciences, Beijing Normal University, Beijing 100875, China.
6	2. School of Science and Environment, Manchester Metropolitan University, Manchester M1 5GD,
7	UK.
8	3. Provincial Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life
9	Sciences, Liaoning University, Shenyang 110036, China.
10	* Corresponding author, Telephone: 0086-18901376801, ORCID: 0000-0003-1432-1019
11	Email: Zhuqing Deng (dengzhuqing@mail.bnu.edu.cn)
12	Huw Lloyd (H.Lloyd@mmu.ac.uk)
13	Canwei Xia (xiacanwei@bnu.edu.cn)
14	Donglai Li (lidonglaibnu@163.com)
15	Yanyun Zhang (zhangyy@bnu.edu.cn)
16	Acknowledgements
17	We thank Xiaomeng Zhao, Boning Xue, Qi Wang, Qi Luo, Qingbin Wang, Shuang Guan, Ziqiang
18	Huang, Linyu Jin and Juan Chen for assistance in the field work. Comments from anonymous
19	reviewers greatly improved the manuscript. This study was supported by the National Natural Science
20	Foundation of China (No. 31872243, No. J1210075, No. 31601868, No. 31672316), National Key
21	Technology R&D Program of China (No. 2016YFC0503200), State Forestry Administration of China
22	(No. KJHX2016135), Beijing Natural Science Foundation (No. 5173030).

24	Within-season decline in the call consistency of individual male Common Cuckoo
25	(Cuculus canorus)
26	Abstract
27	Numerous studies have identified individually distinctive vocal characteristics and call consistency in
28	different bird species. If these are to be utilised as non-invasive markers for monitoring purposes, then
29	these vocal characteristics must remain stable over time. Three recent studies have shown that it is
30	possible to identify individual male Common Cuckoo (Cuculus canorus) based on vocal characteristics
31	but whether these are stable over the duration of a breeding season, remains unknown. We recorded
32	1032 syllables from 30 male Common Cuckoos in a Northeast Asian population. We colour-banded six
33	of these males and made repeated recordings of their cu-coo advertisement call across a 19-day period
34	of the breeding season in China. We used three methods to identify individuals: discriminant function
35	analyses (DFA), correlation analysis (CA) and spectrographic cross-correlation (SPCC). We also used
36	repeatability analysis to test whether call consistency (the number of syllables in each calling bout) was
37	repeatable within individuals. Based on the same day recordings, calls from the same male were more
38	similar in their characteristics than those of different males, and yielded correct rates of classifying
39	individuals of 93.6% (SPCC), 90.8 % (DFA), and 71.5% (CA). However, these rates declined to 40.5%
40	(SPCC), 40.7% (DFA) and 27% (CA) when using recordings over the 19-day period. Call consistency
41	was repeatable within individuals across two successive calling bouts, but this individual repeatability
42	disappeared when several (more than two) calling bouts from the same day or bouts from the different

- 43 days were included in the analyses. Declines in the correct rate of identifying individual male cuckoos
- 44 and call consistency in this study raises concerns that individual male cuckoo calls may be more
- 45 variable than previously thought.

46 Key words: call consistency; Common Cuckoo; temporal stability; vocal individuality; vocal signals
47

48 Introduction

49	Recognition based on individually distinctive vocalizations is a functionally important aspect of
50	signaling amongst many animal species (Falls 1982; Stoddard et al. 1996; Tibbets and Dale 2007).
51	Numerous studies have shown the presence of individually distinctive vocal characteristics in different
52	bird species (Terry et al. 2005) i.e. the presence of vocal characteristics that are less variable within
53	individuals than between individuals (e.g. Galeotti and Pavan 1991; Rebbeck et al. 2001; Puglisi and
54	Adamo 2004; Policht et al. 2009). Since bird vocalizations function for the long-distance broadcast of
55	fitness related information (Catchpole and Slater 2008; Cramer 2013a), individual identification may
56	benefit other birds (i.e. the signal receivers) in assessing the quality or behavioural state of individuals,
57	territory occupation, or simply to maintain relationships with neighbouring individuals (e.g. Delgado et
58	al. 2013; Sandoval et al. 2014). Many studies have examined the utility of individual vocal
59	characteristics as non-invasive markers for monitoring individuals or populations (e.g. Laiolo et al.
60	2007; Kirschel et al. 2011; Budka et al. 2015), or as a complimentary method to more traditional forms
61	of monitoring (Blumstein et al. 2011), particularly for secretive or rare bird species (e.g. Kemp and
62	Kemp 1989; Gilbert et al. 1994; Grava et al. 2008) for which monitoring will be essential for effective
63	conservation management (Terry et al. 2005; Klenova et al. 2008). Furthermore, the number of
64	syllables produced by calling males of some passerine and non-passerine bird species has also been
65	found to be remarkably consistent over short periods of time (Catchpole and Slater 2008) suggesting
66	that call length may also serve as a form of signaling for individual fitness during the breeding season
67	(Møller et al. 2016a, b).

68	If unique vocal characteristics are to be used as markers for monitoring purposes, and if call
69	consistency is a reliable indicator of male quality, then it is essential that calls remain unchanged i.e.
70	remain 'stable' over significant periods of time (Terry et al. 2005; Dawson and Efford 2009; Linhart
71	and Šálek 2017) such as the duration of a single breeding season, or even between different seasons.
72	However, demonstrating such vocal stability over time has proven difficult because ideally, the acoustic
73	analyses should be conducted on known individuals that have been individually marked e.g. using
74	colour rings (Terry et al. 2005), but this is not always feasible. Some studies dealing with individual
75	acoustic signals are based on recordings made from only a few days sampling within a single season
76	(e.g. Li et al. 2017). Studies of the European Eagle Owl (Bubo bubo) found that within-year rates of
77	correct classification of individuals varied from 60-100%, but between years, only 41.8% of 'hoots'
78	were correctly attributed to the territory owner in the previous year, with the between-year correct
79	classification ranging from 0 to 100% (Grava et al. 2008). Even studies of the long-term stability of
80	individual vocal characteristics of mammals have recorded reclassification rates of <50% (e.g.
81	Jorgensen and French 1998). This has led some authors to conclude that the correct rate of acoustically
82	identify individual birds over significant time periods will be lower (Linhart and Šálek 2017; Průchová
83	et al. 2017) because of temporal changes in vocal characteristics caused by physiological changes,
84	changes to the physical environment, social status, repertoire size and breeding stage (Delgado et al.
85	2013).
86	The Common Cuckoo (Cuculus canorus) is a highly charismatic species widely known for its
87	parasitic life history (Thorogood and Davies 2012; Yang et al. 2015). Male cuckoo advertisement calls
88	show a highly stereotypical acoustic structure, consisting of two elements ('cu-coo') across their entire
89	geographic range (Wei et al. 2015; Zsebők et al. 2017). Both male and female cuckoos utter loud, far-

