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ABSTRACT Carpooling services allow drivers to share rides with other passengers. This helps in reducing the 

passengers’ fares and time, as well as traffic congestion and increases the income for drivers. In recent years, 

several carpooling based recommendation systems have been proposed. However, most of the existing systems 

do no effectively balance the conflicting objectives of drivers and passengers. We propose a Highest Aggregated 

Score Vehicular Recommendation (HASVR) framework that recommends a vehicle with highest aggregated 

score to the requesting passenger. The aggregated score is based on parameters, namely: (a) average time 

delay, (b) vehicle’s capacity, (c) fare reduction, (d) driving distance, and (e) profit increment. We propose a 

heuristic that balances the incentives of both drivers and passengers keeping in consideration their constraints 

and the real-time traffic conditions. We evaluated HASVR with a real-world dataset that contains GPS trace 

data of 61,136 taxicabs. Evaluation results confirm the effectiveness of HASVR compared 

to existing scheme in reducing the total mileage used to deliver all passengers, reducing the passengers’ fare, 

increasing the profit of drivers, and increasing the percentage of satisfied ride requests. 

INDEX TERMS Transportation System, Vehicular Recommendation, Information Filtering,

I. INTRODUCTION

With the continuous manufacturing of vehicles, the traffic 
congestion and air pollution have become two of the major 
challenges in urban cities of the world. According to a survey 
conducted in New York City, approximately 13000 taxis 
consume around 32 million gallons of gas per year with an 
average rate of 25 miles per gallon (MPG) [1]. This results in 
excessive amount of gas consumption every year, more than 
the annual gas utilization in smaller countries e.g., Central 
African Republic. Usually in urban cities passengers have to 
wait for a long time for taxicabs to become available. 
Passengers have to wait more than 30 minutes on average for 
a taxicab and average fare is more than 6 times of a public 
transport fare in urban cities [2].

The above mentioned issues have gained much research 

interest in the recent years leading to an emerging solution of 

carpooling services. Carpooling refers to a service where 

multiple passengers with similar schedules and 

itineraries 

share ride. The shared use of a vehicle by more than one 

passenger reduces the number of vehicles on roads, resulting 

in reduced fuel consumption, traffic congestion, and pollution. 

Carpooling improves vehicles’ availability during rush hours 

or bad weather conditions, resulting in reduced waiting time 

for passengers. 

The total fare is shared among all the passengers 

participating in a carpool. This reduces the fare for each 

individual passenger. The combined carpool fare is higher 

than the regular taxicab fare, resulting in increased profit for 

drivers [3]. Recently, the companies like Uber and Careem 

have also launched carpooling in recent years [4] [5]. The 

Uber’s carpooling service is “Uber Pool” [4] whereas the 

Careem has launched a service named “Careem Sawa” [5] to 

allow passengers to share their rides. Carpooling has become 

a popular vehicular service that represents 10% of all commute 

trips in United States in 2009 [6]. 



Although carpooling service has solved the problems of 

passengers and drivers, yet at the same time it has also slightly 

increased the travel time and inconvenience of passengers. 

Currently, there are many important challenges in the 

implementation and adoption of carpooling services. There are 

three primary stakeholders involved in a dynamic carpooling 

system, namely: (a) existing passengers, (b) requesting (new) 

passengers, and (c) drivers. Considering objectives of existing 

passengers while recommending a carpooling vehicle to a new 

passenger is an important issue that needs to be addressed by 

the existing carpooling services. Moreover, striking a balance 

between multiple incentives of all parties involved in 

carpooling while recommending a vehicle is a major challenge 

faced by most of the existing dynamic carpooling systems. 

This is because, the attempt to reduce the fare of passengers 

also decreases the profit of the drivers. Alternatively, if the 

objective is to increase profit of drivers, then passengers will 

have to pay more, as well as may get time penalty. The 

techniques to schedule the ride requests at real-time need to be 

improved in a way that can minimize the travel time of each 

individual passenger due to carpooling.  
A significant amount of research work is being carried out 

to minimize the inconvenience of an individual passenger due 

to carpooling [7]. Call Cab [8] recommended taxicab on the 

basis of single passenger’s objective; taxicab with minimum 

passenger’s detour ratio without considering travel time and 

taxicab capacity constraints. Moreover, the aforementioned 

system did not consider the objectives of existing passengers. 

Real-time City-Scale Taxi Ridesharing [9] is able to handle 

real-time ride requests but it performs simple scheduling. The 

aforementioned system served each new ride request by 

dispatching a taxicab that satisfies it with minimum increase 

in taxi’s scheduled travel distance. It did not consider Quality 

of Service (QoS) i.e., travel time and inconvenience of 

passengers in the chosen taxi while scheduling. Although the 

authors in [9] considered the objectives of existing passengers 

e.g., time and fare, yet at the time of selecting the taxi that can 
satisfy new ride request, the proposed algorithm selects the 
one with minimum increase in taxi’s scheduled travel distance. 
Moreover, the system computed recommendations on the 
basis of driver’s objective only. The monetary constraints 
proposed in [9] exhibit limitations in terms of fare reduction 
computation of existing and new passenger(s). The new 
passenger is compensated by a fixed amount in fare regardless 
of the increase in travel time. coRide [10] handled static ride 
requests in which both passengers and taxicabs are at the same 
pick up location. Although algorithms proposed by coRide 
[10] maintain balance between incentives of drivers and 
passengers, they are not able to handle dynamic (real-time) 
ride requests. Cloud-based public vehicle system [11] 
proposed multi-hop ridesharing system, in which a passenger 
can transfer between different vehicles and may be served by 
multiple vehicles. The algorithms proposed for the transfer 
problem in [11] calculate a transfer point for each ride request 
that can most reduce the traveling distance of vehicle. Thus,

benefit of only drivers is taken into account while computing 

transfer points of passengers. 

All of the above mentioned systems consider either the 

objectives of drivers or passengers while computing vehicle 

recommendations. To address the above mentioned 

challenges, we propose a dynamic and unified carpooling 

system that provides vehicle recommendations to real-time 

ride requests. The recommended vehicle in the proposed 

system can be occupied or vacant. We propose a heuristic 

based vehicle recommendation framework, HASVR, which 

considers multiple objectives of drivers and passengers 

rather than a single objective while generating vehicle 

recommendations. We summarize the contribution of this 

paper as follows: 

 A recommendation frameworks is presented that

combines multiple parameters of both drivers and

passengers while computing recommendations. The

parameters of passengers are (a) average time delay,

(b) vehicle’s capacity, and (c) fare reduction. The

drivers’ parameters are: (a) profit increment and (b)

driving distance. The vehicle recommended by our

proposed framework is an overall preferred vehicle

that takes into account the objective of each party

participating in dynamic carpooling i.e., existing

passengers, new passenger, and driver.

 A heuristic based scheduling algorithm; variant of

nearest neighbor (NN) algorithm [12] is used to

schedule the ride requests.

 A policy is used to reduce fare of each passenger,

whether existing or new. The fare of each passenger

reduces in proportion to increase in travel distance.

The extra charges to pick up a new passenger are

included in the regular fare of new passenger to

benefit drivers. Our recommendation framework

improves the dynamic carpooling by maintaining

balance among the incentives of all parties involved in

carpooling.

 The experiments are conducted with real-world

dataset from T-Drive trajectory data sample [13] and

the results show effectiveness of HASVR as compared

to vacant taxicab service.

The remainder of this paper is organized as follows. Section 

2 reviews the related work The system architecture is 

described in Section 3. In Section 4, we present our proposed 

model for vehicle recommendation. Section 5 evaluates our 

system with a large-scale dataset. Finally, the conclusions 

and future work are reported in the last Section 6. 

II. LITERATURE REVIEW

The problem of providing taxicab recommendations has

attracted the attention of many researchers over the last

decades. Recommender systems in taxicab industry play a

significant role in helping passengers and drivers in a variety

of ways. Yuan et al. [14] determined fast driving directions

that are learned from the historical (GPS) trajectories of taxis.



The proposed approach provided a taxi’s driver with fastest 

route to a given destination at a given travel start time. Zhang 

et al. [15] proposed a system for taxicab drivers that finds 

optimal routes to pick up passengers with an objective to 

reduce drivers’ cruising miles. The aforementioned systems 

were proposed only for non-sharing taxicabs in which capacity 

of taxicabs is usually not fully utilized. In addition, these 

systems considered the objectives of only drivers while our 

system considers the perspectives of both passengers and 

drivers.  

Zhang et al. [16] introduced a novel parameter called detour 

ratio, which is defined as the ratio of a passenger’s detour 

distance (extra distance due to carpooling) and the distance of 

the passenger’s direct route. The proposed system 

recommends either a vacant taxicab with zero detour ratio or 

an occupied taxicab with minimum detour ratio. Moreover, the 

detour ratio is calculated at real-time. Zhang et al. [8] extended 

the earlier work [16] by adding price mechanism. The 

proposed mechanism reduces fare of an individual passenger 

and increases profit of drivers at the same time. However, the 

proposed pricing model did not compensate the travel time 

delay of a passenger in the form of fare reduction. Orey et al. 

[17] proposed a distributed and dynamic taxi-sharing 
algorithm enhanced by wireless communications and 
distributed computing capabilities to perform coordination 
between customers’ requests.

Setzke et al. [18] proposed and evaluated a dynamic 

ridesharing matching algorithm for crowd sourced delivery 

platforms that assigns items to potential drivers. The 

aforementioned algorithm automates and optimizes the 

assignment of transportation requests to drivers by matching 

them on the basis of transportation routes and time constraints. 

