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Abstract 

Muscle mass declines 1-2% every year after the age of 50 years. Contractile forces by 

muscle exert strains on bone and influence the bone mass and strength. Not only is 

age a cause for muscle and bone decline, circulating factors can play a role, aiding the 

signalling between muscle and bone.  

Chapter 3 investigates exercise as a way in which we could reduce the loss of whole 

body bone mineral density (BMD) and muscle mass in older age. Included in this 

chapter were 38 master sprint runners (28 males, 10 females, mean age 71±7y), 149 

master endurance runners (111 males, 38 females, mean age 70±6y) and 59 non-

athletic controls (29 males, 30 females, mean age 74±5y). Sprinter hip BMD was 10% 

and 14% greater than that in endurance runners and controls respectively, but it was 

difficult to explain this increased BMD by accelerometry or differences in muscle 

strength. Following on from this, Chapter 4 highlights that there are circulating factors 

playing a role within the ageing skeleton. Factors dickkopf-1, osteocalcin, 

osteoprotegrin and sclerostin were identified to be positively associated with whole 

body bone mineral density in older adults (n=272), with multivariate regression 

showing body mass index, circulating sclerostin and whole-body lean mass together 

accounting for 13.8% of the variation with WBMD. 

To further investigate the circulating factors, statistical modelling was used to identify 

those which were also associated with whole body lean mass. Tumour necrosis factor 

alpha (TNF) and osteoprotegrin (OPG) were significantly negatively (r=-0.170, 

p=0.007) and positively associated (r=0.140, p=0.030), respectively, with whole body 

lean mass. With multivariate regression showing height and OPG to account for 45% of 

the WB Lean mass in older adults. These results, combined with Chapter 4, highlighted 

OPG as a key molecule associated with both bone and muscle during ageing. Using 

these findings, in Chapter 6 the interactions between TNF and OPG were modelled 

using human myoblast cells in vitro. From the investigations in vitro it was clear that 

OPG is capable of enhancing muscular growth and when incubated with TNF the 

myoblasts are able to secrete OPG, providing a protective mechanisms against TNF.  

The findings within this thesis can conclude that circulating factors, particularly OPG, 

are able to interact with muscle and bone and have an influence the decline during 

ageing. Exercise, particularly, sprinting can help reduce decline in bone health but 

circulating factors provide a new insight that could help our forever ageing population. 
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1.1. Chapter 1: Introduction 
Loss of muscle mass occurs progressively after 40 years and the resultant low muscle 

mass in older age is a recognized disease called sarcopenia [1]. Low muscle mass 

causes muscle weakness and since the contractile forces developed by muscle exert a 

strong influence on bone development and maintenance throughout the life span, it is 

likely that sarcopenia is related to osteoporosis, mainly affecting older adults. Muscle 

mass and strength decline by around 1-2% per year after 50 years [1]. Osteoporosis 

affects 3 million older people in the UK, arising as bone remodelling favours resorption 

of mineralised extracellular matrix over bone formation and increases fracture risk [2]. 

 

Evidence suggests that sarcopenic men have a 3-fold increased risk of osteoporosis 

compared with non-sarcopenic men [3], due in part to lower peak forces transmitted 

from muscle to bones during physical activities (known as the mechanostat theory) [4]. 

Despite this evidence from epidemiological surveys, older people with low muscle 

mass should not necessarily accept a future with osteoporosis and a high risk of bone 

fractures. Instead, it may be possible even for the small, weak muscles to transfer 

contractile forces with sufficient osteogenic potential to maintain bone health through 

highly repetitive eccentric muscular contractions [5]. Such activities would include 

regular sports training, particularly running or resistance exercises. There has been 

research to show that exercise during ageing can help slow the decline in bone health 

[6-8], but there has been very little research into this possibility within the sarcopenic 

population. There are studies on general older populations to show improvements in 

the rate muscle loss through exercise, which is discussed later in section 2.1.6. If it 

proves to be the case, then it will evidence a mechanism through which sarcopenic old 

may improve their bone health. 
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It is not only through the direct ‘impacts’ of muscle forces acting on bone that provide 

osteogenic stimuli: two-way exchange of circulating factors between muscle and bone 

can influence cellular signalling in the target tissue and direct growth and maintenance 

[9, 10]. For instance, bone regulatory factors and cytokines released from osteoblasts 

during bone formation and osteoclasts during bone resorption are abundant within 

the extra cellular fluid and enter the circulation where they come into contact with 

skeletal muscle fibres and satellite cells. These circulating bone regulatory factors have 

the potential to facilitate cross-talk between bone and muscle tissue, but there has 

been very little research into possible interactions [10]. Some of the candidate bone 

regulatory factors possibly related to BMD and acting on skeletal muscle includes: 

osteoprotegerin (OPG) and osteocalcin (OC) [11-13] which are secreted by osteoblasts 

for bone formation; dickkopf-1 (DKK1) [14] and sclerostin [15] are released by 

osteocytes, which negatively regulates bone formation. Additonally, osteopontin [16] 

(OPN) is another factor released by osteoblasts, osteocytes and osteoclasts to facilitate 

bone resorption. Tumour necrosis factor- alpha (TNFα) [17] is a pro-inflammatory 

cytokine, also implicated in bone and muscle remodelling and possibly involved in 

bone-muscle cross-talk. Very little is known about how these bone regulatory factors 

act on skeletal muscle and in particular how might this be affected by the process of 

ageing. 

 

The research completed as part of this PhD study will provide novel insights into the 

muscle and bone health of exceptionally athletic older adults compared with non-

athletic old and will investigate how circulating bone regulatory factors may influence 

the loss of muscle and bone with ageing. If specific exercise or molecular factors with 
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osteogenic and/or myogenic potential can be identified, it may lead to new 

therapeutic targets to help prevent muscle and bone loss in older age. 
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2.1. Chapter 2: Literature Review 

2.1.1 Ageing 
The number of people aged over 60 years is growing more rapidly than any other age 

group. It was estimated that there was 688 million 60 years and over in the year 2006 

and by 2050 this number is projected to grow to approximately two billion, with about 

20% of those being over 80 years old [2]. The increasing proportions of older people 

living in our communities is a positive reflection of health and social care advances, but 

there are also unintended negative consequences as health and physical function 

decline progressively in old age [2]. Consequently, older people are living for longer 

with long term conditions impacting negatively on their quality of life. Understanding 

and combating poor health is a public health priority in order to compress the period 

of later life spent with disability and to keep older people living independently in their 

own homes. 

 

Ageing results, as an accumulation over years, from a range of cell and molecular 

damage. As a result of this damage there is a decline in both mental and physical 

capacity leading to a greater risk of disease, with the ultimate consequence being 

death [18]. The deterioration over time will vary from person to person depending 

upon both genetic and environmental factors [19]. Ageing is considered one of the 

greatest risk factors for developing musculoskeletal, neurodegenerative and 

cardiovascular diseases [20]. There have been four main physiological processes 

identified to contribute to the ageing process at a cellular level; telomere shortening, 

mitochondrial dysfunction, oxidative stress and cell senescence [21]. Telomeres are 

repetitive DNA elements found at the end of chromosomes, their role in normal cell 

function is to protect the DNA ends from damage and degradation. With every cell 
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division telomeres shorten and eventually, as cells reach a certain age, the telomeres 

break and initiate cell apoptosis by activation of p53 tumor suppressor protein [22-26].  

 

Mitochondrial dysfunction and oxidative stress can influence one another. 

Mitochondria are the source of oxidative phosphorylation within cells. As cells age 

there is an increased amount of reactive oxygen species (ROS) due to continuous 

mitochondrial DNA damage. The ROS accumulation affects replication and 

transcription, leading to mutations of the mitochondria DNA, resulting in a further 

increase in ROS. In turn, this results in a decline in mitochondria function, further DNA 

damage and ROS production [27], a continuous cycle of damaging events. Thus, it has 

been deemed that ageing is partly due to an increased accumulation of mitochondrial 

DNA by the accumulation of ROS, resulting in a decline in respiratory function [28-31]. 

  

Senescence is a cell cycle arrest that is induced by certain stressors such as DNA 

damage. It is induced within replicative ageing of cells. These senescent cells then 

accumulate within tissues and contribute to the loss of functional ability and lack of 

regeneration, both associated with ageing [32]. Whilst within cell cycle arrest, the cells 

also secrete proteins known as senescence-associated secretory phenotype (SASP) 

[32]. The SASP’s disrupt normal homeostasis of the cells, preventing further 

proliferation, causing more cell death [33]. 

 

2.1.2 Ageing and bone tissue 
 
Bone makes up the skeletal system of vertebrates and is capable of adapting according 

to stresses it undergoes [4]. Its strength and volume adapt throughout life by 

continuous processes of bone formation and resorption. This bone tissue remodelling 
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is not maintained in the ageing bone microenvironment, as formation fails to keep 

pace with resorption [34, 35]. 

 

Throughout life, the primary functions of bone are; to provide attachments for muscle 

tendons and ligaments, to act as a nutrient reserve (particularly calcium), protect the 

organs and play a role in haematopoiesis [36]. Approximately 75% of bone is 

composed of compact/cortical bone mass and the remaining 25% is principally 

accounted for by the inner segment of the bone consisting of interconnecting spicules, 

forming the trabeculae. This type of bone is called cancellous bone, also known as 

trabecular bone. The structure of this section is adapted to its function by having a 

larger surface area allowing bone forming and resorbing cells to have greater chance 

to contact the bone surface more frequently [36]. The end of bones, known as the 

epiphysis, are predominantly trabecular bone. The mid shaft of the bones, known as 

the diaphysis, are much more dense and are predominantly cortical bone. Figure 2.1 

shows how the different types of bone are arranged within a typical long bone. 
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Fig 2.1; Long bone cross sectional view, showing the internal structure of the bone. Adapted 
from [37]. 
 
 

The mass of bone is maintained by the balances of two types of bone cells known as 

osteoclasts and osteoblasts. Osteoblasts are involved in formation of bone whilst 

osteoclasts are involved in bone resorption. The interaction of osteoblasts and 

osteoclasts at the bone surface are demonstrated in figure 2.2. Osteoclasts are derived 

from haemopoietic stem cells. The osteoblast cells are derived from mesenchymal 

stem cells along with stromal and bone lining cells. For a steady state of bone 

homeostasis, it is important that the balance between osteoblasts and osteoclast 

action are maintained. Bone resorption occurs at a much higher rate than does bone 

formation, a small increase, hence an imbalance of the action, in osteoclasts could 

then cause bone loss [36, 38]. Bone resorption by osteoclasts takes just 30 days and 

the bone remodelling cycle takes 3 months [38].  
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Figure 2.2; An example of the interactions between osteoblasts and osteoclasts involved in bone 
remodelling processes. Adapted from [38] 

 

The majority of bone mass is accumulated by the age of 20 years old [39]. 

Approximately 26% of resultant adult bone mass is accumulated during the final two 

years surrounding peak bone growth velocity, which approximates the amount of bone 

lost, later in life, during post-menopausal years, for women in particular [39-42]. Males 

usually have a greater BMD than females, as shown in twin studies [43], the decline in 

BMD starts at different time points for males and females. For males, the decrease 

begins around the age of 40 and females, around the age of 30 years [44]. 

 

Ageing is associated with a loss of bone mass and strength [45] due to a greater rate of 

resorption (via osteoclasts) than formation (via osteoblasts), and a reduction in the 

force of muscle contractions. Ageing bone can also be influenced by increased free 

radicals as a result of oxidative stress [46], in particular advanced oxidative protein 

products [47] which have been shown to be negatively correlated with femoral BMD. 

Another study has highlighted hydrogen peroxide (H2O2) or xanthine/xanthine oxidase 
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(XO), as free radicals, which resulted in inhibition of differentiation markers in the 

bone osteoblastic cells, MC3T3-E1, as well as the marrow stromal cells, M2-10B4, 

whilst leading to increased oxidative stress [48]. 

 

Within a clinical setting this age-related decline may be identified by a reduction in 

BMD and/or an increased rate of bone fracture. As the skeleton naturally reduces in 

strength and density over time, it is more likely to succumb to the skeletal disease, 

Osteoporosis, which is often associated with menopause and ageing. Osteoporosis is 

characterized by low bone mass along with ‘micro architectural’ deterioration of bone 

tissue which increases the fragility of the skeleton and, therefore, the increased 

likelihood of a fracture [49]. Osteoporosis arises as the balance of bone remodelling 

favours resorption of mineralised extracellular matrix over formation [2]. It affects 

around 3 million people in the UK alone [2, 50]. The main problem of Primary 

Osteoporosis is the continued breakdown of trabeculae structure within the bone. For 

females, post-menopause, there is a significant decline in oestrogen availability, 

contributing to the decline in BMD with age. For ageing males, sex hormone binding 

globulin has the ability to inactivate testosterone and oestrogen, also contributing to 

the decline in BMD [51-54]. Secondary Osteoporosis arises due to co morbidities or 

disease such as Cushing syndrome [55] and long-term glucocorticoid therapy [56]. Life 

style factors such as poor diet, particularly low in calcium, under nourishment, 

smoking and excessive alcohol are all detrimental to bone health [51, 57]. 

Osteoporosis was defined using the T-Score, which is a measurement of bone density 

in g.cm2 compared to a bone density measurement of a healthy 30-year-old adult of 

the same sex. Osteoporosis is classed as 2.5 standard deviations below the T score, 
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typically using sites of the hip, spine or forearm [58]. Within research Z-scores tend to 

be used which are similar measures to that of the T score, except the Z score is 

compared to an age matched person, rather than a 30 year old adult. In 1994 it was 

identified by the World Health Organisation (WHO) as an established, defined disease 

affecting more than 75 million people across Europe, Japan and the US [59]. Currently 

the assessment of bone mineral density (BMD) by dual X-ray absorptiometry (DXA) is 

the preferred measurement available in a clinical setting [59] and osteoporosis usually 

remains undiagnosed until a fracture arises and imaging is subsequently performed 

[60]. The hip and lumbar spine are sites most likely to experience the most severe 

effects of osteoporosis due to the quantity of trabecular bone within the vertebral 

bones [58], and the hip being the initial point of impact if a person falls sideways [58]. 

However, when imaging these areas other factors such as scoliosis, calcification and 

vertebral fractures may impair the ability to diagnose osteoporosis [58, 59]. To that 

end, more recently, the osteoporosis diagnosing criteria has changed to use the 

femoral neck only, along with an international reference standard per age, using the 

same reference for both men and women. This is deemed suitable as the risk of 

fracture at the femoral neck at any age is similar in men and women [59, 61-64]. 

Another imaging technique used to assess bone health is peripheral quantitative 

computed tomography (pQCT). Using pQCT, the inner structure of the bone can be 

assessed, as shown in several studies [7, 8, 65], comparatively to just the aerial view of 

the bone as seen in DXA imaging. However, pQCT can only be applied to the limbs and 

it is not able to assess the bone mass or geometry of the hip and spine, which are the 

main sites affected by osteoporosis in older age. 



 19 

Falls are also more likely to occur in older age, [66, 67]. This, combined with a weaker 

skeleton, predisposes the old to an increased fracture rate. Hip fractures in particular 

are associated with a high mortality rate [53, 58, 62] and are a significant cost to the 

current national health service [58, 59]. In 2010, within Europe, it was estimated that 

the cost of fragility fractures, was 37 billion Euros. Of this cost, 66% attributed to 

incidents, 29% for fracture care and just 5% on pharmacological interventions [59, 68]. 

This total cost is expected to increase 25% by the year 2025 [59, 68]. 

 

There are both non-pharmacological and pharmacological treatments suggested to 

help management of osteoporosis [60]. In the early stages of the disease, non-

pharmacological interventions are recommended, such as increasing dietary calcium 

and vitamin D intakes, 1000-1200mg of calcium is the current recommended daily 

intake for elderly men and women [69]. Along with smoking cessation, the limitation of 

alcohol consumption and increasing weight-bearing exercises [69-72].  Weight bearing 

exercises are discussed later in this thesis. Pharmacological therapy is usually 

prescribed following a fracture, aimed at reducing the likelihood of any further 

fractures. These medications are usually anti-resorptive, decreasing the rate of bone 

resorption such as bisphosphonates, or others are anabolic, which increase bone 

formation, such as teriparatide [69, 73]. Long term use of these drugs does come with 

potential side effects, such as acid reflux, gastrointestinal problems, poor renal 

function, jaw necrosis which affects approximately 1 in 10,000 [74], and 

osteosarcomas [75]. The rate of osteosarcomas is relatively low, with 2 out of 430,000 

patients presenting in 2009  [69, 75]. Alternative ways of managing osteoporosis are 

always being investigated. 
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2.1.3 Exercise and Bone  
Strains the bone receives during exercise are compression, tensile and torsional forces 

as well as shear stress. All these strains and stresses can be applied to the same bone 

at the same time during exercise. The specific strain and amount of strain that is 

needed to stimulate bone remodelling is still yet to be defined, as is the specific 

recommendations of type and duration of exercise in ageing needed to maintain bone 

health [76].  

Exercise across the life course can help to prevent osteoporosis in later life [77]. 

Exercising during youth ensures higher peak bone mass is achieved [78, 79] as well as 

delaying the onset of age related decline in BMD [80, 81]. Bone strength is determined 

by its mass and density. Regular activity is linked with an increase in bone density [82]. 

Forces acting on bone from muscle contractions or other impact activities stimulate 

bone formation, while reduced loading with sedentary living or microgravity will 

decrease bone formation and can stimulate bone resorption. The physical activity level 

of an individual is therefore an important factor in bone health and a vital reason to 

encourage participation in sport. 

 

Bone’s adaption to exercise is mediated by cellular mechanotransduction [83]. 

