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Abstract—Distributed energy trading among energy prosumers
(i.e., energy producers that also consume energy) is expected
to bring significant cost benefits for the participating actors.
In terms of the system architecture, physical grouping into
microgrids (MG) can be further enhanced by communication
infrastructure that provides support for flexible organization of
prosumers into virtual MGs. However, how to manage prosumers
using communication infrastructure is not widely investigated.
In this paper, we propose a virtual MG architecture induced
by communication constraints and consider its impact on total
costs of energy trading. More precisely, we refine the distributed
energy trading model considered in the recent literature with
additional communication constraints and investigate impact of
the resulting virtualized MG architecture on the overall energy
trading costs. We show by simulations that there indeed exists
an optimal energy trading architecture that achieves minimum
possible energy trading cost, for any given model parameters.

Index Terms—Distributed energy trading, distributed energy
generation, smart grid communications, energy cost optimization,
virtual microgrid.

I. INTRODUCTION

Communication technology plays a critical role in the
process of transition towards smart grids [1]. In recent decades,
conventional power networks are becoming increasingly in-
terconnected with different communication technologies that
aim supporting various future smart grid services [2]. These
communication technologies range from power-line commu-
nications and mobile cellular network technology to empower
advanced metering infrastructure, to fiber-based core network
technologies providing support for future smart grid services
such as real-time monitoring, security and control [3]–[6].

Smart grids evolved into resourcing electrical energy gener-
ation from different renewable sources such as wind, water and
solar power. Among these generators, an increasing number
represents distributed energy generators that may both produce
as well as consume energy which are referred to as prosumers
[7], [8]. Besides generating and consuming, prosumers can
trade energy and in the process, each prosumer pursues to
maximize its own energy trading gains. However, to achieve
energy trading gains, large collections of prosumers need
to be studied for the best architecture that facilitates their
efficient management. This leads to recent interest in the
design, modeling and implementation of peer-to-peer (P2P)

energy trading systems, where prosumers represent peers of
the energy trading process [9].

In the literature, it has been demonstrated that prosumers are
best managed using P2P algorithms [8]. For a large area, the
random-like nature of the distribution of prosumers may result
in different challenges during energy trading. Some of these
challenges include network congestion, network inefficiencies,
high energy cost, security, etc. [10]. To solve these problems,
large area of distributed energy prosumers can be divided into
groups to enhance management, increase energy efficiency and
reduce energy cost, such as in microgrids [11]. Energy trading
process among such groups of prosumers spread over large
geographical areas may be formulated as a distributed energy
trading problem and addressed using tools from optimization
or game theory, as recently investigated in [12] [13].

In this study, we propose a communication-constrained
architecture that allows logical grouping of prosumers into
virtual microgrids instead of physical microgrids. We assume
each prosumer is equipped with energy trading client (ETC)
that uses wireless technology to connect to energy trading
system (ETS). Energy trading system is decentralized and
comprises a large number of energy trading agents (ETA)1.
The communication constraints in this context define bound-
aries within which ETCs are allowed to trade coordinated by
their local ETAs. We note that this model is well aligned with
emerging 5G mobile cellular networks that provide machine-
type communication (MTC) services for ETC wireless con-
nectivity, and mobile edge computing (MEC) architecture that
supports storage and computation requirements of ETAs [5].
Localized energy trading is meaningful both in power and
communication infrastructure context. Indeed, due to energy
transfer costs that grow with distance between trading peers,
energy trading in local communities is encouraged. Similarly,
communicating energy transactions among local peers relieves
the mobile core network from the burden of huge connection
densities that large population of peers would induce if allowed
to trade globally. On the other hand, confining energy trading
to small communities reduces the available trading options and
might increase the total energy trading costs. It is exactly this
trade-off that we are investigating in this paper in the context

1An agent in this context is a software or hardware capable of interacting
with other agents or customers [14] during a transaction process among
prosumers.
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of placing additional communication-induced constraints to
the energy trading model analyzed in [12].

The paper is organized as follows. In Sec. II, we provide
background on energy trading model [12] and introduce the
communication infrastructure model under study in this pa-
per. Communication-constrained energy trading model is then
proposed and analyzed in Sec. III. Numerical results resulting
from optimized energy trading schedules in a given model are
presented in Sec. IV. The paper is concluded in Sec. V.