Cao et al. [19] proposed an efficient and scalable ridesharing 

service that allows riders to provide the maximum price they 

can pay for the service and the maximum time they can pay 

before being picked up. The aforementioned technique 

employs a cost model that estimates the cost of the ride sharing 

service for each driver. The proposed technique identifies 

those drivers that can satisfy the rider request within its cost 

limits and temporal constraints on the basis of cost model. 

Agatz et al. [20] proposed a dynamic carpooling technique 

that considers matching drivers and riders on a short notice. 

The paper proposed optimization-based approaches with an 

objective to minimize the total system- wide vehicle miles 

incurred by system users, and their individual travel costs. 

Ma et al. [3] proposed a system that takes real-time ride 

requests as an input and generates ridesharing schedules. 

These schedules reduce total travel distance of taxis. Shuo Ma 

et al. [9] extended the earlier work [3]. The proposed 

ridesharing system [9] introduced the mechanism of taking the 

agreement of existing passengers before generating a 

ridesharing schedule. The aforementioned technique added 

monetary constraints in the scheduling algorithm. However, 

the scheduling algorithm in the aforementioned systems do 

not 

consider the increase in travel time of existing passengers 

while scheduling a new ride request. 

Ming Zhu et al. [11] proposed a cloud-based public vehicle 

system where passengers can transfer among public vehicles 

according to the scheduling decisions made using cloud 

computing. The aim of aforementioned approach is to reduce 

the travel distance of all public vehicles with service assurance 

for passengers e.g., transfer time and detour ratio. Although 

the proposed approach improves the ride availability but lacks 

pricing mechanism i.e., how to charge passengers when they 

are transferred among vehicles. Desheng Zhang et al. [10] 

calculated cost-efficient carpool routes for taxicab drivers in 

response to delivery requests of passengers. This reduces the 

total mileage of taxicabs. The proposed approach provides the 

concept of delivery graph, which indicates the schedule of a 

carpool route to deliver passengers. The pricing model 

compensates increase in travel time in the form of fare 

reduction for the individual passenger. However, the proposed 

algorithm [10] can only handle the static ride requests in which 

both passengers and taxicabs are present at the same pick-up 

location. Moreover, the proposed technique is not able to 

handle the new requests (requests that arrive 0.25 or 1 hour 

before the delivery start time) efficiently.  

Moreover, the carpooling services [8], [9] consider either the 

objectives of passengers or drivers while finding an optimal 

vehicle to serve the requesting passenger. In addition, these 

carpooling systems do not consider the objectives of existing 

passengers while computing vehicle recommendations.  

Huang et al. [21] proposed a branch and bound algorithm, 

a mixed-integer-programing algorithm, and an optimized 

kinetic tree algorithm to dynamically match real-time ride 

requests to servers vehicles) in a road network to allow 

ridesharing. The goal of before mentioned approach is to 

schedule requests in real-time and minimize the servers’ travel 

times i.e., objective of only drivers is considered. 

Asghari et al. [22]  proposed a fair pricing model with an 

objective to satisfy both the constraints of drivers and riders 

simultaneously. The aforementioned model is an auction-

based framework where each driver automatically bids on 

every nearby request by considering a number of parameters 

such as both the driver’s and the riders’ profiles, their 

destinations, the pricing model, and the current number of 

riders in the vehicle. The server determines the driver that 

generates highest profit and assigns the rider to that driver. 

However, the proposed model considers only objectives of 

only drivers and platform owner   while assigning the request 

to a driver. 

To address these limitation, our proposed heuristics based 

recommendation framework, HASVR, presents a solution for 

maintaining a balance among the objectives of all the parties 

involved in carpooling systems while finding an optimal 

vehicle to serve the new request. 



III. SYSTEM ARCHITECTURE

As shown in Fig. 1, we consider a city road network map and

divide it into two components: (a) the pick and drop locations

of passengers and (b) the routes among those locations. It is

possible to have multiple routes between two locations. We

estimate travel time and driving distance between any two

locations using Google maps API [23]. The API computes

distance and time between any two locations by also

considering the distances of in-between road segments. Fig. 2

shows the major components of our proposed architecture.

The following are the major components of our proposed

system architecture.

A. INPUT MODULE

The input module has two major components, namely ride

requests and vehicles’ current state.

1) RIDE REQUEST

As shown in Fig. 2 (bottom left), a passenger sends a ride

request 𝑟𝑒𝑞 to the recommendation system that contains the

following attributes:

 𝑟𝑒𝑞. 𝑡: Time when 𝑟𝑒𝑞 is submitted.

 𝑟𝑒𝑞. 𝑜: Pick-up location of 𝑟𝑒𝑞.

 𝑟𝑒𝑞. 𝑑: Destination of 𝑟𝑒𝑞.

 𝑟𝑒𝑞. 𝑒𝑝𝑡: Earliest pick-up time of 𝑟𝑒𝑞 representing

earliest possible time when passenger wants to be

picked up.

 𝑟𝑒𝑞. 𝑒𝑑𝑡 : Earliest drop-time of 𝑟𝑒𝑞 representing

earliest possible time when passenger can be dropped

off.

 𝑟𝑒𝑞. 𝑠𝑑𝑡: Scheduled drop-time indicating latest

possible time when passenger can be dropped off

according to a generated schedule of a vehicle.

We have considered two types of requests in our model, 

namely (a) new ride request 𝑟𝑒𝑞𝑛𝑒𝑤 ,  that arrives at current 
time 𝑡𝑐𝑢𝑟 and (b) existing ride requests 𝑟𝑒𝑞𝑒 that are already

assigned to an occupied vehicle. We further assume that two 

ride requests cannot arrive at exactly the same time period as 

still there will be a difference of microseconds or nanoseconds 

in the two requests. However, in extreme case if two requests 

arrive at exactly the same time, then the requests will be sorted 

and prioritized using the First in First Out (FIFO) mechanism, 

based on the request ID associated with each request. 

However, still if we strictly consider that two or more requests 

arrive at exactly the same time, then sorting them in different 

orders may lead to different results. Moreover, we have used 

the indexing on various table fields, including, cab id, latitude, 

and longitude in database to speed up the query processing 

time. To reduce the complexity of the simulator, we further 

assume that if a request cannot be satisfied due to the 

computed cab rankings below threshold, the request will be 

discarded, and not shifted to the next time stamp. A new 

passenger only submits request time, origin, and destination. 

For simplicity, we consider 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑒𝑝𝑡 to be equal to

𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑡. The 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑒𝑑𝑡 can be calculated using the

following formula, where 𝑇 indicates travel time of the fastest 

route from 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑜 to 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑑.

𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑒𝑑𝑡 = 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑒𝑝𝑡 +
𝑇( 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑜, 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑑).

(1) 

2) VEHICLE STATE

A vehicle state 𝑠𝑣  denotes the current status of the vehicle 𝑣 at

time 𝑡 as shown in Fig. 2 (top left). It contains the following

fields.

 𝑣. 𝐼𝐷: Identification number of vehicle.

 𝑣. 𝑡: Time stamp associated with the current state of

vehicle.

 𝑣. 𝑙: Geographical location (longitude, latitude) of

vehicle associated with 𝑣. 𝑡.

 𝑣. 𝑒𝑝: Number of existing passengers in vehicle

at 𝑣. 𝑡.

Vehicle 

location

𝑟𝑒𝑞1. 𝑜 
.Orig

𝑟𝑒𝑞1. 𝑑 
.Orig

𝑟𝑒𝑞2. 𝑑
.Origin

𝑟𝑒𝑞3. 𝑑 
.Origin

𝑟𝑒𝑞2. 𝑜 
.Origin

𝑟𝑒𝑞3. 𝑜 
.Orig

𝑆𝑅𝑜 

FIGURE 1.  Road Network. Here 𝒓𝒆𝒒 represents request, o represents origin of a request, and d represents destination of a 

request



 𝑣. 𝑐 : Current seat capacity of vehicle at 𝑣. 𝑡
𝑣. 𝐸𝐷: Set of destinations of existing passengers in vehicle, 

such that 𝑣. 𝐸𝐷 = {𝑟𝑒𝑞1.𝑑,… , 𝑟𝑒𝑞𝑛−1.𝑑}, where 𝑛 − 1 =
𝑒𝑝.  

B. PROCESSING MODULE

Ride requests and vehicles’ current states are imported to the

processing module as shown in Fig. 2 (middle) that further

comprises of three stages that need to be executed in the

following sequence: vehicle searching, vehicle scheduling,

and generating parameters matrix. The current location of a

vehicle 𝑣 at arrival time of new request is represented as 𝑣. 𝑙.

1) VEHICLE SEARCHING

This is the first step of processing module which extracts a

nearby vehicle set 𝑉𝑁 where vehicles lie within searching

radius 𝑆𝑅𝑜 around the request origin. Fig. 1 shows a road

network of a city where three ride requests have been

generated at time 𝑡. The locations of vehicles, origin and

destination of ride requests are randomly distributed over the

network as shown in Fig. 1. For instance, the 𝑆𝑅𝑜 (represented

by a circle in Fig. 1) around origin of 𝑟𝑒𝑞1 contains ten

vehicles. While finding the nearby vehicles around request

origin, it is also important to consider the seat capacity of

vehicle to check whether or not the vehicle can accommodate

requesting passenger. Therefore, we represent nearby vehicle

set by 𝑉𝑐
𝑁. The current seat capacity of a vehicle can be

calculated using following equation:

𝑣. 𝑐 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑎𝑥 − 𝑣. 𝑒𝑝, ∀𝑣 ∈ 𝑉𝑐
𝑁 . (2)

Where 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑎𝑥  is maximum seat capacity of a vehicle.