Mechanosensors that are found throughout bone cells can change their structure 

following a strain on the bone. These changes stimulate the Wnt/-catenin signalling 

cascade [83] to be activated either by stimulation of a bone transcription factor 

(RUNX2) [84] or by cross talk with parathyroid hormone (PTH) and/or bone 

morphometric proteins (BMPs) [85-87]. Bone adapts to exercise through the muscle 

contractions [4, 88] associated with physical activity, impacts and ground reaction 

forces [76, 89].  
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There have been numerous studies conducted to understand the impacts of exercise 

and physical activity on bone health during ageing. Master athletes are those whom 

compete and train at an elite level, and usually have done so since a very young age. 

Several studies have looked at the master athletes as an example of ‘better ageing’. 

Wilks et al (2009) demonstrated the benefits of master athletes, firstly showing that 

sprint, middle and long-distance runners all have a greater tibial bone strength 

compared to controls [7]. This study consisted of 106 sprinters, 52 middle distance 

runners, 93 long distance runner, 49 race walkers and 75 age matched sedentary 

people. The tibia of master athletes was around 70mm2 greater in the athletes and the 

tibia had a trabecular BMD 50mg.mm3 greater than controls, in both male and female 

athletes. This was only found at the impacting tibia bone, results for bone strength at 

the radius did not show any obvious advantages in the athletes compared to controls. 

Wilks further investigated discipline specific advantages on bone health for these 

master athletes [8]. pQCT highlighted that diaphyseal bone mineral content, cortical 

area and polar moment of resistance were a much larger size in the sprinters. This 

increase then declined gradually over the distances, middle then long distance 

runners, race-walkers and controls having the lowest values. Sprinters had 

approximately 16% greater values than controls, similarly the periosteol circumference 

of the tibia was approximately 6% greater in sprinters than controls. The females 

tending to have a much greater difference to the controls than males. Again, very few 

differences between groups were found for the radius. These results show there is a 

bone expansion seen within the athletes allowing for greater muscle forces to be 

produced, in turn inducing a greater osteogenic effect on the bone, helping to enhance 

bone strength. From these studies it is clear to see that bone is able to adapt 
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throughout the life-span but this adaption is site specific and should be taken into 

account when prescribing exercise to older people. Whilst both of these master 

athlete studies demonstrate the advantages of training on bone, there was a large age 

range, of master athletes used for the study (33-94 years) making it difficult to know at 

what ages the differences become apparent.  

 

Numerous randomised controlled trials have been performed to investigate the impact 

of exercise on the ageing skeleton and to identify the most appropriate form of activity 

for the ageing population. These studies have shown both positive and negative 

outcomes. Woo et al., (2007) [90] compared Tai Chi and resistance training in a 

community dwelling ageing population. The study involved 90 men and women (total 

n=180) aged 65-74 years. After 12 months, training three times a week of either Tai Chi 

or resistance, the women showed a moderate attenuation in the loss of hip BMD, 

measured using DXA, (approx. 0.01% loss), with no changes in men, compared to a 

non-exercising group (2.25% loss). Whilst this outcome is positive for women, there 

are only minor benefits from 12 months of training. Duckham et al (2015) showed 

similar findings, [91]. Two falls prevention programmes were compared with regular 

care, the Otago Exercise programme (OEP) and the Falls exercise management (FEM) 

that involved both home and group exercises. Within this study there were a total of 

319 participants with an average age of ~72±5 yrs. The FEM involved 39 mins of group 

exercise a week and 30 min of home exercise per week, whilst the OEP group 

completed 58 mins a week of home exercise per week, with each intervention being 

carried out for 24 weeks. The aim of the falls programmes was to increase bone and 

muscle strength and to reduce the likelihood of falls in the future. There was no 

difference in femoral neck BMD or bone mineral content (BMC) between any of the 
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groups, nor was there an increase in BMD or BMC at any of the skeletal sites 

measured, using DXA. It was suggested that the exercises within the programmes did 

not exert a strain great enough to stimulate the bone and prevent further resorption 

within ageing. Whilst both these studies had high compliance rates ~80%, it may be 

that using the DXA as an outcome measure cannot pick up small positive bone changes 

but a pQCT may show internal structure or geometry changes of the bone that cannot 

be picked up using DXA. More studies are needed using these methods alongside DXA 

to see if this is the case. 

 

Several other studies have investigated the effects of a variety of exercises on bone 

health, Rantalainen et al (2011), [92], showed bilateral hopping for 12 weeks to have 

no effect on changing levels of circulating bone markers CTx, CICP and bALP, markers 

of bone turnover. These particular circulating bone markers have a short half-life and 

so changes can be hard to detect. Beavers et al (2017), [93], compared two groups of 

males and females aged 69±3.5 years (n=123). 63 participants underwent 5 months of 

resistance training, 3 days per week, whilst the remaining 60 people underwent 5 

months of aerobic training, 3 times a week. The resistance training involved 8 body 

exercises, each was done in 3 sets of 10 reps at 70% of the participant’s 1 repetition 

maximum. The aerobic training involved walking for 30 mins at 65-70% of maximum 

heart rate. Using DXA, BMD was measured at baseline and 5 months after the 

intervention. The results of this study showed the resistance training group to have no 

changes in their BMD, the aerobic group showed a significant decline in BMD (-7%). 

These findings further highlight the need for the exercises to exert high force strain on 

the bone and of a long enough duration to show positive effects on the bone health.  
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There are some studies that have showed positive effects on bone health through set 

exercise programmes. Elsisi et al (2015), [94], used a sample of elderly women aged 

~65±3.0 years, either assigned to circuit weight training or low pulse magnetic field for 

12 weeks, both interventions showed a significant increase in BMD and BMC of the 

lumbar spine, femoral neck and femoral trochanter (p<0.0001). Marques et al ,[95], 

and Tolomio et al [96], used combined exercise interventions of aerobic, strength and 

balance training. Marques et al (2011), [95], had a group of male and females (total 

n=60, aged~69±5.5), with the intervention conducted over 8 months, Tolomio et al 

(2008), [96], focused on osteoporotic women (n=49) with the intervention lasting 20 

weeks. Marques et al, showed an increase of 0.1g.cm2 at the femoral neck BMD, with 

no change in controls. Tolomio et al, improved all strength parameters of the lower 

limb, measured using phalangeal quantitative osteosonography.  Both interventions 

showing positive effects on the BMD and bone parameters measured. These findings 

can be compared to studies of bed rest or space flights whereby there is no impact or 

physical activity and just 6 months of space flight can result in a 10% loss of BMD [97-

99]. 

 

These studies highlight that there is inconclusive evidence to show that exercise has 

beneficial effects on the ageing skeleton.  The majority of resistance training studies, 

discussed in this section, seem to show beneficial effects to bone density during 

ageing. It seems that the interventions not involving resistance training must produce 

strains on the bone that are of a level high enough and longer duration to produce an 

osteogenic response. More studies are needed to specify the exact type of exercise 

and duration that will help to slow down the loss of bone strength during ageing, as 

well as the different effects of the exercise between clinically relevant sites. 



 25 

 

These conclusions are also confirmed by a number of systematic reviews and meta 

analysis conducted to assess the effect of physical exercise on bone density. Bolam et 

al (2013), [100] conducted a systematic review assessing the effects of physical activity 

on bone health but focusing on the effects on meddle-age and older men. Their 

analysis included 8 randomised controlled trials, of which the interventions were; 

walking (n=2), resistance training (n=3), walking and resistance training (n=1) and 

resistance training + impact activity (n=1).Out of the 8 studies, 5 had a score below 

50% on the authors quality scale and the interventions varied in terms of frequency, 

intensity and duration. Six of the studies showed positive effects on BMD, while two 

showed no significant changes. The resistance training studies showed to be the most 

likely to produce a response in BMD, whereas walking alone had very little benefit. 

They also concluded that more high quality intervention studies are needed to 

establish the precise optimum exercise regime. Similarly in randomised controlled 

trials for post-menopausal women, another systematic review (n=17) by Yeh et al 

(2018) [101] has shown exercise to have a moderate effect size on bone mineral 

density on the lumbar spine in post-menopausal women (5 randomised controlled 

trials, 311 participants, SMD=0.38, 95% CI:0.08-0.68). Whilst a moderate effect size 

was reported only one of the studies showed a significant change in BMD (p=0.011). 

Again, demonstrating the need for consistency in randomised controllled trials. A 

systematic search was also performed, initially, for this section, results and search 

criteria of which can be found in appendix 1. 

 

Monitoring levels of habitual physical activity can also be a limiting factor within these 

studies, as habitual levels can vary greatly within a population, one way could be to 
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use accelerometry measurements [102]. However, it should be noted that some 

accelerometers may only register vertical impacts and not horizontal components of 

acceleration [103].  Further research is needed to test whether overall (horizontal and 

vertical) accelerations are associated with bone adaptations observed in different 

types of physical activity. 

2.1.4 Muscle 
Skeletal muscle is made up of fibres that usually run the total length of the muscle or, 

for pennate muscle, they run diagonally from superficial to deep aponeuroses. Within 

each fibre there are myofibrils and within myofibrils there are units known as 

sarcomeres. A contraction of a muscle occurs at the sarcomere level. Filaments of the 

sarcomere (actin) slide across thicker filaments (myosin dimers). The more myofibrils 

that a fibre contains, the greater the maximal force [104]. Muscles are innervated by 

motor neurons; these neurons carry the signal to the muscle to instigate contractions. 

A motor unit describes a single motor neuron and the muscle fibres that are 

innervated by the branches of that neuron [105]. A whole muscle contraction occurs 

when the individual motor units are activated. An action potential passes along the 

motor neuron axon and its branches to reach the neuromuscular junction. At this 

junction, acetylcholine is released from vesicles at the axon terminal into the synapse 

cleft. The acetylcholine then binds to receptors on the cell surface of the motor end 

plate on the muscle fibre [105], stimulating an action potential to travel along the 

sarcolemma and through t-tubules. The end result causes a release of calcium from 

the sarcoplasmic reticulum into the muscle fibre sarcoplasm [104]. The calcium binds 

with troponin, causing a conformation change in tropomyosin, exposing the myosin 

binding site on actin, allowing the myosin head to bind with actin. Adeonosine 

triphosphate (ATP) is hydrolysed to liberate energy needed for the ‘power stroke’ as 
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the myosin head rotates to ‘pull’ actin towards the centre of the sarcomere to 

generate force, or tension. ATP binding with myosin allows myosin to detach from 

actin. This process continues for as long as calcium is available in the sarcoplasm, and 

in turn, calcium will continue to be released into the sarcoplasm for as long as action 

potentials continue to arrive at the neuromuscular junction (assuming no fatigue 

occurs). 

 

There are three main fibre types that are each associated with different types of 

exercise based on the motor units and their differing capacities. Type 1 fibres are 

found in low threshold motor units, they have a low velocity of shortening during 

contraction, are enriched with mitochondria and myoglobin and are fatigue resistant. 

These fibres benefit from endurance performance or other prolonged activity. Type 2a 

muscle fibres usually have a larger cross-sectional area than type 1, along with a faster 

velocity of contraction and intermediate levels of mitochondria. Type 2x fibres have 

the largest cross-sectional area, fastest velocity of shortening and lowest 

mitochondrial content but higher glycolytic activity. The type 2x fibres fatigue quickly 

but generate high power and are found in the highest threshold motor units. These 

fibres are associated and used more within power and sprint training [106].  

 
The maintenance of muscle mass is regulated by the balance of protein breakdown 

and protein synthesis. This protein synthesis is regulated by the physical activity that is 

undergone by the muscles as well as the type of food that is ingested. Leucine is an 

essential amino acid, found within the make-up of certain proteins. This amino acid 

has the ability to inhibit the enzymes, classed as proteasomes, that are responsible for 

the breakdown of protein. During ageing, muscle becomes less able to respond to 
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physical activity and protein ingestion, and may require a greater amount of protein 

per day to elicit an anabolic response [107-110].  

 

2.1.5 Ageing and Muscle 
Ageing has a great effect on skeletal muscle. At the age of 40 years old, lean muscle 

mass begins to decline. After the age of 50 years old, muscle mass declines approx 1-

2% per year, with a total decline of around 25% between 50 and 75 years old [111-

114]. 

 

The strength of muscle also declines and the rate of decline increases with advancing 

age [115]. Power can be determined as muscle force x velocity of contraction and 

declines of power are greater than those of maximal force because muscles also slow.  

The velocity at peak power has been shown to decline around 18% during middle age 

and then a further 20% between the ages of 80 and 89 years. Other studies have also 

shown muscle size and strength to decline 68% from young (25 years) to old (71 years) 

[116]. The loss of muscle mass with age can be partly attributed to an acceleration in 

the atrophy of fast twitch muscle fibres (type 2x), these fibres have a reduction in cross 

sectional area at an increased rate than the type 1 fibres. The proportion of type 1 to 

type 2 fibres, however, remains the same [117, 118]. It has been suggested that the 

action potential resulting in a release of calcium into the sarcomere, becomes 

impaired leaving a less tense muscle, deemed as muscle weakness [119, 120]. Specific 

tension of single fibres decreases with old age and results in a reduced muscle specific 

force, further contributing to weakness in old age along with low muscle mass [121]. 

As muscle mass declines, connective tissue and fat replace the area previously 
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occupied by the muscle fibres. This further hinders the maximum contractile force of 

the muscle [105]. 

 

The loss of muscle fibres with age is associated with death of motor neurons. Studies 

on human cadavers have revealed that those aged around 75 years old have around 

30% fewer motor neurons innervating lower limb muscles [122-124], and within the 

vastus lateralis there have been shown to be as much as 40-50% fewer motor neurons 

[117]. These findings have recently been supported using electromyography 

measurements indicating a loss of 30-50% of motor units by the age of 70 years old 

[105, 116]. Once muscle fibres become denervated, they may not all atrophy and die 

off, some may be reinnervated by remaining nearby axons. As a result, the motor unit 

becomes larger, but throughout the muscle as a whole, the number of motor units 

reduces [116, 125, 126]. This reinnervation also results in fibre type grouping [126, 

127].  

 

There are other factors that play a role in the decline in muscle size and strength. 

Satellite cell numbers reduce with age. Satellite cells are usually responsible for the 

repair of muscles in response to injury and damage. A reduction of these with age 

results in a slower response of the muscle to injury and a delayed repair [128-130]. An 

in-balance between the rate of protein synthesis and the rate of protein breakdown is 

more likely to occur as, in the elderly, food intake and appetite tend to decline [131]. 

Additionally, levels of certain hormones, such as oestrogen, progesterone and cortisol, 

change with age which can also have an effect on the muscles. The decline in human 

growth hormone reduces the amount of growth and repair. Cortisol levels also rise and 

can increase skeletal muscle fibre atrophy, whilst testosterone and oestrogen 
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reduction has been associated with decreased muscle mass and protein synthesis [25, 

132, 133]. 

 

In 1989, Rosenburg proposed the definition of sarcopenia as the “progressive decline 

of muscle mass and strength”. Sarcopenia is normally associated with increased risk of 

falling and fracture, loss of independent living, hospital admission and increased 

mortality [134, 135]. An updated definition of sarcopenia characterises the syndrome 

as progressive loss of muscle mass and strength associated with an increased risk for 

physical disability, poor quality of life and death [136-138]. There are many ways in 

which sarcopenia may be defined including, but not limited to, muscle mass, muscle 

strength and physical performance (walking speed or grip strength) [137, 139]. Current 

estimates suggest approximately 200 million people worldwide will be affected by the 

year 2050 [140]. The prevalence of sarcopenia increases with age, amongst 60-70 year 

olds approximately 5-13% are affected by sarcopenia, when aged over 80 years old, 

the proportion affected ranges from 11-50%, with a greater amount of men effected 

compared to women [141-143].  

 

Ageing also triggers a pro inflammatory response characterised by higher levels of 

circulating tumour necrosis factor-alpha (TNFα) and C-reactive protein, which is linked 

with a gradual decline in physical activity, presenting as low grade chronic 

inflammation [144]. Studies have shown that sarcopenia is accompanied by increased 

levels of inflammation factors TNFα and Interleukin-6 (IL-6), these factors have a 

catabolic effect in the long-term, accelerating muscle and bone tissue declines [134, 

145, 146].  
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In one population study, a sample of sarcopenia patients had a morbidity rate of 17% 

in males and 19% in females [144]. The progression towards sarcopenia ultimately 

involves alterations in skeletal muscle protein turnover; when the rate of muscle 

breakdown exceeds the muscle protein synthesis [144]. Interventions targeting the 

inflammatory responses that are associated with sarcopenia have not been successful 

and do not seem to be able to manage the atrophy of muscle, nor has it been explored 

in full detail [144, 147].  

As sarcopenia is a multifactorial condition, no single factor intervention study has been 

shown to have great effects. A combination of intervention and life style changes are 

what is needed to help reduce the loss of muscle size and strength in later life. The 

main focus of these interventions should target nutritional strategies that ensure 

sufficient energy and protein intake, maintain physical activity and reduce low grade 

inflammation [144, 146]. A summary of the changes in muscle mass, motor units and 

fibres during ageing, as discussed in this section, are shown in figure 2.3. 

 

Figure 2.3; A comparison between young and old muscle, showing motor unit remodeling, 
reinnervation, reduction in muscle size and fibre type grouping. Adapted from [105]. 
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2.1.6 Exercise and Muscle 
Physical activity has positive effects on muscle mass in ageing, in particular reducing 

the prevalence of sarcopenia in older age. Interestingly, it has been shown, within 

samples of local communities that sarcopenia is associated with a higher mortality rate 

and the greatest predictor of this mortality rate is a low physical function. Landi et al 

(2016), [148], investigated the elderly population within the area of Sirente in Italy. 

