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Abstract

Ghana is one of the top pesticide users and higiegsistent organic pollutant (POP) emitters
in sub-saharan Africa. Despite recent increas@saiblished data, there is limited information
on how POP concentrations have changed, postcedidn of the Stockholm Convention. As
a result, this review aims to address these knayeleghps by collating available data that
reported POPs in Ghanaian environmental matridesitify spatial and temporal trends, and

establish potential health risks. It is worth ngtithat Ghana has not developed its own
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regulatory standards for POPs, but adapts UnitateStEnvironmental Protection Agency
(USEPA) standards.

Results obtained showed concentrations in exces$S&PA regulatory standards for per-
and poly-fluoroalkyl sulphonates (PFASs) and diohdliphenyldichloroethane (DDD) in
water, polychlorinated and polybrominated dibenzdigxins and furans (PCDD/Fs and
PBDD/Fs) in e-waste soils, and polybrominated diyhethers in aquatic organisms and
dairy products. The published studies do not comeajor regions nationwide. The
inconsistency in methods and analytes measuredg alath data scarcity in some regions,
makes it challenging to identify temporal trendaweéver, the data did indicate decreasing
concentrations of some legacy POPs in soil/sedirmedtaquatic organisms, with increasing
concentrations of some POPs in water, fish, fraitd vegetables. Studies that performed
health risks assessments were limited althougld#te indicated risks to e-waste workers,
some farmers and vulnerable sub-populations. Tvgew identified potential human health
risks from POPs in the Ghanaian environment and rtbed for more consistent and

widespread monitoring program.

Capsule: This paper provides a critical reviewtatlees of POPs in Ghana which can be used
as a reference for all of Africa, as well as oftieveloping countries, for compliance with the
requirements for POPs monitoring in the e-wastedfand environmental sectors to inform

the mitigation of health risks.

Persistent Organic Pollutants; Environment; Humaalth; Ghana; Africa
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1. Introduction

Over several decades, the production of persistgyanic pollutants (POPs) has resulted
in adverse toxicological effects to human and emnmental health. Although POP emissions
have been restricted by the Stockholm Conventigppgure continues from a variety of
sources: industrial additives in polymers and peds, inappropriate waste disposal and
long-range transport (Birnbaum, 1994; Gioia et 2014; Herrman, 1993; Jones and De

Voogt, 1999; Stockholm Convention Secretariat, 200dllack et al., 1998).

Despite adoption and entry into force of the StatkhConvention in 2001 and 2003,
reports still confirm elevated POP concentratidas: instance, in North America, Europe
and Asia, POPs in aquatic organisms (Fisk et @D12Hites et al., 2004; Jacobs et al., 2002;
Meng et al., 2007), sequestered in soil (Marviralet 2002; Zhang et al., 2002), air, dust,
particulate matter (Harner et al., 2004; Pozo gt2106; Strandberg et al., 2001), wildlife
(Mateo et al., 2016), bioaccumulation in serum t@abn et al., 2009; Sjodin et al., 2008;
Thomas et al., 2006) and breastmilk (Kunisue et28l04; Schecter et al., 2003; Tanabe and
Kunisue, 2007) have been reported. Comparativebjfiican countries, although pioneering
reports on POPs heavily focused on pesticides Kaarat al., 2002; Clarke et al., 1997,
Darko et al., 2008b; Ntow, 2001; Schulz and P&4l01; van Wyk et al., 2001), few studies
in Ghana, South Africa and Egypt have documentethdi intake (Adu-Kumi et al., 2010;
Asante et al., 2011; Asante et al., 2013), coneaéntrs in serum and breastmilk (Darnerud et
al., 2011; Hanssen et al., 2010; Wittsiepe e8ll5), wildlife, notably birds of prey (Garcia-
Heras et al., 2018), atmospheric burdens (HassdnSaoeib, 2015; Hogarh et al., 2012),
water (Essumang et al., 2017), soil, sediment ahd@aravanos et al., 2011; Fujimori et al.,
2016; Nieuwoudt et al., 2009; Tue et al., 2016) beach pellets (Ryan et al., 2012) for other

classes of POPs. Ghana was a signatory to the [&timekConvention in 2001 and ratified it



76 in 2003 (EPA-Ghana, 2007). Obligations under thenv@ation for state parties largely
77  resulted in the ban of nine organochlorine pesEiCPS) in West Africa (Federal Ministry
78  of Environment Nigeria, 2009; L'Environnement etTaurisme Guinea, 2012; MINISTERE
79 DE L'ENVIRONNEMENT ET DU CADRE DE VIE, 2007), in atition to PCBs and
80 polychlorinated dibenzo-p-dioxins and furans (PCBY)/ (Stockholm Convention
81  Secretariat, 2001). This presents a challenge ah&sls one of the top pesticide users and
82 POP emitters from major industrial complexes, thecaltural and health sectors (Osibanjo
83 et al,, 2002). A map of Ghana is shown in Figuredéntifying the ten regions. POPs in
84 Ghana are understudied; however, there are pdtargies to environmental and human
85 health due to a legacy of widespread pesticidealsag with additional emerging industries
86  such as e-waste processing sites.

87

88 An initial baseline assessment of POPs in the Megional Implementation Plan (NIP) in
89 2007 by Ghana's Environmental Protection AgencyAERhowed limited information on
90 the production, importation, and usage (EPA-Gh2@®7). A 2018 revised edition of the
91  NIP highlights inventories of 9,972 sources of PCBsproximately 1.4 x 1bkg of imported
92 electrical equipment and related wastes betweeB-2004 were estimated to contribute to
93  polybrominated diphenylethers (PBDES). Previousosype to OCPs were primarily as a
94  result of unsafe agricultural practices and peatlieation (EPA-Ghana, 2018). PCDD/Fs,
95 mixed halogenated compounds (PXDD/Fs), hexachlomdees (HCBs) and PCB
96 contaminants were identified from a variety of s®srincluding medical waste incineration,
97 vehicular transportation, and open-air burningleteonic waste (EPA-Ghana, 2018).

98

99 In recent years, importation of electronics to Ghdras promoted technological

100 growth, although less stringent regulations hawvetrdauted to legal and illegal electronic
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wastes (Brigden et al., 2008). Conflicting viewsamvironmental health risks (Asante et al.,
2012; Chan et al., 2007; Fu et al., 2008; Leungl.e2008) and income generation from e-
waste scavenging (Oteng-Ababio, 2012; Oteng-Ababio al., 2014a), necessitates
implementation of regulations to ban informal e-tgasecycling and make provisions for

sound practices.

1.1. Current Legal Framework for POPs management in Ghana

In addition to the Stockholm Convention, the Bam®dl Rotterdam Conventions (ratified
in Ghana in 2003) integrate environmental justicangiples, in recognition of hazards
pollutants may pose to humans and the environngsse] Convention Secretariat, 2003;
Rotterdam Convention Secretariat, 2003). ContranAtticle 6 (1) d (i) and (ii) of the
Stockholm Convention, appropriate measures for lirapdnd disposal of POPs e-wastes are
lacking in Ghana. Of relevance are the EnvironmeRtatection Agency Act, 1994 (Act
490) (EPA-Ghana, 1994), and the Hazardous andritectWaste Control and Management
Act, 2016 (Act 917), for regulation of pesticidesdawastes (EPA-Ghana, 2016). Act 917
identifies the need for appropriate recycling fities for the proper disposal and management

of POPs e-waste and hazardous wastes.