2) VEHICLE SCHEDULING

After identifying the set of candidate vehicles i.e., 𝑉𝑐
𝑁 for 

arrived request 𝑟𝑒𝑞𝑛𝑒𝑤 , the scheduling module next calculates 
the schedules of occupied vehicles in the set. The calculation

of shared route for each occupied vehicle in nearby vehicle set 

is modelled as travelling salesman problem (TSP) [24] that 

states: “Given a list of cities and distances between each pair 

of cities, what is the shortest possible route that visits each city 

exactly once”. It is an NP-hard problem and finding an optimal 

solution results in long running time. Thus, a heuristic 

algorithm should be used to calculate the shared route within 

reasonable time. 

If the vehicle 𝑣 ∈ 𝑉𝑐
𝑁 is occupied, then a variant of nearest

neighbor (NN) heuristic algorithm [12] is used to schedule all 

ride requests (new and existing). Nearest neighbor procedure 

is one of the commonly used heuristics of travelling salesman 

problem (𝑇𝑆𝑃). NN algorithm builds a trip on the basis of 

travelling distance from the currently visited node to the 

closest node in the network. However, the heuristic produces 

an approximately optimal solution from the distance matrix.  

3) GENERATING PARAMETERS MATRIX

Given the set 𝑉𝑐
𝑁 (each vehicle in the set has its own current

state) retrieved for new ride request 𝑟𝑒𝑞𝑛𝑒𝑤, the purpose of

generating parameters matrix is to find vehicle 𝑣 ∈  𝑉𝑐
𝑁 that

is preferred from the perspective of driver, requesting

passenger, and existing passengers. We have considered the

following five parameters of drivers and passengers in our

methodology, namely: (a) average time delay of passengers,

(b) vehicle capacity, (c) fare reduction of passengers, (d) total

driving distance, and (e) profit increment to driver. If vehicle

is occupied, then it needs to be scheduled before calculation of

aforementioned parameters. All parameters except vehicle

capacity are calculated on the basis of NN schedule.

C. RECOMMENDATION MODULE

The last module of our system architecture as shown in Fig. 2

(right most) is the recommendation module where each

𝑟𝑒𝑞𝑛𝑒𝑤  that arrives at current time 𝑡𝑐𝑢𝑟 is recommended a

preferred vehicle from the set 𝑉𝑐
𝑁. The vehicle needs to be

ranked with respect to average time delay, vehicle capacity,

FIGURE 2.  System Architecture



fare reduction, driving distance, and profit increment. 

Therefore, we need to sum all the aforementioned parameters 

to calculate an aggregated score. 

IV. PROPOSED VEHICLE RECOMMENDATION
FRAMEWORK

In this section, we discuss in detail the proposed heuristic 

based vehicle recommendation framework HASVR. The 

framework has two major modules: (a) scheduling module for 

occupied vehicles and (b) calculation of aggregated score for 

each vehicle.  

A. SCHEDULING MODULE

The scheduling algorithm produces a temporally-ordered

sequences of locations that an occupied vehicle 𝑣 ∈ 𝑉𝑐
𝑁 will

visit when 𝑟𝑒𝑞𝑛𝑒𝑤  is assigned to it. The locations include

origin of new passenger and destinations of all (new and

existing) passengers. The schedule indicates the order of

serving the ride requests if the requesting passenger is

assigned to an occupied vehicle 𝑣 ∈ 𝑉𝑐
𝑁.

Algorithm 1 illustrates the procedure of nearest neighbor 

scheduling. The algorithm takes as input the following 

parameters: (a) currently arrived ride request 𝑟𝑒𝑞𝑛𝑒𝑤 that

wants recommendation of preferred vehicle and (b) current 

state of vehicle 𝑠𝑣  from which location of vehicle at 𝑡𝑐𝑢𝑟 , and

set of destinations of  existing passengers can be extracted. 

The term “visited” and “unvisited” is used to differentiate 

whether the location has been inserted into the schedule 

(termed as “visited”) or not (termed as “unvisited”). Following 

text explains the steps involved in the algorithm.  
 Initializations (Line 1−Line 3): In Line 1, various

lists (data structures) used by algorithm are declared.

𝑆 consists of a list where each index stores three

elements, (i) visited location 𝑙𝑜𝑐𝑣  , (ii) estimated

time of arrival 𝐸𝑇𝐴 at the visited location according

to the created schedule (also referred as scheduled

arrival time), and (iii) distance travelled 𝑑 to the

location from current (last or previous) visited

location. The distance and travel time are computed

by using Google maps distance matrix API [23]. The

current location of vehicle 𝑣. 𝑙 at 𝑡𝑐𝑢𝑟 is the starting

point from where NN schedule is created. Therefore,

𝑣. 𝑙 is first location to be inserted in 𝑆. Distance

travelled to 𝑣. 𝑙 is 0 and estimated time of arrival at

𝑣. 𝑙 is equal to request time (Line 2). Origin of

requesting passenger and destinations of existing

passengers are appended to 𝑈𝑣𝑠 (Line 3). Destination

of requesting passenger is appended to 𝑈𝑣𝑠 after

visiting corresponding origin.

 Schedule Creation (Line 4- Line 28): On each

iteration of while loop, nearest location from current

visited location 𝑣𝑠𝑐𝑢𝑟𝑟  is inserted into 𝑆. While loop

continues to insert locations into 𝑆 unless each

location in 𝑈𝑣𝑠 gets visited (inserted into 𝑆) (Line 4).

Both lists 𝑆 and 𝑈𝑣𝑠 are updated on each iteration of

while loop. A location is added to 𝑆 and removed 

from 𝑈𝑣𝑠 on each while loop iteration. Length of 𝑆 is

calculated to refer the current visited location in 

𝑆 (Line 5). A list 𝑠𝑒𝑙𝑒𝑐𝑡 is initialized as empty on 

each iteration of while loop (Line 6). This list stores 

each unvisited 𝑙𝑜𝑐𝑢𝑣 ∈ 𝑈𝑣𝑠 along with travel time

and distance from 𝑣𝑠𝑐𝑢𝑟𝑟  to 𝑙𝑜𝑐𝑢𝑣 .

 Precedence rule of origin and destination (Line 7-

Line 12): The origin of new request must be inserted

before the destination in the schedule. The algorithm

first checks whether the origin has been visited or not

(Line 7). If origin has been visited, then algorithm

checks whether it is the last visited location in 𝑆 or

not i.e., finds position of new request’s origin in 𝑆
(Line 8). If origin is found to be last visited location

in 𝑆, then destination of new request is appended to

list of unvisited locations 𝑈𝑣𝑠 (Line 9-Line 12). The

destination is included in the decision “where to go

next” only if the corresponding origin has been

visited. If each unvisited location in 𝑈𝑣𝑠 has been

inserted into 𝑆 (𝑈𝑣𝑠 gets empty), then control goes

out of the while loop and algorithm terminates

returning schedule 𝑆 (Line 13-Line15, and Line 28).

 Finding “Nearest” location (Line 16- Line 27): In

this step, spatial closeness (distance) from the current

visited location to each unvisited location 𝑙𝑜𝑐𝑢𝑣 ∈
𝑈𝑣𝑠 is measured. The last location inserted into S is

the currently visited location (Line 16). The unvisited

location 𝑙𝑜𝑐𝑢𝑣  that has highest spatial closeness to

𝑣𝑠𝑐𝑢𝑟𝑟  is scheduled to be next location to visit (Line

17 –Line 22). In line 24, the estimated arrival time at

the nearest location 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑎𝑟  is calculated by

adding the estimated arrival time at previous visited

location and travel time from 𝑣𝑠𝑐𝑢𝑟𝑟

to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑎𝑟 . The nearest location along with its

spatial closeness from 𝑣𝑠𝑐𝑢𝑟𝑟  and estimated arrival

time is appended as a list to S (Line 25). The nearest

location needs to be removed from 𝑈𝑣𝑠 after its

insertion into 𝑆 (Line 26).

Fig. 3 gives an example of how to create a NN schedule 

serving three ride requests (one new and two existing) from 

the vehicle current location c. The origin and destination nodes 

of new request are 𝑎 and 𝑏, respectively. The destinations 

nodes of two existing passengers are 𝑥 and 𝑦. A weight on an 

edge (e.g., 𝑑𝑐→𝑥) indicates real-world mileage of the fastest

route from node 𝑐 to node 𝑥. Therefore, NN route will be 𝑐 →
𝑎 → 𝑥 → 𝑏 → 𝑦 . 

B. AGGREGATE SCORE CALCULATION

For each vehicle 𝑣 ∈ 𝑉𝑐
𝑁, our proposed model calculates the

values of various parameters as discussed previously. The

recommendation module combines all the calculated

parameters to calculate an aggregate score of each vehicle  𝑣 ∈
𝑉𝑐

𝑁. This aggregated score is used as a rating scale that is

generated by the recommender system by considering



multiple objectives of passengers (new and existing) and 

drivers. Each parameter is normalized before aggregating so 

that each parameter’s value is proportional to its original 

value. In this section, various equations to calculate the 

parameters will be discussed.  