364 subjects were used for the study, all aged ~ 85 (median range 80-100) years. These 

community members were assessed over the course of 10 years, of those Sarcopenia 

was identified in 103 participants. Additionally, 253 deaths were recorded, 10 of which 

were sarcopenic, 162 were non sarcopenic. Of those deaths, subjects with a low 

physical performance level had a greater mortality rate. Similarly, Mijnarends et al 

(2016), [149], investigated a large community within the Reykavik area, with 2309 

participants aged 66-93 years. Over a five-year period, the incidence of sarcopenia had 

more than doubled within the sample, rising from 7% to 16%. Those reporting a higher 

level of physical activity had a significantly lower likelihood of becoming sarcopenic 

with older age. Studies such as these highlight the importance of improving physical 

function as a way to reduce the rate of sarcopenia and related mortality. 

 

As exercise impacts on bone, section 2.1.3, master athletes have also been used as an 

example ageing population to demonstrate the effects of exercise on muscle. There 

are clear differences between the muscular strength of master athletes and age 

matched controls [150, 151]. The benefit, however, is only achieved within power and 

strength trained master athletes, endurance trained athletes show no difference in 

muscle strength and size to that of age match controls [152-154]. The extent to which 
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consistent training over a number of years effects muscle in ageing has been well 

reviewed by McKendry et al (2018), [150] in which the authors highlighted that, due to 

the wide variety of methods applied, it cannot be concluded if muscle mass and 

morphology is maintained better in trained master athletes. Although, most studies 

showed no differences between groups of old and young, sprint and endurance, in 

muscle fibre architecture [155, 156]. This highlights the need for consistent methods 

for measurements of muscle ageing within this specific population group, and also the 

need for specific training definitions within ageing populations. 

 

Numerous studies have been conducted to investigate the varying effects of the 

different types of exercise and physical activity has on muscle and sarcopenia during 

older age. It is well known that resistance training increases muscle protein synthesis, 

strength and power without the need for any specific dietary interventions [157]. 

Elderly populations have been shown to respond to resistance training interventions, 

as clearly identified by Laussen et al (2015), [158], in which community dwelling older 

people, aged 70-85 years, took part in a 6 month progressive resistance exercise 

program. The training was carried out three times a week progressing from two sets of 

10 repetitions at 80% of their maximum to 3 sets of 12 repetitions at 80% of their 

maximum. Significant improvements were identified in all measures of physical 

function, stair climb, chair rise and short physical performance battery testing (SPPB; a 

combination of three balance stances, 5x chair rises and a timed walk at their usual 

pace, denoting a total score that gives an indication of physical function [159]) . The 

SPPB score improved by 2 points, the chair rise became 9 seconds quicker and stair 

climb improved by 1 second (p<0.03). Some studies have shown different 

improvements between male and females undergoing the same exercise program. For 
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example, Hanson et al (2009), [160], used tests such as the stair climb test, rapid walk 

and timed up and go as assessments of physical function, aimed at mimicking activities 

of daily living (Total n=59 average age~69±7 years). Following a 12-week strength 

training program. Women (n=27) improved their walking timed test, by 0.5 seconds, 

but not the stair climb, whereas men (n=23) improved their stair climb test, by 0.3 

seconds, but not the walking time test. These studies clearly highlight the physical and 

muscular function improvements that can be made in old populations via exercise. 

When reporting changes in sarcopenia prevalence it should be noted that there are 

several ways in which sarcopenia can be diagnosed, making it difficult to confirm the 

effects of the interventions [161]. 

 

Resistance training has shown to be effective in the older person, using different forms 

of delivery. Both, low volume resistance training and high-volume resistance training 

can be effective, as was shown by Reid et al (2008), [162]. Subjects aged ~78±8 years 

old were divided into two groups, one performing high velocity resistance training 

(n=22)at a lower load, the other performing low velocity but at a higher training load 

(n=23). The intervention was carried out for 16 weeks, with training sessions 

completed twice a week. The result showed both groups improved their leg strength 

(13% for high velocity and 16% low velocity) and frailty assessment scores, as noted 

previously these assessment methods may come from an extensive range, (1.4 and 1.8 

point improvement, respectively), with no differences between the two types of 

resistance training. Another study, Nunes et al (2016), [163], has also shown that low 

volume exercise (3 sets per exercise) and high volume (6 sets per exercise) can both 

increase muscular strength of the leg extensors, by approximately 20kg, over a 16 

week period, with participants aged approximately ~61±(54-68 median range) years.  
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Aerobic training has been shown to have some effects on reducing inflammation as 

well as over time reducing body fat percentage [164-166]. Nordic walking is designed 

to work all muscle groups, walking using poles which involve the upper body muscles 

as well as the lower limbs. A sample of osteoporotic or osteopenic women aged 

68.7±4.43 years were randomly assigned to a control group or an activity group [167]. 

The activity group performed Nordic walking for 60 mins 3 times a week for 12 weeks, 

the control group continued with no additional intervention.  During the 12 weeks, the 

activity group showed significant improvements in their skeletal muscle mass index 

and the strength of the knee extensors and flexors. The peak torque of the knee 

extensor improved in the exercise group from 97Nm to 108Nm, and the flexor from 

42Nm to 51Nm, over the 12-week period. There were no changes within the control 

group. However, the walking did not improve hand grip strength. Indicating greater 

forces may be required at the forearms to stimulate an overall improvement in muscle 

strength. Another study has shown that aerobic training can improve muscular 

function. This study has shown that the muscular function is improved by remodelling 

the contractile properties of muscle [168]. Using an elderly population of women aged 

71±2 yrs, 12 weeks of cycle ergometer training, carried out 3-4 times per week for 20-

45 mins showed an increase in size of type 1 fibres (16%) and an elevation (21%) in 

peak power of type 1 fibres. Clearly, aerobic training does have its place in additionally 

increasing muscle mass, power and strength amongst older populations. However, 

there is speculation that long term aerobic endurance training [169, 170] is more 

detrimental to both bone and muscle health in older age than resistance and power 

training [8, 164, 165].  
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Various studies have shown that the combination of both resistance and aerobic 

training provides the best means to enhance the aging musculoskeletal system [164-

166]. Results of a large longitudinal study were reported by the LIFE study group [171] 

in 2017. This involved 1,635 sedentary men and women aged ~78±5.4 years being 

enrolled in a randomised controlled trial, and then being followed up over the course 

of 2.6 years. General day to day physical activity was monitored using accelerometry 

data and self-reporting. The participants all had functional limitations, and they were 

randomised into a structured moderate intensity physical activity programme 

combining walking, resistance and flexibility, or a general health education 

programme. At baseline and 6,12 and 24 months the 400m gait speed and short 

physical performance battery test (SPPB) were performed as outcome measurements. 

Overtime, the time for gait speed and SPPB score improved significantly (p<0.001), 

which were associated with increases in physical activity by an increasing number of 

accelerometry counts. These improvements in physical activity also reduced the onset 

of disability within the sample. Such a study highlights not only that combined 

interventions can instigate physical improvements but also that a sedentary 

population of older age is still able to respond significantly to such an intervention.  

 

These studies have all shown that exercise is able to benefit the older population and 

improve muscular health and reduce the likelihood of onset of sarcopenia. Whilst 

there is a very large set of studies that all highlight the benefits of exercise there is still, 

yet to be defined, the most beneficial type and duration of exercise to reduce the 

prevalence of low muscle mass and onset of sarcopenia in old age. Most studies, as 

identified in this section, have used general ageing samples whom may already be 

active and/or healthy, and importantly, there are very few long-duration training 
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programmes reported in the literature. Similar conclusions have been drawn from 

systematic reviews, one particular review by Vlietstra et al (2018) [172] revealed that 

knee extension strength (p<0.01), timed up and go (p<0.0001), appendicular muscle 

mass (p=0.04) and leg muscle mass (p=0.04) all showed significant improvements in 

response to the exercise interventions, within older adults with sarcopenia. This 

review evaluated 32 full texts, but only 6 randomised controlled trials were found 

within the 32 full texts. This further demonstrates the positive effects of exercise on 

muscle mass and strength as well as highlighting the need for more randomised 

controlled trials with consistent methods. Lee et al (2018) [173], achieved similar 

results with their systematic review, which included seven randomised controlled trials 

and three cross sectional or longitudinal studies. Muscle mass, muscle strength and 

physical performance all improved significantly in the sarcopenic subjects. However, 

there was little consistency in the measurement of sarcopenia. A systematic search 

was also performed, initially, for this section, results and search criteria of which can 

be found in appendix 2. 

2.1.7 Muscle and Bone Interactions 
The mechanostat theory states that bone adapts to increased mechanical loading, 

(impact exercise), by increasing size and strength [4, 82, 174] with reduced mechanical 

deformation showing major declines in bone mass, size and strength [174]. There have 

been numerous heritability studies that estimate between 40-80% of the phenotypes 

of the skeleton can be attributed to genetics, similar proportions have also been 

reported for muscle traits [175-178]. Given these high proportions of genetic 

influences that underlie both bone and muscle, it is highly likely that there is a shared 

genetic component between muscle and bone [175-178].  
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Individually, both bone and muscle are able to act as endocrine organs, secreting 

substances into the circulation which, in turn, may act on other organs. In the late 

1970’s it was first recognized that muscle can act as an endocrine organ particularly in 

response to injury [179]. Myostatin was the first myokine to be identified [180, 181] 

and is now known as an inhibitor of skeletal muscle cell growth. IL-6 is also a known 

‘myokine’, defined by Pedersen et al, as a cytokine released by the muscle cells, usually 

in response to inflammation and injury, leading to increased plasma levels of IL-6 

[179].  Pedersen and her group also showed that contracting muscles led to a 19-fold 

increase in plasma concentrations of IL-6 comparatively to resting muscles [182]. There 

are numerous other myokines that have since been identified, IL-5; which was studied 

as having a role in cross talk between adipose and muscle tissue [183] and IL-7 has be 

shown to have possible effects on satellite cells during differentiation of myogenic cells 

[183]. Some studies have shown Irisin to convert white fat into brown fat [184], IL-15 

has been shown to be involved in reduction of adiposity and studies using mice over 

expressing the gene for IL-15 are associated with having a higher bone mineral density 

[185]. 

 

In 2003, Winkler et al provided evidence that osteocytes function as more than just a 

specified bone cell, it can also act as an endocrine organ, regulating bone density by 

secretion of circulating factors [9]. Another factor, osteocalcin, is released by bone and 

can circulate in the blood where it can interact with substances from the liver and 

adipose tissue, to enhance energy metabolism. The way in which osteocalcin interacts 

with the substances released from the liver and adipose tissue may pre-dispose people 

to obesity, diabetes and osteoporosis [10]. Some other factors released by bone cells 

are osteoprotegerin (OPG), expressed by osteocytes and osteoblasts. OPG can cause a 



 39 

reduction in the number of osteoclasts produced by binding receptor activator of 

nuclear factor kappa-B ligand (RANKL) [11]. Dickkopf-1 (DKK1) [14] and sclerostin, are, 

primarily released by osteocytes [15], and negatively regulate bone formation. DKK1 

and sclerostin have both emerged as therapeutic targets to tackle osteoporosis [186]. 

Fibroblast growth factor 23 (FGF23) is produced by a wide variety of cell types, 

including osteoblasts and osteocytes. Once FGF23 is released into the circulation it is 

able to act on the kidney to increase excretion of phosphate and reduce production of 

1-25 OH Vitamin D [187]. Osteopontin (OPN) is an extracellular matrix protein released 

by osteoblasts, osteocytes and osteoclasts and facilitates bone resorption [16].  

 

Together, the paracrine and endocrine properties of bone and muscle have led to the 

proposal of ‘bone-muscle cross talk’. The interaction between muscle and bone can be 

highlighted during exercise as muscles increase their function to power movements. 

Uptake of glucose and fatty acids rises significantly to provide energy needed to 

maintain muscle contractions [13, 188]. Osteocalcin (Ocn) is a factor that is now readily 

researched and a good example of how bone and muscle may interact [13, 189]. 

Genetically altered mice with their gene encoding osteocalcin silenced, have been 

shown to run for around 30% less time than wildtype mice [13]. The same low exercise 

capacity was also found in 3-month-old mice lacking the osteocalcin receptor (Gprc6a) 

[190]. Ocn(-/-) mice knockouts and Osteoclacin mice knockouts in osteoblasts only, 

both showed a similar decline in exercise capacity indicating the absence of a bone to 

muscle signalling event, highlighting the importance of the bone-muscle cross-talk. Il-6 

also rises during exercises and enhances the ability to carry out the exercise and can 

interact with muscle and bone (as well as many other tissue types) causing different 

substances and molecules to be released to enhance exercise capacity (see Figure 2.4). 
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In summary, osteocalcin increased the uptake and breakdown of glucose and fatty 

acids in myofibres. Then, in turn, the rise in IL-6 secretion from muscle during the 

exercises triggered by osteocalcin allows glucose to be mobilised from the liver and 

fats to be broken down into fatty acids. Finally, IL-6 through regulation of bone 

resorption increases the amount of bioactive osteocalcin produced [13]. This is 

summarised in the figure below: adapted from [13]. 

 Figure 2.4: An illustration of how Osteocalcin remodeling in myofibres can be accountable for most of 
the IL-6 released during exercise. An example of bone and muscle cross talk. 
Uncarb Ocn: Uncarboxylated osteocalcin, FA: Fatty acid, GPRC6A: Osteocalcin receptor, IL-6: Interleukin 
6, ATP: Adenosine triphosphate. Red arrow indicates an increase in production, black arrow indicates 
direction Adapted from [13] 

 

There has been further evidence to the interaction between muscle and bone through 

injury. Healing of fractures are much delayed if there is muscle damage alongside the 

fracture, [191-194]. With open fractures in mice with paralyzed muscles, healing is 

delayed, whereas if the fracture is covered with a functioning muscle, healing time is 

significantly reduced, indicating that the muscle is able to secrete factors to the 
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surrounding bone, decreasing healing time [195]. This has not only been shown in mice 

but in a clinical setting in humans with open fractures of the tibia [196]. 

 

2.1.8 Osteoporosis and Sarcopenia 

As discussed in earlier sections, both sarcopenia and osteoporosis exist in similar 

population groups, those being elderly, sedentary and in particular for osteoporosis 

post-menopausal women. It is now well known that sarcopenia and osteoporosis 

frequently co-exist within older populations, the common links between the two 

comorbidities are shown in figure 2.5. In studies using older men, it has been shown 

that the measures of appendicular lean mass, 15-20% of the variability is explained by 

BMD [3, 197]. Similarly, with postmenopausal women, several studies have shown a 

strong positive correlation between whole body lean mass and whole-body BMD [198-

201]. Using the mechanostat theory it would be expected that changes in bone mass 

are mediated by changes to the muscle strain (mechanostat). Therefore, numerous 

exercise intervention studies into muscle or bone have been conducted, as reported in 

sections 2.1.3 and 2.1.6, in an attempt to identify the best type and necessary duration 

of exercise to improve muscle and bone health during ageing. There is still yet to be 

defined a clear exercise programme for the ageing population. 

While the role of direct forces applied through muscle tendons onto bone is 

reasonably well established as a mechanism of bone growth or decline, the role of 

circulating factors mediating muscle and bone development, or decline remains 

unclear. The circulating bone factors previously mentioned, however, are still yet to be 

fully established and some have speculative roles amongst bone-muscle cross talk, 

especially within ageing. 
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Figure 2.5; Adapted from [127]; How sarcopenia and osteoporosis may come to co-exist in older age.  

 

The research completed as part of this PhD study will provide novel insights into how 

exercise and circulating bone regulatory factors may influence both bone and muscle 

health within older age. If specific regulatory factors with osteogenic and/or myogenic 

potential can be identified, it may lead to new therapeutic targets to help combat both 

osteoporosis and sarcopenia in older age. If we are able to identify the most beneficial 

type of exercise for ageing muscle and bone this will help to inform the general 

population on how to slow down the decline of muscle mass and bone strength in 

older age. 
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2.2 Aims and Objectives 
 

The overarching aim of the PhD project was to investigate how exercise and circulating 

bone regulatory factors influence both bone and muscle health in older age. This was 

achieved through four objectives: 

1. Investigate the relationship between BMD and lean mass in athletic older people, 

taking into account accelerometry data, the training age and type of athlete (sprint 

or endurance). 

2. Identify the circulating bone remodelling factors associated with BMD in healthy 

young and older adults.  

3. Identify the circulating bone remodelling factors associated with whole body lean 

mass in healthy young and older adults.  

4. Using the selected circulating factors identified in objective 2 and 3, investigate the 

responses of cultured human immortalised myoblasts after exposure to these 

factors. 
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3.1 Chapter 3: Hip and spine bone mineral density are increased in master sprinters 

compared to endurance runners and controls. 
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3.1.2 Abstract 
Purpose: The relationship was examined between prolonged participation in regular 

sprint or endurance running and skeletal health at key clinical sites in older age. 

Methods: Participants included 38 master sprint runners (28 males, 10 females, mean 

age 71±7y), 149 master endurance runners (111 males, 38 females, mean age 70±6y) 

and 59 non-athletic controls (29 males, 30 females, mean age 74±5y). Dual X-ray 

absorptiometry was used to assess hip and spine bone mineral density (BMD), body 

composition (lean and fat mass), whilst jump power was assessed with jumping 

mechanography.  In athletes, vertical impacts were recorded over 7 days from a waist-

worn accelerometer, and details of starting age, age-graded performance and training 

hours were recorded.   

Results: In ANOVA models adjusted for sex, age, height, body composition and jump 

power, sprinter hip BMD was 10% and 14% greater than that in endurance runners and 

controls respectively. Sprinter spine BMD was also greater than that in both endurance 

runners and controls (11% and 6%, respectively).  There were no differences in hip or 

spine BMD between endurance runners and controls.  Stepwise regression showed 

only discipline (sprint/endurance), sex and age as predictors of athlete spine BMD, 

whilst these variables and starting age were predictive of hip BMD. 

