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Abstract17

Socio-Ecological Systems (SESs) are the systems in which our everyday lives are embedded, so
understanding them is important. The complex properties of such systems make modelling an
indispensable tool for their description and analysis. Human actors play a pivotal role in SESs,
but their interactions with each other and their environment are often underrepresented in SES
modelling. We argue that more attention should be given to social aspects in models of SESs,
but this entails additional kinds of complexity. Modelling choices need to be as transparent
as possible, and to be based on analysis of the purposes and limitations of modelling. We
recommend thinking in terms of modelling projects rather than single models. Such a project
may involve multiple models adopting di↵erent modelling methods. We argue that agent-based
models (ABMs) are an essential tool in an SES modelling project, but their expressivity, which
is their major advantage, also produces problems with model transparency and validation. We
propose the use of formal ontologies to make the structure and meaning of models as explicit as
possible, facilitating model design, implementation, assessment, comparison and extension.
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1. Introduction19

Socio-Ecological Systems (SESs) consist of interacting biogeophysical components and social20

actors (individual and collective). They are invariably complex in their dynamics. Most if not21

all of the systems providing essential ecosystem services to humanity can be classified as SESs;22

examples include fisheries, agricultural and food systems, and managed forestry systems. The23

study and governance of SESs have attracted considerable attention, because many are under24

increasing pressure from anthropogenic sources: growing population, over-utilization, pollution,25

and climate change (Ste↵en et al., 2011; Rist et al., 2014). Many concepts currently in use26

in relation to SESs, including that of resilience, and related notions such as tipping points,27
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arise from study of the complex dynamics of these systems. Computational models can help to28

unravel how these system properties emerge. Modelling guidelines are available for instance in29

the fields of water management (STOWA/RIZA, 1999; Jakeman et al., 2006; Liu et al., 2008) and30

environmental policy modelling (Janssen et al., 2005; van der Sluijs et al., 2005; Schmolke et al.,31

2010; van Voorn et al., 2016), often based on the generic cycle of model development and analysis32

described by Refsgaard and Henriksen (2004). However, the human side of SES modelling has33

been given relatively little attention in comparison to the ecological side, and models where social34

and ecological components are fully integrated are rare. This paper focuses on how to remedy35

that situation.36

Environmental models used for policy assessments generally include social actors and insti-37

tutions only implicitly, e.g., as parameters to increase or decrease certain system drivers, or as38

output indicators regarding the fulfillment of certain requirements. For example, many assess-39

ments of ecosystem services assume economic rationality, which implies that pricing mechanisms40

and technological innovations can adequately ensure system resilience. Such assessments of-41

ten include social drivers and impacts among those they consider, but without modelling the42

decision-making or social interactions of relevant groups of actors, see for example Vidal-Abarca43

et al. (2014). This is regrettable from both a scientific and a governance point of view con-44

sidering that policy usually targets social actors. For example, a farmer may directly a↵ect45

biogeophysical system components through the use of fertilizer or pesticides, but policy targets46

the farmer, and not all farmers behave in the same way (see Feola and Binder (2010), and ref-47

erences therein). More generally, not only do di↵erent societies organize themselves in di↵erent48

ways (Hofstede et al., 2010), but psychological processes and attributes vary systematically across49

cultures (Smith et al., 2006). These di↵erences are of the utmost importance to the functioning50

of SESs. The resilience and sustainability of social and organizational systems, is as important as51

those of natural systems (Cutter et al., 2010). For instance, social norms have developed among52

fishers in the Philippines tuna fishery that prevent the simultaneous use of all available fishing53

sites, creating ‘safe patches’ for tuna that may thus improve resilience against over-fishing (Libre54

et al., 2015). If these norms were to collapse, perhaps due to external pressures for “economic55

rationality”, the fishery itself could follow.56

Even where the need to use social science approaches is conceded, their role is frequently57

unduly limited. For example, Daily et al. (2009) say of the assessment of ecosystem services:58

“[t]he biophysical sciences are central to elucidating the link between actions and ecosystems, and59

that between ecosystems and services (biophysical models of ‘ecological production functions’).60

The social sciences are central to measuring the value of services to people (‘economic and61

cultural models’).”. But this does not do justice to the role of social processes in SES. They62

are more resistant to modelling than biogeophysics, as we discuss. Nevertheless, as indicated by63

the examples above, and more broadly work such as that of Ostrom (2009), we consider explicit64

inclusion of social components in SES models essential.65

The inclusion of social behaviour raises legitimate concerns in modelling circles about the66

consequent demands for data, and the objection that with many tuneable parameters, they can67

produce any desired output. This forces us to think more explicitly about how we model, why68

we model and the context of modelling in order to choose the most appropriate approach. In69

this paper, we consider key issues in modelling SESs that arise when including social actors in70

models, and suggest ways to deal with them. We conclude that agent-based models (ABMs), in71

which the decision-making of human actors is explicitly represented, are key to SES modelling72

that does justice to the social aspect of such systems. We concede, however, that agent-based73

modelling currently su↵ers significant limitations and drawbacks, particularly with regard to74

validating, comparing and combining models (Schulze et al., 2017). We therefore propose an75

approach to ameliorating these disadvantages, based on a shift of focus from models to modelling76
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projects, and on the use of formal ontologies (Gruber, 1993).77

The paper is structured as follows. In Section 2 we review the properties of SESs, and78

approaches to assessing them. In Section 3 we look at the roles of data and theory, the significance79

of modelling aims, and a range of modelling approaches. Section 4 outlines methodological80

issues concerning agent-based modelling, focusing on the role of ontologies. A summary of our81

conclusions, and some directions for future work, follow in Section 5.82

2. Why SES modelling is needed, but di�cult83

2.1. The complexity of SES84

SESs are characterized by considerable human influence (it is doubtful if there are now any85

ecosystems on the planet where such influence can be discounted). SESs display additional kinds86

(not just degrees) of complexity resulting from social interactions among human individuals or87

collectives. We first specify what we mean by the complexity of a system.88

Systemic complexity has no generally agreed definition, but one useful approach is that of89

Auyang (1999), according to whom a complex system can be defined as one that “cannot be90

successfully approximated as a collection of (similar) constituents each responding independently91

to the situation jointly created by all”. A clear counterexample is a molecular gas in equilibrium:92

each molecule can be regarded as responding to the temperature and pressure of the whole,93

which in turn are simple outcomes of the spatial and velocity distributions of the collection of94

molecules. Another example – at least in theory – is a “perfect market”: each agent is assumed to95

act independently, and to respond to price signals which it cannot significantly a↵ect by its own96

behaviour. Adopting such a definition of systemic complexity puts the emphasis on the system’s97

mereology – the relationships of its parts to each other and to the whole (Gruszczyński and Varzi,98

2015), rather than on computational properties of algorithms needed to simulate it or reproduce99

data streams from it, or other properties of observed quantitative variables. When a reduction100

to independently responding components is not possible, understanding the system requires the101

identification of intermediate levels of structure. Focusing on the system’s mereological features102

allows us to identify subclasses of systemic complexity, which illuminate the modelling challenges103

associated with each kind (see Fig. 1).104

Figure 1: Classes of complex systems. For further explanation see main text.
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All ecosystems can be classified as Complex Systems (the outermost ellipse), i.e., systems in105

which system components interact to generate emergent behaviour that cannot be adequately106

understood without the description of intermediate, interacting levels of structure. Complex107

systems generally display the additional features listed in Fig. 1:108

• path-dependence (events at one time can determine or constrain the state of the system109

for an indefinitely long period);110

• resilience and phase shifts: the system has two or more relatively stable states, tending to111

remain in one such state until internal or external pressures reach a certain tipping point,112

when it switches rather quickly into another state (Holling, 1973; Bitterman and Bennett,113

2016);114

• leptokurtic (fat-tailed) distributions of the size of system disturbances: while large dis-115

turbances are less common than small ones, their numbers tail o↵ more slowly than an116

exponential distribution (Zurlini et al., 2006).117

All ecosystems are also Complex Adaptive Systems (CAS; the next ellipse, (Holland, 1992)),118

meaning that they include interacting decision-making components: actors, or agents, the term119

we use here. Some of an agent’s decisions at least can a↵ect its survival, or some other measure120

of success, such as inclusive fitness, wealth, or happiness. Agents can adapt through evolution or121

learning. Their decisions may be based on some form of cognitive processing, as with humans,122

other social animals, human collectives (such as households, firms or governments) or even human123

artefacts (such as robots or pieces of software); or be simply reactive – perennial plants, for124

example, may “decide” whether to flower in a given year, depending on the weather and their125

stored resources.126

The di�culty of modelling a CAS has additional dimensions beyond those of complex systems127

lacking agents, in that adaptive behaviours and interactions between the decisions of multiple128

agents have to be considered, as does agent diversity. Of course a CAS may be modelled with-129

out including these aspects, but the modeller should be aware of them. CASs can be further130

di↵erentiated according to the range of capabilities displayed by the agents acting within them,131

as described below.132

Managed CASs or MCASs (next ellipse) form a subset of CASs, in which at least one agent is133

able to assess and attempt to regulate the system at a non-local level. Many SESs are MCASs.134