The average time delay, capacity, fare reduction, driving 

distance, profit increment, and aggregated score 𝐴𝑆 of a 

vehicle 𝑣 ∈ 𝑉𝑐
𝑁, is represented

by 𝑣. 𝑡𝑑𝑎𝑣𝑔, 𝑣. 𝑐, 𝑣. ∑ ∆𝑓𝑎𝑟𝑒𝑖 ,
𝑛
𝑖=1  𝑣. 𝐷𝑇𝑜𝑡𝑎𝑙 , 𝑣. ∆𝑃𝑟𝑜𝑓𝑖𝑡, and

𝑣. 𝐴𝑆 respectively.The aggregated score of a vehicle 𝑣. 𝐴𝑆 is 

calculated by (3). Finally, our model recommends the vehicle 

with highest 𝐴𝑆  to the requesting passenger. 

Algorithm 1. NN Scheduling 

Input: Ride request arrived at 𝒕𝒄𝒖𝒓: 𝒓𝒆𝒒𝒏𝒆𝒘, state of vehicle 𝒗 at 𝒕𝒄𝒖𝒓: 𝒔𝒗

Output: Schedule of 𝒗 if 𝒓𝒆𝒒𝒏𝒆𝒘 is assigned to 𝒗: 𝑺

Definitions: 𝒕𝒄𝒖𝒓 = current time, 𝑺 = list to store visited locations, 𝑼𝒗𝒔 = list to store unvisited

locations, DT = list to store travel time 𝑻 and distance 𝒅 from one location to another, 𝒔𝒆𝒍𝒆𝒄𝒕 = 

list to store DT along with each unvisited location 

1. 𝑆 ← {} ; 𝑈𝑣𝑠 ← {} ; 𝐷𝑇 = (𝑇, 𝑑)

2. 𝑆  𝑓𝑖𝑟𝑠𝑡 . 𝑙𝑜𝑐𝑣 ← 𝑣. 𝑙; 𝑆  𝑓𝑖𝑟𝑠𝑡 . 𝑑 ← 0 ; 𝑆  𝑓𝑖𝑟𝑠𝑡 . 𝐸𝑇𝐴 ← 𝑡𝑐𝑢𝑟

3. 𝑈𝑣𝑠 ← 𝑈𝑣𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑣. 𝐸𝐷, 𝑟𝑒𝑞𝑛𝑒𝑤. 𝑜)

4. while 𝑙𝑒𝑛𝑔𝑡ℎ (𝑈𝑣𝑠) ≥ 0 do

5. 𝑙𝑠 ← 𝑙𝑒𝑛𝑔𝑡ℎ (𝑆)

6. 𝑆𝑒𝑙𝑒𝑐𝑡 ← {}    // Initialize an empty list 𝑠𝑒𝑙𝑒𝑐𝑡

7. if 𝑠𝑒𝑎𝑟𝑐ℎ (𝑆, 𝑟𝑒𝑞𝑛𝑒𝑤. 𝑜) returns 𝑇𝑅𝑈𝐸 then //search 𝑟𝑒𝑞𝑛𝑒𝑤. 𝑜 in 𝑆 and if found then

8. 𝑃 ← 𝐺𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑆, 𝑟𝑒𝑞𝑛𝑒𝑤. 𝑜 ) // find position of 𝑟𝑒𝑞𝑛𝑒𝑤. 𝑜 in 𝑆

9. if 𝑃 equals 𝑙𝑠 then

10. 𝑈𝑣𝑠 ← 𝑈𝑣𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑟𝑒𝑞𝑛𝑒𝑤. 𝑑)

11. end if

12. end if

13. if 𝑈𝑣𝑠 gets {} then

14. break

15. end if

16. 𝑣𝑠𝑐𝑢𝑟𝑟 ← 𝑆  𝑙𝑠 . 𝑙𝑜𝑐𝑣

17. for each  𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑙𝑜𝑐𝑢𝑣 ∈ 𝑈𝑣𝑠 do

18. 𝐷𝑇(𝑇, 𝑑) = 𝐺𝑒𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒&𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣𝑠𝑐𝑢𝑟𝑟,  𝑙𝑜𝑐𝑢𝑣)  // from 𝑣𝑠𝑐𝑢𝑟𝑟 to 𝑙𝑜𝑐𝑢𝑣

19. 𝑠𝑒𝑙𝑒𝑐𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑖𝑠𝑡(𝑙𝑜𝑐𝑢𝑣, 𝐷𝑇))

20. end for

21. 𝐷𝑇𝑚𝑖𝑛 ←  𝐷𝑇 from 𝑠𝑒𝑙𝑒𝑐𝑡 with 𝑀𝐼𝑁 distance

22. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑎𝑟 ← 𝑙𝑜𝑐𝑢𝑣  from 𝑠𝑒𝑙𝑒𝑐𝑡 such that 𝐷𝑇 =  𝐷𝑇𝑚𝑖𝑛

23. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑒𝑎𝑟 ←  𝐷𝑇𝑚𝑖𝑛. 𝑑

24. 𝐸𝑇𝐴𝑛𝑒𝑎𝑟 ← 𝑆  𝑙𝑠  .𝐸𝑇𝐴 + 𝐷𝑇𝑚𝑖𝑛. 𝑇

25. 𝑆 ← 𝑆. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑖𝑠𝑡(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑎𝑟 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑒𝑎𝑟 , 𝐸𝑇𝐴𝑛𝑒𝑎𝑟))

26. 𝑈𝑣𝑠 ← 𝑈𝑣𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑎𝑟)

27. end while

28. return 𝑆



𝑣. 𝐴𝑆 =
1

𝑣. 𝑡𝑑𝑎𝑣𝑔

+ 𝑣. 𝑐 + 𝑣.∑∆𝑓𝑎𝑟𝑒𝑖 ,

𝑛

𝑖=1

+
1

𝑣. 𝐷𝑇𝑜𝑡𝑎𝑙

+ 𝑣. ∆𝑃𝑟𝑜𝑓𝑖𝑡, ∀𝑣

∈ 𝑉𝑐
𝑁.

(3) 

Where 𝑛 = 𝑣. 𝑒𝑝 + 1. Next, we explain various equations to 

calculate the parameters.  

1) VEHICLE CAPACITY C

It represents the number of seats available in 𝑣 ∈ 𝑉𝑐
𝑁 at current

time 𝑡𝑐𝑢𝑟. The current capacity of vehicle at 𝑡𝑐𝑢𝑟 is simply

calculated by (2).

2) TOTAL DRIVING DISTANCE DTOTAL

It indicates the total distance of the route that the vehicle 𝑣
(vacant or occupied) will follow if 𝑟𝑒𝑞𝑛𝑒𝑤 is assigned to it.

a) If vehicle is vacant, then it will follow a direct route to

serve the new passenger. The direct route is represented

as follows.

𝑅𝑜𝑢𝑡𝑒𝐷𝑖𝑟𝑒𝑐𝑡 = 𝑣. 𝑙 → 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑜 → 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑑. (4) 

The total distance can be calculated by using the following 

equation. 

𝐷𝑇𝑜𝑡𝑎𝑙 = 𝑑𝑣.𝑙→𝑟𝑒𝑞𝑛𝑒𝑤.𝑜 +    𝑑𝑟𝑒𝑞𝑛𝑒𝑤.𝑜→𝑟𝑒𝑞𝑛𝑒𝑤.𝑑 . (5)

Where 𝑑𝑣.𝑙→𝑟𝑒𝑞.𝑜 represents the pick-up distance 𝑑𝑝𝑖𝑐𝑘 and

𝑑𝑟𝑒𝑞𝑛𝑒𝑤.𝑜→𝑟𝑒𝑞𝑛𝑒𝑤.𝑑 is the direct distance between origin and

destination 𝑑𝑑𝑖𝑟𝑒𝑐𝑡 .

b) In case of an occupied vehicle,  𝐷𝑇𝑜𝑡𝑎𝑙  is the distance

of nearest neighbor route (also referred as 𝐷𝑁𝑁). The

vehicle will follow the route of the NN schedule to

serve new and existing passengers. First location is 

always the vehicle’s current location in the created 

route. We can represent NN route as a sequence defined 

as follows. 

𝑅𝑜𝑢𝑡𝑒𝑁𝑁 = (𝑙𝑜𝑐𝑖)𝑖=1
𝐿 . (6) 

In (6) 𝑙𝑜𝑐𝑖  represents 𝑖𝑡ℎ location in the created route and 𝐿 is

number of locations in the route. 𝐷𝑇𝑜𝑡𝑎𝑙  is simply calculated

as follows. 

𝐷𝑇𝑜𝑡𝑎𝑙 = 𝐷𝑁𝑁 = ∑𝑑𝑙𝑜𝑐𝑖→𝑙𝑜𝑐𝑖+1

𝐿−1

𝑖=1

. (7) 

In our proposed model, we define a matching criteria to find 

whether the requesting passenger 𝑃𝑛𝑒𝑤  is able to share an

occupied vehicle or not. We define a regular distance 𝐷𝑅 to be

sum of distances of individual route of each passenger. The 

individual route of requesting passenger is from vehicle’s 

current location at 𝑟𝑒𝑞. 𝑡 to requesting passenger’s origin and 

then directly from origin to destination. For an existing 

passenger, the individual route is direct measurement from 

vehicle current location to existing passenger’s destination. 

The matching criteria is measured by the total distance 

reduced by ridesharing ∆𝐷𝑇 , defined as difference between

regular distance 𝐷𝑅 and 𝐷𝑁𝑁. An occupied vehicle 𝑣 ∈ 𝑉𝑐
𝑁

can be a candidate for a preferred vehicle if and only if it 

satisfies the following distance constraint. 