1.2. Methodology and Aims

Recent and historic sources, and types of POPsg rttak Ghanaian environment an
important study area; however, a systematic revéWOPSs is yet to be completed. This
study focuses on previously published data on tbhekBolm Convention POPs. As there are
several individual Stockholm POPs, similar analytssl congeners were grouped and
compared to assess which classes of POPs needrftotius. This study reviews POP data

for environmental matrices (Section 2), food (Smtt8) and humans (Section 4). Data on
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sample collection, preparation and analytical mésh@re presented in supplementary
information S2, and Table S1. POP concentrationgaiious environmental matrices were
compared with internationally accepted toleraneelketo estimate potential health risks. The
data gathered is considered in sections 5 anddTahle S6, presenting a critical evaluation

and identify considerations for future researcloqaization.

Based on the criteria for a systematic review (talieet al., 2009), a literature search
of peer-review articles published from 2001 to presvas conducted using Web of Science
and Scifinder databases. The following search temese used: “persistent organic
pollutants”-POPs, “polychlorinated biphenyls”-PCB&olybrominated diphenylethers”-
PBDEs, “organochlorine pesticides”-OCPs, “polychiated dibenzo-p-dioxins and furans”-
PCDD/Fs, “polychlorinated napthalenes”-PCNs, “pesfbalkyl sulphonates”-PFASs and
“Ghana”. A total of 151 scientific papers were itikead (88 from Web of Science, and an
additional 63 with Scifinder). Duplicate manuscsiptere removed and the remaining papers
screened for suitability based on reporting of fodowing criteria: Stockholm POP
congeners, sampling location, type of sample, etitna and detection method, and
concentrations. This resulted in a total of 56 papesed to compile this review. Further, 8
papers on social impacts of POPs, the 2007 and &3$=d NIP reports were reviewed. For
temporal trend analysis, the sum of DDTSs: falichlorodiphenyltrichloroethane (DDT), @p
DDT, o,p- dichlorodiphenyldichloroethylene (DDE), pJpDE, and o,p
dichlorodiphenyldichloroethane (DDD)], sum of HCHwexachlorocyclohexanes)-HCH,
B-HCH, y-HCH, andé-HCH], and sum of Endosulfans: endosulfan 1, Il amtosulfan
sulfates] were plotted against sampling year. T@wilts of temporal and spatial trends are
summarized in supplementary information- S3 Tempamd Spatial Evaluations, and in the

conclusion section 5.
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Several challenges need to be considered when complaistorical datasets. We
have attempted to address these in the supplemeantarmation S1, but acknowledge the

resultant inevitable degree of uncertainty.
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2. POP Concentrationsin the Ghanaian Environment

2.1. Air

POP concentrations in ambient air vary geograpljicahd spatially, and depend on
inputs from emission sources. As with other envmental media, POPs partition to
particulate matter after pesticide spray applicgtidrom combustion processes, and
volatilization (Breivik et al., 2002; Jones, 199%Fable S2 and Figure S1 summarize POPs in
air in urban and rural areas in Ghana. Analyticathudologies are discussed in Table S1. A
review on baseline studies on Ghanaian regions ©BsP OCPs, PCDD/Fs and PCNs is

described below.

211 PCBs

PCB concentrations in rural and urban areas rafrged below the limit of detection
(LOD) to 74 pg it (Bogdal et al., 2013; Gioia et al., 2011; Poz@let2009). The highest
total concentrations for 7 PCB congeners rangedidsst 38-74 pg i for rural and urban
areas (Bogdal et al., 2013). Total concentratian&@nchi-rural area (Eastern region) for 48
PCB congeners, for different sampling periods, wSepg n® and 68 pg mi (Pozo et al.,
2009). A similar contribution from other rural asefor 29 PCB congeners, was 33 pg m
(Gioia et al., 2011). For urban areas- Greater &cegion, the lowest concentration range for
48 PCB congeners was in Kwabenya (range: 8.2-12 $amplé&); the highest measurement
was at East Legon (range: 6.9-20.3 ng sampigKlanova et al., 2009). Hazard risk
assessments for inhalation of ambient PCB air wete@eported in studies reviewed, possibly
because of their minimal contribution (1-2%) toatoexposure from direct inhalation as

opposed to dietary intake (WHO, 2000).
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The maximum reported exposure concentrations foamrareas (74 pg th was
below the accepted World Health Organization (WHR®DB concentration of 3 ng frand
0.003 ng rit for urban and non-industrialized areas, respdgtij¢/HO, 2000). Although
rural exposure concentrations exceeded 0.003 AgWHO, 2000), associations of ambient
PCBs with health risks are low. USEPA suggests iplessisk to result from continuous
inhalation of concentrations that exceed 1.0 pih(WSEPA, 1989). The current data reflects
background levels with evidence of minimal primamissions from agricultural wastes,

vehicular transportation, electronic wastes dumping indiscriminate burning of wastes.

21.2. OCPs

Total OCP concentrations in rural and urban araaged from below LOD to 5,296
pg m* (Adu-Kumi et al., 2012; Hogarh et al., 2014; Klaacet al., 2009; Pozo et al., 2009).
The mid to southern parts of Ghana were dominaiedHGHs, DDTs, and endosulfans;
chlordanes and heptachlors were detected in theherar parts. The mean OCP
concentrations reported in rural-Wenchi (Eastegior®), Lake Bosomtwe (Ashanti region),
suburban-Accra, and other sites ranged between31®® pg it (Adu-Kumi et al., 2012;
Hogarh et al., 2014; Klanova et al., 2009; Pozal .e2009).

The potential for health risks are low, as conarins reported were below USEPA
estimated carcinogenic assessment inhalation riakgjng from 9.7 x 18-0.0013 pg it for
selected OCPs (USEPA, 1989). Since their ban irb 188cept for lindane- banned in 2001
and endosulfan- 2009 in Ghana), concentrationsateirecent pesticide usage in agricultural
sectors (EPA-Ghana, 2007). Spatial and temporatisrare displayed in Figures S1 and S2;

results are summarized in supplementary S3 andugion sections.

2.1.3. PCDD/Fs
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One study in literature focused on PCDD/Fs in @oncentrations of PCDD/Fs in
urban-Accra ranged between 370-2,200 pg sampiéth hazard risk assessment of 10-100
pg International (1)-Toxic Equivalency (TEQ) sanipl9.2 pg I-TEQ r?) (Klanova et al.,
2009). Industrial and statistical emission estimdt®m 2002 baseline inventory to 2015
indicate an increase from 665 to 1485 g TEQ PCDDWs&hana (EPA-Ghana, 2018).
Assuming a sampling volume between 300-600(Kianova et al., 2009), concentrations
exceed USEPA urban emission estimates of 0.1 pYy (MSEPA, 1989). At these
concentrations, a low to medium health risk of skimd eye irritation from PCDD/Fs
inhalation can occur (USEPA, 1989). The currentadaflects background concentrations
with potential emissions from agricultural wasteshicular transportation, electronic wastes

dumping and burning of wastes (EPA-Ghana, 2018).

2.1.4. PCNs

One study has been completed on PCN emissions ama T otal concentrations of 63
PCN congeners were low and high in the middle andhern belts: ~30 and 100 pg°m
TEQ calculations of 17 PCN congeners resulted imcentrations ranging between 0.5-6 fg
TEQ m® for dioxin-like (dl) toxicity (Hogarh et al., 20)2The potential for eye and skin
irritations, and liver tissue lesions to resultnfrgorolonged inhalation of ambient PCN
exposure are low, as emissions were lesser than VéBsinates (tri- to hexa-, and
octachloronapthalene range: 0.1-5 mg)rfor occupational exposure (WHO, 2001). PCNs
are yet to be banned in Ghana; the high emissioag be attributed to point sources
including industrial production sites: smelting amsked car incineration. Additional sources
could be from volatilization and wind trajectori&@®m illegal toxic waste dumped by

Trafigura in 2006 on the south coast of Cote dig¢White, 2008).