II. BACKGROUND

In this section, we review the energy trading model to
be built upon in our investigation. Further, we consider a
communication network infrastructure for energy trading. The
communication network introduces additional constraints to
the energy trading model, which is the focus of this paper.

A. Energy Trading Model

Consider a large geographical area containing many in-
dependent energy prosumers: entities that both produce and
consume energy that are also referred to as peers [7]. The peers
may be of different sizes, ranging from individual households
or electrical vehicles, to larger micro-grids such as wind farms.
We assume that N such peers are connected to the power
distribution network, and are allowed to trade energy (e.g.,
the peers with surplus in energy production might want to sell
energy to energy-deficient peers). Next, we provide a formal
layout for such energy trading in the form of energy trading
model proposed in [12].

A pair of peers is connected (in the energy trading sense) if
they are allowed to trade energy. Note that the energy trading
constraints might arise due to electrical and/or communication
connectivity or administrative constraints. The peer connectiv-
ity may be defined using the energy trading graph G = (P, E),
whose set of nodes P = {P1, P2, . . . , PN} represents peers,
while the set of edges E ⊂ P × P defines energy trading
connectivity. More precisely, an edge (Pi, Pj) ∈ E if Pj is
allowed to buy energy from Pi (i.e., Pi is allowed to sell
energy to Pj). We denote by Ω(i) = {j : (Pj , Pi) ∈ E}
all peers that are allowed to sell energy to peer Pi, which
we call the set of (in-)neighbors of Pi (in G); similarly, by
Ω−(i) = {j : (Pi, Pj) ∈ E} we denote the set of all peers that
are allowed to buy energy from peer Pi, which we will call
the set of out-neighbors of Pi.

Equivalently to energy trading graph, the energy trading
connectivity among peers may be defined via symmetric
adjacency matrix A of graph G, namely, A = [aij ]N×N ,
where aij is a binary entry equal to one if (Pj , Pi) ∈ E ,
otherwise it is equal to zero. We note that A may also be non-
symmetric in case that peers are permitted to transact energy
in one direction only, in which case the energy trading graph
G is directed.

We assume the time is divided into scheduling intervals.
Within each scheduling interval, the peer Pi generates E(g)

i

and consumes E(c)
i units of energy. In addition, during each

scheduling interval, conditioned that (Pi, Pj) ∈ E , Pi is
allowed to sell energy to peer Pj . We denote by Eij the

amount of energy peer Pi sells to peer Pj . Then for each
scheduling interval, and assuming that peers do not have the
capacity to store energy, we summarize the energy generation
and trading activities of peers Pi, 1 ≤ i ≤ N, via the following
energy balance equation which holds for each peer Pi:

E
(g)
i +

∑
j∈Ω(i)

Eji = E
(c)
i +

∑
j∈Ω−(i)

Eij . (1)

When G is symmetric, by rearranging terms in (1), the amount
of energy generated by each peer Pi can be more compactly
expressed as:

E
(g)
i = E

(c)
i +

∑
j∈Ω(i)

(Eij − Eji) . (2)

Furthermore, the energy trading model includes the costs
that are incurred for generating and trading energy [12]. Let
Ci(E) be the cost of generating the amount of energy E at
peer Pi. Similarly, let the cost of trading the amount of energy
E from peer Pi to peer Pj be γij(E). Finally, we arrive at
the following energy trading optimization problem:

C∗ = min
{Eij}(i,j)∈E

N∑
i=1

Ci

(
E

(c)
i +

∑
j∈Ω(i)

(Eij − Eji)

)
+ · · ·

+
∑

j∈Ω(i)

γji(Eji)

subject to Eij ≥ 0, ∀(i, j) : (Pi, Pj) ∈ E
E

(c)
i +

∑
j∈Ω(i)

(Eij − Eji) ≥ 0, ∀i

.

(3)
The solution to the above optimization problem provides the

optimal energy trading transactions {Eij}∀(i,j):(Pi,Pj)∈E , that
minimizes the total system costs of generation and trading,
while ensuring balance equations are met.

In this work, for simplicity, we consider the case when
the cost functions Ci(E

(g)
i ) and γij(Eij) are linear. More

specifically, we assume Ci(E) = Ci ·E and γij(E) = γij ·E,
where Ci and γij are unit-costs of generating and trading
energy, respectively.