90	carrying vocal signals during the breeding season to communicate with conspecifics (Moskát et al.
91	2017) or misdirect hosts (York and Davies 2017; but see Liang et al. 2017). Surveying and monitoring
92	populations of cuckoos during the breeding season using more traditional methods (e.g. point counts,
93	transects) remains problematic due to the secretive life-history traits (Williams et al. 2015), and mist-
94	netting surveys to date, tend to catch so few individuals. Surveys for this species carry added
95	significance because monitoring cuckoo abundance and distribution may serve as an indicator of
96	overall bird community composition (Morelli et al. 2015, 2017; Tryjanowski and Morelli 2015).
97	Identifying individual male cuckoos based on vocal signals may represent a promising method to
98	generate new information on the abundance and life history of this species, and three recent studies
99	have kindled this hope (Jung et al. 2014; Li et al. 2017; Zsebők et al. 2017). These authors found the
100	between-individual variation in male cuckoos' calls was much greater than within-individual variation,
101	and that it was possible to identify individual male cuckoos based on specific call characteristics (Jung
102	et al. 2014; Li et al. 2017; Zsebők et al. 2017). Furthermore, there appears to be a high degree of
103	consistency in the number of syllables produced within individual males (e.g. Møller et al. 2016a, b),
104	and these measures could be utilized to assess environmental conditions (e.g. Møller et al. 2016a, b).
105	Despite these encouraging findings, all surveys to date have been conducted during just a short period
106	of the breeding season, with the longest period of acoustic recordings taken over a 5-day period (Li et
107	al. 2017), whilst the two other studies used recordings of calling males from just one occasion (Jung et
108	al. 2014; Zsebők et al. 2017). One of these studies revealed a rate of correct classification calls to
109	individual male of 91.9% from recordings made on one day, but this declined to 50% for recordings
110	made more than two days apart (Li et al. 2017), suggesting that male vocal characteristics may not be
111	temporally stable within a single breeding season.

112	In this study, we assess the feasibility of using vocal characteristics to identify individual male
113	Common Cuckoos over a 19-day period during the breeding season based on the repeated recordings
114	from male cuckoos in a northeast Asian population. We used three methods to identify individual
115	males: discriminant function analyses, correlation analysis, and spectrographic cross-correlation. We
116	also examined the consistency in the number of syllables produced by calling males during the
117	breeding season by using acoustic data recorded from successive calling bouts, several (more than two)
118	bouts recorded during the same day, and calling bouts recorded from different days during the breeding
119	season.
120	
121	Methods
122	Study area and sound recording
123	Field work was conducted from June 10th to July 29th 2017 in the Liaohe Delta Nature Reserve
124	(41.034°N; 121.725°E), Liaoning Province, northeast China. This region represents one of the most
125	important estuarine wetland in the country, which contains the largest area of reed-bed habitat along the
126	coastal region of China, and consequently, extensive nesting habitat for Oriental Reed Warbler
127	(Acrocephalus orientalis). Here, the Common Cuckoo is a summer breeding species, and
128	predominantly parasitizes Oriental Reed Warbler nests during late May to early August (Li et al. 2016).
129	Using mist nets, we trapped 20 individual cuckoos from June 9th to July 6th 2017. All individuals were
130	banded with a numbered metal band, and fitted with a backpack radio transmitter (Biotrack Co., UK)
131	weighing 2.12g (approximately 2.3% of the cuckoo's weight), using the method described by Rappole
132	and Tipton (1991). This enabled us to track and observe cuckoos during the breeding season to obtain
133	repeated recordings from known individuals.

134	All cuckoo vocalizations were recorded using a TASCAM DR-100MKIII recorder (Tascam Co.,
135	Japan) and a Sennheiser MKH416 P48 external directional microphone (Sennheiser Co., Germany),
136	with a sampling rate of 44.1 kHz and a sampling accuracy of 16 bits. In the study area, male cuckoos
137	regularly call when perching on electrical wires (Li et al. 2016), which enabled us to approach within
138	10-30 m of calling males and obtain the best possible recording with minimal background noise. In
139	total, we recorded vocalizations of 30 different males, six of which were individually marked (banded)
140	before recording. The fate of the other 14 banded cuckoos was unknown. We avoided repeated
141	sampling of the remaining 24 unbanded males by observing the movements of each recorded male, and
142	then travelling by motorcycle along one of the main roads until we encountered another male. We
143	traveled each road only once, so we were sure that we recorded different males. This method for
144	avoiding repeated sampling the same individual was also adopted in previous research (e.g. Li et al.
145	2017; Zsebők et al. 2017). Due to bad weather or a lack of vocalizations on some of the survey days,
146	both the number of days from which vocalizations were recorded, and the duration from the first day of
147	recording to the last day, varied for the six banded males. In summary, we obtained recordings for each
148	of the six banded males from 5 days across a nine day sampling period, 4 days across a ten day
149	sampling period, 5 days across an eleven day sampling period, 7 days across a thirteen day sampling
150	period, 9 days across a thirteen day sampling period, and from 11 days across a twenty day sampling
151	period, respectively.
152	
450	

153 *Sound measurements*

154 We used Avisoft-SASLab Pro software (Avisoft Bioacoustics, Berlin, Germany) to resample the

155 recordings with 6 kHz and created spectrograms with the following settings: sample size, 16 bits; Fast