Conclusions: Regular running is associated with greater BMD at the fracture-prone hip 

and spine sites in master sprinters but not endurance runners.  These benefits cannot 

be explained by indicators of mechanical loading measured in this study including 

vertical impacts, body composition or muscular output. 
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3.1.3 Introduction 
To follow on from the findings in the literature review, the different effects of sprint 

and endurance training on bone mineral density were investigated. Clinically relevant 

sites, the hip and spine, were designated as the two bone outcome measures. To 

explain any differences between groups accelerometry data was collected along with 

muscle power and body composition, addressing the first objective for this PhD. 

 
Bone adapts to the mechanical loading it experiences during everyday physical activity 

(PA) and exercise, with higher impacts associated with intense PA being advantageous 

for bone strength [4, 82, 174].  Older people are usually less active than young and 

what activities they do engage with tend to be low impact and therefore of little 

benefit to bone [76].  This age-related decline in physical activity likely contributes to 

declining bone strength. Indeed, positive associations have been reported between PA 

levels and bone strength in older adults [76, 202], suggesting that exercise is an 

effective way to improve and maintain bone mineral density (BMD) and bone strength 

in older individuals.  Interventions designed to improve bone strength through exercise 

training have shown some significant improvements in adults, there is still a proportion 

of which have failed to show clinically significant effects [203]. A possible explanation 

for this is that bone adaptation in adults is slow and effects of exercise may take 

several years to fully manifest [6]. There is also uncertainty over the types of activities 

that are potentially osteogenic.  

 

Master athletes offer a model to examine associations between long term exercise 

training and bone strength, and have the added advantage that comparison can be 

made between different disciplines to determine which activities are more osteogenic. 

In young adults, the benefits of regular exercise have been suggested to depend upon 
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the type of activity, being greater in high impact activities such as sprinting whereas 

little benefit is evident in lower impact activities such as walking, cycling or swimming 

[204-206]. This may also be the case for older adults. For example, master cyclists have 

a higher incidence (80%) of osteopenia and lower hip and spine BMD than non-athletic 

controls (50%) [169].  In contrast, male and female sprinters had 15% and 18% greater 

trabecular BMD in the distal tibia than non-athletes [207], whereas benefits in male 

and female endurance runners were 7% and 9%, respectively. It remains unclear 

whether the benefits of sprint and endurance running are also observed in older age 

for the hip or lumbar spine, fractures of which represent a major disease burden.  In a 

small study of master athletes (n=26), total body, arm, trunk pelvis, legs, thoracic and 

lumbar spine regional BMD were greater in sprint athletes than controls with no 

advantages evident in endurance runners [208]. Previous studies have omitted 

comparisons with controls, considered younger athletes, been limited by small sample 

size or not investigated these regions [170, 207, 208].   

 

To the extent that observed associations between discipline and BMD reflect a 

response to exercise, different benefits of distinct running events on BMD are likely to 

be related to differences in skeletal loading by muscle and reaction forces between 

those activities. For example, the larger reaction [209, 210] and muscle forces in 

sprinting could explain the greater benefits to bone in sprint compared to endurance 

running. Direct assessment of vertical impacts and indirect indicators of muscular 

loading (lean mass and muscle power) in sprint and endurance runners would provide 

relevant information to test this hypothesis. 
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It was hypothesised that both athletic groups have greater bone strength than 

controls, with the largest advantages in sprinters.  In addition, to the extent that any 

observed differences were a consequence of exercise participation, it was expected 

that the larger bone advantages in sprint than in endurance athletes are attributable 

to differences in physical activity (accelerometry data) and muscle mass and function.  

To investigate this, we compared hip and spine BMD between master sprinters, master 

endurance runners and non-athletic controls. We also examined differences in the 

number of vertical impacts and indicators of mechanical loading such as body 

composition and muscle power, and through ANCOVA and multiple linear regression 

models examined to what extent these could explain group differences.  

 

3.1.4 Materials and Methods 
3.1.4.1 Study Design 

Master athletes (MA) were recruited at nationwide athletics competitions as part of a 

multiple cohort study named “VIBE” and included male and female athletes aged ≥60 

years currently competing in sprint, middle or long distance running and in the 12 

months preceding recruitment had competed at regional level or higher. Regional 

ethics approval (14/NW0275) was obtained prior to the study and written informed 

consent was obtained from all participants.  

 

MAs were classified as sprinters (28 male and 10 female,) if competing in events less 

than 800m in distance, or endurance athletes (111 male and 38 female) if competing in 

events greater than or equal to 800m in distance. Each athlete completed a 

questionnaire to determine demographics, lifestyle, their past physical activity 

behaviours and physical activity at the time of wearing the accelerometer. The 
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questionnaire data allowed the athletes to be grouped according to years trained 

consecutively: 1) those training all of their life through childhood; 2) those training 

since 18 years old, 3) those training since 30 years old, and 4) those training since 50 

years old. Mean age-graded performance (AGP) was determined by taking the 

athlete’s highest ranked performance within the last two years, and expressing it as a 

percentage of the world record for that age and distance. AGP ranged from 77-92% 

across the cohort, indicating a high level of performance relative to respective age 

group records.  For example, a marathon of 3 hours and 30 minutes at the age of 70 

years gives an age-graded performance of 80%. 

 

The MAs were drawn as a sub-sample from a larger study that included 286 MAs with 

accelerometry measurements and of those, 189 participants also additionally 

completed DXA assessments at the Manchester research centre. These 189 

participants with both accelerometry and DXA data were included in the present 

study. The DXA images from two participants were excluded due to movement 

artefacts, so data are presented from 187 individuals with valid DXA and 

accelerometry data.   

 

Control participants were individuals recruited as part of the EU “MYOAGE” study 

[211] using advertisements in newspapers and University of the Third Age with the aim 

to recruit socially active individuals. Volunteers were excluded if: dependent living, 

unable to walk a distance of 250m, presence of morbidity (such as neurologic 

disorders, metabolic diseases, rheumatic diseases, heart failure, severe chronic 

obstructive pulmonary disease and haemocoagulative syndromes), immobilisation for 
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one week during the last three months, orthopaedic surgery during the last two years 

and/or suffering from pain or functional limitations. 

 

3.1.4.2 DXA Scans 

Standing height was measured to the nearest millimetre and body mass was measured 

to the nearest 0.1 kg. Whole body, total hip and lumbar spine dual energy X-ray 

absorptiometry (DXA) scans were performed using a DXA scanner while the participant 

lay supine (Lunar Prodigy Advanced, GE Healthcare, encore version 10.50.086).  During 

the measurements, a light cotton t-shirt was worn by the participants to reduce 

measurement errors due to clothing absorption. Body composition (fat mass and lean 

mass) was measured from total body scans, whilst bone mineral density (BMD, g.cm-2) 

was measured from hip and spine scans. All measurements were recorded after 

manual adjustment of the regions of interest carried out offline. Repeat total body and 

hip DXA scans were performed in 8 MAs within one month of the original scan. Using 

these repeat scans the short-term error for our laboratory was 2.0% for hip BMD and 

0.9% for spine BMD.  

 

3.1.4.3 Muscle function  

A Leonardo Mechanography Ground Reaction Force Platform (Leonardo Software 

version 4.2: Novotiec Medical GmbH, Pforzheim, Germany) was used to assess lower 

limb muscle function during a vertical jump as described previously [212] and 

described below. From this, both absolute and relative power was assessed. Briefly, 

the participants performed a two-footed countermovement jump where each 

participant was asked to jump as high as they could. Jumps were performed with a 

trained assistant present and in reach of the participants in case of a fall or falter. Each 
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participant repeated the jump sequence three times, with approximately 30 seconds 

rest between jumps. The jump with the maximum power was used for statistical 

analysis.  

 

3.1.4.4 Accelerometry 

Accelerometry data was collected from the athletes only. Each athlete received a 

GCDC ×16–1c (Gulf Coast Data Concepts, Waveland, Mississippi) which was placed in a 

Velcro strap and worn around the waist with the accelerometer device placed over 

their right hip. Each athlete wore this monitor for 7 consecutive days, only removing it 

when showering, bathing, swimming and sleeping. The monitor was kept on for all 

other daily activities including athletic training. Time sheets were completed over the 

7-day period to identify the time the monitor was first worn, the time it was removed 

in the evening and to indicate any reason why that day was not of their usual routine. 

Accelerometers were configured with standardised settings prior to participant use 

with a sampling frequency of 50 Hz, a deadband setting of 0.1 g (the threshold which 

must be exceeded before a recording is made) and a timeout setting of 10 s (meaning 

that a single sample every 10 s is taken even if the recording is <0.1 g) [102]. Once the 

period of use was completed the participant returned the accelerometer to the centre, 

by post, where the raw accelerometry data was then uploaded to a secure shared 

drive and read into Stata 13 (StataCorp, College Station, TX). A standardized cleaning 

and processing procedure was used [102]. The Y-axis accelerations data were cleaned 

to remove movement artefacts and any periods of nil data collection, presumably due 

to the participant not wearing the accelerometer. Activity data were normalised based 

on seven valid days of 14 hours with ≥10 h recording time. Y-axis peaks were 

calculated based on accelerations higher than the previous and subsequent reading 
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and recorded within 14 pre-specified g bands. These were condensed to three impact 

bands; low (≥0.5 to <1.0 g), medium (≥1.0 to <1.5 g) and higher (≥1.5 g) impact. All g 

values represent g over and above 1 g from earth’s gravitational force [76].  

 

3.1.4.5 Statistical Analysis 

Statistical analysis was performed using SPSS for Windows (v21, IBM, USA). Data was 

firstly assessed for normality of distribution using P-P and Q-Q graphs, and the 

Kolmogorov-Smirnov test. Accelerometry data was not normally distributed, so this 

data was log transformed for further analysis. Non-normally distributed data are 

presented as median (25th/75th) quartiles and all other data are presented as mean ± 

standard deviation (SD).  

 

Univariate ANOVA analysis with Fisher’s Least Significant Difference post-hoc tests was 

used to identify differences between the three groups (sprinters, endurance runners 

and controls). Males and females were combined in the statistical analysis and 

differences were determined with adjustment for sex. There was no evidence of group 

* sex interaction, therefore data from both sexes were combined for analysis. 

Differences were considered significant at p<0.05. Lean mass [213] and muscle 

function [214] are highly correlated with bone strength, even when accounting for 

allometric scaling. Therefore, these and other co-variates were included to assess 

group differences in bone outcomes using a series of five different models, as shown in 

Table 3. Model 1: age, height, sex; Model 2: model 1 + fat mass; Model 3: model 1 + 

lean mass; Model 4: model 1 + lean mass + fat mass; Model 5: model 4 + absolute 

power.  
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To further investigate factors associated with bone outcomes in the athletes, single 

factor linear regression was performed for each individual variable (age, height, AGP, 

training age, hours trained, fat mass, lean mass, body mass, absolute power, vertical 

impacts (low, medium and high), discipline and sex) in relation to hip and spine BMD, 

for the athlete groups combined. Next, a stepwise linear regression was conducted 

with the athlete groups combined, using the same variables, to determine predictors 

of hip and spine BMD within Master Athletes. Results of regression analyses are 

presented as standardised regression coefficients (ß) and 95% confidence interval 

unless otherwise stated. 
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3.1.5 Results 
3.1.5.1 Participant characterisation  

Participant characteristics are shown in Table 1.  Controls were older than both sprint 

and endurance runners. There was no difference between any groups in height. 

Endurance runners were lighter and had lower BMI than both sprinters and controls, 

and sprinters also had lower BMI than controls.  Controls had 32% and 40% higher 

body fat percentage than sprinters and endurance runners, respectively.  Sprinters had 

greater lean mass and 10-30% greater relative and absolute power values than both 

endurance runners and controls. Lean mass but not absolute or relative power was 

also greater in endurance runners than controls.  
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Table 1. Participant characteristics separated by group and sex.   

Values are mean ± standard deviation; P-values for post hoc comparisons between groups are shown after adjusting for sex. 

Variable Group Group pair-wise comparisons 

 1. Sprint 2. Endurance 3. Controls 1 vs 2 1 vs 3 2 vs 3 

Sex M F M F M F 

N 28 10 111 38 29 30 

Age (years) 70.9±6.4 71.5± 7.9 69.9±5.7 69.1±50 74.1±5.7 73.3±4.5 .181 .022 <.0005 

Height (cm) 174±6 162±6 173±6 162±7 172±9 160±5 .467 .104 .180 

Body mass (kg) 74.3±9.7 62.9±10.9 67.9±7.7 56.0±7.4 80.2±16.2 63.1±11.5 <.0005 .098 <.0005 

BMI (kg.m-2) 24.5±2.7 23.9±3.8 22.5±3.1 21.4±2.1 27.1±4.7 24.5±4.2 <.0005 .012 <.0005 

Lean mass (kg) 57.8±5.6 43.8±4.7 54.2±5.4 41.3±5.0 52.2±8.4 38.1±4.3 .001 <.0005 .007 

Fat (%) 17.3±5.7 25.0±10.3 15.6±5.7 22.5±7.2 29.9±8.7 34.2±9.0 .136 <.0005 <.0005 

Absolute Power (kW) 2.64±0.90 1.68±0.59 2.03±0.56 1.41±0.38 2.19±0.59 1.46±0.49 <.0005 .002 .179 

Relative Power  

(W.kg-1) 

35.3±10.4 27.3±11.0 30.1±8.1 25.2±6.0 27.5±5.2 23.0±4.9 .002 <.0005 .060 
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3.1.5.2 Characteristics related to athletic training 

Mean age-graded performance ranged was 82.2% across the cohort, indicating a high 

level of performance as shown in Table 2.  Age-graded performance was greater in 

sprinters than endurance runners.  There was no difference in the number of hours per 

week trained between sprinters and endurance. The number of impacts recorded in 

the low and medium bands were 2.2- and 3.0-fold higher, respectively, in endurance 

than sprint athletes, but the number of counts in band 3 (high impacts) did not differ 

between endurance and sprinters.  
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Table 2. Athlete-specific characteristics, separated by athletic group and sex. 

Variable Group Group 

Difference 

P 

 1. Sprint 2. Endurance 

Sex M F M F 

 

Training Age 

(years) 

<18 

18-29 

30-49 

>50 

17 

2 

6 

3 

5 

1 

1 

3 

57 

12 

22 

18 

8 

3 

11 

15 

 

.140 

Current Training 

Hours per week 

 

0-1 

1-3 

4-7 

7+ 

0 

5 

18 

4 

0 

2 

4 

3 

2 

13 

59 

36 

0 

4 

19 

15 

0.111 

Age graded Performance (%) 82.3± 13.6 89.5± 11.4 76.5± 10.7 80.6± 10.2 .002 

Accelerometry low impact 

(0.5-1g) counts 

20876  

(12362-40738) 

14368  

(6623-33408) 

40882  

(28228-53412) 

37161  

(25787-55780) 

<.0005 

Accelerometry medium 

impact (1-1.5g) counts 

6434 

(2364-13692) 

3326 

(694-13081) 

33458 

(18847-49909) 

29868  

(21076-41859) 

<.0005 

Accelerometry (counts) high 

impact (>1.5g) counts 

131  

(9-693) 

37 

(4-293) 

193 

(20-1038) 

90 

(12-774) 

.291 

Values are mean ± standard deviation except accelerometry counts (median (IQR)), P-values for post hoc comparison between groups are shown 
after adjusting for sex. 
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3.1.5.3 Bone Mineral Density  

In minimally-adjusted Model 1, mean hip BMD in sprinters was ~10% greater than 

endurance runners and 9% greater than controls (Table 3).  Adjustment for fat mass in 

Models 2, 4 and 5 increased the differences between sprinters and controls, whilst 

adjustment for lean mass in Model 3 had little effect on group differences. There were no 

differences in hip BMD between endurance and controls for any model (all P > 0.15).  

 

Sprinters had greater spine BMD than endurance athletes in Model 1 and this remained the 

case after further adjustment in Models 2, 3, 4 and 5. There was no difference in spine BMD 

between sprinters and controls in minimally-adjusted model 1 or after lean mass 

adjustment in Model 3.  However, adjustment for fat mass in models 2, 4 and 5 showed 

values to be higher in sprinters than controls.  Conversely, greater spine BMD was found in 

controls than endurance runners in models 1 and 3, but these group differences were fully 

attenuated by adjustment for fat mass in models 2, 4 and 5. The adjusted means for each 

model of adjustment are presented in Figure 3.1 ((A; hip BMD) and (B; spine BMD)). 
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 Table 3. Bone outcomes separated by group and sex.   

Values are mean ± standard deviation, P-values for post hoc comparison between groups are shown after adjustment for sex.  Adjustments: M1; 
adjusted for sex, height and age, M2; M1 + fat mass, M3; M1 + lean mass, M4; M1+ fat mass + lean mass, M5; M4+ absolute power 
 

 

Variable Group  Group pair-wise comparison 

 1. Sprint 2. Endurance 3. Controls Model 1 vs 2 1 vs 3 2 vs 3 

 M F M F M F 

Hip BMD 

(g.cm-2) 

 

1.15±0.16 

 

0.97±0.11 

 

1.03±0.15 

 

0.88±0.11 

 

1.05±0.12 

 

0.88±0.13 

 

1 

2 

3 

4 

5 

<.0005 

<.0005 

<.0005 

<.0005 

0.001 

0.006 

0.001 

0.016 

0.002 

0.007 

0.184 

0.953 

0.159 

0.993 

0.980 

Spine 

BMD 

(g.cm-2) 

 

1.21±0.21 

 

1.02±0.18 

 

1.09±0.13 

 

0.89±0.03 1.15±0.17 0.95±0.15 

 

1 

2 

3 

4 

5 

<.0005 

<.0005 

0.002 

0.001 

0.004 

0.110 

0.001 

0.345 

0.009 

0.018 

0.010 

0.763 

0.005 

0.957 

0.923 
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Figure 3.1. Adjusted mean estimates separated by group in a series of ANOVA models (means ±SD) for A) hip and B) spine BMD adjustments: M1; adjusted for sex, 
height and age, M2; M1 + fat mass, M3; M1 + lean mass, M4; M1+ fat mass + lean mass, M5; M4+ absolute power. Asterisks indicate significant difference from 
endurance *- P < 0.05, * - P < 0.01, *** - P < 0.001. Crosses indicate significant difference from controls +- P < 0.05, ++ - P < 0.01, +++ - P < 0.
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3.1.5.4 Regression Analysis 

Results of linear regressions between individual athlete characteristics and bone outcomes, 

when adjusted for age, height, body mass and sex, are shown in Table 4. Discipline 

(sprinter), AGP and absolute jump power were positively associated with hip BMD, whilst 

later starting age, low and medium impact counts were negatively associated with hip BMD.  