B. Communication Infrastructure Model

Energy trading model in the previous subsection relies on
both power and communication infrastructure. As much as the
power infrastructure is needed to transfer the traded energy,
the communication infrastructure is instrumental for energy
transactions that dictate the energy trading process.

For the communication infrastructure model, we assume
each peer participates in energy trading process via its ETC.
The ETC at peer Pi provides the energy trading system
with estimates of generated and consumed energy in the
upcoming scheduling interval, as well as the generation and
energy transmission unit-costs. ETC is placed at the peer
location and contains an integrated communication module
with an interface towards an external access network for data
connectivity with the rest of the energy trading system.

On the infrastructure side, the energy trading system con-
sists of one or more ETAs. Prior to each scheduling interval,
ETAs process inputs from all ETCs, and provide optimal en-
ergy trading transactions {Eij} back to all ETCs. We consider
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(a) A large trading area split up by ETA into squares each with length a. (b) An enlarged ETA trading area

Figure 1: A large ETS area divided into M unit areas by an ETA. The peers are constrained within the reach of an ETA. We
denote by di the Euclidean distance between prosumer i and the respective ETA.

three different architectures for the overall ETS depending on
the number M of ETAs:

Centralized ETS (M = 1): The centralized architecture
considers a single ETA located at the central computation node
(e.g., the cloud) which processes inputs from all ETCs in the
system and solves the energy trading optimization problem
centrally.

Distributed Multi-Area ETS (M < N ): The distributed
multi-area architecture assumes a large number of geograph-
ically distributed ETAs located at network-edge computation
nodes (e.g., the fog/edge). ETAs process inputs from local
ETCs and communicate with neighboring ETAs in order
to provide the solution to the energy trading optimization
problem using distributed optimization techniques.

Fully Distributed ETS (M = N ): The extreme version of
the distributed multi-area ETS is the case in which each peer
contains both ETS and ETA. Thus ETAs are no longer located
in core network, but only at the end user (i.e., peer) location.
Distributed optimization algorithms are also applied to solve
the energy trading optimization problem.

In this work, we are interested in the energy trading model
for a scenario with massive number of peers N . For this
reason, our focus is on the distributed multi-area ETS, and
in particular, on investigation of the energy trading model for
different M/N -ratios (i.e., different area sizes). Indeed, for
large N , centralized ETS suffers from huge communication
burden, further limited by large communication delays and
potential complexity issues related to solving very large energy
trading optimization problem centrally. In contrast, at the
opposite end, fully distributed ETS that applies distributed
optimization across very large number of agents might suffer
from slow convergence and large communication overhead,
deeming them impractical in real-world applications.

III. COMMUNICATION-CONSTRAINED ENERGY TRADING
MODEL

We model the total ETS area as a unit square. Over this
area, M = k2 ETAs are deployed in a regular fashion.
This induces the division of the ETS area into M smaller
square regions each of which is of width a = 1/

√
M , as

shown in Fig. 1, where each ETA is responsible for handling
energy transactions of peers located in the respective region.
Letting m index the ETAs and ETA areas (the labeling can
be performed, e.g., in a “row by row” fashion), we denote
by Nm the number of peers located in the m-th region,
m = 1, 2, ...,M .

As discussed in Section II, when the number of peers N
is very large (e.g., N is the number of households and/or
electric vehicles in a given country), optimizing the energy
transactions {Eij}∀(i,j):(Pi,Pj)∈E at the system-wide level
might not be possible to achieve in real time. Thus, we
propose an architecture where energy trading is localized
to the ETA areas such that two nodes can trade energy
only if they belong to the same ETA area. We additionally
assume that any two nodes belonging to the same area are
allowed to trade energy. In terms of topology, the graph of the
described ETS consists of M components, each of which is
a complete graph on nm nodes, where m is the index of the
corresponding ETA area. It is easy to show that the associated
adjacency matrix then has the following block-diagonal form
A = diag

(
1n11>n1

− In1 , ..., 1nM
1>nM

− InM

)
, where 1l and

Il are, respectively, the vector of all ones and the identity
matrix of size l, where l is an arbitrary integer.