156	Fourier transform length 256 points; Hamming window with a frame size of 100% and an overlap of
157	50%; frequency resolution 23 Hz; and time resolution of 21.3 ms. Male cuckoo advertisement calls
158	consist of a repeated series of 'cu- coo' syllables, with each syllable composed of two distinctive
159	elements (Møller et al. 2016a, b; Møller et al. 2017). We manually separated each element of each
160	syllable (see Fig. 1) represented by a continuous trace in the spectrogram, and used Avisoft-SASLab
161	Pro software to measure call features automatically following Li et al. (2017). We first automatically
162	search the maximum amplitude in each element, and then determine the start and end points of each
163	element at 19 dB lever lower than the maximum amplitude. We selected 19 dB (rather than 16 dB in Li
164	et al. 2017) because the characteristics of all syllables were explicit and clearly audible above the
165	background noise on all recordings, allowing us to obtain comparable syllable parameters
166	independently of the absolute intensity of the calls and the background noise level (Zollinger et al.
167	2012). The following variables were then measured: duration of the element (Tdur1, Tdur2); duration
168	from the start of element to the point of maximum amplitude within that element (Tdis1, Tdis2);
169	frequency at the start point of the element (Fsta1, Fsta2); frequency at the end point of the element
170	(Fend1, Fend2); minimum frequency of the element (Fmin1, Fmim2); maximum frequency of the
171	element (Fmax1, Fmax2); frequency of the maximum amplitude within the element (Fpeak1, Fpeak2);
172	time interval between the first and second element (Tint) (Supplementary Material Fig. 1). In total, we
173	measured 1032 syllables from 30 males: 750 syllables for 6 banded males and 282 syllables for 24 un-
174	banded males (all original measurements of call features can be seen in Supplementary Material file 1).
175	We count the number of syllables within each calling bout based on the number visible from the
176	spectrograms. The pause between successive bouts was always larger than 2 s, which is obvious greater
177	than pause between successive syllables within one calling bout (see Fig. 1). We were unable to obtain

178	a complete calling bout for 8 unbanded males. Consequently, we measured a total of 317 calling bouts
179	from 22 males (6 banded and 16 unbanded). The data on syllable numbers for each calling bout are
180	presented in Supplementary Material file 2.
181	
182	Data analyses – identification of vocal individuality
183	We separated our acoustic data into two data sets. The first of these contained 368 syllables from 6
184	banded males and 24 un-banded males, and every syllable from each individual in this data set was
185	recorded on the same day. This first data set was used to construct discriminant functions, and to
186	calculate the correct rate of acoustically identify individuals within one day (see below). The second
187	data set contained 664 syllables recorded from the 6 banded males from all other days of field work.
188	This second set was used to calculate the within-season correct rate of acoustically identify individuals
189	(i.e. more than one day). All analyses were performed using R v. 3.4.1 (R Core Development Team,
190	2017) with significance assumed at $P < 0.05$.
191	Discriminant function analyses (DFA) is a multivariate technique widely used to identify vocal
192	individuality in birds (e.g. Delgado et al. 2013; Linhart and Šálek 2017) by combining variables with
193	weighting coefficients to create a set of functions that can discriminate groups and classify new data
194	into one of any number of pre-existing groups (Williams and Titus 1988; Mundry and 2007). We used
195	calls from the first cuckoo data set to construct discriminant functions and examined the power of
196	functions to correctly classify each syllable to an individual using a jack-knife analysis (Manly 1986;
197	Galeotti and Sacchi 2001). The prior probability for each individual was set equal in DFA. For the
198	second data set, we used the 30 discriminant functions constructed (corresponding to 30 males) based
199	on the first data set to classify syllables of 6 banded males recorded across different days. The number

200 of syllables was not equal for each male in the first set, and varied from 6 to 20, with a mean of 12 201 syllables per male. Due to the possibility that the variables used for identifying individuality in males 202 from the first data set were not similar to those necessary for identifying males over the duration of the 203 breeding season, we calculated the rate of correct classification in the second data set using the 30 204 discriminant functions constructed from the first data set based on all combinations of variables (each 205 time, only a subset of variables were used in discriminant functions). The highest correct rate and their 206 corresponding combinations of variables were reported. 207 Correlation analysis (CA) was used to calculate the similarity of all pairs of syllables using 208 Pearson's R based on call variables, and then identified individuals based on this similarity value 209 (Budka et al. 2015). Using the first data set, we calculated coefficients of variation (CV) for each 210 variable to compare differences within (CVw) and between (CVb) individuals (Robisson et al. 1993). 211 We computed CV for each male based on syllables belonging to that male, and then calculated the 212 mean CV for each male as CVw. We used the average value for each male to compute CVb. The ratio 213 of CVb / CVw is the measurement of potential individual coding (PIC) which shows the importance of 214 each variable used in identifying individuals (Charrier et al. 2001; Charrier et al. 2003). PIC value of 215 Tdis2, Tdur1 and Tdis2 were less than or nearly equal to one (Table 1), meaning that these variables 216 showed greater or similar variation within an individual than between individuals. Consequently, these 217 three variables were not included in the subsequent analysis. Since call variables have different orders 218 of magnitude e.g. the frequency of cuckoo syllables range in the hundreds Hz, while duration of 219 syllables last nearly a tenth of a second, we standardized the variables using the formula: (value -220 mean) / standard deviation, and used these standardized variables to calculate the similarity of all pairs 221 of syllables using Pearson correlation for both within male and between males. Based on the first data

222	set, independent samples t-test were used to compare the similarity of pairs of syllables from the same
223	male to similarity of pairs of syllables from the different males. Each syllable was assigned to an
224	individual, whose syllable (except the one being classified) has the maximum similarity value with the
225	syllable to be assigned. The correct classification of individuals within a single day was expressed as
226	the percentage of syllables correctly assigned. To calculate the correct rate of acoustically identify
227	individuals within the breeding season, we first calculated the similarity of all pairs of syllables, one
228	from the first data set and one from the second data set. We then assigned the syllable in the second set
229	to one male in the first set, whose syllable has the maximum similarity value with the syllable to be
230	assigned. The correct rate was expressed as the percentage of syllables correctly assigned.
231	Spectrographic cross-correlation (SPCC) is another widely used technique for identifying vocal
232	individuality in bird species (e.g. McDonald and Wright 2011; Cramer 2013a). SPCC involves cross-
233	correlating two spectrograms frame by frame as matrices of amplitude values that are incrementally
234	overlapped over time (Clark et al. 1987; Radford 2005), then using the resultant peak correlation scores
235	as measures of similarity (Khanna et al. 1997; Terry et al. 2001). We conducted the SPCC using the
236	'template cross correlation on short files' function in Avisoft-SASLab Pro software. Firstly, we
237	intercepted every syllable in the spectrograms and saved as .son files, and calculated peak similarity
238	values for all pairs of syllables within the first data set, and between both sets. The sound used in SPCC
239	was removed the background noise bellow 400 Hz, and the frequency deviation was set as 0 Hz in
240	SPCC. Based on the first data set, we used independent samples t-test to compare the SPCC similarity
241	of pairs of syllables from the same male to similarity of pairs of syllables from different males. Each
242	syllable was assigned to an individual, whose syllable (except the one being classified) has the
243	maximum SPCC similarity value with the syllable to be assigned. The correct classification of