10
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2.2. Water

POP exchange between the atmosphere, aquatic smosyand terrestrial surfaces
influence POP loadings in aquatic media and sedsn@ozef M. Pacyna, 2000). In Ghana,
lake, river and stream contamination can stem fagnicultural run-off during rainy seasons,
and household use of pesticides. A review of dataD&Ps, PFASs and PCBs in water is
described below. These studies highlight importéindings which indicate potential
pesticide contamination in 3 of 5 drinking wateusses in Ghana- River Densu, White Volta

(Volta Lake), and Pra River (Lake Bosomtwe).

Table S1 includes an analytical summary of PORlues in water, in Ghana. Temporal
trends in water are shown in Figure S3; resukkssaimmarized in supplementary S3 and

conclusion sections.

2.2.1. PCBs
Mean PCBs in Lake Bosomtwe ranged from 1,090-7/i®Q*, with PCB-52 as the
dominant congener (Afful et al.,, 2013b). PCB coniions exceeded USEPA maximum
allowable limit of 500 ng L in drinking water (USEPA, 2009). Majority of local
communities in Ashanti region depend on water asd from Lake Bosomtwi; extensive
exposure to higher levels for extended time permmdd potentially result in skin disorders

and immune deficiencies (USEPA, 2009).

2.2.2. OCPs

Residues of OCPs in water were greater in rural thhhan areas. Mean OCPs in rural
water- streams around agricultural irrigation siies Tono (Upper East Region) and
Akumadan (Ashanti Region), standing pipe water s®udrinking groundwater from dug-

11
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wells, the Volta Lake, and Lake Bosomtwe rangedhfizelow the LOD-6,350 ng L(Afful

et al., 2013b; Akoto et al., 2016; Darko et al.0&0; Fosu-Mensah et al., 2016; Kuranchie-
Mensah et al., 2012; Ntow, 2001; Ntow, 2005; Ntawak, 2008a). Mean OCPs in urban
water-River Densu in Nsawam and Weija (Greater Adeegion), ranged from below the
LOD-180 ng L* (Kuranchie-Mensah et al., 2012). OCP residues abTuigation site were
below the LOD (Akoto et al., 2016). In both ruratidaurban waters, endosulfans were
present. Lake Bosomtwe was the most contaminatila,high concentrations of endosulfan
sulfate (5,630 ng t) and p,p’-DDD (6,350 ngt) (Afful et al., 2013b). In the above studies,
OCPs were below WHO MRLs for surface (WHO, 2017 aroundwater (WHO, 2006),
except for p,p’- DDD (6,350 ngtLake Bosomtwe) (Afful et al., 2013b), which excegde
the MRL of 1,000 ng 1! (WHO, 2017). The potential for carcinogenic risksrésult from
oral exposure to OCPs below the MRLs are low; leéslels estimated by USEPA (for DDD,
DDT, DDE, aldrin, HCH) that can induce carcinogensgks (for 1 in 10,000 persons) range
between 0.6-10 pg L (USEPA, 1989). Recent widespread use of endosulfdnin the
agricultural sector, and potential illegal use oDbD lindane, amongst other banned
pesticides in rural areas, are the suspected soussponsible for contaminating water

resources.

2.2.3. PFASs

Of the 15 perfluoroalkyl acids (PFAAs) congenersighh concentrations of
perfluorooctanoic acids (PFOAs) and perfluorooctanonates (PFOSs) were detected in
two river basins- River Pra and Kakum, and tap wiaten rural areas. The mean PFOAs and
PFOSs concentrations ranged between 113-205™grliver basins, and 103-107 ng for
tap water (Essumang et al., 2017). The sum of cdrateons [PFOSs] + [PFOAs] at each

site, exceeded USEPA health advisory levels of M§7L" in drinking water (USEPA,

12
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2016). Potential health risks of thyroid diseasén&y and testicular cancer could result from
prolonged exposure to PFOSs-contaminated wateuiizssy et al., 2017). The data reported
suggests that treatment of Pra and Kakum rivernbafir tap water is not efficient at

removing PFAA contaminants (Essumang et al., 20PPASs are yet to be banned in
Ghana; the limited data gathered as part of thigewe indicates there may be significant

PFAS contamination in Ghanaian drinking water.

2.3. Soil and Sediment

Pesticides introduced into soils are taken up kantsl degrade or transported to
groundwater and accumulate in sediments (llyin&720POPs are hydrophobic in nature,
strongly bind to soil and sediments rich in organarbon matter, and can be slow to
degradation processes (Van Metre and Mahler, 2@4).and sediment act as reservoirs or
sinks (Moeckel et al., 2008; Van Metre and Mah2€05); thus, long-term deposition make it
possible to detect accumulated POPs. A discussiostudies of PCBs, OCPs, PBDEs and
dioxin-like compounds (DLCs) in soil and sedimesntgiven below. These studies indicate
contamination of soil and sediment was as a regukcycling, dismantling and combustion
of e-wastes, leakage of oils from transformer gferaand agricultural pesticide usage.
Residents and workers in close proximity to e-wastals, and soils surrounding
transformers, can be exposed to pollutants fromalatlon, dermal contact and ingestion of

deposits on food.

Table S1 includes an analytical summary of POPsoihand sediment. Table S4 and S5

summarizes POP data in sediments. Temporal andispanhds are shown in Figures S4 and

S5; results of trends are summarized in supplemeB&and conclusion sections.
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2.3.1. Soil and ash from e-waste sites
23.11.DLCs

Concentrations of dioxin-like PCBs (dIPCBs), PCD®/Fand PBDD/Fs at
Agbogbloshie e-waste site in Accra, were amonghiigest measured in Ghanaian soils.
Soils from open-burning of electronic wastes andairgtes were contaminated with PBDFs:
83-3,800 pg kg dry weight (dw), followed by PCDFs: 11-390 pg'kdw, PCDDs: 6.6-120
ng kgt dw, PBDDs: 0.12-4 pg kjdw and dIPCBs: 3.4-82 pg kglw (Tue et al., 2016).
Soils from open-burning sites were more contamthakan non-burning and non e-waste
sites. The formation of dIPCBs was mainly attrilotie catalytic abilities of Cu, Zn and Pb to
release active chlorine and bromine species framagte combustion (Fujimori et al., 2016).
Median WHO-TEQ for DLCs were 7.1 pg kgrEQ dw- open burning, 0.12 ug kgeEQ
dw- non-burning and 0.00016 ugk@EQ dw for non e-waste sites. Median TEQ values fo
e-waste soils exceeded the Canadian Soil Qualitgdelnes (SQG) for PCDD/Fs (0.004 pg
kg! TEQ dw), indicating a potential risk to human hlea(Canadian Environmental

Protection Act, 2002).