∆𝐷𝑇 = 𝐷𝑅 − 𝐷𝑁𝑁 ≥ 0. (8) 

If ∆𝐷𝑇  in (8) is greater, then this indicates that the vehicle’s

current location, origin and destinations in NN schedule lie 

near to each other, leading to a greater reduction in total 

distance. This implies that the new request matches to the 

FIGURE 3.  Constructing NN graph for three ride requests



destinations of existing passengers in 𝑣 ∈ 𝑉𝑐
𝑁 and assigning

the request to 𝑣 will provide benefit to both drivers and 

passengers (new and existing). However, if ∆𝐷𝑇  negative,

then the vehicle’s current location, origin and destinations in 

NN schedule lie far apart from each other such that sum of 

distances of individual routes of passengers is less than NN 

distance. This indicates that new request is not able to carpool 

existing passengers in 𝑣 ∈ 𝑉𝑐
𝑁. Therefore, the nearby

occupied vehicle 𝑣 needs to be removed from nearby vehicle 

set 𝑉𝑐
𝑁.

Fig. 4 shows an example where at current time 𝑡𝑐𝑢𝑟𝑟 , a new

request arrives and a nearby vehicle 𝑣 is occupied with 

passenger 𝑃1. The new passenger is represented as 𝑃2. The

origin of new passenger is represented by o whereas 

destinations of 𝑃1 and  𝑃2 are represented by d1 and d2,

respectively. The distance of NN schedule is 11.5 units 

whereas the sum of the individual distances is 14.5 units. The 

vehicle 𝑣 satisfies (8) with reduction of total distance of 3 

units. 

3) AVERAGE TIME DELAY TDAVG

Time delay is the difference of earliest drop time and 
scheduled drop time of a passenger. The average time delay 
gives an idea about delay that each passenger will tolerate on 
average if the requesting passenger is assigned to a vehicle 𝑣 
∈ 𝑉𝑐

𝑁. Average time delay can be computed by using the 
following formula.

𝑡𝑑𝑎𝑣𝑔 =
1

𝑛
∑(𝑟𝑒𝑞𝑖 . 𝑠𝑑𝑡 −

𝑛

𝑖=1

 𝑟𝑒𝑞𝑖 . 𝑒𝑑𝑡). (9) 

Where 𝑛 = 𝑣. 𝑒𝑝 + 1. We have assumed 1 passenger per ride 

request in our model. Earliest drop time of new request is 

calculated by using (1). Scheduled drop time of a passenger is 

simply the estimated arrival time at the corresponding 

destination according to NN schedule. The waiting time of a 

requesting passenger is decided from the time when the 

passenger submits request till the time when the vehicle 

reaches the pick-up location. The travel time delay is the delay 

incurred to passenger due to traveling detour distance (as 

compared to direct distance). The calculation of time delay 

also includes the waiting time of a new passenger (also 

referred as pick-up delay). 

For existing passengers, our model estimates that how much 

delay they have to tolerate as compared to direct travel time 

from vehicle current location 𝑣. 𝑙 at 𝑟𝑒𝑞. 𝑡 to their 

corresponding destinations. Obviously, pick-up delay of 

existing passengers is 0. If vehicle is vacant, then travel time 

delay is equal to 0 (only pick-up delay is incurred to requesting 

passenger).  

𝑡𝑑𝑎𝑣𝑔 = 𝑑𝑒𝑙𝑎𝑦𝑝𝑖𝑐𝑘

= 𝑇(𝑣. 𝑙 𝑎𝑡 𝑟𝑒𝑞. 𝑡, 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑜).
(10) 

 d1= x

 d2=b

current
location of v= c

                 vehicle v = {P1}

Individual Route                  NN Route

o=a

FIGURE 4.  Reduced Total Distance due to Carpooling



4) PRICE MECHANISM (FARE REDUCTION AND PROFIT
INCREMENT)

We have proposed a variant of win-win fare model [10]. In

order to motivate drivers and passengers to participate in

carpooling, the pricing mechanism is designed to provide

monetary incentives for all involved parties. Since the time

delay caused by detouring is the major concern of carpooling

systems, it is important to design the pricing mechanism while

considering the detouring of each passenger participating in

carpooling. The pricing scheme is used to calculate total fare

reduction and profit increment score of each vehicle 𝑣 ∈ 𝑉𝑐
𝑁.

The fare reduction score estimates that how much fare of new

passenger as well as existing passengers in vehicle 𝑣 can be

reduced if 𝑟𝑒𝑞𝑛𝑒𝑤 is assigned to 𝑣. Our proposed pricing

scheme works as follows.

 The passenger pays the regular fare 𝑅𝐹 while

travelling alone. The regular fare is the fare

proportional to the distance travelled by vehicle to

serve the passenger alone. Regular fare rate 𝜕𝑟  is a
constant price for unit distance. The regular fare

𝑅𝐹 corresponding to travelled distance 𝑑 is

represented as 𝑟𝑓(𝑑) =  𝜕𝑟 × 𝑑.  The value of 𝜕𝑟  can

be decided by the vehicle service company.

 The  𝑅𝐹 of a requesting passenger also includes the

pick-up charge in our model. Pick-up charge is the

fare for the distance that vehicle travels to pick the

passenger from its previous location in the created

route. This strategy helps to avoid loss to drivers.

 The passenger 𝑃 whose travel distance is increased

due to sharing the ride should be compensated in the

form of fare reduction and the reduction should be

proportional to increase in travel distance of 𝑃.
 The driver’s profit is the sum of fares estimated for

all passengers. It is important to mention that total

fare paid by all passengers equals the profit collected

by driver in our model. The expected profit of a

driver 𝑃𝑟𝑜𝑓𝑖𝑡𝑒𝑥𝑝 is the regular fare corresponding to

the total distance travelled by vehicle to serve all

passengers. The increase in driver’s profit indicates

that how much extra profit the driver can earn as

compared to expected profit. The increase in profit

can be calculated as follows.

∆Profit = collected profit −  Profitexp. (11) 

Collected profit = ∑EFi

n

i=1

 where, n

= v. ep + 1. 

(12) 

Profitexp = rf(DTotal). (13) 

In (12) 𝐸𝐹𝑖 represents the fare estimated for request 𝑖. The fare

constraint can be represented by (14); representing regular fare 

of request 𝑖 by 𝑅𝐹𝑖.

EFi ≤ RFi  ∀i = 1,… , n. (14) 

Each nearby vehicle 𝑣 ∈ 𝑉𝑐
𝑁 can be vacant or occupied at

arrival time of new request. Therefore, we consider two cases 

in our proposed mechanism. 

(a) Vacant vehicle∶ Vacant vehicle 𝑣 will follow a direct

route if new request is assigned to it. The requesting

passenger is regularly charged. Fare of requesting

passenger is estimated by (15).

EFnew  = RFnew = rf(dloci−1→loci
+

dloci→reqnew.d), loci = reqnew. o.
(15) 

Where 𝑙𝑜𝑐𝑖  represents 𝑖𝑡ℎ location in the created route. There

will be no reduction in fare as vehicle will follow a direct route 

to serve the passenger so total fare reduction associated with 

passenger of a vacant vehicle is 0. Profit increment score of a 

vacant vehicle is also 0 as the driver’s expected and collected 

profit is same. 

(b) Occupied vehicle: The total saving due to carpooling is

shared among all the involved parties (new passenger,

existing passengers, and driver). Total carpool saving

𝐶𝑆 is defined by (16).

CS = rf(DR − DNN),  where DR ≥ DNN. (16) 

To optimize the objectives of drivers and passengers, we 

need to share the carpool saving between driver and all 

passengers as a party. The percentage of carpool saving given 

to party of passengers is then shared between new passenger 

and existing passengers of vehicle on the basis of their detour 

distance (increase in travel distance) in NN route. We 

represent new ride request by 𝑟𝑒𝑞𝑛 and existing ride requests

by 𝑟𝑒𝑞1, … , 𝑟𝑒𝑞𝑛−1.

To calculate the fare reduction score of a vehicle 𝑣, our 

model first calculates regular fare and then estimates fare of 

each passenger 𝑃 on the basis of 𝑅𝑓, 𝐶𝑆 and 𝑃′𝑠 detour

distance. The  𝑅𝑓 of new passenger is calculated by using (15). 

However, the regular fare of an existing passenger is 

calculated using (17). 

RFi  = rf(dv.l→reqi.d
) ∀i = 1,… , n − 1. (17) 

The fare of each passenger in scenario of same origin and same 

destinations (same origin means when the request origin is in 

the way of cab) is estimated by the following equation. 

𝐸𝐹𝑖 = 𝑅𝐹𝑖 − 𝜇 × 𝐶𝑆 ×
1

𝑛
.  (18) 

In this case, detour distance is 0 as all passengers have 

common origin and common destination. This scenario 

happens when the new request’s origin matches to vehicle’s 

current location and destination of new request matches to 

common destination of all existing passengers. The parameter 

𝜇 in (18) and (19) indicates the percentage of total carpool 

saving given to passengers group. The percentage of carpool 



saving given to passengers is then shared equally between new 

passenger and existing passengers. Whereas the fare of each 

passenger in case of different origins and different destinations 

is estimated by the following equation. 

EFi = RFi − μ × CS ×
∆di

∑ ∆di
n
i=1

. (19) 

Where 𝑛 = 𝑣. 𝑒𝑝 + 1 and 0 < 𝜇 < 1. ∆𝑑𝑖  represents the

detour distance of passenger 𝑖 that can be calculated by (20). 