244	individuals within a single day was expressed as the percentage of syllables correctly assigned. To
245	calculate the correct rate of individual identification within the breeding season, we assigned the
246	syllable from the second data set to one male in the first set, whose syllable has the maximum SPCC
247	similarity value with the syllable to be assigned. The correct rate was expressed as the percentage of
248	syllables correctly assigned.
249	
250	Data analysis - call consistency ('repeatability') of syllable numbers
251	We estimated repeatability in the number of syllables within bout using the <i>rpt</i> function in the R
252	package $rptR$ (Stoffel et al. 2017), which estimates repeatability as the proportion of among-individual
253	variance out of the total variance (the sum of among-individual variance and within-individual
254	variance), using a generalized linear mixed model framework (Nakagawa and Schielzeth 2010; Stoffel
255	et al. 2017). The number of syllable recorded from all calling bouts followed a Poisson distribution
256	(Supplementary Material Fig. 2), so we used a logit link function with individual males as the random
257	effect. We used parametric bootstrapping (1000 iterations) to evaluate standard errors (SE), and
258	likelihood-ratio test to evaluate the statistical significance of repeatability > 0 against the null
259	hypothesis repeatability = 0 as suggested by Stoffel et al. (2017). We calculated the repeatability (R) of
260	the number of syllables from: (1) two successive calling bouts (using 44 bouts from the 22 males); (2)
261	several (more than two) calling bouts from the same day (using 159 bouts from 22 males); (3) calling
262	bouts from different days across the breeding season surveys (using 256 bouts from 6 males)
263	respectively.
264	

265 Results

266 Acoustic identification of individuals from one day of sampling

267	Based on the first data set, both CA and SPCC revealed a higher similarity value of pairs of syllables
268	from the same individual than different individuals (Figs. 2 and 3). Pearson correlation similarity of
269	paired syllables from the same male was 0.66 \pm 0.30 (mean \pm SD) which was significantly higher
270	(independent samples t-test, $t_{2634} = 102.95$, P < 0.001) than the similarity of paired syllables from
271	different males (0.00 \pm 0.45). SPCC similarity of paired syllables from the same male was 0.87 \pm 0.08,
272	which was significantly higher (independent samples t-test, $t_{2864} = 194.29$, P < 0.001) than the
273	similarity of paired syllables from different males (0.50 \pm 0.18). The rate of correct classification of all
274	30 individual males based on DFA, CA and SPCC was 90.8%, 71.5 % and 93.6 %, respectively
275	(Supplementary Material Fig. 3). The rate of correct classification of the six banded males based on
276	DFA, CA and SPCC were quite similar at 87.2 %, 75.6 % and 92.8 %, respectively.
277	
278	Acoustic identification of individuals within the breeding season
279	The correct rate of individual identification decreased with increasing number of days from which
280	recordings were made within the breeding season, for DFA (Fig. 4a), CA (Fig. 4b), and SPCC (Fig. 4c).
281	The correct rate of individual identification based on recordings across multiple days within the
282	breeding season from all three measures declined significantly to 40.7 $\%$ (DFA), 27.0 $\%$ (CA) and
283	40.5 % (SPCC). The highest correct rate of individual identification (43.0 %) was achieved when using
284	the following variables to construct the discriminant functions: Tdur1, Fsta1, Fend1, Fmin1, Fmax1,
285	Tint, Tdur2, Tdis2, Fend2, Fpeak2, Fmin2.

- 286
- 287 Call consistency ('repeatability') of syllable numbers

288	We found significant repeatability in the number of syllables within individual male cuckoos when
289	analyzing data from recordings of two successive calling bouts (repeatability = 0.55 ± 0.18 mean \pm SE;
290	95% confidence interval range from 0.22 to 0.73; $P = 0.001$). However, analyses of several (more than
291	two) calling bouts from the same day (repeatability = 0 ± 0.02 ; 95% confidence interval range from 0
292	to 0.06; $P = 0.436$) and calling bouts from different days (repeatability = 0 ± 0.01 ; 95% confidence
293	interval range from 0 to 0.02; $P = 0.500$) revealed that the number of syllables were not significantly
294	repeatable. In other words, we found that syllable number was not stable within individual males within
295	the breeding season.
296	
297	Discussion
298	Based on the same day recordings, we found that syllables from the same calling male were more
299	similar in their characteristics than syllables from different males, and our analyses yielded high correct
300	rates of classification of individuals from 93.6% (SPCC), 90.8 % (DFA), and 71.5% (CA). These
301	results support the findings of the three previous studies (Jung et al. 2014; Li et al. 2017; and Zsebők et
302	al. 2017) which found inter-individual variation of male cuckoo calls was much greater than intra-
303	individual variation, and it was possible to identify individual male cuckoos based on call
304	characteristics within one day. However, our results failed to provide evidence that male call structure
305	is sufficiently stable to allow re-identification of individuals even within the same breeding season.
306	Based on repeated recordings from the 6 banded males, we found the correct rate of classifying
307	syllables to individual males declined dramatically to 40.7 % from the DFA, 27.0 % from the CA, and
308	40.5 % from the SPCC. Thus, male cuckoos recorded singing across the longer duration of the breeding
309	season were more likely to have their calls incorrectly assigned than were males recorded from the

310	same day. Furthermore, based on all combinations of variables used to construct discriminant
311	functions, the highest correct rate of individual identification during the breeding season was only
312	43.0 % from the DFA, suggesting that there is no single call variable or combination of variables that
313	can be used to consistently identify individuals in this study. Among the 6 banded males, two males
314	(represented by circle and reversed triangle symbols in Fig. 4) had consistently higher correct rate of
315	classification than other males. Thus, in our study population, average call individuality did not decline
316	in all males. Instead, there were males with more consistent and males with less consistent calls.
317	We used three methods to identify individual male cuckoos based on vocal characteristics. Among
318	these methods, DFA is the most popular analytical method applied to classify bird individuals based on
319	call characteristics (Terry et al. 2005). The use of DFA is dependent on collecting an adequate number
320	of calls per male to get a robust discriminant function (Williams and Titus 1988), so individuals with an
321	insufficient number of calls were removed from the DFA, e.g. three males with less than ten calls were
322	not include in the analysis in Zsebők et al. (2017). CA can SPCC can be conducted with much smaller
323	sample sizes (two calls for each individual in theory) (Budka et al. 2015), thus reducing the need to
324	omit males with fewer recordings from the analyses. The advantage of using SPCC is that whole
325	spectrograms are used for the analyses (Terry et al. 2001), while CA use only the partial information
326	(the measurement variables) (Budka et al. 2015), so the discriminative power of SPCC is always better
327	than other methods (Xia et al 2011; Cramer 2013b; but not in Rogers and Paton 2005). However, SPCC
328	is easily affected by background noise (Khanna et al 1997), and consequently only high signal-to-noise
329	recordings can be used, which may limit the usage of SPCC.
330	Despite the use of different analytical techniques, we found that the correct rate of acoustic

identification is highly consistent across all three techniques based on the recordings from a single day,