2.3.1.2. PBDEs

Concentrations of PBDEs in Agbogbloshie e-wastés sanged between 16-100 g
kg dw. A variation in distribution of PBDE congenevas attributed to non-specific sources
from e-waste activities. The dominant congener RBBE 28, followed by PBDE 209 and
PBDE 47 (Akortia et al., 2017). In contrast to tepected theory of lower brominated
congeners partitioning to air particulates and é@rghrominated depositing on soil, lower
brominated congeners was attributed to possilslibieatmospheric transport and deposition,
and de-bromination of higher congeners during dighmg and open-air burning processes

(Akortia et al., 2017; Oteng-Ababio et al., 2014b).
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329

330 POPs in non-agricultural soils become a concermwhere is a significant pathway
331 for exposure and receptors. The Agbogbloshie eenar®ta is centred in a vegetable and food
332 market place surrounded by children of vendorsaste/workers and the public. Despite the
333 large potential for exposure, no risk assessmentavhbined multiple exposure from
334 inhalation and food consumption has been compleBden the elevated concentrations

335 recorded at this and other global e-waste sitemetimay be a significant risk to human

336  health.

337

338 2.3.2. PCBsin oil, and soil around transformer oil storage sites

339 Using neutron activation analysis, higher totalodinle**C| contents of PCBs were

340 measured by irradiation of 94 transformer oils ectéd from schools, hospitals, and water
341 treatment plants (71,340-266,920 pg'kget weight (ww)) (Buah-Kwofie et al., 2011), in
342 comparison to soil extracts from 4 transformerstirage sites (7,690-51,920 pg kdw)
343 (John et al., 2014)The concentrations indicate major contamination sofls around

344  transformer storage sites, which present a locat@mmental and human health risk.

345
346 2.3.3. Agricultural soil
347 Studies of POPs in agricultural soils, in Ghanarensgcarce and mainly focused on

348 OCPs in surface soil (Bentum et al., 2006; Fosu<danet al., 2016; Ntow et al., 2007).
349 Variable depths of cored soils from cocoa farms antbmato field in rural areas were
350 measured for OCPs. Mean concentrations of lindaneocoa farm soils ranged between
351  LOD-50 ug kg dw in Brong Ahafo region (Fosu-Mensah et al., 20H8)d between 2,100-
352 15,500 pg kg dw for Central region (Bentum et al., 2006). Loweean concentrations of

353 p,p’-DDT, B-HCH and dieldrin residues in cocoa soils rangetiveen 5-50 g Kg dw
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(Fosu-Mensah et al., 2016). Endosulfan dissipationomato soils showed-endosulfan
(mean: 230-2300 pg Kgdw) and endosulfan sulphate (mean: 40-650 pg dwy) were
retained on top soiB-endosulfan leached to lower depth (mean: 110-65@gt dw) (Ntow
et al., 2007). Concentrations of lindane exceedesl €anadian Environmental Quality
Guideline (CEQG) of 10 pg Kgn agricultural soils (Canadian Council of Ministesf the

Environment, 1991); other OCPs monitored in soitengithin the CEQG limits.

2.3.4. Sediments
POPs in sediments (from rivers, lakes, streamscaadtal areas) are the most studied
matrix in Ghana. Although cored sediments refleistdnical records of POP pollution,
surface sediments have been the focus, limitingathkty to understand sediment temporal
trends. A discussion on OCPs and PCBs in surfadensats from coastal marine, lakes,

streams, river basins and irrigation dams is glvelow.

2.3.4.1. PCBs

Mean PCB concentrations in sediment for 11 coamths (15.5-47.89 pg kgiw)
(Dodoo et al., 2012), was higher than for riverismhts: 8 sites (0.57-32.2 pg faw)
(Hosoda et al., 2014), and lake sediments: 11 $ite9-19.17 ug k§dw) (Afful et al.,
2013b). The prevalence of higher concentration®wér PCB congeners (PCB- 28 and 52)
(Afful et al., 2013b; Dodoo et al., 2012; Hosodalet 2014), supports the theory of sediment
historic contamination and subsequent degradaliorevaluate probable toxic effect levels
of PCBs on aquatic organisms, a comparison of saairmean concentrations with the
CSQG, showed PCB concentrations fell within theepted value of 21.5 pg Rglw (Afful

et al., 2013a, 2013b; Dodoo et al., 2012; Hosodd. e2014). A low health risk from human
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exposure to coastal sediments was identified fr@amatd index (HI) assessment of < 1

(Hosoda et al., 2014).

2.3.4.2. OCPs

DDTs and HCHs were frequently detected in surfae@insents covering coastal
Tema harbour areas, Weija dam and Nsawam (Densubyasin) in Greater Accra, Eastern
region, Lake Bosomtwe and 4 streams in AshantioregVolta lake (6 sites), and Tono
irrigation reservoir in the Northern region. Themswf DDTs were highest for irrigation
sediment (47-70 pg Kodw) (Akoto et al., 2016), followed by Volta Lakel(80 pg kg dw)
(Ntow, 2005), coastal sediments (6.0-12.8 ug ég) (Botwe et al., 2017), lake sediments
(LOD-12.75 pg kg dw) (Afful et al., 2013b; Darko et al., 2008b), eivbasin sediments
(3.289 pg kg dw) (Kuranchie-Mensah et al., 2012), and streansgsstiments (0.46 pg Kg
dw) (Ntow, 2001). Mean HCHs (0.75-13.6 pgkdw) were much lower. Contributions of
aldrin and dieldrin were very low for sediment tggeange: LOD- 0.95 pg Kogdw), except
for irrigation sediment (aldrin: 90 pg Rgiw) (Akoto et al., 2016). Similarly, low mean
concentrations of endosulfan sulphate were deténtal sediments (0.18-1.61 pgkgw),

except for Lake Bosomtwe (37.68 pgidw) (Afful et al., 2013b).

Predictors of past or recent DDT usage are basedaenbic and anaerobic
degradation of DDT to DDE and DDD. Provided theaatf DDT to its metabolites is <1,
past usage is predicted. Calculated ratios obsewe@ <1 for river, lake and coastal
sediments (Afful et al., 2013b; Botwe et al., 20Darko et al., 2008b; Kuranchie-Mensah et
al., 2012; Ntow, 2005), indicating a decline in DD3age with an increase of its metabolites

over the years.
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Ecotoxicological risks of OCPs to aquatic organisnese evaluated by comparing
the sum of sediment mean concentrations to SQGaditaive effect of OCPs in river, lake,
coastal and irrigation sediments were below theskiveffect concentration (LEL) values of
the SQG (Table S3), an indication of low to medi@eotoxicological risk to aquatic

organisms. Lindane was identified as the major@of HCH contamination in sediments;

based on the predominanceoHCH which provides a ratio <1 fo‘;% (Willett et al.,

1998)

2.3.5. Pellets

Plastic resin pellets are waste organic micropafitg released from plastic industries;
they pose a risk because they adsorb hydrophobitaiwonants from aquatic media, and are
ingested in large quantities by aquatic organisnissa birds. Two reports monitored beach
pellets as carriers of PCB contaminants in coastal and urban areas. The sum of mean
PCBs from 17 beaches ranged from 1-98.31 |ifydkg (Agbo and Abaye, 2016; Hosoda et
al., 2014). PCB concentrations in Accra: 39-69 |gg #w (Ntow et al., 2011), and Tema-
Sakumono beaches: 29-46 pg'idy (Ntow et al., 2011), 47.47 ug kgw (Bempah et al.,
2012), were higher than rural areas: 1-15 pg dg (Ntow et al., 2011). Coastal pellets in
Accra and Tema were dominated by PCB-110, 138 &dd(fienta, hexa and hepta-PCBs),
with rural sites containing a lower proportion oigter chlorinated congeners. PCB
contamination of beach pellets was attributed tallonputs from e-waste dismantling and

dumping sites.
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3. POP concentrationsin Food

POPs, once introduced into air, deposit on vegetatisoil and sediments, and
bioaccumulate in aquatic fish and farm animals frorgestion of contaminated feed,
sediment and plants. Marine and freshwater orgaam® used as bioindicators because they
accumulate POPs in higher concentrations than #mgiatic environment (Gunther et al.,
1999). For the majority of population that are aotupationally exposed to POPs, the main
route of exposure (> 90% of POP intake) arises fdmetary intake of animal products, fish,
and seafood (Liem et al., 2000). Fruits and vedesatreated with pesticides, are another

source of exposure (Liem et al., 2000).