For an existing passenger 𝑃, detour distance represents extra 

distance that 𝑃 has to travel as compared to direct distance 

from the vehicle’s current location to the destination of 𝑃. 

However, for a new passenger, detour distance indicates extra 

distance as compared to direct distance from origin to 

destination.  

Detour distance
= travel distance in RouteNN

− direct distance. 

(20) 

The term 𝜇 × 𝐶𝑆 × (∆𝑑𝑖/∑ ∆𝑑𝑖
𝑛
𝑖=1 ) indicates the saving

given to an individual passenger. The expression ∆𝑑𝑖/
∑ ∆𝑑𝑖

𝑛
𝑖=1  is used to share the percentage of total carpool saving 

given to passengers group on the basis of their detour distance. 

The passenger having maximum detour distance will be 

rewarded maximum in the form of fare reduction. The total 

fare reduction associated with passengers of a nearby vehicle 

𝑣 ∈ 𝑉𝑐
𝑁  when new request assigned to it can be computed by

using the following formula, where 𝑛 = 𝑣. 𝑒𝑝 + 1. 

∑∆farei

n

i=1

= ∑RFi − ∑ EFi

n

i=1

n

i=1

. (21) 

Fig. 5 illustrates pricing strategy for the example given in Fig. 

4. If the passenger 𝑃1 agrees to tolerate the delay caused by the 
arrival of new passenger 𝑃2, then from the vehicle’s current 
location 𝑐, we can calculate the distance of individual routes 

and shared route on the basis of NN schedule as shown in Fig. 

5a and Fig. 5b, respectively. As vehicle 𝑣 in Fig. 4 satisfies the 

distance constraint of (8), therefore, fares and profit are 

calculated as follows. Given that 𝜇 = 0.5  and 𝜕𝑟 = 10, and 
the existing passenger 𝑃1 tolerates a detour distance of 2 units 
whereas new passenger 𝑃2’s detour distance is 3 units in 
shared route.  

The total carpool saving 𝐶𝑆 is calculated to be 30. The 

remaining fare of 𝑃1 is estimated as 60 − 0.5 × 30 × 
(2/(2 + 3)) = 54. The fare of 𝑃2 is estimated as (3 + 5.5) × 
10 − 0.5 × 30 × (3/(2 + 3)) =76. The passenger with more 

detour has more fare reduction. Passengers can save a total 

amount of 15 and driver can also earn an amount of 15, which 

is greater than the expected profit when the new request is 

assigned to 𝑣. Hence, our price model optimizes monetary 

benefits of all involves parties.  

Algorithm 2 illustrates the complete recommendation 

mechanism for each request that arrives at current time. The 

algorithm takes as input the following parameters: (a) road 

map of a city, (b) set of vehicles in the city, and (c) Queue of 

ride requests. 

1. Searching for Candidate vehicles (Line 2-Line 3)

In this step, the recommendation framework searches for 

candidate vehicles that can serve new request. Two constraints 

are validated: (a) candidate should lie within searching radius 

around origin and (b) candidate has enough available seats to 

hold new passenger. 

2. Calculating aggregated score for each candidate

vehicle (Line 4-Line 36)

In this step, a combined score is calculated for each candidate 

on the basis of average time delay, capacity, driving distance, 

fare reduction, and profit increment. Line 5 calculates capacity 

of each candidate vehicle. Two cases may arise: (a) vacant 

vehicle and (b) occupied vehicle. 

(a) If the vehicle is vacant at arrival time of new request,

then average time delay associated with passenger of a

vacant cab is only the pick-up delay, total distance is

the distance of direct route, total fare reduction is 0 as

passenger has to pay regular fare, and profit increment

is also 0 as driver collects the regular fare for the total

travel distance which is same as profit (Line 6- Line 10).

(b) If the vehicle is occupied at arrival time of new request,

then different lists are initialized with null for each

occupied vehicle. The lists store time delay and fare

information of an individual passenger (Line 12). A NN

schedule is created to assign priority to each request

(new and already assigned requests to the vehicle)

using 𝑁𝑁𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 function in Line 13 that is

defined in Algorithm 1.

Line 14 calculates total distance of the route defined by NN 

schedule S. Line 15 calculates regular distance by adding the 

distances of the individual routes of passengers as illustrated 

in Fig. 4. After that, the candidate vehicle is tested with one 

more condition. If the test condition at line 16 is true, then 

there is no benefit of assigning the new request to the 

candidate vehicle. Therefore, the candidate is removed from 

the nearby set 𝑉𝑐
𝑁(Line 17) and control goes to the next

vehicle in the set for calculating its parameters. Otherwise, 

if the test condition is false, then this means there is benefit 

of assigning new request to the candidate vehicle. 

Therefore, the framework calculates remaining parameters 

for this candidate (Line 19–Line 30). Time delay of a 

passenger is calculated at Line 20. Line 22 calculates regular 

fare of new passenger by using (15).  
Line 24 calculates regular fare of an existing passenger in 

candidate vehicle by using (17). Afterwards, fare of each 

passenger is estimated on the basis of regular fare, detour 

distance, and carpool saving (Line 26). Carpool saving is 

calculated by (16). Each calculated parameter of a passenger 

is appended to its corresponding list (Line 27-Line 29).  



Algorithm 2. Vehicle Recommendation 

Input: A road network: 𝑮(𝑵, 𝑬), vehicles present in 𝑮:𝑽, Queue of ride requests: 𝑹𝑸

Output: Recommended vehicle for each request 𝒓𝒆𝒒 ∈ 𝑹𝑸

Definitions: 𝒕𝒄𝒖𝒓 = current time, 𝑺𝑹𝒐 = searching radius around origin, 𝑽𝒄
𝑵 = nearby vehicle set having seat

capacity, 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒎𝒂𝒙 =maximum seat capacity of a vehicle, 𝑭𝒂𝒓𝒆𝑹 = regular fare, 𝑭𝒂𝒓𝒆𝑬 =  estimated

fare, 𝑻𝒅 = list to store time delay of each passenger, 𝑺 = created schedule, 𝑭𝒓 = list to store regular fare of each

passenger, 𝑭𝒆 = list to store estimated fare of each passenger, i= counter variable for number of passengers in

carpooling 

1. for each request 𝑟𝑒𝑞𝑛𝑒𝑤 ∈ 𝑅𝑄 that arrives at 𝑡𝑐𝑢𝑟 do

2. 𝑆𝑅𝑜 ← 𝑟𝑎𝑑𝑖𝑢𝑠(𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑜)

3. 𝑉𝑐
𝑁 ← 𝐺𝑒𝑡𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠(𝑆𝑅𝑜, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

4. for each vehicle 𝑣 ∈ 𝑉𝑐
𝑁 do

5.  𝑣. 𝑐 ← 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑎𝑥 − 𝑣. 𝑒𝑝

6. if 𝑣. 𝑐 equals 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑎𝑥  then    // cab is vacant

7. 𝑣. 𝐷𝑇𝑜𝑡𝑎𝑙 ← 𝑑𝑣.𝑙→𝑟𝑒𝑞𝑛𝑒𝑤.𝑜 +    𝑑𝑟𝑒𝑞𝑛𝑒𝑤.𝑜→𝑟𝑒𝑞𝑛𝑒𝑤.𝑑

8.  𝑣. 𝑡𝑑𝑎𝑣𝑔 ← 𝑇(𝑣. 𝑙, 𝑟𝑒𝑞𝑛𝑒𝑤 . 𝑜)

9. 𝑣. ∑ ∆𝑓𝑎𝑟𝑒 ← 0𝑖

10.       𝑣. ∆𝑃𝑟𝑜𝑓𝑖𝑡 ← 0      

11.  else    // cab is occupied 

12. 𝑇𝑑 ← {};  𝐹𝑟 ← {}; 𝐹𝑒 ← {}

13. 𝑆 ← 𝑁𝑁𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 (𝑟𝑒𝑞𝑛𝑒𝑤 , 𝑠𝑣)

14. 𝑣. 𝐷𝑇𝑜𝑡𝑎𝑙 ← 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑅𝑜𝑢𝑡𝑒𝑆)

15. 𝐷𝑅 ← 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑅𝑜𝑢𝑡𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑒𝑞𝑛𝑒𝑤 , 𝑠𝑣)

16. if  𝐷𝑅 − 𝑣. 𝐷𝑇𝑜𝑡𝑎𝑙 < 0 then

17. 𝑉𝑐
𝑁 ← 𝑉𝑐

𝑁 − {𝑣}

18.  else 

19. for each request 𝑟𝑒𝑞 ∈ {𝑟𝑒𝑞𝑛𝑒𝑤} ∪ 𝑣. 𝐸𝐷 do

20.  𝑡𝑑 ← 𝑠𝑑𝑡 − 𝑒𝑑𝑡 

21.  if  𝑟𝑒𝑞 is 𝑛𝑒𝑤 then 

22. 𝐹𝑎𝑟𝑒𝑅 ←  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑎𝑟𝑒  using (15)

23.  else 

24. 𝐹𝑎𝑟𝑒𝑅  ←  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑎𝑟𝑒  using (17)

25.  end if     

26. 𝐹𝑎𝑟𝑒𝐸 ←  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑎𝑟𝑒  using (18)

27. 𝑇𝑑 ← 𝑇𝑑 . 𝑎𝑝𝑝𝑒𝑛𝑑( 𝑡𝑑)