Given the above ETS description, the cost of energy trading
within area m is given by

Cm=

Nm∑
i=1

Ci,m

E(c)
i,m +

nm∑
j=1

(Eij,m − Eji,m)

+

Nm∑
j=1

γji,mEji,m.

(4)
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To analyze the preceding cost, we consider a fixed ETA area,
and, to simplify the exposition, we suppress the corresponding
index m in all the quantities in (4) where this index occurs.
Let Eii denote the amount of energy produced at peer i to be
used locally, i.e., for own consumption. It is easy to see that
we can then write

E
(g)
i = Eii +

n∑
j=1

Eij , E
(c)
i = Eii +

n∑
j=1

Eji. (5)

In other words, the left hand-side identity in (5) is simply
saying that the amount of energy generated at node i is the
sum of the amount of energy produced for local usage and
the amount of energy that i sells to other peers. Similar
interpretation holds for the right hand-side identity in (5),
which factors energy consumption at i.

For each peer i, we introduce a vector αi ∈ Rn, whose j-th
entry defines which fraction of E(c)

i will be sought from peer
j, where j = 1, ..., n. Thus, αij’s are nonnegative numbers
that sum up to 1, i.e., αij ≥ 0, for all j, and

∑n
j=1 αij = 1.

We call αi the strategy of peer i.
Denote by Cg and Ct parts of the total cost in (4) due

to energy generation and due to energy trading, respectively.
Using (5), we obtain for the cost of energy generation:

Cg =

n∑
i=1

Ci

Eii +

n∑
j=1

Eij

 =

n∑
i=1

CiEii +

n∑
j=1

CjEji

=

n∑
i=1

n∑
j=1

CjαijE
(c)
i . (6)

The cost of energy trading can be similarly expressed as

Ct =

n∑
i=1

n∑
j=1

γjiαijE
(c)
i , (7)

where we assume that γii = 0 for each i. From the preceding
two equations we can see that, given the estimated amounts
of energy E(c)

i to be consumed by the peers in the next time
interval, the total energy trading cost is fully described by
the peers’ strategies αi. Going back to the energy trading
optimization (3), we thus have

C∗ = min
{αi}∀i

∑n
i=1

∑n
j=1 (Cj + γji)αijE

(c)
i

subject to αij ≥ 0,
∑n
j=1 αij = 1 ∀i, j

αi ∈ Rn, ∀i.
. (8)

Note now that the peers’ strategies are decoupled, i.e., each
peer can pick its own strategy independently of other peers.
Furthermore, the cost function in (8) is linear and hence
decomposable. Therefore, the energy trading optimization
problem decomposes into n individual subproblems, where,
in the i-th such subproblem, peer i finds its optimal strategy
αi by solving, for any given E(c)

i ,

C∗i = minαi

∑n
j=1 (Cj + γji)αijE

(c)
i

subject to αij ≥ 0,
∑n
j=1 αij = 1, ∀j

αi ∈ Rn
. (9)

The preceding problem is a linear program. It is easy to
show that its solution is the canonical vector α?i = ej? , where

Figure 2: Illustration of the optimal energy trading strategies
for a 5 prosumer network; the energy generation costs satisfy
Cmin = C1 ≤ C2 ≤ · · · ≤ C5 and the energy transmission
cost γ is such that C2 < Cmin + γ < C3. Optimal trading
strategies for each prosumer are represented by directed links
and self-loops.

j? = arg minj=1,...,nCj + γij , with the optimal value equal
to C?i = (Cj? + γj?i). If for every j 6= i, Ci ≤ Cj + γji,
then j? = i. Otherwise, j? is the peer for which Cj + γji is
minimal. Summarizing, each peer will either generate by itself
all energy it needs to consume, or it will buy all the energy it
needs from a single peer – the one whose sum of the per-unit
generation and transmission cost is the lowest. We note that
this single-point of trading form of the optimal strategy is a
consequence of the fact that the energy generation and energy
trading costs are assumed to be linear. When the costs are non-
linear (e.g., quadratic) this will no longer be the case [12]; we
leave analysis of such a case with additional communication
constraints for our future work.

