

Please cite the Published Version

Karaganeva, Raya, Pinner, Susan, Tomlinson, David, Burden, Adrian, Taylor, Rebecca L , Yates, Julian and Winwood, Keith (2018) Effect of mouthguard design on retention and potential issues arising with usability in sport. Dental Traumatology, 35 (1). pp. 73-79. ISSN 1600-4469

DOI: https://doi.org/10.1111/edt.12446

Publisher: Wiley

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/621619/

Usage rights: O In Copyright

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publication in Dental Traumatology, published by and copyright Wiley.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines) **Title:** Effect of mouthguard design on retention and potential issues arising with usability in sport.

Key words: custom mouthguards, retention, thickness, sport

Authors: Raya <u>Karaganeva¹</u>, Susan <u>Pinner²</u>, David <u>Tomlinson²</u>, Adrian <u>Burden²</u>, Rebecca <u>Taylor¹</u>, Julian <u>Yates³</u>, Keith <u>Winwood¹</u>

¹School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK

²Department of Exercise and Sport Science, Manchester Metropolitan University, Cheshire, UK

³School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Correspondence to: Raya Karaganeva, School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK

E-mail: raya.karaganeva@stu.mmu.ac.uk

Acknowledgements: The authors would like to thank Kerry Jacobs, Gregg Clutton and Michael Green for their technical support.

Conflict of Interest: The authors have no conflict of interest.

1 Abstract: Background/Aims: Mouthguard retention could potentially increase an athlete's 2 motivation to wear the device, due to potential improvements in physical comfort. The aim of 3 the present study was to examine the retentive properties of selected customised mouthguard 4 designs, during normal conditions (dry) and within the presence of artificial saliva (wet). 5 Additionally, the correlation between thickness and retention was investigated. Material and 6 *Methods:* Six different custom mouthguard designs (MG1 – MG6) reported in previous 7 studies, were pressure-formed with 2 mm and 4 mm blanks accordingly. Thickness was 8 measured ten times at seven anatomical points and the mean $(\pm SD)$ was recorded. A novel rig 9 was fabricated to connect the mouthguards to a Hounsfield H10KS Tensometer, which was 10 used to fully displace each device from the model at a constant rate of 50 mm/min. The test 11 was repeated under both dry and wet conditions. Results: Retention forces recorded at the 12 anterior region demonstrated higher measurements under conditions than dry (p < 0.001). 13 The total retention of the mouthguards was influenced by alterations in their design (p < p14 0.015). Trend analysis indicated that 64% of MG retention could be explained by their 15 thickness under dry conditions and 55% when wet. Conclusions: Design and thickness of 16 mouthguards are key factors in retention. Mouthguard fabrication techniques should be 17 considered in order to minimise dislodgment of the devices as well as potentially increasing 18 the wearability of mouthguards during sport.

19 Introduction

20 The highest incidence rates of dental trauma are seen within contact sports such as boxing, 21 martial arts, rugby and hockey. Hence, the importance of wearing mouthguards (MGs) should 22 be further emphasised to prevent such traumas within these types of sports. However, athletes 23 can often be reluctant to use mouth protection due to impedance with communication and breathing, as well as other factors such as cost. ¹⁻⁵ There is also an underlying belief amongst 24 some sport participants that wearing a MG causes discomfort. ^{4, 6} This could be due to the 25 26 popularity of 'over-the-counter' devices, which can have poor fit and low retention 27 specifically if the participant does not self-adapt the device correctly. The latter was identified as a reason by 24.3% of a cohort of taekwondo players.⁴ Half of the respondents 28 confirmed that wearability would increase if the current issues as well as other factors with 29 30 MGs were addressed. Thus far, previous work has mainly examined the palatal shape of the 31 MG in relation to comfort issues. Gebauer et. al. (2011) identified that male field hockey and 32 water polo players (n=27, aged 23.5±3.8yrs) rated a device with palatal extension less than a 33 MG without this palatal outline. ⁶ Therefore, manufacturers should try new techniques for 34 MG fabrication in order to meet players' expectations in terms of limiting usage and 35 discomfort. The essential parameters that need to be considered include good fit and high 36 retention, which relate to the ability of the MG to stay in position during dynamic sports. 37 Higher MG retention could potentially increase the athletes' motivation to wear the device as it could lead to improvements in physical comfort and less interference with performance.⁴ 38 39 In addition, distraction and interruption of the game due to a loose MG could also be reduced. 40 Currently, there is very little literature examining MG retention, which is of pivotal importance for enhancing wearability. 7, 8, 18 Previously, only two studies have conducted a 41 pull test to examine the fit of different custom devices. ^{7, 8} Del Rossi et al. (2008) investigated 42 the effect of the MG colour on fit and adaptation. They attached a strain gauge to the palatal 43