28. 𝐹𝑟 ← 𝐹𝑟 . 𝑎𝑝𝑝𝑒𝑛𝑑(𝐹𝑎𝑟𝑒𝑅)

29. 𝐹𝑒 ← 𝐹𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝐹𝑎𝑟𝑒𝐸)

30.     end for 

31. 𝑣. 𝑡𝑑𝑎𝑣𝑔 ← 𝑀𝑒𝑎𝑛(𝑇𝑑)

32. 𝑣. ∑ ∆𝑓𝑎𝑟𝑒 ←𝑖 𝐹𝑟) − 𝑆𝑢𝑚(𝐹𝑒)

33. 𝑣. ∆𝑃𝑟𝑜𝑓𝑖𝑡 ← 𝑆𝑢𝑚(𝐹𝑒) − 𝑃𝑟𝑜𝑓𝑖𝑡𝑒𝑥𝑝

34.      end if 

35.       end if 

36.       𝑣. 𝐴𝑆 ← 𝑆𝑢𝑚(𝑣. 𝑐,
1

𝑣.𝐷𝑇𝑜𝑡𝑎𝑙
,

1

𝑣.𝑡𝑑𝑎𝑣𝑔
, 𝑣. ∑ ∆𝑓𝑎𝑟𝑒𝑖 𝑖

, 𝑣. ∆𝑃𝑟𝑜𝑓𝑖𝑡)

37. end for

38. recommend vehicle with max 𝑣. 𝐴𝑆

39. end for



 

Once all the parameters have been calculated for each 

passenger; average time delay, total fare reduction, and 

profit increment associated with occupied vehicle is 

calculated (Line 31-Line 33). Line 36 calculates an 

aggregated score on the basis of all the calculated 

parameters. The candidate vehicle with highest aggregated 

score is recommended to the requesting passenger (Line 38). 

V. PERFORMANCE EVALUATION

In this section, we perform the experimental validation of our 
proposed heuristic based vehicle recommendation framework 
HASVR.

A. EXPERIMENTAL SETTINGS

We have created a customized simulation framework in R 
programming language and utilized gmapsdistance 

[25]

package. The framework is capable of visualizing all 

simulation modules (e.g., tracking vehicles and ride requests). 

We have conducted trace driven experimental analysis using 

T-Drive trajectory data sample [13]. The dataset contains GPS

trajectories of 10,357 taxis of Beijing during the period of

February 2 to February 8, 2008. We draw a sample with one

day GPS traces of 250 taxis from the dataset to test our

recommendation system. The framework takes as input a total

of real-world 61,136 taxicab traces. From the dataset, we

generate a passenger request (request time, origin, and

destination) using uniform and Poisson distribution.

B. INITIAL TAXI STATES

The timestamp and location of taxis at the corresponding

timestamp is taken from the GPS traces. However, the number

of existing passengers in a taxi at a certain timestamp is

randomly chosen between 0 and 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑎𝑥 . The trajectory
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FIGURE 5.  Example of price strategy

FIGURE 6.  Trajectory followed by taxicab. Here 𝒑 represents each trajectory point along with associated timestamp
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points of each taxicab in the dataset are arranged with respect 

to ascending order of timestamps. This feature of T-Drive 

dataset helps to determine the direction of each taxi’s traversal. 

Each trajectory point  𝑝 in the dataset is followed by the points 

that are in forward direction to 𝑝. Therefore, the destination of 

existing passengers in a taxicab can be selected from the taxi’s 

trajectory points that are in forward direction to taxicab’s 

current location. Fig. 6 shows a trajectory followed by a 

taxicab. For example in Fig. 6, at arrival time of new request, 

taxi’s current location is 𝑝17; so the destination of an existing

passenger can be selected on the same path as 𝑝23. 
To show the effectiveness of our proposed unified and 

dynamic carpooling service (recommended vehicle can be 

occupied or vacant); we compare our proposed approach, 

namely Highest Aggregated Score Vehicle Recommendation 

(HASVR) with Nearest Vehicle Recommendation (NVR), and 

No-Carpooling. We also compare our fare calculation model 

with the win-win fare model of coRide [10] to evaluate the 

maximum fare reduction of an individual passenger. NVR is a 

heuristic approach that first extracts the occupied vehicles with 

∆𝐷𝑇 < 0 from nearby set 𝑉𝑐
𝑁and then greedily recommends

the nearest vehicle to the passengers to minimize their waiting 

time. In No-Carpooling system, each requesting passenger is 

recommended a vacant vehicle from the set 𝑉𝑐
𝑁. A ride request

may be rejected if the system cannot find a vacant vehicle at 

the requested time. The passenger may resend the request to 

get the recommended vehicle.  

C. EXPERIMENTAL RESULTS

Table 1 lists the default values for experimental parameters

used in simulation. To study the benefits of our proposed

carpooling recommendation system, different performance

metrics are analyzed. A total of 23 simulations is considered

in our study to evaluate different parameters. In our analysis,

we have used two distinct perspectives to analyze the overall

system performance, namely (a) driver’s perspective and (b)

passenger’s perspective.

Driver’s perspective: 

 Percentage of reduced total mileage: It evaluates the

effectiveness of our system by measuring how much

total miles can be reduced by the taxis recommended

by our unified carpooling system. It can be represented 

as follows. 

% of reduced total mileage
= (Mv − M)/Mv. 

(22) 

Where 𝑀𝑣 is the total mileage used to deliver all passengers

separately using vacant taxicab services and 𝑀 is the total 

mileage used to deliver all passengers using the taxis 

recommended by our proposed system (either vacant or 

occupied taxis).  
 Percentage of increased profit: It evaluates that how

much total extra profit can be earned by the taxis

recommended by our system as compared to expected

profit for the total distance travelled by all the

recommended taxis. It can be computed as:

% of increased profit

=
collected profit −  Profitexp

Profitexp

. 
(23) 

Where 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 is the total profit collected by 

drivers of all the recommended taxis. 

Passenger’s perspective: 

 Percentage of satisfied ride requests: It is defined as

percentage of ride requests that get recommendation of

taxis as compared to the total number of requests. A

passenger request may be rejected at the requested time

if each candidate in the nearby vehicle set 𝑉𝑐
𝑁 does not

satisfy distance constraint (8). The passenger may

resend the request to get recommendation of an optimal

vehicle.

 Percentage of reduced total fares: It measures how

much total fares can be reduced by the taxis

recommended by our system as compared to vacant

taxicab fares.

 Average detour ratio (%): It measures the percentage

of detour distance to an individual passenger as

compared to direct distance in a taxicab recommended

by our system. Detour distance can be computed by

(20).

1) PERCENTAGE OF SATISFIED RIDE REQUESTS

Fig. 7 shows the effect of searching radius on the percentage

of satisfied requests. With the increase of radius from 1.5 to 6
km, the performance of both recommendation strategies

increases. This is because the larger radius has more nearby

taxis to satisfy ride requests. No-Carpooling scheme simply

rejects the request if there is no vacant taxi available at

requested time whereas our proposed scheme recommends

either a vacant or occupied taxi. Therefore, HASVR

outperforms the No-Carpooling scheme by an average of 28

%. However, when the radius gets close to 6 km, there is little

increase for HASVR, as the radius becomes large enough to

TABLE 1.  

DEFAULT VALUES OF PARAMETERS USED IN SIMULATION 

Parameter Description Value 

∂r taxi fare per kilometer 0.62 Yuan 

capacitymax No. of seats in a taxi 3 

SRo radius for searching nearby taxis 6 km  

μ % of carpool saving given to 

passengers group 

0.5 



have sufficient nearby taxis and increasing the radius further 

does not improve the performance.  

2) PERCENTAGE OF REDUCED TOTAL MILEAGE

Fig. 8 (a) shows the impact of number of taxis in the dataset

on the percentage of reduced miles by keeping the searching

radius constant. With the increase of taxis from 50 to 250 the

performance of HASVR increases since increasing the

number of taxis in the dataset increases the probability of

finding an optimal taxi in terms of reduced mileage. However,

NVR shows a fluctuation in performance. This behavior is due

to the fact that increasing the taxis in the dataset finds the

closer taxi to the request origin but that taxi may or may not

be optimal in terms of reduced mileage.

HASVR outperforms NVR by 9 % on average and in 

comparison to No-Carpooling, it performs better by 27 % on  
average. The difference in performance of HASVR and NVR 

is due to the fact that requesting passenger’s origin and 

destination may not match to the destinations of existing 

passengers in the nearest cab, since NVR only considers 

waiting time of passengers while recommending cabs.  

Fig. 8 (b) shows the impact of searching radius on the 

percentage of reduced miles by keeping the number of taxis 

constant. The performance of NVR stays constant as it always 

recommends the nearest taxi from the nearby taxi set. At first, 

the performance of HASVR and NVR stays the same, then 

HASVR starts to perform better than NVR as the radius 

increases from 3 km. HASVR outperforms NVR by 5 % and as 

compared to No-Carpooling, its performance is better by an 

average of 27 %. Therefore, we conclude that increasing the 

number of taxis or increasing the searching radius, increases 

the number of taxis in the nearby set, thereby increasing the 

probability of finding the most appropriate taxi.  