In an MCAS, global events and structures may, as in any complex system, emerge from the135

aggregate of local interactions among components, without any agent intending it – a feature136

that is frequently stressed in the literature on system complexity; but such events and structures137

may also be modified, controlled or designed by one or more agents, perhaps using external138

symbol systems such as written plans, blueprints and charts. Notably, extreme events (such as139

an ecological catastrophe or stock-market crash) may prompt such agents to undertake restruc-140

turing of the system, to recover from (or take advantage of) the extreme event, and prevent (or141

encourage) a recurrence. The capacity of actors to change a system deliberately to create a new142

organization is commonly referred to in the literature as “transformability” (Folke et al., 2010;143

van Apeldoorn et al., 2011). Modelling MCASs adequately requires ways to represent agents144

themselves capable of representing at least some non-local aspects of the system, and their own145

actions, and of planning. However, it is possible to model some aspects of such sophisticated146

agents without attempting to simulate them in full – such a full simulation being an unsolved147

problem in artificial intelligence.148

Finally, contested CASs or CCASs (innermost ellipse) are MCASs that include multiple (in-149

fluential) agents that can come into conflict because of di↵ering goals. Many SESs fall into this150

category, including all su�ciently large ones. Here, strategic considerations come into play, and151
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the mathematics of non-cooperative game theory, and the areas of artificial intelligence used in152

the design of game-playing programs become relevant. Work on social dilemmas, cooperation153

and altruism is also of significance here, and there is already a considerable amount of work on154

these topics that can be drawn on, including in the agent-based modelling field (Gotts et al.,155

2003; van Lange et al., 2013). Additional complexity comes from the diverse types of interactions156

between competing strategic agents. For example, ten Broeke et al. (2018) (this issue) present a157

suite of models in which di↵erent agents cooperate or defect in their interactions, which a↵ects158

the resilience properties of the system as a whole. It is fair to say that wholly adequate ways to159

model CCASs are likely to be a long way o↵, but again, it is possible to model some aspects of160

strategic interactions.161

In addition to being highly complex, all SESs are open, in the sense that factors operating162

from outside the SES have significant causal influence. This raises a significant issue for vali-163

dation in models of SESs (Oreskes et al., 1994). It also raises questions of where to draw the164

system boundary when conceptualizing the empirical world (Hofstede, 1995). Sometimes mod-165

elling pragmatics mean that feedback loops involving “slow” variables (Carpenter and Turner,166

2001; Crépin, 2007; Walker et al., 2012) are ignored because their e↵ects are negligible over the167

model’s time-frame; we could expect agreement in modelling communities that this is appropri-168

ate. However, decisions about whether to include phenomena, and if so, whether to do so as169

endogenous, or as exogenous driving variables, are also based on more context-specific criteria:170

the availability of data, or considerations of “elegance” or feasibility and tractability of analysis171

in the chosen modelling approach. Here, a consensus is less obviously achievable.172

There is a further complication to beware of in designing a model of a CCAS: stakeholders173

will generally attribute perceptions and goals to each other – but these will often be, at least174

in part, misrepresentations, deliberate or otherwise (Milner-Gulland, 2011). The very fact that175

stakeholders with opposing views and interests tend to misunderstand and misrepresent each176

other is a key part of the di�culty of SES modelling. The approach of participatory modelling177

(discussed in section 3.3) is relevant here.178

2.2. Terminology, indicators and models179

As scientists, we want to understand SES dynamics; as policy-makers or concerned citizens we180

want to preserve or improve them, and hence need to assess their current state, and how it is181

changing in relation to those goals. Many contemporary assessments of SESs revolve around the182

concepts “resilience”, “sustainability” and “ecosystem health”. These concepts are ill-defined183

and contested, due both to the fact that di↵erent fields of application require di↵erent concepts,184

and to the independent development of these ideas in di↵erent disciplines (Janssen et al., 2006;185

Redman, 2014; Fleurbaey, 2015).186

Resilience (in the ecological sense) refers to the capacity of an ecosystem (or socio-ecosystem)187

to maintain structure, function and feedbacks in the face of disturbance (Folke et al., 2010),188

but the state maintained may be judged desirable, undesirable or neither. Resilience needs to189

be evaluated as “resilience of what, to what?” (Carpenter et al., 2001), as not all pressures190

a↵ect SESs in a similar fashion. The closely related “tipping point” concept emerged from the191

realization that an ecosystem could have more than one stable state, or “basin of attraction”,192

and that internal or external disturbances could shift it between basins. The disturbance may193

simply be a gradual change in some variable – such as the amount of a nutrient available. A lake194

may shift rapidly from an “oligotrophic” (low-nutrient) state, with clear water and oxygen levels195

high, to a “eutrophic” one, in which algal growth makes it opaque and reduces oxygen levels,196

as dissolved nutrient levels rise. Nutrient levels may then need to fall considerably below the197

threshold at which the switch occurred in order to switch it back – the phenomenon of hysteresis198
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(Sche↵er et al., 2001, 2009, 2012).199

Ecosystem health is frequently defined in terms of the absence of toxins; the roster of species200

present relative to what would be expected; and the ecosystem’s ability to recycle waste products.201

However, for a socio-ecosystem, the welfare of the human inhabitants must also be considered202

(Costanza, 2012; Lu et al., 2015; O’Brien et al., 2016); and speaking of a system’s “health” is in203

any case best regarded as metaphorical, as ecosystems are not organisms, and what kills some204

components of an ecosystem may (generally, will) encourage others to flourish.205

Finally, the idea of sustainability is linked to human use of the environment, without dam-206

aging it in ways that undermine its ability to provide ecosystem services: clean air and water,207

flood control, recreation, etc. There is, however, extensive argument about what constitutes208

sustainability, and even whether it is a meaningful term, particularly in combinations such as209

“sustainable growth”, widely regarded as self-contradictory (Bell and Morse, 2008; Bjørn et al.,210

2015; Sarvajayakesavalu, 2015).211

Lack of agreement about how to operationalize the above concepts makes measuring them212

hard, but more fundamentally, the systemic complexity of CCASs and MCASs makes it inherently213

di�cult to develop simple measures for them. Certain measures may serve as indicators, just as214

temperature may be an indicator of the health of an individual. Indeed, many indicators have215

been proposed; a distinction can be made between ecological indicators, i.e., indicators regarding216

the ecological side of SESs, social indicators, those regarding the social side, and socio-ecological217

indicators, those relevant to both. However, such indicators will usually not show a one-to-one218

correlation with emergent SES properties, because they only touch on single facets of the SES –219

much as temperature is an indicator of fever, but not all aspects of human health are correlated220

with temperature.221

Ecological indicators include physical quantities (temperatures, light levels, hydrological mea-222

surements, concentrations of chemical species), biophysical measures (biomass, respiration, detri-223

tus), species abundance and biodiversity, network measures (food webs, trophic levels, biophysical224

measures at di↵erent trophic levels), maximum disturbance from which recovery is possible, and225

time to recovery (Siddig et al., 2015; González et al., 2016). Social indicators include individ-226

ual health and well-being, social capital, and measures of inequality, trust and social cohesion,227

crime and violence, misuse of alcohol and other drugs, and family structure and functioning228

(Abbott and Wallace, 2012; Jacob et al., 2013; Klomp and de Haan, 2013; Hicks et al., 2016). Fi-229

nally, socio-ecological indicators include thermodynamic measures (from “ecological economics”),230

“footprint” measures, sustainability indicators, and assessments of system resilience, ecosystem231

services and resource e�ciency (Coscieme et al., 2013; Estoque and Murayama, 2014; Li et al.,232

2014; Lu et al., 2015; Banos-González et al., 2015, 2016; Eisenmenger et al., 2016; Recanatesi233

et al., 2016).234

The very range and variety of indicators makes SES assessment a problematic business.235

Modelling can guide the choice of indicators for specific assessment purposes. Models represent236

codified, integrated system knowledge, and can be used to “grow” emergent properties, explore237

scenarios, and identify distributions of outcomes. However, SES modelling faces at least two238

major challenges deriving from the intrinsic properties of the systems concerned:239

1. It is di�cult to untangle the webs of interactions at various spatial, temporal and or-240

ganizational scales su�ciently to draw a system boundary. There is a trade-o↵ between241

including too much detail, with the resulting model having too many parameters to feasibly242

calibrate it or explore its dynamics, or too little detail, oversimplifying. The kinds of dy-243

namics associated with complex systems, discussed above, make data di�cult to replicate,244

with the result that models are left simulating “stylized facts” or “patterns” (Grimm et al.,245

2005) rather than conforming to data validation criteria associated with traditional sta-246

tistical measures of model performance. That, and typically limited access to data, mean247
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confidence in model predictions is di�cult to establish.248

2. Many SESs, as noted above, are Contested Complex Adaptive Systems: they include agents249

capable of thinking about the dynamics of the system as a whole, but di↵ering among250

themselves over just what those dynamics are, and how, if at all, they should be changed.251

Typically, at least in cases where a CCAS is contemporary rather than historical, the252

modeller will be confronted with choices which have political implications: if they adopt253

the viewpoint favoured by one agent or group of agents, they will quite reasonably be254

perceived as siding with that agent or agents. Such political implications of modelling255

choices may occur with respect to historical systems, and indeed to systems other than256