Discipline (sprinter), training age, and fat mass were positively associated with spine BMD, 

whilst a later starting age, low and medium impacts were negatively associated with spine 

BMD.  



 62 

Table 4: Results of linear regression between each individual athlete characteristic and bone outcomes in athletes only 

 

 

 

 

 
 
 
 
 
 
 
 

Data are adjusted for age, height and sex presented as standardised regression coefficient ().  1Test for linear trend between categories. 

Variable 
Hip BMD Spine BMD 

 95% CI P  95% CI P 

Discipline (Sprinter) 0.281 0.155 0.408 <0.001 0.268 0.145 0.390 <0.001 

AGP 0.131 -0.004 0.266 0.059 0.100 -0.029 0.229 0.130 

Training Age1 -0.231 -0.366 -0.096 0.001 -0.153 -0.284 -0.021 0.024 

Training Hours1 0.017 -0.118 0.151 0.809 0.017 -0.109 0.144 0.791 

Fat Mass 0.102 -0.032 0.235 0.137 0.230 0.104 0.356 <0.001 

Lean Mass 0.093 -0.168 0.354 0.485 0.216 -0.039 0.471 0.099 

Absolute Jump Power 0.150 -0.005 0.304 0.060 0.174 0.023 0.326 0.025 

Accelerometry 

Counts 

Low -0.177 -0.040 -0.314 0.012 -0.246 -0.117 -0.375 <0.001 

Medium -0.169 -0.032 -0.306 0.016 -0.296 -0.169 -0.422 <0.001 

High 0.109 -0.034 0.252 0.137 -0.056 0.080 -0.193 0.420 
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In stepwise multiple linear regressions, the variables identified as predictors of hip 

BMD were sex (greater values in males, standardised regression coefficient 0.393, 

95%CI 0.257 to 0.529, P < 0.001), discipline (greater values in sprinters, 0.246, 95%CI 

0.113 to 0.38, P < 0.001), age (-0.259, 95% CI, -0.128 to -0.39, P < 0.001) and starting 

age (-0.168, 95%CI -0.03 to -0.307, P = 0.012).  For spine BMD sex (male, 0.527, 95%CI 

0.4 to 0.654, P < 0.001), discipline (sprinter, 0.248, 95%CI 0.121 to 0.374, P < 0.001) 

and age (-0.13, 95%CI -0.003 to -0.257, P = 0.046) were identified as predictors.   

 

3.1.5.5 Sensitivity Analyses 

To examine the influence of regional lean mass on bone, analyses adjusted for 

appendicular or lower limb lean mass rather than whole body measures was 

performed.  In addition, analyses with lean and fat mass indices (lean or fat/height2 

respectively) and relative jump power was also carried out. Results of these alternative 

analyses (data not shown) were similar to those described above, therefore whole 

body measures and unadjusted body composition and peak power values were 

retained in analyses. 
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3.1.6 Discussion  
The main finding was that hip and spine BMD were greater in sprinters than endurance 

athletes and non-athletic controls. These differences remained after adjustments for 

body composition and muscle function. Endurance athletes had lower spine BMD than 

controls during initial analysis, but this difference disappeared after adjusting for body 

fat. These findings suggest that long-term endurance exercise has little benefit for hip 

and spine BMD. In contrast, long-term sprint training may help to preserve hip and 

spine BMD at levels considerably higher than those of non-athletic controls. This is the 

first study to compare hip and spine BMD of older master athletes from different 

training disciplines and controls in a large cohort. The hip and spine are important 

clinically because they are prone to fracture in old age. Previous studies were limited 

by the absence of a control group [170] or discipline-specific comparisons [206, 215], 

recruitment of middle-aged athletes [208], or focused on distal or less fracture-prone 

regions rather than hip and spine [207, 208, 215].   

 

The findings support previous observations of greater BMD in sprinters compared with 

endurance runners and controls [8, 170, 208] . A previous DXA study in younger master 

athletes (40-64y) reported similar bone outcomes for endurance athletes and controls, 

whilst distal tibia trabecular BMD as assessed by pQCT were greater for both sprint 

and endurance runners compared to controls [8] . The differences between hip and 

tibia adaptations to different forms of running could be explained by the biomechanics 

of running at different speeds. Knee and hip torques increase with increasing running 

speed, but the torque around the ankle tends to plateau at speeds above 5 metres per 

second [216].   
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In terms of factors underlying the discipline-specific advantages in hip BMD in sprinters 

which has been observed here and by others [170, 208, 217], sprinters had higher lean 

mass and jumping power than endurance runners and controls. Though absolute and 

relative jumping power was positively associated with both hip and spine BMD, this 

relationship was no longer observed once discipline was included in the regression, 

which other than sex and age was the only independent predictor of BMD at both 

sites. Taken together, these observations suggest that whereas differences in muscle 

function likely contribute to observed BMD differences between sprinters and 

endurance runners, this influence is only partially explained by muscle power as 

measured by jumping mechanography. This limitation may reflect that whilst a number 

of parameters relevant to bone loading, that were previously shown to be associated 

with bone outcomes, were measured [6, 76, 214, 218, 219], outcomes were not able 

to directly assess bone deformation, nor the loads placed upon bones by reaction and 

muscle forces.  A previous study employing detailed biomechanical assessment of 

running gait in sprint athletes identified kinetic variables as predictors of bone strength 

within a master sprinter population [220].  More detailed biomechanical analyses 

within different athletic populations may identify relevant components of the training 

stimulus.  Moreover, BMD is influenced by lifelong exposure to mechanical strain, as 

indicated by greater hip and spine BMD in retired youth athletes [221] at old age.  The 

muscle measures were only obtained at a single point in time relatively late in life. 

Given the known decrease in muscle bulk and function with age [211] particularly in 

athletes [222], this study may have significantly underestimated differences in muscle 

function between these two groups across the life-course.  

 

Mechanical loading on the skeleton is a reflection not only of muscle function, but also 
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participation in physical activity. High impact activities, even when rare are thought to 

be osteogenic based on positive associations found between high vertical impact 

activity and bone outcomes in non-athletic older individuals [202, 223]. The 

expectation was that sprinters would achieve greater numbers of high impacts than 

endurance athletes which was hypothesised to contribute towards their greater BMD. 

Whereas BMD was substantially higher in sprinters, the endurance athletes and 

sprinters had similar numbers of high impacts as measured using accelerometry. It 

should be noted that the accelerometers only registered vertical impacts and not 

horizontal components of acceleration.  Indeed, the power output and, most likely, the 

magnitude and rate of strains experienced by the bones during sprinting, are greater 

than those during endurance running predominately due to the horizontal rather than 

vertical impulses [103]. Further research is needed to test whether overall (horizontal 

and vertical) accelerations are associated with bone adaptations observed in sprint but 

not endurance runners.   

 

It is also conceivable that vertical impacts of lower magnitude, in the low and medium 

range, exert osteogenic activity. However, whereas we have previously observed that 

master athletes have considerably higher levels of low and medium vertical impact 

activity compared to controls [224], and in the present study endurance runners 

showed even greater numbers of low and medium impacts compared to sprinters, 

BMD in endurance runners was similar to that of controls and below that of sprinters. 

Indeed, low and medium impacts were inversely related to BMD. This inverse 

relationship may reflect the recent observation that low and medium impacts as 

recorded here are inversely related to BMI [225], of which the latter is positively 
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related to bone mass [226]. Within this study the observation was that spinal BMD was 

in fact lower than controls in minimally-adjusted models, which differences attenuated 

after adjustment for fat mass, is consistent with this explanation.  The absence of bone 

benefits in endurance runners could also be related to desensitisation of the bone by 

regular low-level habitual activity [227], and/or saturation of the response to high-

magnitude loading after a very small number of loading cycles [228, 229]. Therefore, 

the higher levels of low and medium-impact activity performed by endurance than 

sprint and control athletes may not contribute positively to bone strength. 

 An alternative explanation to mechanical influences explaining the difference 

between sprint and endurance athletes’ BMD could be a pre-existing self-selection bias 

in sport participation, possibly relating to aspects of body stature not captured by our 

methodology but otherwise influencing BMD.  This possibility has been proposed in a 

number of previous master athlete studies [206, 207, 230], but never explored.  

Studies of bone health in individuals beginning to take part in sprint and endurance 

events either in childhood or adulthood could examine whether such bias exists. 

 

3.1.6.1 Strength and Limitations 

The main strength of this study is the comparison of a large cohort of elite level master 

athletes competing at very high levels and with extensive training history of different 

disciplines, and controls.  This allowed the impact of muscle strength, body mass, body 

composition and vertical impacts on the BMD at the hip and spine, sites which are 

clinically important due to their susceptibility to bone fractures in old age, to be 

assessed. Previous studies have omitted comparisons with controls, considered 

younger athletes or did not investigate these fracture-prone regions [170, 207, 208]. 
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However, the cross-sectional nature of the study limits assessment of causal 

relationships between type of sport and BMD due to possible uncontrolled 

confounders.  For instance, there was little information about other factors potentially 

related to bone health, such as use of medications and nutrient intake including 

vitamin D, but it seems unlikely that these will have differed substantially between 

groups so as to explain the BMD differences we observed. In addition, a detailed 

training log was not taken, so some additional information about differences in 

exposure to higher impacts between sprinters and endurance runners may have been 

missed.  Another consideration is displacement of the accelerometer during training in 

extreme high impacts, affecting accuracy of readings. Additionally, master athletes 

may represent some selection bias in that they are genetically predisposed to these 

events, which is why they have achieved their success. These findings do not suggest 

that sprinting activity will prevent any ageing comorbidities. Further longitudinal 

studies would be needed to identify if sprinting produces greater increases in BMD 

compared to endurance running in those that have not been competing for the 

majority of their lives, before translating these findings to the general population.  

3.1.6.2 Conclusions 

Master sprint runners have greater BMD at the fracture-prone hip and spine sites, and 

greater lean mass and muscle power than healthy non-athletic controls, but no such 

advantages in BMD were evident in endurance runners. BMD advantages in sprinters 

were only partly explained by differences in lean mass and muscle function, whilst 

further adjustment for other indicators of skeletal loading including accelerometry 

measures within sprinters and endurance runners could not explain group differences. 

Further studies are required to identify to what extent discipline-specific advantages in 
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BMD relate to pre-existing differences in skeletal health, or to variance in skeletal 

loading not captured in this study. 
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4.1 Chapter 4: Circulating levels of Dickkopf-1, Osteoprotegerin and sclerostin are 

higher in old compared with young men and women and positively associated with 

whole-body bone mineral density in older adults 
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4.1.1 Abstract 
Purpose: To investigate the relationship between whole-body bone mineral density 

(WBMD) and levels of circulating factors with known roles in bone remodelling during 

‘healthy’ ageing. 

Methods: WBMD and fasting plasma concentrations of dickkopf-1, fibroblast growth 

factor-23, osteocalcin, osteoprotegerin, osteopontin and sclerostin were measured in 

272 older subjects (69 to 81 years; 52% female) and 171 younger subjects (18-30 

years; 53% female).  

Results:  WBMD was lower in old than young. Circulating osteocalcin was lower in old 

compared with young, while dickkopf-1, osteoprotegerin and sclerostin were higher in 

old compared with young.  These circulating factors were each positively associated 

with WBMD in the older adults and the relationships remained after adjustment for 

covariates (r-values ranging from 0.174 to 0.254, all p<0.01). In multivariate regression, 

the body mass index, circulating sclerostin and whole-body lean mass together 

accounted for 13.8% of the variation with WBMD in the older adults. In young adults, 

dickkopf-1 and body mass index together accounted for 7.7% of variation in WBMD. 

Conclusion: Circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and 

sclerostin are positively associated with WBMD in community-dwelling older adults, 

despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin 

and sclerostin being higher in old than young. 
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4.1.2 Introduction 
The findings from Chapter 3 have shown that sprinters have an increased bone mineral 

density at the hip and spine, compared to endurance master athletes and controls. The 

differences could not be explained by the number of impacts, nor muscle function. 

Given this, the differences could possibly be accounted for by the interaction of 

circulating factors with bone. The following chapter investigates the correlation 

between circulating factors and bone mineral density in young and old populations, 

addressing the second objective for the PhD.   

 
 

Progressive loss of bone mineral density (BMD) in older age leads to osteoporosis as 

the balance of bone remodelling favours resorption of mineralised extracellular matrix 

over formation. This common change is characterized by ‘micro-architectural’ 

deterioration of bone tissue and increases the risk of fracture [2]. BMD can be affected 

by BMI, muscle size or the sex of the individual. Males generally have a higher BMD 

than females and a lower incidence of osteoporosis in older age [231]. The greater 

muscle size will induce a greater muscle force on the bone when contracting [4, 232-

234] and may stimulate osteoblasts at a greater rate, resulting in higher BMD [4, 234].  

 

Circulating factors influencing bone development have been implicated in the age-

related changes to BMD including interactions between 1,25 dihydroxyvitamin D3 

(25(OH) VitD), parathyroid hormone (PTH) and calcium [235-238]. In addition, 

regulatory factors released from osteoblasts during bone formation and osteoclasts 

during bone resorption can enter the circulation and their concentrations may be 

related to BMD in older age. 
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There are many circulating factors that could be involved in bone and muscle cross 

talk. Due to the bone-muscle interactions it may be feasible that the circulating factors 

could be associated with BMD and/or lean mass, but research in this area is lacking. 

Some of the candidate circulating factors possibly related to BMD include 

osteoprotegerin (OPG), which is expressed by osteocytes and osteoblasts and can 

reduce production of osteoclasts by binding receptor activator of nuclear factor kappa-

B ligand (RANKL) [11]. Osteocalcin (OC) is a major non-collagen protein of the bone 

matrix secreted by osteoblasts for bone formation, but released from the matrix 

during bone resorption [239]. Dickkopf-1 (DKK1) [14] and sclerostin, released primarily 

by osteocytes [15], negatively regulate bone formation and have emerged as 

therapeutic targets to tackle osteoporosis [186]. Fibroblast growth factor 23 (FGF23) is 

produced by a variety of cell types, including osteoblasts and osteocytes, and released 

into the circulation where it acts on the kidney to increase excretion of phosphate and 

reduce production of 1-25 OH Vitamin D [187]. Osteopontin (OPN) is an extracellular 

matrix protein released by osteoblasts, osteocytes and osteoclasts to facilitate bone 

resorption [16].  

 

It remains unclear how the combination of these circulating markers of bone turnover 

are related to BMD in older age. Therefore, the purpose of this study was to compare 

plasma concentrations of these markers between recreationally active, community 

dwelling older adults and a reference group of young adults, and to examine the 

association of these with whole-body bone mineral density (WBMD). It was 

hypothesised that older adults would have higher circulating levels of factors related 

to bone resorption compared with young, and higher circulating markers of bone 

resorption were expected to be associated with lower BMD in old age.  
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Therefore, the purpose of this part of the study (addressing Objective 2) was to 

measure plasma concentrations of selected factors with known regulatory roles in 

bone remodelling; to compare their concentrations between recreationally active, 

community dwelling older adults and a reference group of young adults, and to 

examine the association of these with whole-body bone mineral density (WBMD).  

 

4.1.3 Materials and Methods 
4.1.3.1 Study Design 

The cross-sectional European multi-centre MYOAGE cohort consists of relatively 

healthy older men and women (aged 69 to 81 years) and young adults (aged 18-30 

years) [211] as shown in table 5. The study was approved by ethics committees at each 

institute and written informed consent was obtained from all participants. Participants 

were recruited by advertisement in newspapers, the University of the Third Age and 

Association of Emerti. All measurements were performed according to standard 

operating procedures that had been unified at the study centres and data collection 

was ceased through December-March and July-August. Volunteers were excluded if: 

dependent living, unable to walk a distance of 250 m, presence of morbidity (such as 

neurologic disorders, metabolic diseases, rheumatic diseases, heart failure, severe 

chronic obstructive pulmonary disease and hemocoagulative syndromes), 

immobilization for one week during the last three months and orthopaedic surgery 

during the last two years or still causing pain or functional limitations. The inclusion 

and exclusion criteria were designed to ensure the selection of relatively healthy 

participants and to minimize the confounding effect of comorbidity on sarcopenia 

[211] and the use of bisphosphonates, calcium and vitamin D supplements was 

recorded. The present study included 443 participants (Leiden, The Netherlands 
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(young; n=35, old; n=75); Jyvaskyla, Finland (young; n=34, old; n=65); Tartu, Estonia 

(young; n=39, old; n=60), Paris, France (young; n=35, old; n=30) and Manchester, UK 

(young; n=28, old; n=42)) with complete BMD and bloods results. 