44 aspect of the central incisors and recorded the force required to remove the MGs from the 45 model. It was shown that more force was required to remove the blue, black and green 46 coloured MGs than the clear guard due to pigmentation affecting thermal properties during 47 the fabrication process. ⁷ Maeda et al. (2009) examined the accuracy of fit using a chain that was attached to the first upper left molar.⁸ They fabricated three different outlines of custom 48 49 MGs; all made of 3.8 mm clear ethylene vinyl acetate (EVA) blanks. The first design had a 4 50 mm palatal extension, whereas the second was finished at the gingival margin, and the third 51 had an extended buccal outline. No statistical difference between the retention of the three 52 MGs was found. However, the pressure-formed MGs over well-dried casts showed better fit 53 and retention than those that were vacuum-formed on dry $(133\pm31 \text{ gf} > 116\pm27 \text{ gf})$ and wet 54 casts (133 ± 31 gf > 58 ±17 gf). Further research is required to assess other factors influencing 55 retention, and propose MG features that may improve the fit of the device. Although the latter 56 study ⁸ assessed retention of certain custom devices, the authors outlined some limitations of 57 the retention test used. For instance, it was suggested that the consistency of saliva (wet) 58 should also be considered when examining retention of MGs.

The aim of the present study was to examine the retentive properties of selected customised
MGs on a dry model and in the presence of artificial saliva to mimic the oral environment.
Additionally, the correlation between MG thickness and retention was investigated to propose
further considerations on how to improve potential comfort factors when fabricating custom
MGs.

64 Materials and Methods

Ethical approval was obtained from the School of Healthcare Science, Manchester

66 Metropolitan University (Ethics Number: SE151657C).

A fully dentate maxillary anatomical teaching model was fabricated from Nano – Rock liquid 67 68 die stone (WHW, Hull, UK). The model had arch dimensions of 32 mm length, 36.5 mm 69 inter-canine width and 50.4 mm inter-molar width; similar to the mean arch dimensions of a cohort with normal occlusion. ⁹ Six different custom-made MG designs were thermoformed 70 following standard technical procedures as described by Padilla¹⁰ (Table 1). In brief, MG1 71 72 had a 4 mm palatal extension, whereas MG2, MG3, MG4 and MG6 were trimmed around the 73 gingival margins, and MG5 had no coverage of the palatal aspect of the anterior teeth. To 74 increase the thickness in different regions of the devices, two layers of EVA blanks were used 75 to fabricate MG3, MG4 and MG6. For instance, the double layer in MG3 was present in the 76 anterior region, in MG4 at the posterior region and in MG6 at both the anterior region and 77 over the occlusal surfaces. MG6 was finished distally to the upper second molars, whereas 78 the other designs were finished distally only to the upper first molars. MG designs MG1, 79 MG2, MG4 and MG5 were fabricated following previously published studies examining the 80 effects of the devices on comfort and performance. ^{6, 11, 12} Design MG3 is commonly used in dental practice and MG6 was reproduced from Takeda et al.¹³ for a rugby player with a 81 82 malalignment.

All MGs were pressure-formed on a Drufomat-Te machine (Dreve Dentamid GmbH,
Germany) with round, clear 2 mm and 4 mm EVA blanks, 120 mm Ø (diameter) (Bracon
Dental Laboratory Products, East Sussex, UK). In order to minimise the thinning of the EVA
blanks during thermoforming the blanks were pressure-formed onto a dry model embedded
into metal pellets.