CCASs, but they are at their most stark for contemporary CCASs. Issues that confront257

researchers or policy-makers with such clashes between stakeholders (see also section 3.3)258

are sometimes referred to as “wicked” (Churchman, 1967).259

3. Choosing SES modelling methods260

An SES model, in the broadest sense, is anything that is used to understand a real-world SES261

through some (real or supposed) resemblance between them. Models can be constructed in262

di↵erent ways, have di↵erent requirements for data and relationships to theory, and be used for263

di↵erent purposes. This section discusses these matters.264

3.1. Availability of data and theory265

The ecological aspect of SES modelling is by no means simple, given the sheer number and variety266

of organisms living just on and below a square meter of grassland or woodland, but as argued267

above, it is the social aspect that is most in need of development. Yet data collection on human268

decision-making and social networks, and their e↵ects on SESs, is frequently given far less in the269

way of attention and resources than collection of data from the biophysical environment.270

In addition, there are practical limits to data acquisition. One limitation results from scale271

mismatches (e.g. feedback responses to human decision-making typically occur on a much slower272

time-scale and much larger spatial scale than that of the human decision-making itself, as in the273

case of climate change). Another is the di�culty of extracting reliable data from observations274

about human behaviour (e.g. people often do not accurately reveal their motivations for doing275

things, even when they intend to). Again, data on social networks and the interactions taking276

place within them, and longitudinal data, are often far from adequate.277

Hence, in modelling an SES there are often no good data about at least some of the human278

elements one wishes to include. This does not always invalidate the modelling e↵ort. In the279

absence of data for a specific element of the model, one can work with estimates, backed up280

by theory. If an appropriate theory is used, one could for instance show potential emergent281

behaviours or tipping points that could happen if certain future developments occurred. De-282

termining what data and/or theory to base the model on is therefore an important step in its283

own right, and one that is linked to the choice of modelling goals and scope. Within psychology284

and the social sciences, there are abundant theories which are su�ciently articulated to form the285

basis of a model of a social system, and it is sometimes possible to apply them to SES modelling286

(Jager et al., 2000; Hofstede, 2017). Conversely, designing and implementing models can assist287

theory development (Zellner et al., 2014).288

However, there are certainly di�culties with this approach. Theories of human behaviour and289

decision-making are scattered across psychology and the social sciences, most of them focus on290

isolated aspects of these multifaceted phenomena, they often lack a clear causal basis (Schlüter291
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et al., 2017), and frequently leave unstated many details which must be specified for a working292

simulation (Polhill and Gotts, 2017). Moreover, there is still no generally accepted framework for293

dealing with key social concepts such as values and norms (Chan et al., 2012), because the social294

sciences remain methodologically contested disciplines. Thus, the inclusion of human behaviour295

and decision-making in SES models can require making many assumptions about the relevant296

actors (Müller-Hansen et al., 2017), even when some support is available from theory.297

3.2. Modelling aims298

There are many di↵erent kinds of purpose for a model and these are not always distinguished. We299

focus here on five principle kinds: prediction, explanation, theoretical exploration, illustration300

and analogy (or a way of thinking about things). For more about di↵erent modelling purposes301

and their implications, see Edmonds (2017).302

The essence of prediction is anticipating aspects of unknown data before they are known.303

Once a predictive model has been tried on multiple di↵erent cases and di↵erent conditions suc-304

cessfully one can start to rely upon it. Developing a model for prediction can be quite di↵erent305

from building one for other purposes (Silver, 2012). The gas laws are a simple case of a predictive306

model – which does not, and need not, explain why it works in order to predict. An example of307

a predictive social model is Nate Silver’s model of the US presidential elections (Silver, 2016).308

This does not predict a specific result but rather the probability distribution of outcomes, so its309

accuracy can only be assessed by considering multiple cases (di↵erent years, or the results in the310

various states in a single year, for example). Of course, this approach is not specific to social311

models.312

The second kind of purpose is supporting an explanation – showing how a set of plausible313

mechanisms might produce outcomes that match some known data (in some well-defined way).314

If it succeeds, then the workings of the model explain the outcomes (or at least certain aspects315

of the outcomes). We can test our understanding of the mechanisms with experiments on the316

model. A typical example of an explanatory model is the Fitzhugh-Nagumo model for spiking317

neurons (FitzHugh, 1955; Nagumo et al., 1962), which gives no predictions of the membrane318

potential of neural cells at all but simply illustrates how a spike in this potential develops. Many319

ABMs and the very similar individual-based models (IBMs) in ecology are aimed at explanation,320

trying to explain emergent system properties from micro-level processes (Macal and North, 2005;321

Grimm and Railsback, 2012).322

Both prediction and explanation are empirical uses of models: the connection between the323

model parameters, mechanisms and outcomes should be well-defined and verifiable. However324

they are very di↵erent. The workings of a predictive model do not have to be plausible; it just325

has to predict successfully. The workings of an explanatory model are the constituents of the326

explanation that results; if the workings are implausible so is the explanation. It is a mark of327

mature science when we know how predictive and explanatory models relate so we know why328

predictions work but often in science one kind of model is developed before the other. For329

example, the gas laws were discovered before we knew why they worked (random gas molecules330

bouncing around) while Darwin’s explanatory theory of evolution was discovered before any331

predictions from genetics were possible.332

The remaining purposes are not empirical. Theoretical exploration or exposition takes a333

set of mechanisms and tries to understand the resulting system properties in terms of some theory.334

If the mathematics is analytically solvable one might obtain a general solution – which may be335

possible for some models of ordinary or partial di↵erential equations, such as the logistic growth336

model and the heat equation (Kot, 2001), but in more complicated cases one might just have to337

calculate or simulate the outcomes, exploring the space of outcomes as thoroughly as is feasible,338
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and testing any theoretically-derived hypotheses about the overall behaviour. For example, a339

“minimal” model of agents harvesting a renewable and di↵using common-pool resource has been340

used to study the e↵ects of natural selection (ten Broeke et al., 2017) and cooperation (ten341

Broeke et al., 2018) (this issue) on resilience, using sensitivity analysis to identify contributing342

factors. Theoretical models do not tell us how observed reality is; to show that a set of theoretical343

results holds for what is observed, we would then have to establish this as also an explanatory or344

predictive model. More usually, the theory is not straightforwardly applied, but forms the core345

of a more extensive model.346

Illustrative use of a model just aims to show an idea or particular case. Axelrod’s “evolution347

of cooperation” models (Axelrod, 1984) did not give a general outline of cooperative behaviour348

in formal games, but did illustrate how cooperation might evolve. The purpose of illustration is349

to be clear, so illustrative models tend to be simple, but may not meet the rigorous standards of350

theoretical exposition (and might turn out to capture a vanishingly special case, for example).351

A fifth case is to use a model as an analogy – as a way of thinking about things. This is not352

empirical, because how it relates to what we observe will change with each case it is applied to353

in a flexible and creative manner. Analogies, whether verbal, visual or encapsulated in a formal354

model are essential for thinking. We need them to guide the direction of our e↵orts, they might355

suggest new hypotheses but they are not reliable pictures of the world.356

Illustrative and analogical models are frequently used as a tool for either communication357

or negotiation (a boundary object). In the case of communication the model is designed to358

encapsulate a point that someone wants others to understand. Models can be very useful to359

communicate examples that are too complex to be adequately described using other mechanisms –360

because the recipient can then play with the model gaining rich experience about the interactions,361

emergence and dynamics. A more complicated use is where a model is used to develop a shared362

representation or a vehicle for discussing issues in common. In this case the emphasis is not363

so much on representing an independent phenomenon but rather on its coherence with the364

stakeholders’ perceptions of the issue or situation. See Cash et al. (2003), and for a survey of365

this kind of use of models Barreteau et al. (2013).366

3.3. The system under-determines the model367

As we have shown, modellers need to consider multiple factors aside from the nature of the368

real-world systems or class of systems they intend to model (Kelly et al., 2013). These include369

(but are not limited to):370

• What is the purpose of the model?371

• What type of data is needed for the development of the model?372

• How much data is available for the model?373

• What theories are available for use in constructing or constraining the model?374

• Who are the model users? Researchers, policy makers, or stakeholders?375

All these considerations can influence the best boundaries of the model in regard to content (e.g.376

which classes, variables and relationships to include and which not), and spatial and temporal377

scales.378

So in general the system under-determines what model, and indeed, what type of model,379

would be the right outcome of a modelling process. The best answer may be: “No model”, at380

least as far as models in software are concerned, if the requirements stemming from the purpose381
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of the model – in terms of data available, theoretical basis, stakeholder involvement and so on –382

cannot be met. The possibility also arises that multiple models, perhaps of di↵erent types, may383

be needed to achieve the modellers’ goals. Each model may then serve a di↵erent purpose.384

We recommend thinking primarily in terms of modelling projects, rather than individual385

models – see Fulton et al. (2015) and Forrester et al. (2014) for examples of such an approach.386

A modelling project is an investigation of a specific system (in our case, an SES) or group387

of systems, in which the design, construction and use of software models is intended to play an388

important part. It may involve the construction of a number of such models, and in addition, will389

typically include data collection, theoretical analysis, and in many cases stakeholder involvement.390

Di↵erent models within a project may adopt di↵erent modelling methods. They may also adopt391

di↵erent theoretical viewpoints, e.g. there may be a more economically oriented model that392

assumes all agents behave according to economic rationality, and a socially oriented model that393

assumes irrational behaviour among agents. Moreover, since in SESs the usual state of a↵airs394

is that many stakeholders are involved, and the various stakeholders typically have di↵erent395

views of the system and preferred system states (the system is a CCAS), the modeller may find396

it useful to produce di↵erent simulation models to reflect the viewpoints of di↵erent groups of397

stakeholders.398

Those who live their lives in an SES may be the most knowledgeable about it. This makes399

it desirable to obtain local stakeholder collaboration in model design and refinement. Also, if400

stakeholders disagree on desirable outputs, or on feasible interventions, a model created without401

the contribution of certain stakeholders or groups, may be cursorily dismissed by them. So, there402

are two good reasons for involving stakeholders at model development time: system knowledge,403

and model acceptance. This has been recognized by SES researchers, and it has given rise to the404

stream of stakeholder-involving ABM-based research known as companion modelling (Etienne,405