 

4.1.3.2 Dual-energy X-ray absorptiometry 

A whole body scan was performed using DXA while the participants lay supine, as 

previously reported [211] (The Netherlands: Hologic QDR 4500, version 12.4, Hologic 

Inc., Bedford, MA, USA; Finland: Lunar Prodigy, version en-Core 9.30; Estonia: Lunar 

Prodigy Advanced, version en-Core 10.51.006; France: Lunar Prodigy, version encore 

12.30; United Kingdom: Lunar Prodigy Advance, version enCore 10.50.086). A trained 

technician completed the daily equipment calibration and the DXA scans according to 

local and manufacturers’ quality control procedures. Participants wore a light cotton 

garment to reduce effects of clothing absorption on the scanning results. The whole-

body lean mass, fat mass and the WBMD were recorded after manual adjustment of 

the regions of interest carried out after the scan was complete. 

 

4.1.3.3 Blood sample analysis 

Blood samples were collected from a vein in the forearm into vacutainer EDTA tubes in 

the morning when participants were in a fasted state. Samples remained at room 

temperature for 15-30 min and were then centrifuged for 15 min at 2,000 *g at 4◦ C. 

The plasma was collected and stored at -80◦C until analysis. Plasma concentrations of 

the selected analytes were determined in the research laboratory in Manchester, UK, 

using multiplex immunoassays (Millipore, Billerica, MA, USA).  The manufacturer 

instructions were followed and the magnetic bead panels quantified DKK1, OPG, OC, 

OPN, sclerostin and FGF23 using a 96-well plate after an overnight incubation. The 
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sensitivity of each analyte was 1.4 (DKK1), 1.9 (OPG), 68.5 (OC), 37.7 (OPN), 31.1 

(sclerostin) and 9.2 (FGF23) pg/mL. Samples were processed using a Luminex 200 

Bioanalyser and protein concentrations were estimated using the xPONENT software 

(Luminex, v.3.1.871). 

 

4.1.3.4 Statistical analysis 

Participant descriptive characteristics (Table 5) were normally distributed and are 

presented as mean ± standard error of the mean (SEM). Comparisons between age 

and gender were assessed using multivariate ANOVA. Relationships between body 

stature, BMI, total body lean mass and supplement use (independent variables) with 

WBMD (dependent variable) were assessed using bivariate Pearson’s product moment 

correlation. Data for circulating factors were not normally distributed and are 

presented as median (25th/75th) centiles. The results were log-transformed and z-

scores calculated by expressing each log-transformed value as a standard deviation 

from the mean of the gender-matched young. Z-scores of WBMD, lean mass and BMI 

were also calculated for use in subsequent correlation and regression analysis. 

Spearman’s rho partial correlations were performed to assess relationships between 

the z-score WBMD with z-scores of circulating factors using two models. The first 

model included adjustment for country of testing to account for any systematic 

differences. The second accounted for the positive correlations we observed between 

WBMD and BMI in men and women (r-values ranging from 0.210 – 0.387) and WBMD 

and lean mass for men (r-values in men ranging from 0.268 – 0.357, and women 0.085 

– 0.099) as well as health status and use of bisphosphonates, calcium or vitamin D 

supplements. Thus, the second model included adjustments for: country of testing, z-

score of lean mass, z-score of BMI, self-reported health and supplement use. A 
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stepwise multiple linear regression using the self-reported health and supplement use 

as well as z-scores for BMI, lean mass and circulating factors was then used to evaluate 

which combination of the independent variables was associated with z-score WBMD 

(dependent variable) in older adults and in young adults. Data was analysed using SPSS 

for Windows (v.21; IBM, USA) and significance accepted as p<0.05. 

4.1.4 Results 
Based on z-scores relative to gender-matched young, 26% of the older participants had 

WBMD values between -1.5 to -2.49 below the mean for young and 10.6% were ≥ -2.5 

below the mean of young. There was a significant age-by-gender interaction for 

WBMD z-scores (p<0.0005). 

 

There were gender differences in all participant characteristics except for age (Table 

1). WBMD was significantly lower in old compared with young participants. Total lean 

mass was lower in old compared with young when expressed in absolute values (Kg) 

and also as percentage of total body mass due to old having higher fat mass than 

young. There was a significant age by gender interaction for total lean mass (p=0.025) 

and for WBMD z-scores (p<0.0005). 
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Table 5. Participant descriptive characteristics 

 Old Young p-value 

 Men 

(n=129) 

Women 

(n=143) 

Men  

(n=82) 

Women 

(n=89) 

Age  Gender 

Age (years) 74.6±0.3 74.0±0.3 23.6±0.3 23.2±0.3 <.0005 NS 

Height  

(m) 

1.74±0.01 1.61±0.01 1.81±0.01 1.67±0.01 <.0005 <.0005 

Body mass 

(kg) 

78.8±1.0 65.1±0.8 75.4±1.2 62.4±1.0 <.0005 .018 

BMI (kg/m2) 25.8±0.3 25.2±0.3 23.1±0.3 22.4±0.3 .017 <.0005 

Body fat (kg) 20.1±0.7 22.7±0.6 12.9±0.7 18.8±0.7 <.0005 <.0005 

Lean mass 

(kg) 

55.9±0.6 

 

40.2±0.5 

 

59.9±0.9 

 

41.4±0.6 

 

<.0005 <.0005 

Body fat (%) 25.5±0.6 

 

34.6±0.6 

 

16.6±0.7 

 

29.6±0.7 

 

<.0005 <.0005 

Lean mass 

(%) 

71.9±0.6 

 

63.0±0.6 

 

79.8±0.7 

 

67.2±0.7 

 

<.0005 <.0005 

WBMD 

(g/cm2) 

1.19±0.01 

 

1.04±0.01  1.25±0.01 

 

1.15±0.01 

 

<.0005 .001 

WBMD  

(z-score) 

-0.63± 

0.10 

-1.47± 

0.11 

0.00±0.11 0.00±0.11 <.0005 <.0005 

Values are mean ± SEM. WBMD: whole-body bone mineral density. NS; no significant 
difference. 
 

In older men and women, WBMD was significantly associated with body mass 

(r=0.407, p<0.0005; r=0.241, p=0.004, respectively), but not height (r=0.160, p=0.072; 

r=-0.087, p=0.308, respectively). In young men, WBMD was significantly associated 

with body mass and height (r=0.386, p<0.0005; r=0.218, p=0.050, respectively) and in 

young women WBMD was significantly associated with body mass, but not height 

(r=0.218, p=0.041; r=0.070, p=0.518, respectively). WBMD was significantly associated 

with BMI in older men (r=0.387, p<0.0005), older women (r=0.316, p<0.0005), younger 

men (r=0.329, p=0.003) and younger women (r=0.210; p=0.050). WBMD was also 

associated with lean mass in older men (r=0.268, p=0.002) and younger men (r=0.357, 
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p=0.001), but not in older women (r=-0.085, p=0.322) or younger women (r=0.099, 

p=0.361).  

 

Table 6 shows concentrations of the circulating factors. Compared with young, older 

participants had higher concentrations of DKK1, OPG and sclerostin. Concentrations of 

OC were significantly lower in old compared with young. OPN and FGF23 did not differ 

significantly between young and older participants although this was after removal of 

37% of FGF23 samples [similar proportions of young and old] that fell below the level 

of assay detection. Compared with men, women had higher circulating concentrations 

of OPG, but lower OPN and sclerostin. There were no significant differences between 

men and women for DKK1, FGF23 and OC. Age x gender interactions were found for 

OC, OPG and sclerostin (all p<0.05): the difference between young and old in OC, OPG 

and sclerostin was greater for men than it was for women. 

 

Table 7 shows the associations between circulating bone regulatory factors and 

WBMD. When using z-scores of all variables and including all participants, while 

adjusting for country, WBMD was positively associated with DKK1. This association 

remained significant after additionally adjusting for lean mass, BMI, self-reported 

health and supplement use. In older participants only, DKK1, OC, OPG and sclerostin 

were positively associated with WBMD after adjusting for country. This remained the 

case when additionally adjusting for lean mass, BMI, self-reported health and 

supplement use. In younger participants only, DKK1 was positively associated with 

WBMD after adjusting for country as well as when additionally adjusting for lean mass, 

BMI, self-reported health and supplement use. 
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Table 6. Circulating markers of bone remodelling in old and young, men and women. 

 Old Young p-value 

 Men Women Men Women Age Gender Age    x 

Gender 

DKK1 

(pg.mL-1) 

577.0 ± 

352-804 

575.3 ± 

346-864 

420.6± 

290-627 

494.3 ± 

284-703 

<.0005 .942 .843 

FGF23 

(pg.mL-1) 

113.5 ± 

72-274 

(n=75) 

103.0 ± 

64-211 

(n=87) 

122.9.7 

± 

87-195 

(n=54) 

141.7 ± 

94-225 

(n=60) 

.792 .316 .700 

OC  

(pg.mL-1) 

14160.5 

± 

9911-

18708 

16065.4 

± 

11073-

19933 

17581.1 

± 

13304-

21223 

16733.9 

± 

12013-

20715 

<.0005 .880 .036 

OPG  

(pg.mL-1) 

319.2 ± 

229-419 

306.9 ± 

257-392 

159.4 ± 

114-193 

208.5 ± 

160-260 

<.0005 <.0005 <.0005 

OPN  

(pg.mL-1) 

26590.1 

± 

17094-

38028 

21350.1 

± 

13971-

31255 

24822.5 

± 

16928-

35662 

20877.5 

± 

15937-

27777 

.700 .009 .184 

Sclerostin 

(pg.mL-1) 

5690.3 ± 

4348-

7556 

4147.6 ± 

3349-

5159 

3016.1 ± 

2079-

3932 

2366.0 ± 

1923-

3134 

<.0005 <.0005 .034 

Values are median ± 25th – 75th percentiles. For FGF23, the n is less than those given in 
Table 1 due to some samples having values that were below the level of detection. The 
n for all other analytes is the same as shown in Table 1. 
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Table 7. Associations between circulating bone regulatory factors and whole body 

bone mineral density.  

Correlation with z-score 

WBMD 

 all participants 

combined 

Old Young 

Adjustment models 1 2 1 2 1 2 

DKK1 r=.107 

p=.026 

r=.129 

p=.008 

r=.167 

p=.007 

r=.174 

p=.005 

r=.263 

p=.001 

r=.282 

p<.0005 

FGF-23 r=.067 

p=.274 

r=.051 

p=.406 

r=-.095 

p=.235 

r=-.079 

p=.330 

r=-.086 

p=.370 

r=-.130 

p=.182 

OC r=-.124 

p=.010 

r=-.083 

p=.088 

r=.150 

p=.015 

r=.187 

p=.003 

r=-.023 

p=.767 

r=-.008 

p=.916 

OPG r=-.096 

p=.047 

r=-.039 

p=.419 

r=.209 

p=.001 

r=.254 

p<.0005 

r=.081 

p=.297 

r=.055 

p=.484 

OPN r=-.005 

p=.918 

r=-.001 

p=.980 

r=.055 

p=.370 

r=.073 

p=.245 

r=-.120 

p=.124 

r=-.122 

p=.120 

Sclerostin r=-.091 

p=.059 

r=-.075 

p=.126 

r=.241 

p<.0005 

r=.240 

p<.0005 

r=.129 

p=.096 

r=.135 

p=.086 

Data are shown as spearman’s rho. The circulating bone regulatory factors were log-
transformed and their z-scores calculated. The p value indicates the level of 
significance after statistical analysis. Results were adjusted for 1) country; 2) country, 
z-score lean mass, z-score BMI, self-reported health and supplement use. Significant 
relationships are highlighted using bold text. 
 

Stepwise multiple linear regression was performed including z-score WBMD as the 

dependent variable and independent variables included: self-reported health, 

supplement use and z-scores of the variables BMI and lean mass, as well as the z-

scores derived from log-transformed data for DKK1, FGF23, OC, OPG, OPN and 

sclerostin. Results in the young showed DKK1 accounted for 5.1% of the variation in 

WBMD (adjusted r2=0.051, p=0.010), while DKK1 and BMI accounted for 7.7% of the 

variation in WBMD (adjusted r2=0.077, p=0.005). In the old, BMI alone accounted for 

8.9% of the variation in WBMD (adjusted r2=0.089, p<0.0005); BMI and sclerostin 

together accounted for 12.0% of the variation in WBMD (adjusted r2=0.120, p<0.0005), 

while BMI, sclerostin and whole body lean mass accounted for 13.8% of the variation 

in WBMD (adjusted r2=0.138, p<0.0005). 
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4.1.5 Discussion 
The results of this study showed that circulating factors DKK1, OPG and sclerostin were 

each higher in old compared with young, but positively associated with WBMD in older 

adults. Circulating OC was lower in old compared with young and positively associated 

with WBMD. In multivariate regression, BMI, circulating sclerostin and whole-body 

lean mass together accounted for 13.8% of the variation with WBMD in the older 

adults. In young, DKK1 and BMI together accounted for 7.7% of variation in WBMD.  

 

Low BMI [240] and low lean mass [3] in older age are known risk factors for osteopenia 

and osteoporosis, possibly due to lower loading on bones, particularly on weight-

bearing bones. Female gender and low BMI were independently associated with the 

lowest quartile (within the sample) of WBMD, while male gender, higher lean mass 

and BMI were independently associated with the highest quartile for WBMD. These 

findings were consistent with a previous report [161] and with other research linking 

age-related declines in BMD to reduced mechanical strains [241]. 

 

4.1.5.1 Circulating factors associated with whole-body BMD 

Four out of the six circulating factors differed in concentration between old and young 

(Table 2). Of those, DKK1, OC, OPG and sclerostin were identified from both partial 

correlation models as associated with WBMD in older participants (Table 3). 

Sclerostin and DKK1 are released primarily by osteocytes and inhibit bone formation 

by blocking the osteoblast Wnt/β-canenin signalling pathway [14, 242], with sclerostin 

and DKK1 also stimulating bone resorption through RANKL [243]. Down-regulation of 

sclerostin [186] and DKK1 [14, 186] is associated with markedly increased bone 

formation. For these reasons, an inverse association between circulating sclerostin and 
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DKK1 with WBMD would be expected, but is not entirely what was observed. In line 

with expectations, these results revealed, on average, a 1.8 fold higher circulating 

sclerostin and approximately 1.2-fold higher DKK1 in old compared with young, which 

is consistent with an inverse association between sclerostin and BMD in older age 

[244] and with results from a small sample of 36 patients showing an inverse 

association between DKK1 and lumbar and femur BMD [245]. However, contrary to 

expectations, the circulating levels of sclerostin and DKK1 were positively associated 

with WBMD in the older participants (Table 3). Similar positive associations between 

circulating sclerostin with BMD and bone micro-architecture in old age has been 

previously reported [246-249].  

 

Similar to the findings for sclerostin and DKK1, a paradoxical relationship existed for 

OPG and WBMD in older adults: circulating OPG was higher in old compared with 

young (Table 2), but circulating OPG was positively associated with WBMD (Table 3). 

OPG released by osteocytes and osteoblasts promotes bone formation. It has been 

shown to protect against generalised bone resorption by blocking TNFα in models of 

chronic inflammation [250] and is considered to be a decoy receptor for RANKL to 

reduce osteoclast-driven bone resorption [251]. There are conflicting reports about 

the direction of association between circulating OPG and BMD. A study of 

postmenopausal women of mean age 62 years [252], and a study of middle aged men 

[253] reported inverse relationships between BMD and OPG, while others reported no 

relationship [254, 255]. Conversely, and in line with the results of the present work, 

when adults in their eighth and ninth decades of life were included in the sample 

population the relationship between OPG and BMD was positive [256, 257]. These 

conflicting results cannot be explained by the differences between studies in skeletal 
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site examined. Conflicting results may be related to the differences in the age range of 

the study samples and possible gender differences. The results for OPG and sclerostin 

showed significant age x gender interactions indicating that the differences between 

young and older men were greater than those between young and older women 

(Table 2). It is already known that sex hormones can regulate bone turnover and may 

interact with these circulating factors [258]. 

 

It is not clear why circulating sclerostin, DKK1 and OPG were positively associated with 

WBMD in older age, despite the conflicting overall trend for higher circulating levels 

and lower WBMD in the old. One possibility is that the older, but healthy mature 

osteocytes generally release higher absolute levels of sclerostin, DKK1 and OPG into 

the circulation [259] [260]. For example, a positive correlation was found for 

circulating sclerostin with trabecular density, number and thickness in older men [246, 

259], suggesting the more advanced trabecular resorption in osteoporotic bone leaves 

fewer mature osteocytes and thus, lower sclerostin release than healthy older bone. 

However, analysis of bone biopsies showed similar sclerostin mRNA levels in young 

and old despite higher circulating sclerostin levels in the old [244] which indicates that 

the age-related differences in circulating sclerostin may not be due to increased 

osteocyte sclerostin gene expression, although this does not necessarily equal protein 

production [261].  

 

Lower circulating OC was found in old compared with young (Table 2) and, consistent 

with this, circulating OC levels were positively correlated with WBMD in the old (Table 

3). OC released by osteoblasts plays a role in bone formation, so the positive 

correlation with WBMD may be expected. However, others suggest that higher 
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circulating OC indicates greater rates of bone resorption because fragments or whole 

OC protein is released into the circulation during bone resorption [239]. A previous 

study of young and middle-aged women suggested that circulating levels peaked soon 

after menopause and dropped thereafter, although levels were higher in those with 

osteoporosis than those without [262]. Interestingly, these results also show a positive 

association between DKK1 and WBMD in the young adults from univariate and 

multivariate analyses. This association may be a reflection of the numbers of mature 

osteocytes or related to total bone mass, but more work is needed to confirm. One 

previous study of children and adolescents did not find any association between 

circulating DKK1 and BMD, but the young included in that study of youths were in 

stages of rapid developmental growth, which could present different results from the 

steady- state of young adults [263].  