Table S5 and Figure S6 summarize POP data in fldlethods of extraction, clean-up
and analytical detection are summarized in TableASdiscussion on POP concentrations, in
edible fish, seafood, dairy products, beef, gamatmesgetables, fruits and cereals, is given
below. Results from these studies indicate thatkimtof food of animal origin is the major
contributor to OCPs and PCBs. On the other handhtively small PBDEs and
hexabromocyclododecanes (HBCDs) contributions vadrained from fish (Asante et al.,
2010; Asante et al., 2013), whilst vegetables,tdriand cereals contributed substantial

amounts of OCPs. Data on Ghanaian dietary intal®&C@dD/Fs and dIPCBs is scant.
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3.1. Aquatic organisms
Freshwater fish is an important part of Ghanaiat; dii is a source of animal protein
monitored for bioaccumulated POPs. Biomonitoringvétees focused on fish types mostly
consumed- tilapia and catfish. Muscle tissue iscitn@monly consumed fish part frequently
analysed for contaminants. Investigations of PGPmolluscs in Ghana are limited, with

three papers determining concentrations in oysteussels and cockles.

3.1.1. PCBs

Mean concentrations of PCBs in tilapial&pia zilli andOreachromis niloticus) and
catfish Clarias gariepinus andChrysichthys nigrodigitatus) ranged from LOD-62 pg kg
lipid weight (Iw) (Asante et al., 2013; Kuranchvensah et al., 2011). Mean PCB
concentration, reported for tilapia from inland amdstal areas, was 62 pgHy (Asante et
al., 2013); much lower mean concentrations in L\&ka for tilapia and catfish ranged
between 0.9-12.37 pg Rgvw (Kuranchie-Mensah et al., 2011). Dominant corgsmere
PCBs- 153, 138 and 180 (Asante et al., 2013),0a@h lower congeners PCBs- 28, 52, 101
and 99, contributed significant amounts (Asantal.e2013; Kuranchie-Mensah et al., 2011).
Potential risks of dietary exposure to tilapia aatfish from Lakes Volta and Weija, and
Benya and Keta lagoons were assessed to be lowhaaard risk calculations (<1) (Asante
et al., 2013; Kuranchie-Mensah et al., 2011), altfioauthors proposed a more detailed
assessment using HI and TEQ-WHO (Asante et al3201ean PCB concentrations were
below the United States Food and Drug Administragiotion level (2000 pg Kgvw)

recommended for fish, suggesting a low health (UXEPA, 2000).

PCB concentration in bivalves: cockles@dara senilis), oysters Crassostrea tulipa)

and musselsRerna perna) along coastal rural areas (Lake Benya, NingouBeno) were
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higher than for fish. Median concentrations for dnd wet seasons ranged between 1,200-
3,500 pg kif lw, and 1,500-2,100 pug Kgw (Otchere, 2005). Lower PCB concentrations in
mussels and oysters were detected in Narkwa, AdaAayanui; range: 3-11 pg Kgvw
(Dodoo et al., 2013). Seasonal variation of PCBsiussels was attributed to different source
inputs (terrestrial and marine) (Otchere, 2005)et@ny exposure to PCB-contaminated
bivalves are potentially high since median con@itns exceeded FDA action levels of
2000 pg kg lw for shellfish (USEPA, 2000). Results from catteld risks using PCB 118
(21-112.0 pg WHO-TEQ kY (Dodoo et al., 2013), exceeded the recommendéer e
Daily Intake of 2 pg WHO-TEQ K§ with potential risks of low birth weight and
neurobehavioural effects in children of exposedgpamt women. The calculated risk
contradicts the HI (<1), which indicated low risifsexposure to consumption of oysters and
mussels. Typically, TEQ is based on an additivaeiltesf 12 dIPCBs; however, the main
driver of TEQ is the most toxic: PCB 126. Therefoaa assessment including 12 dIPCBs,
rather than the use of PCB-118, would accuratedgsssrisks. For both mussels and oysters,
tri and hepta-CBs were dominant congeners (Doda. e2013). The results indicate there
may be a significant risk from consumption of aguatganisms. However, studies involving
determination of WHO-TEQ for PCBs and other DLCed a detailed quantitative risk

assessment is required to establish risk magnitude.

3.1.2. OCPs
DDTs were detected in fish obtained from lakes egservoirs. The sum of mean
concentrations of DDTs in tilapia, were highest ftono reservoir-Upper East Region
(Sarotherodon galilaeus: 250 pg kg ww) (Akoto et al., 2016); and Lakes Volta, Bosomatw
and Weija forTilapia Zlli and catfish Clarias gariepinus): 253.4 pg kg Iw (Adu-Kumi et

al., 2010). Other studies detected lower mean cdrateons of DDTs in tilapia in Lake
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Bosomtwe- 8.88 pg kjww (Darko et al., 2008b), Lake Volta- 7.96 pgkgw (Kuranchie-
Mensah et al., 2011), 3.81 pgkgw (Gbeddy et al., 2012), and Weija Lake- 0.41kgd
ww.** The sum of mean DDTs concentration in catfish akd. Bosomtwe, Volta and Weija
was 2206 pg Kglw (Adu-Kumi et al., 2010); DDTs contamination Tfono reservoir was
336 pg kg ww in Schilbe intermedius (Akoto et al., 2016). HCHs bioaccumulation washhig
in Kpando Torkor Lake (sum of mean concentration Tdapia zlli: 41.6 pg kg ww)
(Gbeddy et al., 2012). Mean HCHs and endosulfarceanations in other fish species
ranged from LOD-20.13 pg Kgww (Darko et al., 2008b; Gbeddy et al., 2012; Kutzie-
Mensah et al., 2011), and from LOD-4.48 pg-kgw respectively (Darko et al., 2008b;
Gbeddy et al., 2012; Kuranchie-Mensah et al., 200&her OCPs in fish included aldrin,
dieldrin, heptachlor and chlordane. Mean of chlaega(trans-, cis-, oxy- chlordane) ranged
from LOD-26.06 pg kg ww (Adu-Kumi et al., 2010; Gbeddy et al., 2012; riunchie-

Mensah et al., 2011).