2014) or participatory modelling (Voinov et al., 2016). Allison et al. (2018) add a third reason:406

preventing models being regarded as predictive oracles, contrary to the intentions of the modellers407

themselves: if stakeholders are involved in designing the models, they may have a better grasp408

of their limitations, and this message can be reinforced by the modellers.409

Nevertheless, these approaches have their own pitfalls. Stakeholders are rarely used to think-410

ing in terms of abstract models, so they require modellers skilled in communication, who build411

models with understandable interfaces. The modellers must also be able to work e↵ectively in412

situations involving disagreement, competition for their attention and approval, and conflict.413

Seidl (2015) argues that there is often insu�cient reflection on the processes of participation,414

and recommends the use of common project protocols or templates, both to facilitate project415

planning and to improve resulting publications. Stakeholders are, almost by definition, biased:416

they have a stake in seeing the system in certain ways, ways which justify their own actions.417

Voinov et al. (2016) note that: “Participatory processes need mechanisms to explicitly recognize418

human biases and heuristics (i.e. mental shortcuts) when they occur, and to resolve them or419

compensate for them if needed.”, and give a number of recommendations for such mechanisms,420

including getting a diverse group of participants, and using “structured, accountable, traceable,421

transparent processes” at all stages of the modelling process. Yet as Barnaud et al. (2005) de-422

scribe, it is extremely di�cult to ensure that those who are at the bottom of social hierarchies423

(the poor, women, members of ethnic minorities) are able to voice their viewpoints, and the424

source of unsustainable practices in an SES may lie with national authorities, or others remote425

from the SES being modelled. Participatory approaches are often valuable, but no panacea.426
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3.4. Approaches to modelling427

At the most general level, we can divide modelling into conceptual, statistical, mathematical and428

simulation modelling.429

• Conceptual modelling examples include fuzzy cognitive maps, conceptual mapping and430

causal loop diagrams, but they may consist solely of natural language descriptions. A431

major advantage of graphically encoded conceptual models is that they are a good com-432

munication tool; they can be discussed with other researchers and stakeholders without433

a modelling background. A major disadvantage is that they cannot be unambiguously434

applied to observed systems, but always involve some amount of interpretation when thus435

applied.436

• Statistical modelling is used for understanding correlation between variables. Examples437

include Monte Carlo, Bayesian networks, regression models, and structural equation mod-438

elling. There are two basic kinds of statistical model: descriptive and generative (Ng and439

Jordan, 2002). A descriptive model abstracts certain properties from a set of data, to give440

insights into that data or allow di↵erent sets of data to be compared. Generative models441

allow for projections from the data to be made. Usually statistical modelling is used in a442

descriptive manner for SESs.443

• Mathematical modelling is generally associated with theoretically focused models. Most444

examples are comprised of di↵erential equations, see for example Kuehn et al. (2013).445

General conclusions can sometimes be analytically derived for these kinds of model, allowing446

a near complete characterisation of their behaviour. Due to SES complexity, mathematical447

models tend to be considerably abstracted from any observed target SES.448

• Simulation modelling is used when the outcomes of a system cannot be derived ana-449

lytically, but rather each example scenario needs to be computed individually. They may450

also be used to improve transparency and comprehensibility in contexts where those with451

an interest in the model do not understand analytical derivations. Simulation models will452

typically include adjustable parameters and stochastic elements, and be run many times,453

producing a range of results. Statistical methods may be applied to this range, and sensi-454

tivity testing may be used to determine the e↵ect of changing specific parameters.455

Conceptual modelling is always part of the modelling process, but on its own, is insu�cient for456

prediction, explanation, or theoretical exploration of complex systems such as SESs. Statistical457

modelling approaches are very data-driven and typically assume a static system structure. They458

are not suitable for understanding emergent properties, which is clearly relevant when SESs459

are concerned. Mathematical models are explicitly dynamical. However, only models of very460

limited complexity (in terms of number of state variables, parameters, stochastic and/or spatial461

components, and types of feedback included) are analytically tractable, and these are mainly462

suited to serve as caricatures of reality.463

Simulation modelling allows for the inclusion of multiple state variables, many parameters,464

stochastic and/or spatial components, and several feedback mechanisms. Simulations can be465

based on a system dynamics, cellular automaton or agent-based model approach, or on combi-466

nations of these.467

Systems dynamics (SD) is commonly used to describe biogeophysical processes, including468

population, groundwater, and nutrient flow dynamics. SD models are based on a mean field469

approximation of state variables at an aggregated level. They usually represent a combination of470

a mathematically explicit description of processes, such as di↵erential equations, and simulation471
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using a numerical implementation. A major advantage of SD models is that there are many472

model analysis methodologies available, including methods that can be used to address concepts473

such as tipping points and resilience. Major drawbacks are that these models do not allow for474

lower-level descriptions and handle social processes poorly.475

Cellular automata models are frequently used in areas such as land use change prediction476

and policy (Yang et al., 2014). In these spatially explicit models, each “cell” has a number of477

possible states, and in a pure cellular automaton model, the state of a cell at time t+1 depends478

only on its own state and those of a limited set of neighbours at time t. Such land use change479

models can be very useful predictive tools, but abstract away the agency of actual land managers,480

and also impose a fixed spatial structure and set of possible land uses, which take no account481

of changes in ownership or management, or of land use options. Cellular automata simulations482

involving commons dilemmas go back to the 1980’s, e.g. Axelrod (1984), Nowak and Sigmund483

(1992), but these focus mainly on the development of optimal or idealised strategies and not on484

actors’ external drivers and internal motivations. In other words, people seldom behave in these485

idealized ways, which necessitates the inclusion of theory regarding what internally motivates486

and externally drives people’s decisions.487

Agent-based modelling is an approach in which decision-makers (agents) of some kind are488

explicitly represented. Their decisions generally a↵ect both the relative success and inter-489

relationships of the agents themselves, and the environment in which they are placed. The490

agents may represent individuals, households, firms, states or other collectives, and typically491

can di↵er from each other in terms of motivation, abilities or powers, and knowledge. An ABM492

may well include System Dynamics and/or Cellular Automaton elements representing aspects of493

the agents’ environment (Gaube et al., 2009; Haase et al., 2012; Martin and Schlüter, 2015) or494

governing the agents’ internal processes (Bradhurst et al., 2015; Schieritz and Größler, 2003).495

Ideally, there would be a clear set of guidelines providing a universally-agreed specification496

of the appropriate modelling approach to use based solely on attributes of the empirical world,497

modelling aims, and the data available. The choice of modelling approach, however, is often more498

a question of disciplinary norms and individual preferences than of rigorous analysis of criteria.499

Kelly et al. (2013) do provide a decision tree to guide the choice of modelling approach based500

on the mix of qualitative and quantitative data available, and availability of existing models501

for processes and system components; but the tree’s decision nodes also require evaluation of502

modelling purpose, the perceived importance of feedbacks, and the interests of the modeller.503

Other reviews of modelling approaches are rather less prescriptive. Schlüter et al. (2012) do504

not make specific recommendations about which approach to use, but instead propose using505

Ostrom’s framework (Ostrom, 2007, 2009) as a basis for justifying modelling choices and making506

comparisons among various models conceptualising SESs.507

A model of a complex system, and in particular of an SES, can range from very simple to508

highly complicated (where “complicated” means “consisting of many components of di↵erent509

types”). Other things being equal, a simpler model is to be preferred. When a model gets more510

complicated or complex three major drawbacks start to play an increasing role:511

1. The model may become over-fitted, i.e., it starts to fit noise which reduces its applicability512

for other datasets. If there are more free parameters in the model than can be calibrated513

using the available data, then an explanatory model may be too easy to fit to the data –514

the ‘wiggle room’ to fit anything is just too great. Thus the fact that a model fits particular515

data may not be significant.516

2. Limitations in available computational power to run the model can prevent appropriate,517

adequate exploration of the model.518

3. It becomes harder to understand how the model functions.519
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Furthermore, more complexity does not necessarily mean that the model is more accurate520

(Blair and Buytaert, 2016). For the purposes of analogy, a simple model may give more insights521

than a more complex one; if one aims at illustration, then no more is needed than the minimum522

of structure and processes to show what is intended. Similarly, for the exposition of theory, one523

would want to pare down all but the mechanisms of interest.524

If a model has a predictive purpose, then it may be possible to feed enough data through it525

to reveal any patterns, which can then be used to predict new observations. In SESs, however,526

prediction is rare given the complexity of the systems and the relative paucity of data. Most527

models of SESs tend to be aimed at least in large part at explanation, to deepen understanding528

of the system or class of systems modelled in terms of a set of plausible mechanisms.529

As mentioned above, a modelling project may need to include multiple simulation models of530

a single system. One more way in which this may be useful arises out of the problems intrinsic531

to complex models: constructing di↵erent models to represent di↵erent levels of granularity or of532

abstraction. A good explanatory model might be very complex, especially if it integrates both533

social and ecological aspects. It may then be necessary to construct a model of this model (a534

metamodel), in order to examine some of the mechanisms involved in a more analytic manner.535