 

4.1.5.2 Strengths and limitations 

The MYOAGE study included young and older participants relatively free from lifestyle-

related comorbidities for their age and the results are therefore indicative of age-

related effects. Nevertheless, the associations identified in this cross-sectional study 

cannot be interpreted as causal relationships despite the clear roles for the selected 

circulating markers in bone remodelling. The results for FGF23 showed no significant 

age- or gender-differences, nor correlations with WBMD, but a large proportion of the 

results were below the level of assay sensitivity, so firm conclusions cannot be drawn 

for this analyte. Circulating levels of markers have been measured, which may be 

influenced by release from non-bone cells, so it is not possible to determine the 

originating cell type. It is possible that altered renal function can affect the levels of 

the circulating factors, but markers of renal function was not included in the present 
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study due to limitation of plasma sample quantity. A phantom was not used to 

calibrate the DXA scanners across sites and results were not adjusted to derive 

“standardised” DXA values, as others have done for hip and femur sites [264]. Instead, 

all study centres followed the local quality control procedures, including use of 

phantoms and daily calibration and the results were adjusted for country of testing to 

account for possible systematic differences. 

 

Future studies should determine the reasons for the positive relationship between 

circulating sclerostin, DKK1 and OPG with BMD in older adults, despite the old having 

on average higher circulating levels of these factors and lower WBMD.  

 

4.1.5.3 Conclusion 

Sclerostin, DKK1, OPG and OC were each positively associated with WBMD in older 

adults, despite the average WBMD being lower and circulating DKK1, OPG and 

sclerostin being higher in old than young. Multiple linear regression identified BMI, 

circulating sclerostin and whole-body lean mass as explaining approximately 14% of all 

variation on WBMD amongst older adults. 
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5.1 Chapter 5: Circulating markers associated with whole body lean mass in older 

men and women. 
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5.1.1 Abstract 
Purpose: To investigate the relationship between whole-body lean mass (WB Lean 

mass) and levels of circulating factors with known roles in bone remodelling during 

‘healthy’ ageing. 

Methods: WB Lean mass and fasting plasma concentrations of dickkopf-1 (DKK1), 

osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), sclerostin and tumour 

necrosis factor-alpha (TNF) were measured in 272 older subjects (69 to 81 years; 52% 

female) and 171 younger subjects (18-30 years; 53% female). Spearman’s rho partial 

correlations were performed to assess associations between the z-score WB Lean mass 

with z-scores of circulating factors. Multivariate regression was used to examine the 

relationships between lean mass and the circulating factors. 

Results:  WB Lean mass was 5% lower in old than young. Circulating osteocalcin was 

lower in old compared with young, while dickkopf-1, osteoprotegerin, sclerostin and 

TNF were higher in old compared with young.  These circulating factors were each 

significantly (p<0.03) negatively associated with WB Lean mass in the older adults (OC; 

r=-0.175, DKK1; r=-0.312, OPG; r=-0.170, Sclerostin; r=-0.235) apart from TNF that 

was positively associated (r=0.140) with WB Lean mass in older adults. In multivariate 

regression, height and OPG accounted for 45% of the WB Lean mass in the older 

adults. In young the same combination of OPG and height accounted for 18% of 

variation in WBMD.  

Conclusion: These results identify OPG as a circulating factor significantly associated 

with whole body lean mass in young and older adults.  
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5.1.2 Introduction 
Chapter 4 has shown that circulating factors Osteoprotegrin (OPG), Sclerostin, 

Dickkopf-1 (DKK1) and Osteocalcin (OC) are significantly associated with whole body 

bone mineral density in older adults. Fourteen percent of the variation in whole body 

bone mineral density can be explained by BMI, sclerostin and whole body lean mass. 

Muscle and bone interactions have been highlighted in section 2.1.7. It is possible that 

the same circulating factors associated with whole body bone mineral density are also 

associated with whole body lean mass. This chapter, addresses objective 3, and 

investigates the associations between circulating factors, as measured in Chapter 4, 

and whole body lean mass in the old and young population.  

 

 
Skeletal muscle mass decreases progressively with advancing older age towards a 

condition known as sarcopenia characterized by low appendicular muscle mass, 

associated weakness and reduced physical function [115, 135, 265]. At the same life 

stage, the skeletal bone mineral density (BMD) also declines, progressing through 

stages of “reduced” BMD, known as osteopenia, and “low” BMD known as 

osteoporosis [44, 59, 68]. Low muscle mass and low bone mineral density share similar 

risk factors, including older age, low activity levels and changed hormone profiles [136, 

138].  

 

Although it is possible to have low muscle mass without low BMD in older age and 

vice-versa, these conditions more often co-occur [266-269]. Direct interactions may 

link the changes affecting muscles with those of bone as muscle forces are transmitted 

to bones during physical activity to provide a growth stimulus. This regulation of 

muscle on bone is commonly known as the ‘mechanostat theory’ [4, 82, 88, 174], 
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explaining how high muscle mass is associated with higher BMD [83, 270] while, 

conversely, low muscle mass is associated with lower BMD [98, 271]. However, direct 

responses to loading are not the only possible mechanism of interaction between 

muscle and bones, since both respond to growth factors in the local milieu. Factors 

released by muscle or bone tissue might regulate growth or catabolic processes of the 

other tissue, evidencing bi-directional interactions and building substantially upon the 

mechanostat theory, which describes only effects of muscle on bone. 

 

Circulating factors have been associated with BMD amongst relatively healthy older 

men and women [272]. For instance, concentrations of DKK1, OPG and Sclerostin were 

higher in old than young adults, while OC was lower in old compared with young. 

DKK1, Sclerostin, OC and OPG were positively associated with BMD in older age [272]. 

These factors released by cells, including osteocytes, can regulate osteoblasts or 

osteoclasts during bone formation and resorption, but may also act on skeletal 

muscles and be associated with muscle mass in older age. For instance, Osteoclacin 

has been shown to influence muscle and bone cells [13, 189]. Diminishing Osteocalcin 

by gene knock-out or receptor knock-out leads to low exercise capacity [13, 190] and 

this is also the case when osteocalcin knock-out is restricted to osteoblasts [189] 

highlighting the importance of the bone-muscle cross-talk. Bone morphometric 

proteins (BMPs) are also involved in bone and muscle adaptations. BMPs are involved 

in limb bone patterning during development [273] but also have been shown to inhibit 

the myogenic process of muscle development, with chick limb bud cultures, and 

possibly transform the myoblasts to a chondrogenic fate, eventually forming cartilage 

[274]. Using mouse models, it has been shown the BMP-2 can induce bone formation 

whilst also up-regulating BMP receptors on muscle fibres causing muscle regeneration 
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[275]. OPG has also been shown to interact with muscle, in particular OPG can 

regenerate muscle force within fast twitch fibres in muscle degenerative diseases, such 

as muscular dystrophy, using mice models. It also acts a regulator in vascular smooth 

muscle cells, acting as a down regulator of vascular calcification [276-279]. These 

studies demonstrate that muscle tissue responds to factors usually associated with 

bones. However, little is currently known about their association with muscle mass or 

changes with ageing in humans. 

 

The purpose of the present study was to investigate whether the selected circulating 

factors previously associated with bone, are related to whole body lean mass of young 

and older men and women. 

5.1.3 Materials and Methods 
5.1.3.1 Study Design 

The cross-sectional European multi-centre MYOAGE cohort consists of relatively 

healthy older men and women (aged 69 to 81 years) and young adults (aged 18-30 

years) [211] as shown in Table 8. The study was approved by ethics committees within 

each institute and written informed consent was obtained from all participants. 

Participants were recruited by advertisement in newspapers, the University of the 

Third Age and Association of Emerti. All measurements were performed according to 

standard operating procedures that had been unified at the study centres and data 

collection was ceased through December-March and July-August. Volunteers were 

excluded if: dependent living, unable to walk a distance of 250 m, presence of 

morbidity (such as neurologic disorders, metabolic diseases, rheumatic diseases, heart 

failure, severe chronic obstructive pulmonary disease and hemocoagulative 

syndromes), immobilization for one week during the last three months and 
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orthopaedic surgery during the last two years or still causing pain or functional 

limitations. The inclusion and exclusion criteria were designed to ensure the selection 

of relatively healthy participants and to minimize the confounding effect of 

comorbidity on sarcopenia [211] and we recorded the use of bisphosphonates, calcium 

and vitamin D supplements. The present study included 443 participants (Leiden, The 

Netherlands (young; n=35, old; n=75); Jyvaskyla, Finland (young; n=34, old; n=65); 

Tartu, Estonia (young; n=39, old; n=60), Paris, France (young; n=35, old; n=30) and 

Manchester, UK (young; n=28, old; n=42)) with complete BMD and bloods results. 

 

5.1.3.2 Dual-energy X-ray absorptiometry 

A whole body scan was performed using DXA while the participants lay supine, as 

previously reported [211] (The Netherlands: Hologic QDR 4500, version 12.4, Hologic 

Inc., Bedford, MA, USA; Finland: Lunar Prodigy, version en-Core 9.30; Estonia: Lunar 

Prodigy Advanced, version en-Core 10.51.006; France: Lunar Prodigy, version encore 

12.30; United Kingdom: Lunar Prodigy Advance, version enCore 10.50.086). A trained 

technician completed the daily equipment calibration and the DXA scans according to 

local and manufacturers’ quality control procedures. Participants wore a light cotton 

garment to reduce effects of clothing absorption on the scanning results. The whole-

body lean mass, fat mass and the WBMD were recorded after manual adjustment of 

the regions of interest carried out after the scan was complete. 

 

5.1.3.3 Blood sample analysis 

Blood samples were collected from a vein in the forearm into vacutainer EDTA tubes in 

the morning when participants were in a fasted state. Samples remained at room 

temperature for 15-30 min and were then centrifuged for 15 min at 2,000 *g at 4◦ C. 
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The plasma was collected and stored at -80◦C until analysis. Plasma concentrations of 

the selected analytes were determined in the research laboratory in Manchester, UK, 

using multiplex immunoassays (Millipore, Billerica, MA, USA).  The manufacturer 

instructions were followed and the magnetic bead panels quantified DKK1, OPG, OC, 

OPN and sclerostin using a 96-well plate after an overnight incubation. The sensitivity 

of each analyte was 1.4 (Dicckopf-1; DKK1), 1.9 (Osteoprotegrin; OPG), 68.5 

(Osteocalcin; OC), 37.7 (Osteopontin; OPN) and 31.1 (sclerostin) pg/mL. Samples were 

processed using a Luminex 200 Bioanalyser and protein concentrations were 

estimated using the xPONENT software (Luminex, v.3.1.871). TNF was sent to an 

external lab for analysis. 

 

5.1.3.4 Statistical analysis 

Participant descriptive characteristics (Table 1) were normally distributed, as assessed 

by Kolmogorov-Smirnov test, and are presented as mean ± standard error of the mean 

(SEM). Comparisons between age and gender were assessed using multivariate 

ANOVA. Relationships between height, whole body bone mineral density (WBMD), 

total body fat %, self-reported health and supplement use (independent variables) 

with whole body (WB) Lean mass (dependent variable) were first assessed with 

univariate correlations to identify the independent predictors of WB Lean mass. Then 

using bivariate Pearson’s product moment correlations were identified between the 

independent variables and WB Lean mass. Data for circulating factors were calculated 

as Z-scores per country as a standard deviation from the mean of the gender-matched 

young. Z-scores of WBMD, fat mass and height were also calculated for use in 

subsequent correlation and regression analysis. Spearman’s rho partial correlations 

were performed to assess relationships between the z-score WB Lean mass with z-
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scores of circulating factors using two models. The first model included adjustment for 

WBMD and height (accounting for the link between osteocytes and the circulating 

factors). The second model additionally accounted for differences that may be seen 

within the use of bisphosphonates, calcium or vitamin D supplements and self-

reported health as well as differences that may occur in height and WB Fat %. A 

stepwise multiple linear regression using the self-reported health and supplement use 

as well as z-scores for height, WB Fat %, WBMD and circulating factors was then used 

to evaluate which combination of the independent variables was associated with z-

score WB lean mass (dependent variable) in older adults and in young adults. Data was 

analysed using SPSS for Windows (v.21; IBM, USA) and significance accepted as p<0.05 
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5.1.4 Results 
Table 8. Participant Descriptive Characteristics 

 Old Young p-value 

 Men 

(n=129) 

Women 

(n=143) 

Men  

(n=82) 

Women 

(n=89) 

Age  Gender 

Age (years) 

 

74.6±0.3 74.0±0.3 23.6±0.3 23.2±0.3 <.0005 NS 

Height (m) 

 

1.74±0.01 1.61±0.01 1.81±0.01 1.67±0.01 <.0005 <.0005 

Body mass 

(kg) 

78.8±1.0 65.1±0.8 75.4±1.2 62.4±1.0 <.0005 .018 

BMI (kg/m2) 

 

25.8±0.3 25.2±0.3 23.1±0.3 22.4±0.3 .017 <.0005 

Body fat (kg) 

 

20.1±0.7 22.7±0.6 12.9±0.7 18.8±0.7 <.0005 <.0005 

Lean mass 

(kg) 

55.9±0.6 

 

40.2±0.5 

 

59.9±0.9 

 

41.4±0.6 

 

<.0005 <.0005 

Body fat (%) 

 

25.5±0.6 

 

34.6±0.6 

 

16.6±0.7 

 

29.6±0.7 

 

<.0005 <.0005 

Lean mass 

(%) 

71.9±0.6 

 

63.0±0.6 

 

79.8±0.7 

 

67.2±0.7 

 

<.0005 <.0005 

WBMD 

(g/cm2) 

1.19±0.01 

 

1.04±0.01  1.25±0.01 

 

1.15±0.01 

 

<.0005 .001 

Values are mean ± SEM. WBMD: whole-body bone mineral density. NS: No significant 
difference. 
 

Table 8 shows participant characteristics. Compared with young, the older adults were 

shorter, with higher total body and fat mass, but lower lean mass and WBMD. 

Compared with men, women were shorter, with lower total body and lean mass, lower 

WBMD, but higher body fat percentage.  There was a significant age * gender 

interaction for WBMD, (p<0.0005), but no age*gender interactions for any other 

characteristics. 

 

To identify associations, univariate correlations were assessed between BMI, 

supplement use, self-reported health, height, total body fat percentage and WBMD, all 
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with WB Lean mass as the dependent variable, were significantly correlated with WB 

Lean mass (BMI; r=0.347 p<.0005, Supplement use; r=-0.278 p<.0005, WBMD r=0.520 

p<.0005, Fat % r=-0.522 p<.0005, Self-reported health r=-0.164 p=0.008, Height 

r=0.868 p<.0005). For young, all were significantly correlated except for supplement 

use and self-reported health (BMI; r=0.416 p<.0005, Supplement use; r=0.065 p=0.402, 

WBMD; r=0.557 p<.0005, Fat %; r=-0.611 p<.0005, Self-reported health; r= -0.077 

p=0.322, Height; r=0.840 p<.0005). Based on these significances for old and young, all 

variables were therefore used as covariates subsequent multiple regression models. 

 

Table 9. The concentration of selected circulating factors in plasma in old and young, 

men and women.  

 Old Young p-value 

 Men Women Men Women Age Gender Age    x 

Gender 

DKK1 

(pg.mL-1) 

577.0 ± 

352-804 

575.3 ± 

346-864 

420.6± 

290-627 

494.3 ± 

284-703 

<0.0005 .942 .843 

OC   

(pg.mL-1) 

14160.5 ± 

9911-

18708 

16065.4 ± 

11073-

19933 

17581.1 ± 

13304-

21223 

16733.9 ± 

12013-

20715 

<0.0005 .880 .036 

OPG 

(pg.mL-1) 

319.2 ± 

229-419 

306.9 ± 

257-392 

159.4 ± 

114-193 

208.5 ± 

160-260 

<0.0005 <0.0005 <0.0005 

OPN 

(pg.mL-1) 

26590.1 ± 

17094-

38028 

21350.1 ± 

13971-

31255 

24822.5 ± 

16928-

35662 

20877.5 ± 

15937-

27777 

.700 .009 .184 

Sclerostin 

(pg.mL-1) 

5690.3 ± 

4348-

7556 

4147.6 ± 

3349-

5159 

3016.1 ± 

2079-

3932 

2366.0 ± 

1923-

3134 

<0.0005 <0.0005 0.034 

TNFα 

(pg.mL-1) 

1.79 ± 

1.53-2.09 

1.65 ± 

1.31-2.11 

1.47 ± 

1.10-1.77 

1.51 ± 

1.18-1.68 

<0.0005 .156 .242 

Values are median ± 25th – 75th percentiles.  

 

As described in the previous chapter, compared with young, older participants had 

higher concentrations of DKK1, OPG and sclerostin. Concentrations of OC were 
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significantly lower in old compared with young. OPN did not differ significantly 

between young and older participants. Compared with men, women had higher 

circulating concentrations of OPG, but lower OPN and sclerostin. There were no 

significant differences between men and women for DKK1 and OC. Age x gender 

interactions were found for OC, OPG and sclerostin (all p<0.05): the difference 

between young and old in OC, OPG and sclerostin was greater for men than it was for 

women. 

 

Table 10. Circulating factors associations with whole body lean mass, in old and young, 

men and women.  