Special case: γij ≡ γ. In the special case when all energy
transactions occurring in the same ETA area have equal per-
unit transmission costs, γij ≡ γ, for i 6= j, the peers’ optimal
local strategies α?i exhibit an interesting structure. To explain
this, let Cmin = min {Ci : i = 1, ..., n} be the minimal cost of
generating one unit of energy across the entire ETA area. For
any given peer i, it can easily be shown that the problem (9)
then simplifies to finding the minimum min {Ci, Cmin + γ}.
Therefore, if the cost of generation and transmission of the
cheapest peer is smaller than its local energy production cost,
node i will buy all the energy it needs from the cheapest
peer (assuming the cheapest peer can produce the demanded
energy). Otherwise, it will produce the needed energy locally.
The overall energy trading cost (8) in this case therefore
equals:

C? =

n∑
i=1

Ci1{Ci≤Cmin+γ} +

n∑
i=1

(Cmin + γ)1{Ci>Cmin+γ},

(10)
where 1A is the indicator function of event A.

The form of the optimal strategies is illustrated in Fig. 2
for a network consisting of 5 prosumers (and, as described
earlier, where each pair of prosumers is allowed to trade).
Labeling the prosumers in the increasing order according to
their energy generation costs, we have Cmin = C1 ≤ C2 ≤
... ≤ C5. The energy transmission cost γ, equal for all pairs
of prosumers, is such that C2 < Cmin + γ < C3. It can be
seen that for prosumers 1 and 2 their local energy generation
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Figure 3: Total energy production costs for different large areas
divided into small areas using ETAs

costs are lower than the cost of buying and transmitting energy
from the cheapest producer. Thus, the corresponding optimal
strategies are to produce all the needed energy locally, which is
indicated by the self-loops around points C1 and C2 denoting
prosumers 1 and 2 in Fig. 2. On the other hand, for prosumers
3, 4 and 5, their local energy generation costs are still higher
than the cost of both transmission and energy generation at the
cheapest producer – prosumer 1. Hence these prosumers will
buy all their respective energies from prosumer 1; the directed
links in Fig. 2 originating at prosumer 1 indicate the respective
energy flows.

Optimizing the number of ETA areas M . In this paper,
our primary interest is to explore the tradeoffs incurred by the
size a2 = 1/M of one ETA region, or, equivalently, by the
number of divisions M of a given ETS with N prosumers.
It is clear that when M grows large, each of the areas gets
smaller, and hence we can expect that the energy trasmission
costs γij decrease. On the other hand, as the total number of
prosumers stays constant, the per-area number of prosumers
nm gets smaller. In a sense, the market offer/diversity in terms
of energy generation cost then reduces. In terms of the model
described above, the cost of the cheapest producer Cmin for
each of the areas then increases, and hence one can expect that
the power generation component of the trading cost increases.
These interplays between the two costs for each of the areas
are then scaled up to the total ETS system, resulting in a
highly non-trivial dependence of the total cost C? on M . In
Section 4 we show by simulations that there exists an optimal
ETS division which has a minimal cost among all possible
divisions of size M = k2, where k varies from one to an
arbitrary large number.

IV. NUMERICAL RESULTS

From the foregoing discussion, we model an exemplar large
area of length, L = 500km or measuring 250,000 km2 in
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Figure 4: Normalized energy trading cost performances for
varying number of prosumers in each ETA cluster-division of
a large area measuring 100× 100km2

area. Then, we seek to find the best number of ETAs that can
be deployed in the area to achieve minimum cost of energy
trading. In addition, we further assume that energy generation
costs are drawn according to the uniform distribution [0, 16]
pence per unit (kWh) energy. We assume that there are 10
prosumers per smallest possible area (corresponding to the
maximal kmax = 5000), resulting in total of 250 × 106

prosumers across entire ETS.
For the energy transmission cost we assume that it increases

linearly with the size a of ETA square; more specifically, we
let γ(k) = 10× kmax/k, where the number of divisions M =
k2 (the unit energy transmission cost for the smallest possible
ETA area then equals 10 pence). Using the optimal model
in (10), we present the optimal number of ETAs that can be
introduced in the large area to attain minimal cost as shown
in Fig. 3. It can be observed that the division of the large area
attains a minimum cost (£1.2955 × 106) when it is divided
into 1620; in other words there are 1620 ETAs required to
achieve minimum energy cost. Afterwards, dividing the area
into any further smaller unit squares again increases the cost.
Additionally, we simulated the scenario for other areas, namely
(400, 300, 200 and 100)×103 km2 respectively. The results
follow similar trend as in the 500×103 km2 area case. For
example, the minimum costs for (400, 300, 200 and 100)×103

km2 areas can be observed as (£0.8283× 106), (£0.4723×
106), (£0.2083 × 106) and (£0.0519 × 106), with optimal
divisions into, respectively, 1270, 870, 670 and 370 ETA areas.

