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Web Appendix A

To prove Theorem 1, we first show that the proposed test statistic T (ψ̂) is asymptotically

equivalent to a quadratic form. According to the large sample theory of ML estimators, if

the model is correctly specified, then under general regularity conditions the ML estimate ψ̂

of ψ is consistent and asymptotically has a multivariate normal distribution when N →∞,

that is

ψ̂
d→NL (ψ0,Σ) , (1)

in which Σ is the inverse Fisher information matrix of the model parameters (see White,

1982). Note that, because Σ is nonnegative definite, it can be written as Σ = AA′, where A

is the square root of Σ.

By applying a Taylor expansion of T (ψ) around ψ̂, we obtain that

T (ψ) = T (ψ̂) + (ψ − ψ̂)′∇(T (ψ̂)) +
1

2
(ψ − ψ̂)′H(T (ψ̂))(ψ − ψ̂) + op(1),
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where ∇ and H are, respectively, the gradient vector and the Hessian matrix of T (ψ). Hence,

T (ψ̂)− T (ψ) = (ψ̂ − ψ)′∇(T (ψ̂))− 1

2
(ψ̂ − ψ)′H(T (ψ̂))(ψ̂ − ψ) + op(1).

Consequently, for the true parameter vector ψ0 and using that T (ψ0) = 0 under the null, we

would have

T (ψ̂) = (ψ̂ − ψ0)
′∇(T (ψ̂))− 1

2
(ψ̂ − ψ0)

′H(T (ψ̂))(ψ̂ − ψ0) + op(1). (2)

On the other hand, since ∇(T (ψ0)) = 0 under H0, a Taylor expansion of ∇(T (ψ0)) around

ψ̂ gives

0 = ∇(T (ψ0)) = ∇(T (ψ̂)) +H(T (ψ̂))(ψ0 − ψ̂) + op(1). (3)

From (2) and (3), it now follows that

T (ψ̂) =
1

2
(ψ̂ − ψ0)

′H(T (ψ̂))(ψ̂ − ψ0) + op(1). (4)

We should mention here that H(T (ψ̂)) 6→ H(T (ψ0)), because H(T (ψ̂)) is a function of Yi

irrespective of ψ̂.

Since, under H0, for each b

∆̂(Ĝ, b)− 1 = op(1)

and

∂

∂ψl
∆ (G, b)

∣∣∣ψ=ψ̂ − 1

N

N∑
i=1

E

[
∂

∂ψ0l

fi(Yi|b)
fi(Yi|G)

]
= op(1),
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it is straightforward to show that

∂2

∂ψl∂ψl′
T (ψ)|

ψ=ψ̂

P→
∫
Rq

2

{
lim
N→∞

1

N

N∑
i=1

E

[
∂

∂ψ0l

fi(Yi|b)
fi(Yi|G)

]}{
lim
N→∞

1

N

N∑
i=1

E

[
∂

∂ψ0l′

fi(Yi|b)
fi(Yi|G)

]}
dG(b).

Thus,

1

2
H(T (ψ̂))

P→Q(ψ0), (5)

in which Q(ψ0) is defined as in the statement of Theorem 1.

Now, by using (1) and (5) and applying Slutsky’s theorem, we obtain from (4) that

T (ψ̂) = (AZ)′Q(ψ0) (AZ) + op(1),

where Z is the standard multivariate normal distribution. But

(AZ)′Q(ψ0) (AZ) = Z ′A′Q(ψ0)AZ.

Since A′Q(ψ0)A is a symmetric matrix, by using the spectral decomposition we can write

it as PD(λi)P
′, where P and D(λi) are, respectively, the orthogonal matrix of eigenvectors

and the diagonal matrix of eigenvalues of A′Q(ψ0)A. Hence,

Z ′A′Q(ψ0)AZ = Z ′PD(λi)P
′Z = (P ′Z)′D(λi)P

′Z.
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P ′Z is also distributed as the standard multivariate normal distribution. We thus have

(P ′Z)′D(λi)P
′Z ∼ Z ′D(λi)Z ∼

r∑
i=1

λiχ
2
i ,

where χ2
i (i = 1, ..., r) are independent χ2

1 random variables, and this completes the proof.

Web Appendix B

Critical values of the proposed test statistic T (ψ̂) can be computed analytically as follows.

Under the conditions of Theorem 1, we have

P (T (ψ̂) > t) =
1

2
+

1

π

∫ ∞
0

sinω(u)

uh(u)
du, (6)

where ω(u) = (
r∑
j=1

tg−1λju− tu)/2 and h(u) =
r∏
j=1

(
1 + λ2ju

2
)1/4

.