332	but quickly declines when using recordings from multiple days within the same breeding season.
333	Studies have identified vocal individuality and stability within a single breeding season for a number of
334	different bird species (e.g. Kennedy et al. 2009; Wilson and Mennill 2010) or over subsequent breeding
335	seasons for the same species (e.g. Kirschel et al. 2011). However, other studies have failed to find these
336	stability (e.g. Feher et al. 2009; Kipper and Kiefer 2010; Zdenek et al. 2017). E.g. DFA correctly
337	assigned 59% of female White-throated Magpie-Jay (Calocitta formosa) begging calls to individual
338	females, but this correct rate declined sharply to less than 20% for some individuals when using
339	recordings made over seven days within the same season (Ellis 2008). Calls of individual European
340	Bitterns (Botaurus stellaris) recorded on a single day can be used to distinguish individual males but
341	this discrimination by DFA declines when vocalisations from multiple days within the same season
342	were used (Puglisi and Adamo 2004). DFA correctly assigned 65% of calls of American Crows
343	(Corvus brachyrhynchos) to the correct individuals but these calls varied even over a period of just a
344	few days (Yorzinski et al. 2006).
344 345	few days (Yorzinski et al. 2006). Temporary or permanently changes to vocal features does not necessarily prevent the
345	Temporary or permanently changes to vocal features does not necessarily prevent the
345 346	Temporary or permanently changes to vocal features does not necessarily prevent the identification and monitoring of individuals (Fox 2008; Kirschel et al. 2011). For example, Brownish-
345 346 347	Temporary or permanently changes to vocal features does not necessarily prevent the identification and monitoring of individuals (Fox 2008; Kirschel et al. 2011). For example, Brownish-flanked Bush Warbler (<i>Horornis fortipes</i>) songs show variation in song characteristics, but the correct
345 346 347 348	Temporary or permanently changes to vocal features does not necessarily prevent the identification and monitoring of individuals (Fox 2008; Kirschel et al. 2011). For example, Brownish-flanked Bush Warbler (<i>Horornis fortipes</i>) songs show variation in song characteristics, but the correct rate of acoustically identify individuals across the whole breeding season using DFA was 98% (Xia et
345 346 347 348 349	Temporary or permanently changes to vocal features does not necessarily prevent the identification and monitoring of individuals (Fox 2008; Kirschel et al. 2011). For example, Brownish-flanked Bush Warbler (<i>Horornis fortipes</i>) songs show variation in song characteristics, but the correct rate of acoustically identify individuals across the whole breeding season using DFA was 98% (Xia et al. 2010). Further, the coefficients of variation between individual bush warblers was always larger
345 346 347 348 349 350	Temporary or permanently changes to vocal features does not necessarily prevent the identification and monitoring of individuals (Fox 2008; Kirschel et al. 2011). For example, Brownish-flanked Bush Warbler (<i>Horornis fortipes</i>) songs show variation in song characteristics, but the correct rate of acoustically identify individuals across the whole breeding season using DFA was 98% (Xia et al. 2010). Further, the coefficients of variation between individual bush warblers was always larger than 0.1 for 46 of the 52 measured variables (Xia et al. 2012), while the coefficients of variation

354	and 6 of these have a coefficients of variation between individuals of less than 0.04 (Supplementary
355	Material Table 1), confirming that calls from different male cuckoos are very similar (see also the
356	spectrograms in Supplementary Material Fig. 4). It is possible that slight changes of acoustic features
357	within individual males may result in declines in correct rate of acoustically identify individuals in a
358	long term (e.g. Průchová et al. 2017). Poor weather conditions throughout a breeding season can also
359	modify the reliability of acoustic information contained within an individual's vocalizations,
360	influencing their calling behaviour (e.g. Lengagne and Slater 2002) and this merits further investigation
361	within our study population.
362	We found that the number of syllables produced by male cuckoos from two successive bouts was
363	strongly repeatable within individual males, matching the findings of Møller et al. (2016a, b), but the
364	consistency declined when using data from several (more than two) bouts within the same day, or when
365	bouts from the different days were considered. These declines could be attributed to differences in the
366	motivation for calling from one recording period to another, depending on the male's status in the
367	breeding cycle. Call consistency in male cuckoos can vary in response to the number of males and
368	females present in the immediate neighbourhood, with males able to increase the number of syllables in
369	the presence of females or conspecific males (Møller et al. 2016a, b) and discriminate between
370	neighbour and stranger males based on their calls (Moskát et al. 2017). Density of cuckoos is high in
371	our study population (Li et al. 2016), where several individuals often occur in close proximity (less
372	than 10 m) to each other (Supplementary Material Fig. 5). Thus, female choice, male-male competition
373	and density may play a significant role in syllable repeatability in our male cuckoo population (e.g.
374	Moskát et al. 2017). Male call consistency is also known to vary with environmental conditions (Møller
375	et al. 2016a, b), as individuals compete for better quality sites with greater primary productivity i.e.