This theoretical model can then be related to the explanatory model in testable and well-defined536

ways, gaining some of the benefit of both (Lafuerza et al., 2016).537

4. Agent-Based Modelling of SESs538

4.1. Advantages of agent-based modelling of SESs539

Modelling aimed at explanation of a system’s dynamics in terms of underlying mechanisms540

requires the model to represent these mechanisms adequately and that means representing them541

explicitly. Such models necessarily attempt some structural correspondence to a part of the542

observed and/or conceptualised external world. The question then arises of how much structure543

and which processes need to be represented in the model. We always have limited resources544

of time, computation and understanding, so some compromise in terms of a model’s faithful545

representation of the modelled system is almost always necessary (Grimm et al., 2005). However,546

if a model is too simple, it is likely to omit features of crucial importance. For an SES, these547

features include the decisions, actions and intentions of human individuals, along with their548

institutions, knowledge, beliefs, resources and technologies. Schlüter et al. (2012) emphasize549

coevolutionary processes and micro-level decision-making, while Filatova et al. (2016) stress the550

kinds of feedback within and between the social and ecological subsystems, links between various551

organisational scales, and the representation of nonlinear behaviour.552

These factors are demonstrably important in real-world SESs. We consider that Agent-Based553

Models have the potential to capture far more of these key features than any other current554

approach to SES simulation. They allow for detailed description of heterogeneous individual555

actors’ behaviour, which SD models cannot do, and can generate emergent properties, as the556

interactions of agents with each other and their environment produce macro-level patterns such557

as directional or cyclical change, and greater or lesser system resilience. In contrast to typical558

cellular automata, these macro-level features can in turn be perceived by and influence the agents.559

Moreover, unlike typical cellular automata agents, ABM agents may be given the power to move,560

to acquire or lose ownership of or influence on specific parts of that environment, and to establish561

links with agents other than immediate neighbours.562

Another advantage is that ABMs lend themselves well to communicating model structure563

and behaviour to stakeholders: people in general are used to thinking in terms of the intentions,564

actions and interactions of both other individuals, and collectives such as households, firms, gov-565
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ernments and states. Most people are far less used to thinking in terms of di↵erential equations,566

or the kinds of dynamics typical of cellular automata.567

In sum, it is the expressivity of ABMs that leads us to recommend their use. As we have568

already noted, ABMs can include systems dynamics and/or cellular automata elements. An SES569

typically links organisms of very di↵erent degrees of behavioural sophistication (such as plants570

or bacteria on the one hand and farmers or gatherers on the other); and the less sophisticated in571

particular may be present in very large numbers. Large numbers of comparatively simple agents572

may be best represented using di↵erential equations or cellular automata, even within a model in573

which human beings (and possibly some other organisms) are represented as individual agents.574

There are di↵erent ways to combine SD and ABM models, ranging from loosely coupled or575

sequential, where the output of one model component is fed to the next, to fully integrated,576

which incorporates feedbacks between the two (or more) components during a simulation run577

(Swinerd and McNaught, 2012). Martin and Schlüter (2015) provide an example of the latter578

(including a detailed procedure for achieving it) with their model of the restoration of a shallow579

lake being polluted by untreated sewerage from private households. This SES case study links580

an agent-based model of the social sub-system representing individual house owners and a local581

authority with a system dynamics model of the ecological sub-system (the lake with two types582

of fish in a predator-prey relationship). A somewhat similar example (FEARLUS-SPOMM, see583

Polhill et al. (2013)) is examined in Appendix 1.584

4.2. Drawbacks of agent-based modelling of SESs585

The very expressivity of ABMs, however, is a source of significant drawbacks. Because every586

agent can have its own individual properties, potentially di↵erent from those of all other agents587

in the model, the number of tunable parameters of an ABM can become enormous, and indeed,588

di�cult to calculate, once we consider that the number of agents and the statistical distributions589

of their properties and relationships with each other can themselves be model parameters. Given590

enough parameters, it becomes di�cult to establish that there is any set of outputs that could591

not be produced. However, work is needed to establish the change in realizability of outputs592

introduced by adding an agent to a model, and how this compares with adding a term to a593

traditional model (Polhill and Salt, 2017). Of course, by no means all ABMs are intended as594

empirical models of specific systems, but even for those that are not, the problem of defining the595

range of acceptable outputs remains.596

ABMs can also su↵er from a lack of transparency in that it may be di�cult to determine597

(even for the modellers themselves) what specific features of the model represent in the system598

or type of system being modelled – or indeed, whether they represent anything at all, rather599

than simply being “sca↵olding” necessary for the model to function as a piece of software, and600

to allow the user to manipulate it. This problem is not unique to ABMs, but that it is a serious601

issue is indicated by attempts at replication which show that altering seemingly minor aspects of602

an ABM can radically change the results (Edmonds and Hales, 2003; Janssen, 2007). The lack of603

this kind of transparency places greater emphasis on code sharing and documentation practice604

(Edmonds and Polhill, 2015).605

In modelling any complex adaptive system, and in particular in modelling SESs, we can be606

e↵ectively certain that our model will not include all the layers of intermediate structure, or all607

the kinds of interaction between agents, which are relevant to the behaviour of the real-world608

system being modelled; any model (not just those that are agent-based) will inevitably be partial609

in this sense, but this partiality may not be evident to the model’s users, and is easily forgotten610

by its developers.611

To keep ourselves as honest as possible as modellers, we propose making as explicit as feasible612

14



what we have knowingly left out of our models. (The qualifier “knowingly” is a necessary one;613

given our very limited knowledge of SESs and their “components” (particularly, of people), we614

can also be pretty certain that we are leaving out more than we are aware of.) “As explicit as615

feasible” is an elastic term, and deliberately so. We know, as modellers, the pressure to produce a616

model rapidly, and the space limitations and other constraints of journals and conference papers:617

emphasising what your model does not cover may not assist you in getting published. But618

there are now model repositories such as OpenABM1, where model code and documentation can619

be archived and made available to other researchers. This documentation should, we suggest,620

include an explicit statement of the model’s known limitations, along with its purpose, data621

requirements, theoretical basis (if any), and stakeholder involvement (if any). The ODD format622

(Grimm et al., 2006, 2010) is helpful in putting together the necessary documentation for ABMs623

– similar formats exist for other types of models. In section 4.3, however, we propose a somewhat624

di↵erent although perhaps complementary approach, which we believe will also help in dealing625

with the other drawbacks of ABMs due to their expressivity: the use of formal ontologies.626

4.3. Ontologies for agent-based models627

An ontology (in the sense relevant here) is a formal account of the entities considered to be628

involved in some system or type of system, and the relationships between them (Gruber, 1993).629

For example, considering farming land use, one might distinguish people, households, farms,630

fields, animals and crops, and specific subtypes of these broad categories. In an ontology each631

such concept is given an obvious and unique label, which is then used in defining some of the632

relationships between them. Thus “people run businesses”; “farm businesses own farms”; “a633

field is part of a farm”; “arable and grazing are types of land use”; and “each field has a land634

use applied to it”. This is illustrated in the (much simplified) ontology depicted in Figure 2.635

Ontologies are already in use in many areas of work, including ecosystems research. Up to636

now, their main use in this area has been for data integration (Poelen et al., 2014; Coetzer637

et al., 2017), including semi-automated processing of remote sensing data (Myers and Atkinson,638

2013), rather than in simulation modelling. Usually an ABM (or any other software model of639

an ecosystem or SES) is described in natural language, sometimes accompanied by tables and640

diagrams, and possibly structured according to some protocol such as ODD (Grimm et al., 2006,641

2010). The real world system, situation or scenario (or type of system, situation or scenario) the642

model is intended to represent will also be described in some combination of natural language,643

tables and diagrams. Particularly for non-specialists, ontologies cannot replace clear and well-644

structured natural language descriptions of either models or modelling targets, but we believe645

they are a promising “mediating formalism” (Gotts and Polhill, 2009) to assist in bridging the gap646

between program code and natural language description, with major advantages in the process647

of designing, implementing and assessing a simulation model:648

• Formal ontologies can be used to constrain and check complex simulations. Complex649

simulations have many degrees of freedom and ensuring a simulation is consistent with an650

ontology helps constrain these degrees. In this way ontologies can be seen as an extension651

of type-checking in programming languages which is well known to reduce programming652

errors.653

• There are often fundamental di↵erences as to what types of entities and relationships654

should or can usefully be distinguished in any particular system. Formalizing ontologies655

1
http://openabm.org
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Figure 2: A Simple Ontology.