Mean OCP concentrations detected were below Foad Rmugs Administration
(FDA) action levels for DDTs (5000 pig Rgvw), chlordanes, aldrin, dieldrin, and heptachlor
(300 pg kg ww) for fish and shellfish from freshwater and marsources (Food and Drug
Administration, 1995); an indication of low riskofln OCP-contamination in Ghanaian fish.
Hazard risk calculation for consumption of OCP-emninated fish varied in studies. Hazard
indices (HI) for fish consumption from Kpando Torkiake indicated low risks (<1) for
HCH, DDT andy-chlordane (Gbeddy et al., 2012); an HI of >1 wakuwlated for aldrin-
contaminated fish from Tono reservoir (Akoto et 2016). Other studies predicted potential
risks via consumption of OCP-contaminated fishha@algh HI were not calculated (Adu-

Kumi et al., 2010; Darko et al., 2008b; Kuranchiesdah et al., 2013).
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3.1.3. PCDD/Fsand dIPCBs
The mean dIPCB concentration (1200 p§ le) in catfish and tilapia exceeded
PCDD/Fs (23 pg § Iw) in Lakes Bosomtwe, Volta and Weija (Adu-Kunti &., 2010).
Estimated WHO-TEQs for dIPCBs and PCDD/Fs was §.3yHO-TEQ ¢ Iw (Adu-Kumi
et al., 2010). Fish from the three lakes containeldtively low PCDD/Fs-dIPCBs, as
calculated WHO-TEQ value was below the permissileopean Union (EU) Regulations
limit for fish: 8.0 pg WHO-TEQ § ww (European Commission, 2006a), posing low health

risks.

3.1.4. PBDEsand HBCDs

Mean concentrations of PBDEs and HBCDs in tilapaanf Lakes Weija and Volta,
and Benya and Keta lagoons were low. Mean PBDEgedhrfrom 0.89-19 pg Ky lw;
HBCDs ranged from 0.04-2.2 pg kdw. The least and most contaminated lagoons were
Keta and Benya. Dominant congeners- PBDE 47 and @88 attributed to usage of penta
and deca-BDEs. Possibilities of degradation of PEDEiInto PBDE-47, run-off from
contaminated areas into lakes, and de-brominafitregta to hexa-BDEs contributed to their
accumulation (Asante et al., 2013). Possible comamon sources of lakes and lagoons were
credited to waste discharge from textile industasswvell as improper wastewater treatment
(Asante et al., 2013). Mean PBDEs- 0.16 pg tgv for 15 PBDE-congeners, inclusive of 6
PBDEs (Asante et al.,, 2013), exceeded the maximilmwable concentrations for biota-
Directive 2013/39/EU: 0.0085 pg kgww for PBDE- 28, 47, 99, 100, 153 and 154
(European Commission, 2013). Low to medium risksestrogenic activity from dietary
exposure to PBDE-contaminated fish are expectédow@yh calculated HI were below the
critical value (<1). Low risks from dietary exposuto HBCDs in fish is predicted as the

mean HBCD concentration (0.02 pgkgw) (Asante et al., 2013) was below EU Directive-
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2013/39/EU levels for biota (167 pg kgvw) (European Commission, 2013). Spatial and
temporal trends are displayed in Figures S6 andr€ig; results of trends are summarized in

supplementary S3 and conclusion sections.

3.2. Dairy products
3.2.1. OCPs

Dietary exposure to six OCPs was assessed in daiogucts. Mean DDTs
concentration in cheese ranged between LOD-298qfghk. Lower mean concentrations
were detected in milk and yoghurt: 4.7-10 pg kg. The sum of mean OCP concentrations
were below WHO MRLs (Darko and Acquaah, 2008a). ME&&P concentrations in cheese
were below the extraneous WHO MRLs for lindane (1G9 kg"), aldrin (150 pug kdg),
dieldrin (150 pg k@), endosulfan (100 pg Ky and DDT (500 pg K9, an indication of low

risk from dairy dietary exposure (Darko and Acqua)08a).

3.22. PCBs
A comparison of PCBs in raw cow milk in urban-Acenad rural-Asutuare (Eastern
region) showed the sum of mean PCBs (27 ug kg in urban areas to be twice that for
rural (14 pg kg Iw). A variation in PCB accumulation in cow milkene mainly attributed to
feeding habits (Asante et al., 2010). The mean eanations for 15 PCB congeners were
below the maximum EU limits of 40 pg kdw (European Commission, 2011). Low health
risk from milk consumption is expected; however,shadies were completed to ascertain the

TEQ.

3.2.3. PBDEs
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In urban cow milk, concentrations ranged betwed7-Q1 pg kg Iw (mean: 2.3 pg
kg Iw). Lower concentrations were in rural milk (0-28 pg kg' Iw, mean: 1.0 pg kglw).
Dominant congeners observed were PBDE-47 and 9€HBoncentrations were below the
LOD (Asante et al., 2010). The mean concentratadr3BDE congeners exceeded allowable
concentrations set by EU Directive 2013/39/EU fimtd (0.0085 g k§ ww for PBDE- 28,
47,99, 100, 153 and 154) (European Commission32he results indicate potential risks

from dietary exposure to PBDESs in cow milk.

3.3. Meat
3.3.1. OCPs

Red meat (beef), is a significant source of protein Ghanaian diet. Meat was
analysed to identify OCPs in beef fat, lean beeaf grasscutter (bushmeat) obtained from
Kumasi-Ashanti region (Darko and Acquaah, 2007 @omoa-Central region (Blankson-
Arthur et al., 2012). Elevated mean concentratmSDE and DDT ranged between 32-545
1g kg* Iw for beef fat; much lower mean concentrationsenia lean meat (range: 6-43 pg
kgt Iw). Other OCPs ranged from 0.6-4.3 pg'kiyv (lindane, dieldrin, endosulfan and
aldrin) for lean and beef fat. Mean concentratioh® CP analytes in grasscutter ranged from
0.15-0.78 pg Kg lw. Mean concentrations of pesticides in lean beef fat were below EPA
tolerance levels for DDT, DDE (5000 pg kdw), endosulfan I, 1l and endosulfan sulfate
(beef muscle:13,000 pg Rdw, beef fat: 2000 pg kglw), lindane and dieldrin (beef fat:
7000 and 200 pg Kglw respectively) (USDA, 2011). Concentrations detd were below
EPA tolerance levels, posing a low risk from digtaxposure to OCPs in food. Possible
sources were attributed to cattle feed-contaminatrdh pesticides, and use of pesticides to

control ectoparasites (Darko and Acquaah, 2007).
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3.4. Cereal products, maize, cowpea and cocoa beans
34.1. OCPs

Infant and adult dietary exposures to OCPs weresassl in local and imported cereal-
based food and cocoa beans. The highest mean QE€Entmations were recorded in cowpea
and maize (LOD-123 pg Kgdw) (Akoto et al., 2013), followed by cocoa beén®D-40 pg
kgt dw) (Okoffo et al., 2016), and cereal (LOD-22 pgj‘ldw) (Akoto et al., 2015b). The
highest OCPs in cowpea and maize wg#dCH, pB-endosulfan and DDTs (Akoto et al.,
2013); that for cocoa beansHCH and p,p’-DDT (Okoffo et al., 2016). In ceretlie highest
contributions were fromy;-HCH (local cereal-22 pg Kgdw) andp-HCH (imported cereal-14

1g kg dw) (Akoto et al., 2015b).

OCP concentrations in cereal, cowpea and maize edece MRLs, whereas
concentrations in cocoa beans were below. Appraein®0% of baby food exceeded EU
Directive-2006/125/EC of 10 pg Rgassigned for pesticides in cereal (European
Commission, 2006b). Similarly, OCPs in maize andpea exceeded EU MRL of 10 ugkg
for B-HCH, and 50 pg Kg for B-endosulfan, p,p’-DDE and DDD, an indication of riued
risks from dietary exposure (European Commissi@i62 Calculated His were >1 (1.62-
151), indicating carcinogenic and non-carcinogersk for infants and young children from
pesticides in cereal (Akoto et al., 2015b). Heakks from consumption of cocoa beans were
estimated as low, since pesticide concentrations Wwelow EU MRLs{-HCH: 1000 pg kg
! B-HCH: 20 pg kg, DDTs and dieldrin: 500 pg Kg and aldrin: 50 pg kY (European
Commission, 2016). Temporal trend plots could retbnstructed due to the limited number

of studies.