The function uh(u) in the denominator increases monotonically towards +∞, therefore

the integration in (6) can be carried over a finite range 0 ≤ u ≤ U . It has been shown that

the error of truncation is bounded by 2
πr
U2/r

r∏
j=1

λ
−1/2
j (Imhof, 1961, p. 423). In our work,

we choose U such that the error of truncation is less than ε = 0.0001. Moreover, since the

integrand in (6) is a periodic function, we propose to calculate the definite integral by using

the trapezoidal rule with steps of length 1/10 (see also Imhof, 1961).

Web Appendix C

Our simulation study in Section 7 of the paper concerned misspecification regarding the

form of the random-effects distribution. Heagerty and Kurland (2001) demonstrated other
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forms of misspecification related to the random-effects part, such as ignoring a random effect,

group-specific variances, and autoregressive random effects, that could impact inference on

fixed-effects parameters. Here, we conducted some further simulations to examine whether

our diagnostic test has good power to detect such types of misspecification. Specifically, we

conducted simulations to detect misspecifications regarding autoregressive random effects as

well as ignoring a random effect. We again considered the logistic mixed model (7). First,

for the case of ignoring a random effect we additionally generated a random slope associated

with covariate xij with zero mean and variance 1 to be ignored incorrectly when fitting the

model. The simulation results, presented in Table 1, show that our test is considerably more

powerful than the test of Tchetgen and Coull (2006) to detect misspecification regarding

the ignorance of this random slope, while the test of Alonso et al. (2008) behaves very

well in this case and outperforms our asymptotic test when the sample size is not large,

but when the sample size is large (N > 300) our test performs almost the same as their

test. Next, for the case of autoregressive random effects we generated random effects bij

such that cov(bij, bik) = σ2ρ|j−k|, where the correlation parameter ρ was set to 0.5. The

simulation results, presented in Table 1, indicate that our test is not powerful enough to

detect misspecification regarding autoregressive random effects. The test of Alonso et al.

(2008) performs better, however its power is not very large, while again the test of Tchetgen

and Coull (2006) does not perform well in this case. Note that since the test of Tchetgen and

Coull (2006) relies on the existence of at least one time-varying covariate in the model, we

have found that their test performs well for situations where there are several time-varying

covariates in the model because then, according to their methodology, the difference between

the conditional and marginal estimates could be larger and hence their test would be more

powerful.
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Table 1: Power of our diagnostic test, denoted by T, the test based on the adjusted test statistic,

denoted by T ∗, the determinant-trace test of Alonso et al. (2008), denoted by δdt, and the test

of Tchetgen and Coull (2006), denoted by D, to detect two types of misspecification: ignoring a

random effect and autoregressive random effects. Note that in each case a normal distribution was

assumed to fit the model. Also, RE is just abbreviation of random effect.

N = 100 N = 200 N = 300 N = 500 N = 1000

Type of misspecification n = 10 n = 15 n = 10 n = 15 n = 10 n = 15 n = 10 n = 15 n = 10 n = 15

T 0.018 0.043 0.091 0.273 0.391 0.504 0.690 0.713 0.878 0.919
Ignoring a RE T ∗ 0.048 0.130 0.175 0.362 0.465 0.611 0.706 0.764 0.916 0.944

δdt 0.116 0.152 0.239 0.491 0.434 0.609 0.692 0.739 0.892 0.920
D 0.087 0.091 0.127 0.143 0.130 0.201 0.265 0.294 0.315 0.397

T 0.009 0.012 0.067 0.081 0.095 0.116 0.148 0.175 0.203 0.247
Autoregressive RE T ∗ 0.010 0.043 0.095 0.104 0.123 0.178 0.186 0.209 0.244 0.281

δdt 0.086 0.098 0.111 0.125 0.143 0.210 0.214 0.267 0.292 0.326
D 0.010 0.014 0.053 0.075 0.087 0.099 0.103 0.118 0.162 0.180

In general, our diagnostic test performs very well when the interest is to detect misspec-

ification of the random-effects distribution, and moreover it is able to detect other forms of

misspecification such as ignoring some random effect from the model, though it did not show

a good power in detecting autoregressive random effects but it was observed that both the

test of Tchetgen and Coull (2006) and the test of Alonso et al. (2008) did not perform well

in this case. One possible reason is that the autoregressive random effects were generated

from a normal distribution and since the model was fitted assuming normal random effects,

none of the tests was able to detect the incorrect covariance structure of the model. A test

for covariance structure should be more powerful in this case.
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