376	better soil quality, food	resources and an abundance of	potential hosts.	Little is known about the
-----	---------------------------	-------------------------------	------------------	---------------------------

- 377 distribution of individual males across different gradients of habitat and soil conditions at our study
- 378 site, but it remains plausible that male cuckoos may need more variable vocal signals in our population
- in order to adjust to changing social relationships and across a gradient of different environmental
- 380 conditions.
- 381

382 Authors' contributions

- 383 Zhuqing Deng, Huw Lloyd, Canwei Xia, Donglai Li, Yanyun Zhang
- 384 CX, YZ designed the experiments; ZD, DL participated in the field work; ZD, CX carried out the analyses;
- 385 ZD, CX drafted the earlier version of the manuscript and HL, DL, YZ revised it. All authors have read
- and approved the final manuscript.
- 387

388 Availability of data and materials

- 389 Data generated or analysed during this study can be seen in Supplementary Material file 1 and
- 390 Supplementary Material file 2. All recordings in this study are available from the corresponding author
- 391 (xiacanwei@bnu.edu.cn) on reasonable request.
- 392

393 Competing interests

- **394** The authors declare that they have no competing interests.
- 395

396 Ethical standards

397 Our research protocol was approved by the Animal Management Committee at the College of Life

398	Sciences, Beijing	Normal Universit	v under license nu	umber CLS-EAW-2	016-017. Bird capture and

- 399 banding were permitted by the National Bird-banding Center of China under license number
- 400 H20110042. The experiments comply with the current laws of the country in which they were
- 401 performed.
- 402
- 403 References
- 404 Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C,
- 405 Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in
- 406 terrestrial environments using microphone arrays: Applications, technological considerations and
- 407 prospectus. J Appl Ecol 48: 758-767
- 408 Budka M, Wojas L, Osiejuk TS (2015) Is it possible to acoustically identifyindividuals within a
- 409 population? J Ornithol 156: 1-8
- 410 Catchpole CK, Slater PJB (2008) Bird Song: Biological Themes and Variations. Cambridge Univ
- 411 Press, Cambridge
- 412 Charrier I, Mathevon N, Jouventin P, Aubin T (2001) Acoustic communication in a black headed gull
- 413 colony: how do chicks identify their parents? Ethology 107: 961-974
- 414 Charrier I, Mathevon N, Jouventin P (2003) Individuality in the voice of fur seal females: an analysis
- 415 study of the pup attraction call in *Arctocephalus tropicalis*. Mar Mamm Sci 19: 161-172
- 416 Clark CW, Marler P, Beeman K (1987) Quantitative analysis of animal vocal phonology: an application
- 417 to swamp sparrow song. Ethology 76: 101-115
- 418 Cramer ERA (2013a) Physically challenging song traits, male quality, and reproductive success in house
- 419 wrens. PLoS ONE 8: e59208

- 420 Cramer ERA (2013b) Measuring consistency: spectrogram cross-correlation versus targeted acoustic
- 421 parameters. Bioacoustics 22: 247-257
- 422 Dawson DK, Efford MG (2009) Bird population density estimated from acoustic signals. J Appl Ecol
- **423** 46: 1201-1209
- 424 Delgado MM, Caferri E, Méndez M, Godoy JA, Campioni L, Penteriani V (2013) Population
- 425 characteristics may reduce the levels of individual call identity. PLoS ONE 8: e77557
- 426 Ellis JMS (2008) Decay of apparent individual distinctiveness in the begging calls of adult female white-
- 427 throated magpie-jays. Condor 110: 648-657
- 428 Falls JB, Krebs JR, Mcgregor PK (1982) Song matching in the great tit (Parus major): The effect of
- 429 similarity and familiarity. Anim Behav 30: 997-1009
- 430 Feher O, Wang HB, Saar S, Mitra PP, Tchernichovski O (2009) De novo establishment of wild-type song
- 431 culture in the zebra finch. Nature 459: 564-568
- 432 Fox EJS (2008) A new perspective on acoustic individual recognition in animals with limited call
- 433 sharing or changing repertoires. Anim Behav 75: 1187-1194
- 434 Galeotti P, Pavan G (1991) Individual recognition of male Tawny owls (*Strix aluco*) using spectrograms
- 435 of their territorial calls. Ethol Ecol Evol 3: 113-126
- 436 Galeotti P, Sacchi R (2001) Turnover of Territorial Scops Owls Otus scops as Estimated by
- 437 Spectrographic Analyses of Male Hoots. J Avian Biol 32: 256-262
- 438 Gilbert G, McGregor P, Tyler G (1994) Vocal individuality as a census tool: Practical considerations
- 439 illustrated by a study of two rare species. J Field Ornithol 65: 335-348
- 440 Grava T, Mathevon N, Place E, Balluet P (2008) Individual acoustic monitoring of the European Eagle
- 441 Owl Bubo bubo. Ibis 150: 279-287

- 442 Jorgensen DD, French JA (1998) Individuality but not Stability in Marmoset Long Calls. Ethology 104:
- **443** 729-742
- Jung WJ, Lee JW, Yoo JC (2014) "cu-coo": can you recognize my stepparents? A study of host-
- specific male call divergence in the common cuckoo. PLoS ONE 9: e90468
- 446 Khanna H, Gaunt SLL, McCallum DA (1997) Digital spectrographic cross-correlation: tests of
- 447 sensitivity. Bioacoustics 7: 209-234
- 448 Kemp AC, Kemp MI (1989) The use of sonograms to estimate density and turnover of wood Owls in
- riparian forest. Ostrich 14: 105-110
- 450 Kennedy RAW, Evans CS, McDonald PG (2009) Individual distinctiveness in the mobbing call of a
- 451 cooperative bird, the noisy miner Manorina melanocephala. J Avian Biol 40: 481-490
- 452 Khanna H, Gaunt SLL, McCallum DA (1997) Digital spectrographic cross-correlation: tests of sensitivity.
- 453 Bioacoustics 7: 209-234
- 454 Kipper S, Kiefer S (2010) Age-Related Changes in Birds' Singing Styles: On Fresh Tunes and Fading
- 455 Voices? Adv Stud Behav 41: 77-118
- 456 Kirschel ANG, Slabbekoorn H, Blumstein DT, Cohen RE, Kort STD, Buermann W, Smith TB. (2011)
- 457 Testing alternative hypotheses for evolutionary diversification in an African songbird: rainforest
- 458 refugia versus ecological gradients. Evolution 65: 3162-3174
- 459 Klenova AV, Volodin IA, Volodina EV (2008) Duet structure provides information about pair identity in
- the red-crowned crane (*Grus japonensis*). J Ethol 26: 317-325
- 461 Laiolo P, Vögeli M, Serrano D, Tella JL (2007) Testing Acoustic versus Physical Marking: Two
- 462 Complementary Methods for Individual-Based Monitoring of Elusive Species. J Avian Biol 38:
- 463 672-681