3.5. Fruitsand vegetable crops
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351. OCPs

Some fruits and vegetables obtained from marketeslan Accra, Kumasi, Tamale
and farm areas contained OCPs, which exceeded NiRhsah et al., 2006; Bempah et al.,
2011a; Bempah et al., 2012; Bempah et al., 201&m@h and Donkor, 2011; Ntow et al.,
2011; Owusu-Boateng and Amuzu, 2013). For a tdtall87 fruits and vegetables collected
from market, grocery, and farm sites, mean OCPgewrbetween 2-200 pg kgww
(Bempah et al., 2012; Bempah et al.,, 2011b; Bempad Donkor, 2011). Mean
concentrations for vegetables- Accra, Kumasi anudla were 300-500 pg Rgvw (Amoah
et al., 2006), whilst maximum concentration deteéateKumasi for fruits and vegetables was
190 pg kgt ww (Bempah et al., 2011a). HI >1 calculated forf®8Ghowed endrin exceeded
the critical value for vegetables from Kumasi (Banget al., 2011a), posing a concern for
vegetable consumption. An assessment of low heakhk of decreased thyroid function, and
weight loss from dietary exposure to OCPs in friatsd vegetables, can be expected.
Although most vegetables are edible in their raatest, washing and cooking before
consumption were advised to reduce ingestion ofiqgés residues. Spatial and temporal
trends are displayed in Figures S6 and S7; restittends are summarized in supplementary

S3 and conclusion sections.

3.6. Honey

3.6.1. OCPs

The concentrations of OCPs measured in honey frariows areas in Western, Brong-
Ahafo and Ashanti Regions (LOD-0.01) were beloworemended EU MRL (Darko et al.,
2017). Low health risks can be expected; howevsks from other POPs remain unknown as

studies are yet to be completed.
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662 4. POP concentrationsin Humans

663 Biological monitoring of POPSs, involving invasivend non-invasive techniques in
664 human, is performed using breastmilk, blood/sertiar, saliva, semen, fingernails, and
665 urine. These give an indication of how POPs accatauin the body via exposure, POPs
666  potentially transferred via placenta, and breag&tfindm mother to child, and POPs (and their
667 metabolites) excreted through body fluids (Estednrash Castafio, 2009).

668

669 Figure S8 shows POPs data in breastmilk. Methodsxtwéction, clean-up and analytical
670 detection are summarized in Table S1. A discussid®OPs in human breastmilk and serum
671 is given below. Results from these studies indith&t the primary exposure route to POPs
672  bioaccumulation in human fluids is via food intake;secondary exposure route include

673 inhalation from contaminated e-waste sites and $ariine presence of HCHs and DDTs
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indicate their long-term usage and exposure to bothstfeeding mothers and infants within

the farming, fishing and e-waste communities in fizha

4.1. Breastmilk
4.1.1. PCBs

The risks of exposure to PCBs associated with entakbreastmilk by infants were
assessed in 304 breastmilk samples, by determaaingentrations in exposed and unexposed
primparae and multiparae mothers. Surprisingly, then of mean PCBs in non-
occupationally exposed mothers (for Accra, Kumasi @amale, 30-82 ug Kglw) (Asante
et al., 2011), were higher than for occupationakposed mothers (4.4 ngkov) who lived
or worked at contaminated Agbogbloshie e-wasteisi#&ccra (Asamoah et al., 2018). The
dominant congeners observed for non-occupatiomxihosed mothers were PCBs- 153, 138
and 180; occupationally exposed mothers was PCH I28.unexpected concentrations could
indicate other exposure sources, in addition toudative years of occupational exposure.

Health risk assessments completed on occupatioagfipsed mothers indicated low
risks to infants: hazard quotient (HQ <1) (Asamealal., 2018). Low potential health risks
to breastfed infants is expected (Asante et alllP0However, concentrations were
consistently higher than the Agency for Toxic Sahses and Disease Registry (ATSDR)
safety standard minimum risk level of 7 ug*ev (0.03 pg kg bw d*) for total PCBs in

human milk (Agency for Toxic Substances and Diséasgistry, 2000).

41.2. OCPs
The mean concentrations of OCPs monitored in brekstanged from LOD-490 ug
kg! Iw (Ntow, 2001; Ntow et al., 2008b; Tutu et al(Q13). The mean concentrations

indicated the greatest exposure of mothers to D&¥sHCHs: 78 and 46 pg kdw, and
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below the LOD to 490 ug kglw in 2 farming communities (Ntow, 2001; Ntow dt,a
2008b); whilst Ada fishing community had the leasposure: 30 and 12 pgkdw (Tutu et

al., 2013). In an absence of OCP safety standartisimans, based on recommended safety
standards in rats, the equivalent milk OCP conegéiotrs that would induce developmental

toxicity: 2300 pg ki Iw (van den Berg et al., 2017), were not exceeded.

4.1.3. PBDEsand HBCDs

The sum of mean concentrations of PBDEs and HB@Bgad from 2.2-5.8 and 0.3-
2.3 ug kg Iw respectively, in breastmilk from Accra, Kumasid Tamale (Asante et al.,
2011). In comparison to Tamale (2.5 pg-kg), high mean concentrations in Accra (4.8 pg
kg’ Ilw) and Kumasi (5.8 pg kglw) were attributed to greater exposure to PBDBstmner
products and dietary preferences (Asante et all1RPBDEs and HBCDs in breastmilk
provided a low exposure risk to breastfed infaatsthe estimated daily intake were below
USEPA reference dose for PBDE-47 and 99 (0.1 |igtg d*), and PBDE-153 (0.2 pg Kg

bw d*) in human milk (USEPA, 2008a, 2008b, 2008c).

4.2. Blood/serum
Blood and serum from urban-Accra and rural aredsy§&f and Tono Irrigation sites in
occupationally exposed workers, were analysed @bpB/Fs, PCBs, and OCPs (Ntow et al.,

2008b; Wittsiepe et al., 2015).

4.2.1. PCDD/Fsand PCBs
In a cross-sectional study of e-waste workers fAaghogbloshie with control group,
median PCDD/F concentrations in exposed populat{érs pg WHO-TEQ ¢ Iw, range:

2.1-42.7 pg WHO-TEQ §lw) were higher than in controls (4.6 pg WHO-TE®lw, range:
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1.6-12 pg WHO-TEQ ¢ lw) (Wittsiepe et al., 2015). Human exposure a=sesits to
PCDD/Fs and dIPCBs, from body burdens, are relewdnan factors such as body weight,
fraction of PCDD/Fs and dIPCBs absorbed, and lifelfdre utilized in estimating daily
intakes. In an absence of health risk assessméisdy burdens for both e-waste workers
and control groups, a feasible estimate of potemisks would have to be based on a
comparison of daily intake in order to compare with recommended guideline range of 1-4
pg WHO-TEQ kg' Iw bw d*.

In contrast to PCDD/Fs, associations between PQOBsexposed and control
populations did not follow the expected trend. Hagimcentrations were observed for PCBs-
138, 153 and 180 in control groups; geometric nearcentrations were significantly higher,
~3 times that observed for exposed groups (PCB-0.88: pg [}, PCB-153: 0.05 pgtand
PCB-180: 0.03 pg L whole blood). A strong correlation was observedween work
exposure time for e-waste workers who live on siterorrelation was found between PCBs

concentrations and age (Wittsiepe et al., 2015).