88 On each MG, seven anatomical points, both anterior and posterior, were selected to obtain 89 dimensional thickness (Figure 1a-b). The position of these points (excluding Point 3) was similar to those used by Farrington et al.¹⁴ who investigated thickness in relation to the 90 91 fabrication technique. Each point was measured ten times using an electronic calliper gauge, 92 resolution range \pm 0.01 mm (External Digital Calliper 442-01DC Series, Moore and Wright, 93 UK) for consistency and the mean $(\pm SD)$ was recorded. The gauge was zeroed after each 94 measurement for calibration. The thickness of the anterior region equated to the mean value 95 of points (i) - (iii), whereas the thickness of the posterior region equated to the mean value of 96 points (iv) – (vii). Overall MG thickness was obtained from the mean of all points (i-vii) 97 (Figure 1a-b).

98 Retention was measured at different regions of the MGs using a Hounsfield H10KS

99 Tensometer fitted with a 1kN load cell (Hounsfield Test Equipment Ltd., Surrey, UK). The

100 H10KS was controlled with QMat Professional Material Testing Software. Firstly,

101 orthodontic brackets (Cat No: DB22-0478, DB Orthodontics, Silsden, UK) were secured with

adhesive (Araldite ® Rapid, Basel, Switzerland) onto each MG at five specific sites (Figure

103 1c). Then, hard stainless steel wires, 0.035mm Ø and 120mm length, were attached to them

104 (K. C. Smith Ortho Ltd. Hertfordshire, UK) (Figure 1d). The dental model was secured to a

stainless steel plate (150x220 mm) placed over the base of the Tensometer. In order to

106 connect the MGs into the grips of the testing apparatus, a novel rig (80x80 mm) was

107 fabricated (Figure 2). Location holes allowed the wires to be parallel and perpendicular to the

108 occlusal plane when secured to the rig with terminal strips.

109 The maximum force (N) required to fully displace a MG from the model represented the

retention force of the device. All MGs were pulled away from the model by an upward

111 movement at a constant rate of 50 mm/min. Ten force measurements were recorded for each

112 site (Figure 2) and then an overall mean value was obtained. In order to reduce the variability

within the testing procedure, after each measurement the load and extension were zeroed and
the MG was fitted back onto the model. An overall retention value was obtained by grouping
the maximum forces recorded for all loading scenarios (Table 2).

Retention tests were then repeated in wet conditions. Each MG and the dental model were immersed in 500 ml artificial saliva solution for 30 sec prior to testing. After each loading scenario, the MG was immersed again in saliva solution for 30 sec in order to keep it damp. The saliva was mixed according to a basic formulation consisting of: water (1 L), sodium chloride (0.4 g), potassium chloride (0.4 g), potassium dihydrogen orthophosphate (0.218 g) and disodium hydrogen phosphate (1.192 g). Test-retest reliability was conducted by the primary investigator on three randomly selected MGs. A second researcher also repeated the

123 tests independently with the same three MGs in both dry and wet conditions.

124 Statistical analyses were performed using IBM SPSS Statistics, Version 22.0. Armonk (IBM 125 Corp., New York, US) and Microsoft Excel (2013). Distribution of the data was checked with 126 histogram plots, Shapiro - Wilk normality test and box plots. The Wilcoxon Signed Ranks 127 test was performed to compare the retention in dry and wet conditions. Differences in 128 displacement force between MGs were identified with non-parametric Kruskal-Wallis test 129 (multiple pairwise Mann-Whitney U post-hoc tests). The level of significance (α) was set at 130 0.05. Trend analysis using coefficient of determination (R2) examined the correlation 131 between thickness and retention of MGs. Due to the non-parametric nature of the data 132 Spearman correlation was used. Additionally, Cronbach Alpha test was performed to 133 examine the repeatability of the results.

134 **Results**

- 135 A total of 60 retention force measurements were obtained for each MG design. Only the
- 136 retention forces recorded at the anterior region showed significantly higher measurements
- 137 under wet conditions than when dry (p < 0.001) (Table 3).
- 138 Figure 3 illustrates differences in the total retention between MG designs. However, no
- 139 differences were found between the pairs of MG1, MG3 and MG4 under dry conditions (p >
- 140 0.121). Additionally, the pairs of MG1 MG4 (p = 0.856) and MG3 MG6 did not differ in
- 141 retention under wet conditions (p = 0.106). Overall, the most retentive MG design was found
- to be MG6 (11.36 \pm 2.96 N (Dry) and 9.91 \pm 3.48 N (Wet)) and the least retentive was MG5
- 143 $(3.50 \pm 1.93 \text{ N} (\text{Dry}) \text{ and } 3.49 \pm 1.90 \text{ N} (\text{Wet}))$ (Figure 3; Table 4).
- 144 MG2 and MG5 had the lowest overall mean total thickness of 2.02 mm and 1.96 mm and
- total retention of 3.50 N 4.86 N (Dry) and 3.49 N 4.53 N (Wet) (Table 4). The remainder
- 146 of the MG designs had a mean thickness of 2.40 mm or greater and showed higher retention

147 of 6.12 N – 11.36 N (Dry) and 5.71 N – 9.91 N (Wet) (Table 4).