- 464 Lengagne T, Slater PJB (2002) The effects of rain on acoustic communication: tawny owls have good
- 465 reason for calling less in wet weather. Proc R Soc Lond B 269: 2121-2125
- 466 Li D, Ruan Y, Wang Y, Chang A, Wan D, Zhang Z (2016) Egg-spot matching in common cuckoo
- 467 parasitism of the oriental reed warbler: effects of host nest availability and egg rejection. Avian
- 468 Res 7: 199-209
- Li Y, Xia C, Lloyd H, Li D, Zhang Y (2017) Identification of vocal individuality in male cuckoos using
 different analytical techniques. Avian Res 8: 21
- 471 Liang W (2017) Crafty cuckoo calls. Nat Ecol Evol. 1: 1427-1428
- 472 Linhart P, Šálek M (2017) The assessment of biases in the acoustic discrimination of individuals. PLoS
- **473** ONE 12: e0177206
- 474 Manly BFJ (1986) Randomization and regression methods for testing for associations with geographical,
- 475 environmental and biological distances between populations. Res Popul Ecol 28: 201-218
- 476 Mcdonald PG, Wright J (2011) Bell miner provisioning calls are more similar among relatives and are
- 477 used by helpers at the nest to bias their effort towards kin. Proc R Soc Lond B 278: 3403-3411
- 478 Møller AP, Morelli F, Mousseau TA, Tryjanowski P (2016a) The number of syllables in Chernobyl
- 479 cuckoo calls reliably indicate habitat, soil and radiation levels. Ecol Ind, 66: 592-597
- 480 Møller AP, Morelli F, Tryjanowski P (2016b) Cuckoo folklore and human well-being: cuckoo calls
- 481 predict how long farmers live. Ecol Ind 72: 766-768
- 482 Møller AP, Morelli F, Benedetti Y, Liang W (2017) Multiple species of cuckoos are superior predictors
- 483 of bird species richness in Asia. Ecosphere. 8: e02003
- 484 Morelli F, Jiguet F, Reif J, Plexida S, Valli AS, Indykiewicz P, Simova P, Tichit M, Moretti M,
- 485 Tryjanowski P (2015) Cuckoo and biodiversity: testing the correlation between species occurrence

- 486 and bird species richness in Europe. Biol Conserv 190: 123-132
- 487 Morelli F, Møller AP, Nelson E, Benedetti Y, Liang W, Šímová P, Moretti M, Tryjanowski P (2017a)
- 488 The common cuckoo is an effective indicator of high bird species richness in Asia and Europe. Sci
- 489 Rep 7: 4376
- 490 Morelli F, Mousseau TA, Møller AP (2017b) Cuckoos vs. top predators as prime bioindicators of
- 491 biodiversity in disturbed environments. J Environ Radioactiv 177: 158-164
- 492 Moskát C, Elek Z, Bán M, Geltsch N, Hauber M (2017) Can common cuckoos discriminate between
- 493 neighbours and strangers by their calls? Anim Behav 126: 253-260
- 494 Mundry R, Sommer C (2007) Discriminant function analysis with nonindependent data: consequences
- 495 and an alternative. Anim Behav 74: 965-976
- 496 Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide
- 497 for biologists. Biol Rev 85: 935-956
- 498 Policht R, Petru M, Lastimoza L, Suarez L (2009) Potential for the use of vocal individuality as a
- 499 conservation research tool in two threatened Philippine hornbill species, the Visayan Hornbill and
- the Rufous-headed Hornbill. Bird Conserv Int 19: 83-97
- 501 Průchová A, Jaška P, Linhart P (2017) Cues to individual identity in songs of songbirds: testing general
- 502 song characteristics in Chiffchaffs *Phylloscopus collybita*. J. Ornithol 158: 911-924
- 503 Puglisi L, Adamo C (2004) Discrimination of Individual Voices in Male Great Bitterns (Botaurus
- 504 *stellaris*) in Italy. Auk 121: 541-547
- Radford AN (2005) Group-specific vocal signatures and neighbour-stranger discrimination in the
 cooperatively breeding green woodhoopoe. Anim Behav 70: 1227-1234
- 507 Rappole JH, Tipton AR (1991) New Harness Design for Attachment of Radio Transmitters to Small

- 508 Passerines (Nuevo Diseño de Arnés para Atar Transmisores a Passeriformes Pequeños). J Field
- **509** Ornithol 62: 335-337
- 510 Rebbeck M, Corrick R, Eaglestone B, Stainton C (2001) Recognition of individual European Nightjars
- 511 Caprimulgus europaeus from their song. Ibis 143: 468-475
- 512 Robisson P, Aubin T, Bremond JC (1993) Individuality in the Voice of the Emperor Penguin Aptenodytes
- 513 forsteri: Adaptation to a Noisy Environment. Ethology 94: 279-290
- 514 Rogers DJ, Paton DC (2005) Acoustic identification of individual rufous bristlebirds, a threatened
- 515 species with complex song repertoires. Emu 105: 203-210
- 516 Sandoval L, Mennill DJ (2014) A quantitative description of vocalizations and vocal behavior of the
- 517 rusty-crowned groundsparrow (*Melzozone kieneri*). Ornitol Neotropl 25: 219-230
- 518 Stoddard PK, Campbell ES, Horning CL (1996) Repertoire matching between neighbouring song
- 519 sparrows. Anim Behav 51: 917-923
- 520 Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition
- 521 by generalized linear mixed- effects models. Methods Ecol Evol 8: 1639-1644
- 522 Terry AMR, McGregor PK, Peake TM (2001) A comparison of some techniques used to assess vocal
- 523 individuality. Bioacoustics 11: 169-188
- 524 Terry AMR, Peake TM, McGregor PK (2005) The role of vocal individuality in conservation. Front Zool
- 525 2: 1-16
- 526 Tibbetts EA, Dale J (2007) Individual recognition: it is good to be different. Trends Ecol Evol 22: 529-
- **527** 537
- 528 Thorogood R, Davies NB (2012) Cuckoos combat socially transmitted defenses of reed warbler hosts
- 529 with a plumage polymorphism. Science 337: 578-580