42.2. OCPs

Serum of male and female vegetable farmers analpsgdCPs, indicated high mean
concentrations of dieldrin (127 pgkdw) (Ntow et al., 2008b). No gender dependence of
total OCPs was observed on comparison of residetgelen male and female farmers. Mean
concentrations in male versus female serum wer@ 7.1 pg kg lw DDTs, 6.9 vs 8 g
kgt lw HCHs, and 134 vs 115 pg kdw dieldrin, respectively (Ntow et al., 2008b).
Although HCHs are excreted during lactation, high2Hs residue (8 pg Kglw) were
observed in female serum. Concentrations of OCRctel in female serum could indicate
possible health risks to foetus when bioaccumulateshtaminants are transferred

transplacentally (Ntow et al., 2008b). Althoughrthare no tolerance levels for OCPs in
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blood, an assigned reference dose of 0.5 pigbkg d* for DDT and 0.3 pg k§ bw d* for

HCH by USEPA, will not be exceeded if an averageybweight of 60 kg is considered.

4.3. Urinesamples

Urine is considered an ideal matrix for non-peesisichemicals; it has however been
used to monitor pesticides and their metaboliteseireral studies (Aprea et al., 2002). Within
farming communities in Ghana, improper and illegse of pesticides can expose farmers to
absorption from the gut, by lungs and across skamg-term farming exposure activities
(above 30 d yb) such as mixing and application of complex comtimes of
insecticides/pesticides increased risks of chranieghs, wheezing, and phlegm production.
Out of 8 OCPs determined in 100 urine samples, neeanentrations of-HCH, heptachlor
and endosulfan sulphate (2800 ng, 3600 ng [* and 3300 ng L) were noted to strongly

correlate with respiratory symptoms (Quansah ef@afl6).
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5. Conclusions

In this comprehensive and systematic review, oupgse was to collate and review
data from previous studies undertaken on StocklRD®s in Ghana, since 2001. We
conducted a review on POPs in different matricemygared concentrations against relevant
health criteria, and where data was available plexVia discussion on spatial and temporal
trends (Figures S1-S8, supplementary information Edlowing this information, we
estimated the extent of POP contamination by ifigng concern levels in matrices with
ranking from low, moderate, and high, to no dataPB of high concern where assigned due
to data scarcity, increasing trends, and exceedasfaelevant health criteria (Table S6). For
11 matrices and 10 POP-groups assessed in thesveb?% (58 instances) were classified as
no data, 8% (9 instances) were identified as higly 13.6% (15 instances) were identified as
moderate risk, and 25.4% (28 instances) were ifiethtas low risk (Table S6).

In lakes and drinking water, high risks were obedrior PCBs, DDTs and PFASS;

moderate risks were identified for several OCPsdé&#fate risk for air was identified for
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DDTs which showed an increasing trend ( Figure BRyvater, moderate risks were
identified for endosulfans and HCHSs, with incregstoncentration trends ( Figure S3). A
high risk was identified for PCDD/Fs in soil andlseent. Low and moderate risks were
identified for most OCPs in sediments, coupled wligereasing concentration trends for
HCHs and endosulfans (Figure S5).

Of the different food groups studied, a high ngks identified for PBDES (in aguatic
organisms and dairy products), DDTs in fish (inereg trend) and Drins- sum of endrins and
dieldrins (in fruits and vegetables)- Figure S7maize, cowpea, fruits and vegetables,
moderate risks were identified for DDTs and HCHswlrisks of DDTs and HCHs were
identified for meat, cocoa and dairy products. katlgta gaps were identified for PBDEs,
HBCDs, PCDD/Fs and some emerging contaminants (RON$FASs). Data on PCBs was
scarce.

High risks for humans were noted for both occupetily exposed individuals working
at e-waste sites and farming communities, and vable subgroups through exposure to
POPs in food. The data reflects a high risk fronBR@ue to concentrations in breastmilk
exceeding guideline values. A moderate risk wastifled for DDTs. The data shows few
studies have been undertaken on a limited sub$2Oé's in humans.

The lack of a widespread consistent monitoring m@ogne, and limited sampling
periods, make a robust assessment of spatial emgbtal trends challenging. However, there
were statistically significant and non-significa@mporal trends displaying a decrease in
concentrations of some legacy POPs (supplemen8&ryl8e observed decline, although
non-significant for some legacy POPs, may be attedh to enforcement of the Stockholm
Convention, regulations and legal framework targeBOP elimination and reduction.

Conversely, significant and non-significant inciesagy DDTs, HCHs and endosulfans were

34



823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

observed, and could potentially be attributedlegdl usage, and accumulation of banned

pesticides.

From the time-trend analyses, specific POP-polistddDTs, HCHs and endosulfans)
in various media are discussed in supplementagynmdtion S3.7. These highlight multi-
media POP-pollutant occurrences, routes of fateti@msport, and differing exposures within

the Ghanaian environment.

6. Knowledge gapsand recommendations

Studies undertaken in Ghana over the past 17 years reported POP concentrations
in a wide variety of matrices; however, these hlagen on local POP distributions. Another
issue is the lack of annual measurements and sgtemonitoring over time for POPs in all

regions.

Temporal data have been assessed, but the maybuigtasets do not show trends due
to limited sampling periods, and limited samplessidowever, the data serves as a baseline
for future studies. We hope more consistent mamigoproduces nationwide data, leading to

informed risk management strategies.

Continuous monitoring should involve screening odtmees via targeted and non-

targeted analyses for new and understudied PORs widuld reflect POP contaminants that
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humans and wildlife are exposed to. This gap cdiddaddressed with a complementary
non/semi-targeted analytical approach that would & identification of unknown
contaminants, and result in more robust risk assests. Collection of data from a wider
range of analytes would be beneficial to help idgihe main sources of POPs and establish
their importance in different regions. Non-target@glyses of archived sample extracts could
be investigated to assess spatial and temporaldrendata deficient areas.

Table S6 shows a general lack of human, animalnalddife exposure data. There is no
data for various matrices including indoor and ootd air exposure assessment in
workplaces/homes, cored sediments, ground and Hmeswater, wildlife-avian population
data, amongst others. To address these gaps indagesy further studies would be required.
Of high importance would be human exposure studiegh could include collection of
serum and breastmilk samples from vulnerable groopsupationally exposed workers, and
the general population. Analyses of these sampiesld ideally be coupled with dietary
patterns, and workplace/home exposure hazards estignnaires to clearly correlate POP

concentrations with socio-demographic charactessti

A potential decline in legacy POPs in Ghana cafoleseen with low-toxicity pesticide
alternatives and regulations implemented by EPAr@haHowever, more consideration
could be placed on emerging contaminants (suchF&S® and HFRs), and unintentionally
produced POPs (PCDD/Fs, PBDD/Fs, PCNs and dIP@Bd)ends of these contaminants in
the environment are less well understood. Similands and data gaps identified in this
review may be expected in other developing Africaantries, which highlight these trends

as an important area for future study.
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Highlightson Review Article:

1. Current status of POPsin Ghanais reviewed.
2. Hedth risks from PCDD/Fs at e-waste sites.

3. High heath risk from exposure to PFASs and DDT related compounds in drinking
water.

4. Large data gaps identified.

5. Future perspectives to include understudied POPs.