- 148 A positive relationship between MG thickness and retention was found under both dry ($R^2 =$
- 149 0.64) and wet conditions ($R^2 = 0.55$) (Figure 4). Thus, 64% of MG retention could be
- 150 explained by thickness when dry and 55% when wet.
- 151 A total of 180 force measurements were recorded from MG1, MG2 and MG6 under both
- 152 conditions to assess repeatability. The primary researcher ($\alpha \ge 0.909$) demonstrated high
- 153 repeatability, although this was reduced when a second researcher conducted the
- 154 displacement tests on the same three MG designs ($\alpha \ge 0.848$).

155 Discussion

156

157 of the issues with comfort, communication and breathing that have previously been reported 158 in the literature. Previous literature found that the colour of the MGs and the use of different equipment for MG fabrication were influencing factors on the accuracy of fit. ^{7,8} Therefore, 159 160 the present study considered whether other factors (differences in MG design, final thickness 161 and use of artificial saliva to mimic an oral environment) influenced retention. Statistical 162 differences between MG designs in terms of their ability to withstand displacement forces 163 were found (p < 0.015). In addition, it was discovered that the selected MGs differed in 164 retention depending on the presence of artificial saliva solution (p < 0.001) and thickness. 165 The current investigation examined only custom-made devices as published studies have 166 proposed that such MGs are superior to other commercial 'boil-and-bite' or stock MGs.^{15,16} 167 It was unexpected that both overall retention of MGs in the posterior region and total 168 retention were higher under dry compared to wet (i.e. saliva) conditions, as viscosity of saliva is believed to improve retention of dental devices. ¹⁷ It is also worth considering that 169 170 displacement of the MGs may have been facilitated by the highly polished surface of the 171 dental casts and the good tooth alignment. However, casting the master model in Nano–Rock 172 liquid die stone allowed no absorption of the artificial saliva to take place during testing. 173 which would have not been possible if a gypsum cast was used.

Retention of custom MGs relates to the superior fit of the devices, which may minimise some

To obtain more accurate retention measurements, the current study recorded displacement
forces from five different sites. In contrast, previous published work has examined MG
retention and accuracy of fit at only one site such as the midline between the upper central
incisors or the left upper molar. ^{7, 8} The highest retention at all points and under all conditions
was shown by MG6, which had two layers of EVA blanks at the anterior region and the

179 occlusal surfaces. In contrast, MG5 was the least retentive MG, made of a single 4 mm EVA 180 blank with no palatal coverage behind the anterior teeth. Additionally, the MG1 with 4 mm 181 palatal extension was more difficult to displace under both wet and dry conditions, compared 182 to MG2, which had no palatal extension (Figure 3; Table 4). Although, the palatal outline of 183 MG1 improved retention compared to MG2 and MG5 when a single layer of EVA blank was 184 used, this was not the case when the MGs were made of dual layers. This is an important 185 finding as previous literature has identified that having a MG with palatal outline increased 186 users' discomfort and speech impedance. ^{6, 18} Therefore, when manufacturing such devices 187 one should consider techniques such as using two EVA blanks, finishing the outline at the 188 gingival margins or extensively decrease the thickness of the palatal extension to maintain the retention and improve comfort. Maeda et al.⁸ also conducted a retention test but instead of 189 190 using wires to connect the MG to the testing machine, they attached a screw and washer jig to 191 only one site of the MG (upper left first molar). They measured the force (gf, n=5) when the MGs started to separate from the tooth cervical margin. Maeda et al.⁸ showed that a pressure-192 193 formed customised MG with no palatal outline performed better than a MG with 1 mm 194 palatal extension (3.8 mm EVA blank) (133 \pm 31 gf < 139 \pm 24 gf, p > 0.05), MGs fully 195 engaging the cervical undercut area of the dentition were more retentive. Similar to the present study, Del Rossi et al.⁷ proposed a test which also recorded the maximum force of 196 197 MG displacement by positioning a metal wire behind the central incisors and attaching it to a strain gauge. However, the devices were tested at two angles, 90° and 45°, to the transverse 198 199 plane to mimic the angle of MG removal used by athletes, and they demonstrated the 200 influence of colour on MG fit. Although the present study examined only clear MGs, Del 201 Rossi et al.⁷ showed that using dark coloured blanks provided better fit and adaptation due to 202 their ability to absorb infrared energy during thermoforming. Despite the differences in