- 530 Tryjanowski P, Morelli F (2015) Presence of cuckoo reliably indicates high bird diversity: a case study
- 531 in a farmland area. Ecol Ind 55: 52-8
- Wei C, Jia C, Dong L, Wang D, Xia C, Zhang Y, Liang W (2015) Geographic variation in the calls of the
- 533 Common Cuckoo (*Cuculus canorus*): isolation by distance and divergence among subspecies. J
- **534** Ornithol 156: 533-542
- 535 Williams BK, Titus K (1988) Assessment of Sampling Stability in Ecological Applications of
 536 Discriminant Analysis. Ecology 69: 1275-1285
- 537 Williams HM, Willemoes M, Klaassen RH, Strandberg R, Thorup K (2015) Common cuckoo home
- ranges are larger in the breeding season than in the non-breeding season and in regions of sparse
- **539** forest cover. J Ornithol 157: 461-469
- 540 Wilson DR, Mennill DJ (2010) Black-capped chickadees, Poecile atricapillus, can use individually
- distinctive songs to discriminate among conspecifics. Anim Behav 79: 1267-1275
- 542 Xia C, Xiao H, Zhang Y (2010) Individual variation in brownish-flanked bush warbler songs. The
- 543 Condor 112: 591-595
- 544 Xia C, Huang R, Wei C, Nie P, Zhang Y (2011) Individual identification on the basis of the songs of
- the asian stubtail (*Urosphena squameiceps*). Chin Birds 2: 132-139
- 546 Xia C, Lin X, Liu W, Lloyd H, Zhang Y (2012) Acoustic Identification of Individuals within Large Avian
- 547 Populations: A Case Study of the Brownish-Flanked Bush Warbler, South-Central China. Plos One
 548 7: e42528
- 549 Yang C, Wang L, Cheng S, Hsu YC, Stokke BG, Roskaft E, Moksnes A, Liang W, Møller AP (2015)
- 550 Deficiency in egg rejection in a host species as a response to the absence of brood parasitism. Behav
- 551 Ecol 26: 406-415

- 552 York JE, Davies NB (2017) Female cuckoo calls misdirect host defences towards the wrong enemy. Nat
- 553 Ecol Evol. 1: 1520-1525
- 554 Yorzinski JL, Vehrencamp SL, Clark AB, Mcgowan KJ (2006) The inflected alarm caw of the American
- crow: differences in acoustic structure among individuals and sexes. Condor 108: 518-529
- 556 Zdenek CN, Heinsohn R, Langmore NE (2017) Vocal individuality, but not stability, in wild palm
- 557 cockatoos (*Probosciger aterrimus*). Bioacoustics 2016: 1272004
- 558 Zollinger SA, Podos J, Nemeth E, Goller F, Brumm H (2012) On the relationship between, and
- measurement of, amplitude and frequency in birdsong. Anim Behav 84:e1-e9
- 560 Zsebők S, Moskát C, Bán M (2017) Individually distinctive vocalization in common cuckoos (Cuculus
- *canorus*). J Ornithol 158:213-222

563	Table 1 Coefficients of variation (CV) and potential individual coding (PIC) for 15 acoustic variables
564	based on 368 syllables from 30 males. $CVw = coefficient of variation within males; CVb = coefficient$
565	of variation between males
566	
567	Fig. 1 Spectrogram of male common cuckoo call showing two successive calling bouts and six
568	syllables
569	
570	Fig. 2 Distribution of similarity values for syllable pairs using Pearson's R from the same male (a) and
571	different males (b). Similarity of paired syllables from the same male was higher than the similarity of
572	paired syllables from different males
573	
574	Fig. 3 Distribution of similarity values for syllable pairs calculated by spectrographic cross-correlation
575	from the same male (a) and different males (b). Similarity of paired syllables from the same male was
576	higher than the similarity of paired syllables from different males
577	
578	Fig. 4 Correct identification of individuals based on (a) discriminant function analyses (DFA), (b)
579	correlation analysis (CA), and (c) spectrographic cross-correlation. Different symbol indicates different
580	males
581	
582	Supplementary material figure 1 The measured variables in common cuckoo call (following Li et al.
583	2017 and Møller et al. 2016a, b): duration of the element (t1, t3); time interval between the first and
584	second element (t2); duration from the start of element to the point of maximum amplitude within that

585	element (t4, t5); frequency at the start point of the element (f1, f6); frequency at the end point of the
586	element (f2, f7); minimum frequencies of the element (f3, f8); maximum frequency of the element (f4,
587	f9); frequency of the maximum amplitude within the element (f5, f10).
588	
589	Supplementary material figure 2 The Poisson distribution of syllable numbers within calling bouts of
590	male common cuckoos
591	
592	Supplementary material figure 3 Confusion matrix of classification based on (a) discriminant
593	function analyses (DFA), (b) correlation analysis (CA), and (c) spectrographic cross-correlation.
594	
595	Supplementary material figure 4 Spectrograms of the advertisement call from six banded male
596	cuckoos, showing the variation within and between individuals. Spectrograms represent in one square
597	frame was from the same male, and was recorded on different days.
598	
599	Supplementary material figure 5 Four common cuckoos gathered together in close proximity.
600	
601	Supplementary material Table 1 Coefficients of variation (CV) and potential individual coding (PIC)
602	for 15 acoustic variables based on 750 syllables from 6 banded male cuckoos across all recording days.
603	CVw = coefficient of variation within males; CVb = coefficient of variation between males
604	
605	Supplementary Material file 1 Original measurement data of 1032 syllables from 30 males. See main
606	text for explanations of variables

608 Supplementary Material file 2 Syllable numbers for 317 bouts from 22 males

Variables*	CVw	CVb	PIC
Tdur1	0.152	0.167	1.097
Tdis1	0.315	0.322	1.021
Fsta1	0.036	0.062	1.734
Fend1	0.046	0.056	1.22
Fpeak1	0.019	0.057	2.942
Fmin1	0.037	0.049	1.343
Fmax1	0.016	0.054	3.308
Tint	0.068	0.137	2.01
Tdur2	0.089	0.143	1.606
Tdis2	0.25	0.213	0.85
Fsta2	0.015	0.043	2.921
Fend2	0.016	0.045	2.823
Fpeak2	0.008	0.045	5.604
Fmin2	0.013	0.044	3.315
Fmax2	0.011	0.045	4.232

* variable names are given in the main text.

Click here to access/download Electronic Supplementary Material Supplementary material fig1.tiff

Click here to access/download Electronic Supplementary Material Supplementary material fig2.tiff

Click here to access/download Electronic Supplementary Material Supplementary material fig3.tiff

Click here to access/download Electronic Supplementary Material Supplementary material fig4.tiff

Click here to access/download Electronic Supplementary Material Supplementary material fig5.tiff

Click here to access/download Electronic Supplementary Material Supplementary Material file 1.csv

Click here to access/download Electronic Supplementary Material Supplementary Material file 2.csv Supplementary material Table 1

Click here to access/download Electronic Supplementary Material Supplementary material Table 1.xlsx