Further, consider the area of 100× 100 km2, and vary the
density of users by varying the number of users n0 in the
smallest possible ETA, n0 = 10, 50, 100, 150, 200. The results
are shown in Fig. 4, where we note that, for each different
n0, and at each point k, the obtained cost is normalized
by the corresponding total number of prosumers. The results
show that the (per-prosumer) cost decreases when the node
density increases. From the theoretical perspective, lower node
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Figure 5: Effect of model distribution variance on energy
trading cost over an area 100× 100km2

density means higher values of Cmin (i.e., more expensive
cheapest producer), which then results in the increased energy
generation and hence overall energy trading costs. On the more
practical side, the theoretical predictions are very well aligned
with the intuition that it is really more expensive to trade with
fewer prosumers in a microgrid, compared to the case when
the market has a more diverse offer.

In the final set of simulations, we investigate effects of
varying parameters of the energy generation cost distribution.
Specifically, we generate energy costs according to the uniform
distribution in the interval µ+σ×[1, 16]. For the results shown
in Fig. 5 we set µ = 4 and we vary the spread of the costs by
varying σ2 = 1, 5, 10, 15, 20. By increasing σ we effectively
decrease the ratio between the energy transmission cost γ and
the average energy generation cost (which with σ increase
according to µ+ σ × 8 pence).

One can observe from the obtained curves that the optimal
division slightly shifts to lower values of k as σ increases.
The intuition behind this effect is that, when increasing σ, the
average energy generation cost increases relative to the unit
distance energy transmission cost. Thus, there will be more
peers buying the energy from the cheapest prosumer, rather
than producing the energy locally. Hence, the determining
factor in the energy trading cost becomes the value Cmin. As
the size of the area increases, Cmin gets smaller and hence,
with larger values of σ the system tends to pick larger squares
to compensate with smaller Cmin for the increasing average
energy generation cost.

V. CONCLUSION

Motivated by the increasing scale of the envisioned energy
trading systems, we propose a distributed energy trading sys-
tem where the trading topology is dictated by the underlying
communication architecture. Grouping the prosumers to their
closest trading agents, we ask the question what is the optimal
group size which results in the minimal overall trading cost.

We show by simulations for various problem parameters that
there indeed exists a non-trivial system division. The respec-
tive prosumer clustering results in the lowest energy trading
cost, among all possible system divisions – ranging from the
full-scale trading to the arbitrary small clusters (e.g., on the
size of a couple of households). As a future work, we plan
to address the described optimal trading architecture problem
analytically, as well as with different energy generation and
transmission cost models (e.g., quadratic, or general convex
functions).
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nano-grids. In CIGRÉ Intl. Symposium The electric power syst. future-
Integrating supergrids and microgrids, Bologna, Italy., Sept. 2012.

[8] H. Almasalma, J. Engels, and G. Deconinck. Peer-to-peer control of
microgrids. arXiv preprint arXiv:1711.04070, 2017.

[9] O. Jogunola, A. Ikpehai, K. Anoh, B. Adebisi, M. Hammoudeh, S.-
Y. Son, and G. Harris. State-of-the-art and prospects for peer-to-peer
transaction-based energy system. Energies, 10(12):1–28, Dec. 2017.

[10] A. Bari, J. Jiang, W. Saad, and A. Jaekel. Challenges in the smart grid
applications: an overview. Int. J. Distributed Sensor Netw., 2014, 2014.

[11] R. H. Lasseter and P. Paigi. Microgrid: a conceptual solution. In IEEE
35th Annual Power Electron. Specialists Conf., volume 6, pages 4285–
4290 Vol.6, Jun. 2004.

[12] D. Gregoratti and J. Matamoros. Distributed Energy Trading: The
Multiple-Microgrid Case. IEEE Trans. Ind. Electron., 62(4):2551–2559,
Apr. 2015.

[13] Y. Wang, W. Saad, Z. Han, H. V. Poor, and T. Başar. A game-theoretic
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