experimental procedures, previous studies alongside this study have concluded that MGdesign and fabrication technique have an impact on retention.

205 Previous work has mainly related thickness of MGs to impact absorption but not retention.¹⁹⁻ 206 ²² The present study found a positive correlation between MG thickness and retention when 207 the MGs were tested under dry ($R^2 = 0.64$) and wet ($R^2 = 0.55$) conditions. Having a double 208 layer MG (EVA blanks of 2 mm and 4 mm) increased the final thickness of the devices. 209 MG3, MG4 and MG6 had a mean thickness above 2.40 ± 0.37 mm, which was more than the 210 single layer MGs. However, MG1 with thickness of 2.66 ± 0.49 mm was an exception due to 211 its palatal outline that increased the overall thickness. MG2 and MG5 were thinner than 2.02 212 mm and showed relatively low total retention $(4.53 \pm 1.18 \text{ N and } 3.49 \pm 1.90 \text{ N})$. In contrast, 213 the rest of the MG designs, which were thicker than 2.40 mm, were more retentive $(5.71 \pm$

 $214 \qquad 1.79 \ N-9.91 \pm 3.48 \ N).$

It is also important to take into account the features leading to lower displacement of MGs during use. If a MG is poorly fitted and not retentive, an athlete will try to keep it in position, which could cause distraction, speech and breathing impedances; consequently having a negative effect on performance. In addition, Del Rossi et al. ⁷ suggested that MGs with better fit might limit the chewing forces naturally applied by an individual to keep a loose MG in position, thereby prolonging the life of the device.

Dental arch dimensions differ with age, gender and ethnicity, ²³⁻²⁵ so ideally future studies should investigate dental anatomy, alignment of the teeth and the presence of undercuts as possible influencing factors on MG retention. The current study did not consider the effect of anatomical differences within the dental arches as only one master cast with no irregular teeth was examined. Improvements to the retention test methodology are also required to propose a better representation of the oral environment and mimic the angle at which MG users apply

- 227 forces to remove their device. To reflect the oral conditions more appropriately, a
- 228 glycoprotein such as mucin, which consists of 3 18 sugar units and is secreted in the oral
- 229 cavity, ²⁶ could be added to the saliva formula to increase its viscosity. Future research should
- 230 use a larger sample size including different manufacturing techniques and materials to
- 231 identify which MG parameter has a predominant impact on retention and where the cut off
- 232 point is for sufficient retention force.

233 Conclusion

- 234 MG retention could be altered by changes in design. The use of two EVA blanks lead to
- 235 increase in both MG thickness and retention, whereas the use of a single blank produced
- thinner MGs with low retention. Higher retention was recorded in the anterior region in the
- 237 presence of artificial saliva solution.