helps reveal these di↵erences, which are often implicit. This is particularly important where656

there are experts from several disciplines, or multiple stakeholders, involved in a modelling657

project.658

• Ontologies in diagrammatic form can also be useful in explaining the model to stakeholders659

and domain experts, although here, care is needed to present no more complexity than will660

be helpful to the intended audience.661

• Polhill and Salt (2017) argue that for any complex model, showing that it can reproduce662

in its outputs the empirical measurements from the target system does not prove that it663

captures the underlying processes producing those measurements. They point out that a664
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neural network model, in which no attempt is made to capture such underlying processes,665

can always be tuned to produce an arbitrary set of outputs if it has enough nodes. For any666

kind of model which does aim to capture the mechanisms responsible for measured system667

outputs, therefore, its ontological structure (its components and their interactions, whether668

or not expressed in a formal ontology) must be considered in attempting to validate the669

model. So if this structure was not specified as part of the model design process, it must be670

derived from the model itself – Polhill (2015) shows how, for a particular software system671

often used for ABMs (NetLogo, (Wilensky, 1999)), this process can be partially automated,672

resulting in a formal ontology. Polhill and Salt (2017) suggest four ways in which such a673

model-specific ontology can be validated: logical consistency; populating it with instances674

from the modeled domain (if this proves di�cult, it indicates that the ontology is not a675

good fit); stakeholder and/or expert evaluation (by experts or stakeholders not involved676

in the original design of the model or its accompanying ontology); and comparison with677

existing ontologies.678

• Ontologies can both be about a view of a system (making them a formalized kind of679

conceptual model) and be applied to simulation models such as ABMs themselves. But680

generally, the entities and relationships that exist within such a model are a subset of681

those pertaining to the modellers’ conceptual model of the observed system. Thus when682

simulating farming land use one might omit the people and conflate these with the farms,683

thus to focus on what each farm household or business (as a unit) does with the fields684

on its farm. As noted above, there will also typically be aspects of the simulation model685

that have no direct counterpart in the system modelled, but are necessary to the model’s686

operation or helpful for the user. The use of ontologies can help to keep the relationships687

between the simulation model and the system clear, primarily for the modellers themselves.688

This advantage is discussed in more detail below.689

While the most human-accessible representation of ontologies is in diagrams such as Figure 2690

they are fully expressed for computational purposes in languages designed for the task, the most691

common of which is OWL (Cuenca Grau et al., 2008; Horrocks et al., 2003). OWL and similar692

languages are in turn based on description logics (Baader et al., 2017), formal systems which aim693

to maximise expressivity while retaining desirable computational properties such as decidability694

(which guarantees that the process of determining whether or not a statement in the logic follows695

from a given set of premises will be finite). Software exists for OWL ontology construction and696

display (Horridge, 2011), for checking that ontologies are well-formed (Tsarkov and Horrocks,697

2006; Sirin et al., 2007; Shearer et al., 2008; Bagosi et al., 2014) and for comparison (structural698

matching) between ontologies (Faria et al., 2013; Hu and Qu, 2008).699

The hierarchy of concepts in an ontology will often be a “tangled hierarchy”, where a concept700

may have multiple links to superiors (sheep are ruminants as well as farm animals). An ontology701

may or may not include specific instances of its classes. If it does, it may also include relationships702

between these instances: an ontology could specify that Paris is the capital of France, for example.703

The possible relationships between instances of concepts may themselves also form a tangled704

hierarchy, which is part of the ontology. Since relationships represented in ontologies may be705

spatio-temporal, an ontology can encode a spatial layout, or a scenario taking place over time706

(Gotts and Polhill, 2009).707

Ontologies have been used in conjunction with multiple models within a modelling project708

(not, as it happens, including ABM) in agricultural systems research (Janssen et al., 2011), and in709

conjunction with integrated assessment models (de Vos et al., 2010). Although de Vos et al. (2010)710

focus on systems dynamics models, they raise the issues of model validation and transparency711

noted in section 4.2 as di�culties encountered in using and assessing ABMs. Neither Janssen et al.712
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(2011) nor de Vos et al. (2010), however, use ontologies to clarify how the software ABM relates to713

the system it attempts to capture, as proposed here: their ontologies aim to capture the structure714

of a software model or set of connected models, while leaving the conceptual model to be described715

only in natural language. Beck et al. (2010), in contrast, describe a software environment for716

constructing systems dynamics models from ontologies in the agricultural domain. However, we717

cannot find subsequent examples of work within this environment.718

Here, we propose a somewhat di↵erent approach, with the focus on maintaining clarity and719

transparency in modelling projects that may involve multiple models and multiple modelled720

systems. In order to specify which aspects of the real world are represented (and which not) in721

a simulation model, and how, we propose the use of several linked formal ontologies, drawing on722

ideas from Polhill and Gotts (2006), Polhill and Gotts (2009) and Gotts and Polhill (2009), but723

adapted to deal with the issues discussed in this paper.724

Formal ontologies only encode the structural relationships between the concepts (and maybe725

individuals) represented – this is all they can do. For example, if an ontology records that farmers726

grow crops on land they own or rent, neither the ontology, nor any software used to build or727

manipulate it, knows anything about what a farmer, a crop or land is, or what owning and renting728

mean, beyond what is explicitly encoded in the terminology used: the same information could be729

encoded using the labels: X, Y and Z for farmers, crops and land – the use of meaningful terms is730

simply an aid to interpretation. If we place model entities and relationships, and the real-world731

entities and relationships they are intended to represent, into distinct but linked ontologies, it732

may be easier to avoid any confusion between those observed and those in the model. It should733

also help modellers to keep in mind that the ontologies themselves are just descriptive tools734

which, inevitably, will leave out or distort many aspects of what they describe.735

Figure 3: Ontologies for SES Modelling.

18



Figure 3 illustrates the set of ontologies that might be used in a modelling project, and736

the relationships between them. Here there are four kinds of ontology: the project ontology,737

the system ontology (or ontologies), the model ontology (or ontologies) and the representation738

ontology.739

The most general is the project ontology, which combines the conceptual, primarily qual-740

itative model of a domain of discourse, enquiry or research – such as SESs – with concepts741

encoding the general approach taken to modelling the domain – such as ABM. It will include the742

more abstract, high-level terms that are fundamental to conceptualizing the domain, including743

both terms that apply to real-world items, and those which apply to items within models.744

A system ontology would contain concepts, and individuals, intended to capture the enti-745

ties, relationships and processes present in a specific part of the real world. Primarily, it would746

encode the modellers’ conceptual model; if stakeholders’ conceptual models were incompatible747

with this, the di↵erences would be captured by notations describing these stakeholders’ beliefs748

about the system. The additional ovals represent the fact that a modelling project may cover749

multiple systems, situations or scenarios. A system ontology imports the project ontology –750

meaning that the terms in the project ontology are available for use in defining terms in the751

system ontology. The figure illustrates that there may be multiple system ontologies, one for752

each system modelled within the project; but di↵erent system ontologies within a modelling753

project may encode incompatible conceptual models. However, each must be compatible with754

the project ontology, and the project ontology may thus require amendment when a new target755

system is added to the project.756

A model ontology is concerned with the entities in a specific model and their relationships.757

A model ontology, like a system ontology, will import the project ontology. There may be several758

within a modelling project, and even several corresponding to di↵erent models of the same system759

– for example, models at di↵erent levels of detail, or attempting to capture the views of di↵erent760

groups of stakeholders. Again, di↵erent model ontologies may not be compatible with each other,761

so again, the project ontology may need amendment when a new model is added to the project.762

The representation ontology encodes the relationships between the system and project763

ontologies and the model ontology or ontologies. It imports all the other ontologies, and adds764

only the links between items in the project and system ontologies, and the items that represent765

them in one or more model ontologies.766

A hypothetical example drawn from a real land use change modelling project, FEARLUS (Pol-767

hill et al., 2001), and its enhancement to include a species metacommunity model as FEARLUS-768

SPOMM (Polhill et al., 2013) is described in Appendix 1. A much more detailed account of769

the use of ontologies in a large-scale research project involving ABM (alongside quantitative and770

qualitative empirical methods) is available in Salt et al. (2016), although this does not employ771

quite the same approach as proposed here.772

5. Summary and Conclusions773

We have argued that the social aspects of SES need to be modelled explicitly (section 1 and774

section 2). Given this, however, modelling SESs raises particular problems because:775

1. Additional kinds of complexity are involved when a system includes human agents – who776

may attempt to change the structure and dynamics of the SES they are part of, in conflict,777

in competition or in cooperation with each other (section 2.1);778

2. The terminology used in the assessment of SESs is ill-defined and contested. Important779

concepts in the assessment of SESs, like “resilience”, “sustainability” and “health”, are780
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highly discipline-dependent, ambiguous, problematic, and contested (section 2.2). These781

concepts cannot be measured directly, and a wide range of indicators have been used.782

3. Closely connected to point 1, much SES modelling takes place in adversarial political783

contexts, so that modelling decisions themselves become political (section 2.2).784