Fig. 8 (c) shows the impact of hours of the day on the 

percentage of reduced miles. For instance, λ = 9 represents 

the arrival time of requests around 9 am. During rush hours of 

the day e.g., 9 and 15, the percentage of reduced mileage is 

higher as compared to non-rush hours e.g., 3 and 21 for 

HASVR. This difference is due to the fact that during rush 

hours, vacant taxicabs become deficient and hence more 

occupied taxis are recommended to passengers leading to 

higher reduction of total mileage. As compared to No-

Carpooling, HASVR outperforms during rush hours by an 

average of 17% and during non-rush hours it surpasses by 

12% on average. However, NVR does not differentiate 

between rush and non-rush hours as it applies heuristics of 

nearest taxi for recommendation. 

3) PERCENTAGE OF REDUCED FARES

Fig. 9 (a) illustrates the effect of different values of sharing

percentage 𝜇 on the percentage of total fare reduction. When

𝜇 increases from 0.1 to 0.9, more share of total carpool saving

is given to passengers group. Therefore, both 𝐻𝐴𝑆𝑉𝑅 and

NVR show an increasing trend. However, the %-age of total

fare reduction for NVR is less as compared to 𝐻𝐴𝑆𝑉𝑅 since

NVR does not consider fare reduction of passengers while

recommending a taxicab.

We evaluate the performance of HASVR in terms of 

maximum fare saving for an individual passenger as compared 

to win-win fare model of coRide [10] in Fig. 9 (b). Both 

schemes provide 0 % fare saving when number of passenger 

is 1 (when passenger travels alone). The performance of both 

schemes increases as we increase the number of passengers 

sharing the ride. In coRide, with more number of passengers, 

greater distance can be shared with other passengers, 

therefore, leading to larger carpool benefit for individual fare 

reduction. Since our scheme HASVR reduces each passenger’s 

fare on the basis of detour distance, with greater number of 

passengers in carpool, a passenger has to tolerate more detour 

FIGURE 7. Percentage of satisfied ride

(c) Mean of Poisson distribution(b) Searching radius(a) No. of taxis in dataset

FIGURE 8.  Percentage of reduced miles



distance, leading to greater fare saving. As compared to 

our price model, win-win fare model [10] reduces 

fare of passengers on the basis of their regular fares. 

Our scheme outperforms than coRide by an average of 7 

% in a scenario when one of the passenger in carpool has 

to tolerate highest detour distance whereas the other 

passengers have comparatively very less detour. In coRide, 

each passenger will get some portion of the carpool 

saving whereas HASVR provides maximum share to the 

passenger with highest detour.  Fig. 10(a) illustrates 

monetary incentives in HASVR for the scenario of same 

origin and same destinations of all passengers 

whereas Fig. 10(b) illustrates the scenario of different 

origin and different destinations. For percentage of profit 

increase, the scenario of same origin and same 

destinations outperforms the scenario of different origin 

and different destinations by an average of 11% (in case 

of no detouring, carpooling gives max profit). For 

percentage of total fare reduction, the scenario of same 

origin and same destinations outperforms the scenario of 

different origin and different destinations by an average of 

2%. In the scenario of same origin and same destinations, 

there will be maximum reduced total distance due to 

carpooling as per (8). This implies that the new request 

matches to the destinations of 

 

existing passengers in 𝑣 ∈ 𝑉𝑐
𝑁 and assigning the request to 𝑣

will provide maximum benefit to both drivers and passengers 

(new and existing).  

Fig. 11 shows the impact of number of satisfied requests on 

the percentage of total fare reduction by fixing the number of 

vehicles in dataset. The performance of HASVR almost 

remains constant even if we increase the number of requests. 

On the other hand, the performance of NVR increases with the 
increase of number of requests. In worst scenario, the origins 

and destinations of new passengers will not match to the 

destinations of existing passengers that may result in lesser 

fare reduction passengers. However, HASVR outperforms 

NVR by an average of 8%. From the plot of HASVR, it is 

shown that HASVR is able to serve large number of requests 

without affecting the performance in terms of percentage of 

total fare reduction. Hence, our proposed scheme is scalable 

enough to serve large number of requests. 

4) AVERAGE DETOUR RATIO (%)

Fig. 12 plots the effect of number of passengers in a taxi on

the detour ratio of an individual passenger. With increase in

number of passengers, a high distance is added to an individual

delivery since after adding more passengers in carpool, most

of the passengers will have to travel a longer route as

(b) Reduced individual fare (a) Reduced total fares 

FIGURE 9.  Percentage of reduced fares

FIGURE 10.  Monetary incentives in HASVR

(a) Same origin and same destinations 
(b) Different origin and different destinations 



compared to No-Carpooling. Although the percentage of 

individual detour ratio increases, the fare of individual 

passenger is reduced by our fare rewarding price mechanism 

as more passengers will share the common route leading to 

increased carpool saving. As a result, fare saving increases for 

an individual passenger.  

5) PERCENTAGE OF INCREASED PROFIT (%)

Fig. 13 shows the percentage of increased profit of all schemes

as 𝜇 increases from 0.1 to 0.9. When 𝜇 increases, less share

(1 − 𝜇) of total carpool saving is given to drivers group.

Therefore, both 𝐻𝐴𝑆𝑉𝑅 and NVR show a declining trend.

Since NVR does not consider profit increment of drivers while

recommending a taxicab, it falls behind HASVR.

We evaluate the performance of HASVR in terms of 

driver’s increased income as compared to win-win fare model 

of coRide [10] in Fig. 14. The performance of HASVR 

increases by increasing number of vehicles in dataset.  With 

the increase of vehicles from 50 to 150, the performance of 

HASVR stays same and then increases when number of 

vehicles in dataset is increased to 200. Then again, the 

performance remains same when number of vehicles in dataset 

is increased to 300. This shows increasing number of vehicles 

may or may not increase the probability of finding an optimal 

vehicle in terms of increased profit. If we use fare equation of 

CoRide, then driver will have to bear the loss as indicated in 

the graph. As compared to our price model, win-win fare 

model [10] reduces fare of passengers on the basis of their 

regular fares. If a passenger has greater distance between 

origin and destination in comparison to detour distance, then 

there will be more fare reduction as compared to our fare 

equation. According to our price model, a passenger also has 

to pay pick-up charge. This indicates that using our fare 

equation results in less fare reduction. Due to greater reduction 

in fares and absence of pick-up charge in fares, fare equation 

of CoRide will result in loss to drivers. On the other hand, our 

proposed fare equation reduces fares on the basis of detour 

distance and also adds pick-up charge in fare, so it ensures that 

the driver never gets loss and earns increased profit in the 

vehicle recommended by HASVR. Fig. 15 gives the impact of 

increase in total distance reduced due to carpooling on the 

monetary incentives of both passengers and drivers. The 

increase in ∆𝐷𝑇 is due to the reduction in distance of nearest

neighbor route 𝐷𝑁𝑁. This indicates that the new request

matches to the destinations of existing passengers in taxi 

recommended by our system. This will lead to increased total 

carpool saving. As a result, the drivers’ income (as compared 

to vacant taxicab service) increases and fare saving for 

passengers also increases.  

To summarize the results, it is evident that our heuristic 

based dynamic vehicle recommendation strategy HASVR has 

on overall better performance, as the proposed framework 

considers the multiple objectives of drivers and passengers 

while recommending a vehicle to a passenger.  

D. Time Complexity

In this subsection, we present a time complexity analysis of

the optimal ride sharing recommendation framework. We

compute the time complexity of the NN scheduling algorithm

and vehicle recommendation algorithm presented as

Algorithm 1 and Algorithm 2 in this paper.

FIGURE 13.  Percentage of increased profit 

FIGURE 12.  Average detour ratio (%)

FIGURE 11.  Scalability (% of reduced total fares) 

FIGURE 14. Percentage of increased profit 



The NN scheduling algorithm utilizes a loop from Line 4 

until Line 27. The loop is dependent on the length of the list to 

store unvisited locations. In worst case scenario, all the u 

locations appears in the list and the loop has to operate for all 

the locations. In the Line 17 to Line 20, there is another loop 

that calculates the distance from a certain location to all the 

other unvisited locations. Therefore, in the worst case 

scenario, the overall computation is u2.  

In the vehicle recommendation algorithm, for each vehicle 

NN scheduling is performed if they are not vacant. In worst 

case scenario, all the vehicles are occupied. Therefore, the 

time complexity will be vu2 for all the v vehicles for one 

request. For r number of requests, the total time complexity of 

the optimal ride sharing algorithm is rvu2. 

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have analyzed, designed, and evaluated a

unified and dynamic carpooling recommendation system

HASVR on the basis of large-scale historical GPS traces. The

objectives of existing passengers in vehicle is also an

important issue that needs to be addressed by the carpooling

systems while recommending vehicles to requesting

passengers. HASVR considers the objectives of drivers,

requesting passengers as well as existing passengers during

vehicle recommendation. Achieving a trade-off between

objectives of all the parties participating in carpooling is a

major challenge that has been addressed in our work. Our main

contribution is the mathematical model that is not dependent

on any particular simulation framework. From the simulation

study, it is evident that our proposed recommendation system

has the potential in enhancing the system performance as

compared to vacant taxicab services. We verify HASVR with

a real-world dataset containing 61,136 taxicab traces.

In future, we plan to refine our dynamic carpooling model 

by introducing gender and passenger’s detour distance 

constraints. In this study, we assign priority to each ride 

request on the basis of spatial closeness to the current location 

of vehicle. However, a requesting passenger might be in hurry 

and direct ride towards destination is not available. Moreover, 

we aim to provide solution to this issue by proposing an 

optimization scheduling technique. In such situations, a 

passenger may prefer to switch rides to reach as much closer 

to destination as possible. 
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