238 References

239 240 241	1.	Emerich K and Gazda EN. Dental trauma, prevention and knowledge concerning dental first- aid among Polish amateur boxers. J Sci Med Sport 2013; 16: 297-301.
242 243 244 245	2.	Boffano P, Boffano M, Gallesio C, Roccia F, Ciganetti R, Piana R. Rugby athletes' awareness and compliance in the use of mouthguards in the North West of Italy. Dent Trauma 2012; 28: 210-13.
246 247 248	3.	Dhillon BS, Sood N, Sood N, Sah N, Arora D, Mahendra, A. Guarding the Precious Smile: Incidence and Prevention of Injury in Sports: A review. J Int Oral Health 2014; 6: 104-7.
249 250 251	4.	Lee JW, Heo CK., Kim SJ, Kim GT, Lee DW. Mouthguard use in Korean Taekwondo athletes – awareness and attitude. J Adv Prosthodont 2013; 5: 147-52.
252 253 254	5.	Miller MB, Johnson CD, Cooley RA, Sharp H, Servos TA. Mouthguard usage by middle and high school student-athletes in Houston, Texas. Gen Dent 2016; 64: 35-8.
255 256 257	6.	Gebauer DP, Williamson RA, Wallman KE, Dawson BT. The effect of Mouthguard Design on Respiratory Function in Athletes. Clin J Sport Med 2011; 21: 95-100.
258 259 260	7.	Del Rossi G, Lisman P, Signorile, J. Fabricating a better mouthguard. Part II: the effect of colour on adaptation and fit. Dent Traumatol 2008; 24: 197-200.
261 262 263	8.	Maeda Y, Yonehata Y., Satoh, H. Mouthguard retention: Is design or accuracy of fit more critical? Quintessence International 2009; 40: e13-e17.
264 265 266	9.	Uysal T, Usumez S, Memili B, Sari, Z. Dental and Alveolar Arch Widths in Normal Occlusion and Class III Malocclusion. The Angle Orthod 2005; 75: 809-13.
267 268 269	10.	Padilla RR. A Technique for Fabricating Modern Athletic Mouthguards. J Can Dent Assoc 2005; 33: 399-407.

270 271 272 273	 Gage CC, Bliven KCH, Bay RC, Sturgill JS, Park JH. Effects of mouthguards on vertical dimension, muscle activation, and athlete preference: a prospective cross-sectional study. Gen Dent 2015; 48-55.
274 275 276	12. Garner DP, Dudgeon WD, McDivitt EJ. The Effects of Mouthpiece Use on Cortisol Levels During an Intense Bout of Resistance Exercise. J Strength Cond Res 2011; 25: 2866-71.
277 278 279 280	 Takeda T, Kajima T, Nakajima K, Narimatsu K, Konno M, Hasegawa K, et al. Paired maxillary and smaller mandibular mouthguard for rugby player with malalignment. Dent Traumatol 2014; 30: 76-80.
281 282 283 284	14. Farrington T, Coward T, Pearson GO, Taylor R, Earl P, Winwood K. Investigation into the relationship between thickness variations and manufacturing techniques of mouthguards. Dent Traumatol 2015; 1-8.
285 286 287	15. El-Ashker A and El-Ashker, S. Cardiopulmonary effects of using mouthguards during medium and high intensities in elite Egyptian boxing athletes. JPES 2015; 15: 15-9.
288 289 290 291	16. Duarte-Pereira DMV, del Rey-Santamaria M, Javierre-Garces C, Barbany-Cairo J, Paredes-Garcia J, Valmaseda-Castello E, et al. Wearability and physiological effects of custom-fitted vs self-adapted mouthguards. Dent Traumatol 2008; 24: 439-42.
292 293 294	17. Darvell BW and Clark RKF. The physical mechanisms of complete denture retention. BDJ 2000; 189: 248-52.
295 296 297	 Maeda Y, Machi H, Tsugawa T. Influences of palatal side design and finishing on the wearability and retention of mouthguards. Br J Sports Med 2006; 40: 1006-1008.
298 299 300 301	 Knapik JJ, Marshall SW, Lee RB, Darakjy SS, Jones SB, Mitchener TA, et al. Mouthguards in sport activities: history, physical properties and injury prevention effectiveness. J Sports Med 2007; 37: 117-44.

302	20.	Yamada J, Maeda Y, Satoh H, Miura J. Anterior palattal mouthguard margin location and its
303		effect on shock -absorbing capability. Dent Traumatol 2006; 22: 139-144.
304		
305	21.	Bhalla A, Grewal N, Tiwari U, Mishra V, Mehla NS, Paviprakash S, et al. Shock absorption
306		ability of laminate mouth guards in two different maloocclusions using fiber Bragg grating
307		(FBG) sensor. Dent Traumatol 2013; 29: 218-225.
308		
309	22.	Westerman B, Stringfellow PM, Eccleston JA. EVA mouthguards: how thick should they be?
310		Dent Traumatol 2002; 18: 24-27.
311		
0.4.0		
312	23.	Nojima K, McLaughlin RP, Isshiki Y, Sinclair PM. A Comparative Study of Caucasian and
313		Japanese Mandibular Clinical Arch Forms. Angle Orthodont 2001; 71: 195-200.
314		
315	24.	Kook YA, Nojima K, Moon HB, McLaughlin RP, Sinclair PM. Comparison of arch forms
316		between Korean and North American white populations. Am J Orthod Dentofac Orthop 2004;
317		126: 680-686.
318		
319	25.	Gafini Y, Tzur-Gadassi L, Nojima K, McLaughlin RP, Abed Y, Redlich M. Comparison of
320		arch forms between Israeli and North American white populations. Am J Orthod Dentofac
321		Orthop 2011; 139: 339-344.
322		
323	26.	Slomiany BL, Murty VL, Piotrowski J, Slomiany A. Salivary mucins in oral mucosal defense.
324		Gen Pharmacol 1996; 27: 761-71.