4. Good data on social aspects of SESs are often unavailable (section 3.1), and although theory785

can sometimes compensate for absent data, theories of human behaviour are scattered786

across psychology and the social sciences, generally contested, and often lacking causal787

mechanisms.788

Considering these problems, and the range of possible modelling aims (section 3.2), we con-789

clude that on its own, the nature of the modelled system does not determine the model or790

models required, and advocate thinking in terms of modelling projects, which may involve one or791

many simulation models, or even none at all (section 3.3). However, for at least those modelling792

projects where explanation (deepening the understanding of the system or systems modelled) is793

an important aim, we consider that among the range of possible approaches to modelling SESs,794

which we briefly outline (section 3.4), the expressivity of agent-based models (ABMs) is necessary795

to successful SES modelling, although ABMs may include elements of systems dynamics (SD)796

and cellular automata (CA) modelling within them (section 4.1).797

Along with their advantage in expressivity, and indeed as a consequence of it, ABMs do798

have significant drawbacks: their numerous tunable parameters pose di�culties for validation799

and their complex structure for transparency (section 4.2). We suggest a number of ways in800

which the use of formal ontologies can ameliorate these problems (section4.3) in the context of801

modelling projects, covering the processes of design, implementation, stakeholder involvement,802

and validation. We argue in particular that it is vital to make as clear as possible what each803

model is for, what it includes and what it is known to leave out, and therefore recommend the804

use of ontologies to encode relationships between the overall project, its models, and the systems805

modelled.806

It should be said that even ABMs have di�culty capturing cross-scale interactions between807

local, regional, national, continental and global levels. SESs which would once have been rel-808

atively self-contained are today increasingly a↵ected, often adversely, by distant events, or by809

the sum of events over large areas or the entire globe. Changes in the supply of or demand for810

commodities in one country can lead to the destruction (or at least temporary preservation) of811

forests in another; species accidentally or deliberately introduced, particularly but not exclu-812

sively to isolated regions such as small islands, can devastate local ecosystems; and of course813

anthropogenic climate change is a↵ecting or will a↵ect every SES on the planet. The need to814

model such cross-scale networks of causal connections reinforces the need to think in terms of815

modelling projects, using ABMs on di↵erent spatio-temporal and organizational scales, linked816

through a project ontology.817

Similarly, there has been little progress in modelling the kind of social complexity that people818

inhabit daily and routinely, if by no means always easily. People frequently belong to or take part819

in multiple social formations, both formal and informal: as members of a household, immediate820

and extended family, friendship networks, social, professional, political and religious groups.821

They act as employees or employers, tenants or landlords, buyers and sellers, students and822

teachers, citizens – to name only a few broad classes of social role. As individuals, we somehow823

handle these complexities; yet no model, ABM or otherwise, ever deals with more than a small824

number of the groupings we belong to or the roles we adopt, let alone the complex interactions825

between them. Progress in developing ABM representations of human agency, and in particular,826

the way in which the decisions and actions of collectives such as households, firms and states827
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emerge out of those of the individuals belonging to them, is therefore essential if agent-based828

modelling is to fulfill the potential we believe it has.829

The over-riding message of this paper is that SES modellers need to make use of agent-based830

modelling approaches, and to work on extending the capabilities of these approaches to deal with831

types of complexity beyond their current scope. We recommend the use of formal ontologies as a832

means to maintain and improve transparency as both individual models and modelling projects833

grow in complexity. But above all, whether they choose to follow this recommendation or not,834

they need to make as clear and explicit as they can, to themselves and others – fellow-researchers,835

policy-makers, stakeholders, and concerned citizens – the aims, the claims, the context, and the836

limitations of their models. This is both a scientific and a social obligation for all modellers; but837

the special features of SES modelling (both scientific and political), and the challenges sketched838

in the preceding paragraphs, make it particularly necessary in that domain.839

Acknowledgements840

J. Gareth Polhill receives funding from the Scottish Government’s Rural A↵airs, Food and the841

Environment Strategic Research Programme 2016-2021. The work by George A.K. van Voorn and842

Gert Jan Hofstede was funded by the Wageningen University and Research Resilience investment843

theme.844

References845

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foundational issues, methodological846

variations, and system approaches. AI Communications, 7:39–59.847

Abbott, P. and Wallace, C. (2012). Social quality: A way to measure the quality of society.848

Social Indicators Research, 108:153–167.849

Allison, A. E. F., Dixon, M. E., Fisher, K. T., and F., T. S. (2018). Dilemmas of modelling and850

decision-making in environmental research. Environmental Modelling & Software, 99:147–155.851

Auyang, S. Y. (1999). Foundations of Complex-System Theories. Cambridge University Press,852

Cambridge, UK.853

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books, New York.854

Baader, A., Horrocks, I., Lutz, C., and Sattler, U. (2017). An Introduction to Description Logic.855

Cambridge University Press, Cambridge, UK.856

Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti, D., Rezk, M., Rodriguez-Muro, M.,857

Slusnys, M., and Xiao, G. (2014). The Ontop framework for ontology based data access. In858

Zhao, D., Du, J., Wang, H., Wang, P., Donghong, J., and Pan, J. Z., editors, The Semantic859

Web and Web Science. 8th Chinese Conference, CSWS 2014, Wuhan, China, August 8-12,860

2014, Revised Selected Papers., pages 67–77. Berlin, Germany: Springer-Verlag. The Semantic861

Web and Web Science. 8th Chinese Conference, CSWS 2014, Wuhan, China, August 8-12,862

2014, Revised Selected Papers.863
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Crépin, A.-S. (2007). Using fast and slow processes to manage resources with thresholds. Envi-915

ronmental and Resource Economics, 36:191–213.916

Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., and Sattler, U. (2008).917

OWL 2: The next step for OWL. Journal of Web Semantics, 6:309–322.918

Cutter, S. L., Burton, C. G., and Emrich, C. T. (2010). Disaster resilience indicators for bench-919

marking baseline conditions. Journal of Homeland Security and Emergency Management,920

7(1):51.921

Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., Ricketts,922

T. H., Salzman, J., and Shallenberger, R. (2009). Ecosystem services in decision making: time923

to deliver. Frontiers in Ecology and the Environment, 7:21–28.924

de Vos, M., Koenderink, N., van Ruijven, B., and Top, J. (2010). The use of ontolo-925

gies in peer reviews of integrated assessment models. International Environmental Mod-926

elling & Software Society (iEMSs) 2010 International Congress on Environmental Modelling927

& Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada,928

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings, accessed 2018-05-23.929

Edmonds, B. (2017). Di↵erent modelling purposes. In Edmonds, B. and Meyer, R., editors,930

Simulating Social Complexity – A Handbook, chapter 1.4. Springer, Heidelberg, second edition.931

Edmonds, B. and Hales, D. (2003). Replication, replication and replication: some hard lessons932

from model alignment. Journal of Artificial Societies and Social Simulation, 6(4):11. http:933

//jasss.soc.surrey.ac.uk/6/4/11, accessed 2018-05-31.934

Edmonds, B. and Polhill, G. (2015). Open modelling for simulators. In Terán, O. and Aguilar,935

J., editors, Societal Benefits of Freely Accessible Technologies and Knowledge Resources, pages936

237–254.937

Eisenmenger, N., Giljum, S., Lutter, S., Marques, A., Theurl, M. C., Pereira, H. M., and Tukker,938

A. (2016). Towards a conceptual framework for social-ecological systems integrating biodiver-939

sity and ecosystem services with resource e�ciency indicators. Sustainability, 8:201.940

Estoque, R. C. and Murayama, Y. (2014). Social-ecological status index: A preliminary study941

of its structural composition and application. Ecological Indicators, 43:183–194.942

Etienne, M., editor (2014). Companion Modelling: A Participatory Approach to Support Sus-943

tainable Development. Springer.944

Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I. F., and Couto, F. M. (2013). The945

AgreementMakerLight ontology matching system. In Meersman, R., Panetto, H., Dillon, T.,946

Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., and Dou, D., editors, On the Move947

23

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings
http://jasss.soc.surrey.ac.uk/6/4/11
http://jasss.soc.surrey.ac.uk/6/4/11
http://jasss.soc.surrey.ac.uk/6/4/11


to Meaningful Internet Systems: OTM 2013 Conferences., pages 527–541. Confederated In-948

ternational Conferences CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz, Austria,949

September 9-13, 2013. Proceedings. Lecture Notes in Computer Science 8185.950

Feola, G. and Binder, C. R. (2010). Towards an improved understanding of farmers’ behaviour:951

The integrative agent-centred (IAC) framework. Ecological Economics, 69:2323–2333.952

Filatova, T., Polhill, J. G., and van Ewijk, S. (2016). Regime shifts in coupled socio-953

environmental systems: Review of modelling challenges and approaches. Environmental Mod-954

elling & Software, 75:333–347.955

FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. The956

Bulletin of Mathematical Biophysics, 17:257–278.957

Fleurbaey, M. (2015). On sustainability and social welfare. Journal of Environmental Economics958

and Management, 71:34–53.959

Folke, C., Carpenter, S. R., Walker, B., Sche↵er, M., Chapin, T., and Rockstrom, J. (2010).960

Resilience thinking: integrating resilience, adaptability and transformability. Ecology and961

Society, 15(4):20.962

Forrester, J., Greaves, R., Noble, H., and Taylor, R. (2014). Modeling social-ecological problems963

in coastal ecosystems: A case study. Complexity, 19(6):73–82.964

Fulton, E. A., Boschetti, F., Sporcic, M., Jones, T., Little, L. R., Dambacher, J. M., Gray,965

R., Scott, R., and Gorton, R. (2015). A multi-model approach to engaging stakeholder and966

modellers in complex environmental problems. Environmental Science & Policy, 48:44–56.967

Gaube, V., Kaiser, C., Wildenberg, M., Adensam, H., Fleissner, P., Kobler, J., Lutz, J., Schaum-968

berger, A., Schaumberger, J., Smetschka, B., Wolf, A., Richter, A., and Haberl, H. (2009).969

Combining agent-based and stock-flow modelling approaches in a participative analysis of the970

integrated land system in Reichraming, Austria. Landscape Ecology, 24(9):1149–1165.971
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Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A.,1156

McAllister, R., Müller, B., Orach, K., Schwarz, N., and Wijermans, N. (2017). A framework for1157

mapping and comparing behavioural theories in models of social-ecological systems. Ecological1158

Economics, 131:21–35.1159
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Vidal-Abarca, M. R., Suárez-Alonso, M. L., Santos-Mart́ın, F., Mart́ın-López, B., Benayas, J.,1216
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Appendix 11236

To illustrate the potential advantages of the multi-ontology approach in ABM projects, we take1237

as an example the “FEARLUS-SPOMM” model (Polhill et al., 2013), which was designed and1238

implemented as part of the long-running FEARLUS (Framework for Evaluation and Assessment1239

of Regional Land Use Scenarios) project, first described in Polhill et al. (2001). Several versions1240

of the FEARLUS model were developed, the latest being FEARLUS-SPOMM, which coupled a1241

species metacommunity model, SPOMM (Stochastic Patch Occupancy Metacommunity Model),1242

which is an enhanced version of SPOMSIM (Moilanen, 2004), to the FEARLUS core. The1243

purpose of FEARLUS-SPOMMwas to examine the consequences of di↵erent possible government1244

incentive schemes aimed at preserving and increasing biodiversity on farmers’ lands. By the time1245

FEARLUS-SPOMMwas implemented, a prototype feature had been added to FEARLUS (Polhill1246

et al., 2008) to produce what is called here a model ontology, and a partial project ontology,1247

and Polhill et al. (2013) includes a model ontology encoded as a UML diagram, but FEARLUS-1248

SPOMM was designed and implemented without use of a separate system ontology. We aim1249

to show here that, even devised in retrospect, such an ontology can significantly improve ABM1250

transparency.1251

Figure 4 shows an adapted version of the FEARLUS-SPOMM model ontology, at lower left,1252

along with versions of a FEARLUS project ontology (top), and a FEARLUS-SPOMM system1253

ontology (lower right). The FEARLUS project ontology is a (partial) representation of the1254

modellers’ conceptual model of the FEARLUS project domain – regional land use scenarios –1255

prior to the work leading up to the coupling of FEARLUS and SPOMM. The FEARLUS-SPOMM1256

model ontology is a (partial) representation of the addition to this conceptual model needed to1257

include the species metacommunity model, and the types of government incentive schemes to be1258

explored.1259

Links between the three ontologies are shown by the thicker, dotted lines. There are four1260

types of relation between concepts in the ontologies. Three of these occur both within the1261

three labelled ontologies, and linking nodes in di↵erent ontologies: “subclass-of”, “part-of”, and1262

“relates-to”. The node at the tail of a “subclass-of” link names a subclass, or subconcept, of1263

the concept named by the node at the head of the link. Instances of the concept named at1264

the tail of a “part-of” link are, or can be, parts of instances of the concept named at its head.1265

The “relates-to” link stands for any other type of relationship between instances of the concepts1266

named at its head and tail; these links are labelled to identify the relationship (in the full version1267

of the ontology, these relationships would themselves be formally defined). The fourth type of1268

link, “represents”, runs between a node in the model ontology, and a node in either the system1269

or project ontology, specifying that an instance of the model ontology concept at the link tail1270
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is intended to represent an instance of the system or project ontology concept at the link head.1271

We draw attention to the following points in the figure:1272

• All three ontologies shown contain fewer nodes, links, and types of links than full ontologies1273

would require. The representation ontology is not shown separately; it is visualized as the1274

set of “represents” links. Within the project ontology, only “subclass-of” and “part-of”1275

links are shown. A few “relates-to” links are shown in the model ontology and system1276

ontology.1277

• Names of nodes within the model ontology are given a final “M” as a reminder that they are1278

pieces of software. All the nodes in this ontology stand for “classes” in the object-oriented1279

language Objective C, in which FEARLUS-SPOMM is written. Just two of these nodes1280

identify classes of SoftwareAgent: pieces of software that encode procedures for making1281

decisions and assessing the results of those decisions as a program runs. (The distinction1282

between “software agents” and other pieces of code depends on how they are viewed by1283

the modeller as much as on their intrinsic properties.)1284

• The two classes of SoftwareAgent within the model ontology (LandManagerM and Govern-1285

mentM) also have “subclass-of” links to the node IndividualAgent in the project ontology.1286

An “individual agent” contrasts with a “collective agent”: the decisions of the latter, but1287

not the former, emerge out of the interactions of other agents that they (in some sense)1288

comprise. Thus in reality, the decisions of a government – even in a dictatorship – arise as1289

a result of interactions between multiple individuals, and indeed, smaller collective agents1290

such as committees and departments – but the FEARLUS-SPOMM GovernmentM agent1291

has no such internal structure. The situation with regard to the other class of IndividualA-1292

gent within FEARLUS-SPOMM, the LandManagerM, is more complicated: it is unclear1293

whether a LandManagerM represents a human individual (a farmer), or a farm business,1294

which generally includes more than one person, and has a distinct legal existence (in the1295

normal FEARLUS context of the UK). In the formal representation ontology, these links1296

would be annotated with classificatory terms, themselves part of a hierarchy of types of1297

representation, designed to elucidate both those features of the link head which the link1298

tail captures, and those it does not.1299

• Turning to parts of the physical world, a LandParcelM represents a Field (in the project1300

ontology: fields are common to all systems modelled in the FEARLUS project). But1301

features attached to LandParcelM show that its spatial position can be specified by a1302

single pair of integer coordinates, indicating that the LandParcelMs form a grid, and are1303

all of the same size. Real fields do not in general conform to this pattern, and have many1304

other conceptually important features which FEARLUS’s LandParcelMs lack. Of course,1305

even the project ontology cannot include all the features even of something as relatively1306

simple as fields, but features and relationships can be added to those ontologies as they1307

become significant in ongoing work, for example through being mentioned in a stakeholder1308

or expert interview. They would then serve as a reminder of what a model leaves out, and1309

a source of suggestions for enhancing it.1310

• The EnvironmentM is shown as representing a project ontology Landscape, but in this case,1311

the model ontology concept actually contains elements that do not correspond to anything1312

in a real-world landscape, but to the prices of farm products. The project ontology as1313

shown omits these; if constructed in advance, it would certainly have included them, but1314

this illustrates another general point: a simulation model itself can suggest lacunae in1315

the conceptual model encoded in a project or system ontology. Conversely, the fact that1316
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EnvironmentM has no straightforward counterpart in the project or system ontology at1317

least casts some doubt on the way the simulation model is structured.1318

• Other nodes in the model have no “represents” links at all. All except the top-level Fear-1319

lusSpommThing node, which is a notational convenience, relate to the way in which a1320

LandManagerM decides what LandUseM to apply to a LandParcelM. This feature of the1321

model (encoded in the FEARLUS-SPOMM classes StateM, CaseM and CaseBaseM) is in-1322

tended to implement a simplied version of “Case-Based Reasoning” (Aamodt and Plaza,1323

1994), an artificial intelligence technique in turn claimed to capture features of human ex-1324

pert decision-making; but how far the FEARLUS-SPOMM model is intended to represent1325

how real farmers (or farm businesses – see above) choose land uses is not clear. CaseBaseM1326

could be taken to represent either the personal memory of a Farmer, or the “institutional1327

memory” of a FarmBusiness. It is worth noting that earlier versions of FEARLUS employed1328

di↵erent decision-making methods, see for example Polhill et al. (2001).1329

• The links between the system and project ontologies also point up interesting issues, in this1330

case with regard to the integration of two conceptual models. The Government node in the1331

system ontology has three links to nodes in the project ontology. One is a “subclass-of” link1332

to the CollectiveAgent node, the others are “relates-to” links noting that a Government1333

governs an EarthSurfaceRegion (the project ontology does not include more specific nodes1334

for polities, this might suggest adding at least one such node, but the model ontology does1335

not appear to need to include this concept), and that a Government pays Subsidy (again,1336

this might suggest the need for additional nodes and in this case, more information about1337

how the model represents this fact seems desirable).1338

• The other system-project links concern the system concepts Species and Habitat. Species1339

is linked to the project node Collective as a subclass, but this raises the question of what1340

“species” means in the context of a species metacommunity model. The individual members1341

of a species are not in fact represented, only the presence or absence of some members of1342

the species in specific areas, and their ability to persist there, and spread to neighbouring1343

areas, so the species is treated more like an amorphous mass than a collective – which is, in1344

the context of this type of conceptual model, quite valid. But this suggests that the concept1345

does not fit easily into the conceptual model underlying FEARLUS, so modellers should1346

beware of problems arising from this imperfect fit. Similarly, “subclass-of” links going1347

the other way, from the project to the system ontology, link UnimprovedGrasslandField1348

and ImprovedGrasslandField to Habitat. That seems unexceptionable – unimproved and1349

improved grassland fields are both surely types of habitat. But should there also be a1350

subclass-of link from Field to Habitat? Or perhaps habitats should not be encoded in1351

nodes at all, but in links: a given type of field being a “habitat-for” a particular range of1352

species.1353

The foregoing examples demonstrate how the use of ontologies can bring to the surface deep issues1354

that arise in modelling, concerning the relationships between conceptual and software models, and1355

between conceptual models themselves. Such issues arise particularly when comparing models1356

(Cio�-Revilla and Gotts, 2003), when extending the domain of a modelling project (as in the case1357

of FEARLUS-SPOMM), and when combining existing software or conceptual models (again, as1358

in the FEARLUS-SPOMM case). Of course, we do not claim such tasks are impossible without1359

the use of ontologies, but that, particularly with a modelling approach as expressive as ABM,1360

they have great potential to assist in model development, assessment, comparison, extension and1361

combination.1362
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