325 Legends to Tables

- 326
- 327 *Table 1.* Types of mouthguards and material dimensions.
- 328 *Palatal extension when the mouthguard extends below the gingival margin.
- 329 *Table 2.* Retention force region in relation to retention force sites.
- *Table 3.* Median retention forces for all mouthguards when tested at dry and wet condition.
 *Significant difference between conditions.
- 332 *Table 4.* Total retention and final thickness (mean± SD) for each MG design
- **333** in both dry and wet condition.

Table 1.

MG Weight Design (g)		Number of layers	Thickness of EVA (mm)	Palatal Extension*
MG1 Control 8.7 g		Single	4 mm	4 mm
MG2 No palatal extension	6.3 g	Single	4 mm	0 mm
MG3 Thicker Anterior Region	9 g	Double Anterior Region Single Posterior Region	2 mm 1 st layer 4 mm 2 nd layer	0 mn
MG4 Thicker Posterior Region	8 g	Single Anterior Region Double Occlusal Surface	2 mm 1 st layer 4 mm 2 nd layer	0 mm
MG5 No palatal coverage anteriorly	6.3 g	Single	4 mm	0 mm
MG6 Thicker Anterior & Posterior Regions	8.7 g	Double Anterior Region Occlusal Surface	2 mm 1 st layer 4 mm 2 nd layer	0 mm

Retention Force Region	Measurement site
Anterior	Mean of Site 1 & Site (1 - 3)
Posterior	Mean of Site 4, Site 5 & Site (4 - 5)
Total	Mean of All Sites

340	Table 3.

Retention	Retention at Dry Condition		Retention at Wet Condition		%	7		N
Force	Median	Range	Median	Range	Difference	Z-score	p	1
Region	(N)	(N)	(N)	(N)				
Anterior	6.28	14.97	6.72	11.57	6.55 %	-4.363	< 0.001*	120
Posterior	5.75	15.71	3.99	13.67	44.11 %	-11.511	< 0.001*	180
Total	6.40	15.77	5.62	13.83	13.88 %	-4.618	< 0.001*	360

MG	Dry Condition	Wet Condition	Total MG
Design	Retention (N)	Retention (N)	Thickness (mm)
1	6.12 ± 2.84	5.71 ± 1.79	2.66 ± 0.49
2	4.86 ± 1.92	4.53 ± 1.18	2.02 ± 0.46
3	7.36 ± 4.71	9.03 ± 3.36	2.40 ± 0.37
4	7.19 ± 1.76	5.87 ± 1.89	2.42 ± 0.61
5	3.50 ± 1.93	3.49 ± 1.90	1.96 ± 0.47
6	11.36 ± 2.96	9.91 ± 3.48	2.59 ± 0.51

346 Legends to Figures

Fig. 1. Thickness measurements at seven anatomical points in the a) anterior (i-iii) and b) posterior
region (iv-vii); c) sites 1 – 5 show the location of the orthodontic brackets on a maxillary mouthguard:
(1) palatally at the interdental space between the two central incisors (2-3) palatally at the central axis
of the right and the left canine (4-5) occlusally at the centre of the first right and left molar; d) attached
orthodontic stainless steel wire to a bracket at the region of the left molar.

- *Fig. 2.* Illustration of the testing rig and all loading scenarios to test retention at different sites of themouthguards.
- 354 *Fig. 3.* Mean retention forces for each MG design at the Anterior Region, Posterior Region and the
- 355 Total Retention in both dry and wet conditions; with error bars representing standard error.
- 356
- 357 *Fig. 4.* Relationship between thickness and retention of the various MG designs.

Site 1

Site 1 - 3

Site 4

361

Site 5

Site 4 - 5

All Sites

Type of MG