Correlation 

With Z 

score WB 

lean mass 

All participants 

combined 

Old Young 

Adjusted 

models 

1 2 1 2 1 2 

DKK1 

(pg.mL-1) 

r=-0.099 

p= 0.601 

r=-0.247 

p=<.0005 

r=-0.191 

p=0.002 

r=-0.312 

p=<.0005 

r=0.017 

p=0.832 

r=-0.130 

p=0.098 

OC   

(pg.mL-1) 

r=-0.209 

p=0.267 

r=-0.183 

p=<.0005 

r=0.029 

p=0.649 

r=-0.175 

p=0.005 

r=0.022 

p=0.779 

r=-0.179 

p=0.023 

OPG 

(pg.mL-1) 

r=-0.059 

p=0.756 

r=-0.083 

p=<.0005 

r=-0.163 

p=0.009 

r=-0.170 

p=0.007 

r=-0.076 

p=0.337 

r=-0.204 

p=0.009 

OPN 

(pg.mL-1) 

r=-0.371 

p=0.043 

r=-0.111 

p=0.023 

r=-0.021 

p=0.735 

r=-0.144 

p=0.022 

r=-0.111 

p=0.162 

r=-0.147 

p=0.062 

Sclerostin 

(pg.mL-1) 

r=-0.004 

p=0.982 

r=-0.152 

p=0.002 

r=-0.266 

p=<.0005 

r=-0.235 

p=<.0005 

r=0.009 

p=0.908 

r=-0.248 

p=0.001 

TNFα 

(pg.mL-1) 

r=0.130 

p=0.495 

r=0.229 

p=<.0005 

r=-0.103 

p=0.113 

r=0.140 

p=0.030 

r=-0.079 

p=0.343 

r=-0.173 

p=0.037 

Data are shown as spearman’s rho. The circulating factors were log-transformed and 
then their z-scores calculated per country, compared to young values. The p values 
indicate the level of significance after statistical analysis. Results were adjusted for 1) Z 
WBMD and height; and 2) model 1 +Z fat %, self-reported health and supplement use. 
Significant relationships are highlighted using bold text.  
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Table 10 shows the associations between circulating bone regulatory factors and WB 

lean mass. When using z-scores of all variables and including all participants, while 

adjusting for WBMD and height (model 1), WB Lean mass was negatively associated 

only with OPN. All factors examined were negatively associated with WB Lean mass 

when additionally adjusting for WB fat %, self-reported health and supplement use 

(model 2), except for TNFα, which was positively associated.  

 

Negative associations between WB Lean mass and DKK1, OPG and Sclerostin were 

significant when restricting analyses to older participants for model 1. For model 2, all 

factors were negatively associated with WB lean mass in old, except for TNFα, which 

showed a positive association. When analysis was restricted to young participants, 

there were no significant associations for circulating factors and WB lean mass using 

model 1. However, in model 2, OPG, Sclerostin and TNFα were each negatively 

associated with WB lean mass (Table 10). 

 

Stepwise multiple linear regression was performed including Z-score WB Lean mass as 

the dependent variable and independent variables including: self-reported health and 

supplement use as well as the Z-scores for DKK1, OC, OPG, OPN and sclerostin, WB Fat 

%, WBMD and height. Results in the young showed OPG accounted for 12.8% of the 

variation in WB Lean mass (adjusted r2=0.118, p<0.0005), while OPG and height 

accounted for 18.6% of the variation in WB Lean mass (adjusted r2=0.186, p<0.0005). 

OPG, height and, WB Fat% accounted for 25.3% of the variation in WB Lean mass 

(adjusted r2=0.253, p<0.0005). OPG, height, WB Fat%, and DKK1 accounted for 28.9% 

of the variation in WB Lean mass (adjusted r2=0.289, p<0.0005). 
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In the old, height alone accounted for 33.7% of the variation in WB Lean mass 

(adjusted r2=0.337, p<0.0005); height and OPG together accounted for 45.2% of the 

variation in WB Lean mass (adjusted r2=0.452, p<0.0005), while height, OPG and DKK1 

accounted for 49.4% of the variation in WB Lean mass (adjusted r2=0.494, p<0.0005). 

Height, OPG, DKK1 and WB Fat% accounted for 50.8% of the variation in WB Lean mass 

(adjusted r2=0.508, p<0.0005). Height, OPG, DKK1, WB Fat% and OC accounted for 

51.7% of variation in WB Lean mass (adjusted r2=0.517, p<0.0005). 

 

These results consistently identify OPG as associated with WB Lean mass, both in 

young and in older adults 

5.1.5 Discussion 
Whole body muscle mass declines markedly with advancing older age, progressing 

towards sarcopenia characterized by low muscle mass and physical function. The 

results of the present study suggest higher circulating levels of DKK1, OPG, OPN and 

sclerostin, and lower circulating levels of OC, are associated with lower whole body 

lean mass in older adults after considering body composition and stature. The 

association with OPG was most consistent, accounting for almost 12% of variation in 

whole-body lean mass of older adults and almost 13% for younger adults in 

multivariate analysis. 

 

OPG is a member of the tumor necrosis factor (TNF) super family, along with RANK 

(receptor activated nuclear-Kb) and RANKL (Ligand for RANK). This RANK/RANKL/OPG 

signalling pathway is a key regulator of vascular calcification [276] and bone 

formation/resorption [280, 281]. OPG is a soluble decoy receptor and can bind to 

RANKL preventing activation by RANK. The discovery of this pathway contributed to 
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the development of a bisphosphonate known as denosumab, that uses RANKL 

antagonists to halt the activity of osteoclasts and osteoblasts to help preserve bone 

mineral density [282], but actions may extend beyond bone, since OPG is also secreted 

by C2C12 skeletal myoblasts in culture [279], possibly to serve autocrine or paracrine 

functions. 

 

The present study is the first to associate circulating OPG levels with lean mass 

amongst young and older human adults, but there are several other indications of OPG 

effects on muscle using animal models and cell cultures. RANK regulates calcium 

storage, sarco-endoplasmic reticulum calcium ATP-ase (SERCA) activity as well as 

function of fast twitch muscle fibres, [278]. RANK is found on skeletal muscle cells and 

osteoclasts. Once RANKL binds it is able to activate Calcium signalling pathways as well 

as affecting the differentiation, activation and survival of osteoblasts. RANK deletion is 

able to protect from loss of specific muscle force, but not mass, in denervation. OPG 

immunoglobulin fragment complex (OPG-Fc) injections fully restored functional 

capacity of the extensor digitorum muscle in muscular dystrophy-induced mouse 

models [279].  

 

As a member of the TNF super family, it is possible that OPG interacts with TNF⍺. TNF⍺ 

is a pro-inflammatory cytokine and used to mark a chronic, low-grade systemic 

inflammation occurring in a range of conditions, including ageing where it was termed 

“inflamm-ageing” [283-285] associated with tissue damage [285]. TNF⍺ induces RANKL 

expression, activating the RANK signalling cascade and causing inflammation or cell 

apoptosis [286] usually in response to injury. The results of Table 9 show altered 

circulating levels of both TNF⍺ and OPG in older age and Table 10 shows both to be 
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independently associated with whole body lean mass.  Given both TNF⍺ and OPG are 

associated with WB Lean mass, possible interactions between these two factors may 

also occur, influencing lean mass. Others have reported TNF⍺ and OPG interactions 

[277-279], but none have previously demonstrated the associations with whole-body 

lean mass at the human level. When considered alongside previous research [272] 

these results identify OPG as a circulating factor released by bone and muscle cells 

with the potential to regulate muscle and bone function.  

 

In addition to the relationships for OPG and TNF⍺ discussed above, whole-body lean 

mass was inversely related to DKK1, OC, OPN and sclerostin during univariate analyses. 

However, only the relationship between DKK1 and lean mass remained significant 

after multivariate analysis. This is the first report, based on current literature, of 

associations between DKK1 and lean mass in older age. DKK1 has previously been 

shown to act as an antagonist regulating fibrosis formation after injury [287]. Some 

exercise studies have shown that circulating DKK1 levels decrease over the 

intervention period whilst muscular strength increases [288], an inverse relationship 

similar to these findings. Other studies have shown breakdown of muscle during ultra-

marathons as well as a decline in DKK1, resulting in less inhibition of osteoblast 

function [289]. DKK1 has also been shown the play a role in the upregulation of the 

calcification of vascular smooth muscle cells, in cell cultures exposed to high glucose, 

replicating diabetic muscle [290]. This highlights possible effects of DKK1 for muscle 

cells, identifying it as another candidate coordinating muscle-bone cross talk.  
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5.1.5.1 Strengths and limitations 

The strengths and limitations of this study are the same as those that are highlighted 

in Chapter 4, Section 4.1.5.2. Briefly, they include the cross-sectional study design 

which cannot reveal causal relationships; the study of relatively healthy participants 

limiting the findings to only those without mobility limitations of greater burden of 

disease. Another limitation of this work is that the measurement of circulating 

regulatory factors means that it was not possible to identify the originating cells 

releasing the factors into the circulation. Future studies should explore the inter 

relationship between OPG and TNF and their respective effects on skeletal muscle 

cells.  

 

5.1.5.2 Conclusion 

Sclerostin, DKK1, OPG and OC were inversely associated with WB Lean mass in older 

adults. The average WB Lean mass was lower in old than young and the circulating 

DKK1, OPG and sclerostin were higher in old than young. Multiple linear regression 

identified, in the old, Height, OPG, DKK1, WB Fat% and OC accounted for 51.7% of 

variation in WB Lean mass (adjusted r2=0.517, p<0.0005). Of these, OPG was most 

consistently associated with WB Lean mass. 
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6.1 Chapter 6: Human skeletal myoblast responses to tumour necrosis factor alpha 

exposure and the potential protective effects of osteoprotegrin. 
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6.1.1 Abstract 

Purpose; The pro-inflammatory cytokine TNF causes myoblast cell apoptosis in vitro. 

The present study was designed to investigate the potential protective effects of OPG 

against TNF exposure. 

Methods; Human myoblast cells were cultured with TNF alone, OPG alone and both 

molecules combined. Myoblast differentiation parameters including aspect ratio, 

fusion index (%) and myotube area (%) were calculated. OPG concentration was 

measured in cell supernatants and selected ‘myokines’ were measured from 

supernatants of myoblasts exposed to TNF. 

Results; Differentiation parameters showed a significantly greater proportion of 

differentiation when OPG was added to the cultured myoblasts before TNF 

(p<0.0001). ELISA showed significant secretion of OPG released from human myoblast 

cells, particularly during the first 24h of incubation (p=0.001), with an interaction 

effect found between TNF and time F;(15,24) 3.340, p=0.004. Other myokines; 

Osteonectin, Interleukin-6 (IL-6), Leukemia inhibitory factor (LIF) and Fatty acid binding 

protein (FABP) were also secreted from human myoblast cells as identified using 

multiplex. Interaction effects were seen for all four myokines; Osteonectin; F (15,24) 

7.45, p<.0005. LIF; F (15,24) 15.7, p<.0005. FABP3; (15,24) 14.5, p<.0005. IL-6 F (15,24) 

14.5, p<.0005.    

Conclusion; OPG may protect myoblasts against TNF exposure and may therefore be 

used as a therapeutic target for intervention against inflammation associated with 

ageing. 
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6.1.2 Introduction 
Chapter 5 has identified Sclerostin, Dickkopf-1, Osteoprotegrin and Osteocalcin to be 

associated with WB Lean mass, the same factors that were identified to be associated 

with whole body bone mineral density, as highlighted in Chapter 4. More specifically, 

Chapter 5 has shown Osteoprotegrin to be a consistent factor associated with whole 

body lean mass, having possible interactions with another circulating factor; tumor-

necrosis factor-alpha. Chapter 6 investigates this possible interaction effect, further, 

using human myoblast cells in culture, addressing the final objective. 

 
Previous research conducted [272], amongst others, has shown that loading (exercise) 

and molecules released from muscle and bone cells into the circulation can influence 

both BMD and muscle tissues [181, 291-293]. OPG and TNF were the two main 

factors found to be associated with whole body lean mass using our statistical models 

described in Chapter 5. The previous chapter also highlighted the interactions between 

OPG and TNF, by using one another as covariates within the association models. The 

association between TNF⍺ and lean mass was attenuated after accounting for OPG, 

but the relationship between OPG and lean mass remained after accounting for TNF⍺.  

 

OPG is a circulating factor associated with bone formation. RANKL is the receptor 

activator of NF-B ligand, RANK is the receptor activator of NF-B (RANK) and OPG is 

the soluble decoy receptor of RANKL. RANK, RANKL and OPG are all part of the tumor 

necrosis factor superfamily [294, 295]. RANKL is expressed on osteoblasts which can 

then bind RANK causing the formation of osteoclasts, initiating bone resorption. OPG is 

a decoy receptor for RANKL. This can prevent binding of RANK to its ligand, slowing 

down the process of bone resorption [296]. The proportion of RANKL to OPG must 

remain relatively balanced to maintain bone turnover [297]. There have been studies 
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to show OPG is associated with muscle using C2C12 cells in vitro. They have the ability 

to secrete OPG and an OPG-immunoglobulin fragment complex is able to reverse the 

effects of muscular dystrophy in mice [277-279]. This pathway also regulates the 

growth of vascular smooth muscle cells, as the OPG gene suppresses the calcification 

of these smooth muscle cells [276].  

 

Ageing also triggers a pro inflammatory response characterised by higher levels of 

circulating TNFα which is linked with a gradual decline in physical activity, presenting 

as low grade chronic inflammation [144]. Studies have shown that sarcopenia is 

accompanied by increased levels of inflammation factors, including TNFα and IL-6, and 

these factors have a catabolic effect over the long-term, accelerating muscle and bone 

tissue declines [134].  

 

TNFα has been shown to have detrimental effects on myoblast cells in vitro [17, 298-

301]. Using C2C12 muscle cell lines, incubation with TNF results in a total muscle 

protein loss.  Specifically the TNF binds to its targeted DNA sequence and causes 

degradation of I-B and NF-B, inducing skeletal muscle protein loss [300]. 

Furthermore, diaphragm muscles excised from mice overexpressing TNF have a 47% 

decrease in contractibility compared to that of control models. It is thought that this 

contractile dysfunction is a result of endocrine mediated oxidative stress [298]. Some 

human testing has identified TNF to be expressed when staining cardiac myocytes, of 

patients with cardiomyopathy. TNF is positively correlated with left ventricular 

volume and negatively correlated with left ventricular systolic function [301]. 
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The primary aim for this chapter was to identify if OPG protects against the effects of 

TNFα on human myoblasts in vitro. The hypothesis was (1) that OPG will be secreted 

from myoblasts cultured with TNFα, and (2) OPG protects myoblasts from apoptotic 

effects of TNFα. There were three main objectives. 

1. Identify the optimum concentration of TNFα and OPG to be used in culture 

with human myoblast cells 

2. Identify differences in differentiation parameters when culturing myoblasts 

with OPG and TNFα, when adding the factors to culture at different time points 

3. Using an ELISA and a multiplex kit, identify if human myoblasts secrete OPG 

and other myokines in response to culturing with TNFα.  

 

6.1.3 Materials and Methods 
 
6.1.3.1 Cell Culture 
 
One 25 year old (C25) non-commercial, immortalized Skeletal muscle cell-line was 

generated by using transduction with both telomerase-expressing and cyclin-

dependent kinase 4-expressing vectors [302]. This cell line was donated to the 

research group by previous collaborating partners at the Institute of Myology, Paris.  A 

frozen vial containing 1 ml of 1x106 cells each suspended in 90% fetal bovine serum 

and 10% dimethyl sulfoxide was thawed and transferred into a conical tube of 9 ml 

prepared complete growth media (GM) for proliferation (Table 1).  
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Growth Media (GM) Components (as per 500ml) Concentration 

Dulbecco’s Modified Eagles Media (DMEM) from Lonza 

(Nottingham, UK) 

60% (320ml) 

Medium 199 WITH Earle’s BSS from Lonza (Nottingham, UK) 20% (80ml) 

Heat inactivated fetal bovine serum (FBS) from Gibco 

(Loughborough, UK) 

20% (100ml) 

L-glutamine from Lonza (Nottingham, UK) 1% (5ml) 

Fetuin from fetal bovine serum from Sigma-Aldrich (Dorset, UK) 25ug.ml-1 

Recombinant human fibroblast growth factor-basic (FGFb) from 

Gibco (Loughborough, UK)  

0.5ng.ml-1 

Recombinant human epidermal growth factor (EGF) from Gibco 

(Loughborough, UK)  

5ng.ml-1 

Recombinant human hepatocyte growth factor (HGF) from Sino 

Biological Inc. (Suffolk, UK)  

2.5ug,ml-1 

Recombinant human insulin from Sigma-Aldrich (Dorset, UK)  5ug.ml-1 

Dexamethasone from Sigma-Aldrich (Dorset, UK)  0.2ug.ml-1 

Penstrip 10ug.ml-1 

Plasmocin 10ng.ml-1 

Table 11: Complete Growth Media for Skeletal Muscle cell proliferation. 

The 10 ml suspension of the 25-year-old cells (C25) was transferred into a T75 flask. 

The flask was incubated at 37°C with a 5% CO2 atmosphere until cell density reached 

80% confluence (percentage of area covered in an average field of view). When the 

flask was 80% confluent, GM (prepared as shown in Table 1) was aspirated from the 

flask and the cells washed twice with Dulbecco’s Phosphate Buffered Saline (DPBS) 

from Lonza (Nottingham, UK). The cells were then disassociated using 2 ml of 

TrypLETM Express Enzyme from Gibco (Loughborough, UK) incubated at 37°C in 5% 
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CO2 for 5 minutes. The 2 ml cell suspension was transferred into a conical tube and 

homogenized with 8 ml of GM. The cells were counted on a haemocytometer using 20 

μl of cell suspension and 20 μl of Trypan Blue Stain (0.4%) from Lonza (Nottingham, 

UK). Viable cells.ml-1 were calculated using the formula: Average number of live cells in 

one large corner square x dilution factor x 104.  

 

6.1.3.2 Objective 1 

Optimisation for the concentration of OPG and TNF 

C25 skeletal muscle cells were seeded at a concentration of 1.5x105 cell.ml-1 in GM in 

6-well plates pre- coated with a 0.5% gelatin solution. Cells were incubated for 24 

hours. Subsequently, GM was aspirated and the cells washed twice with DPBS. 

Differentiation media (DM; Table 2) was added to each well (2 ml) along with a 

concentration of OPG or TNFα at 5, 10, 15, 20 and 30 ng.ml-1. The plates were then 

incubated for 48 and 72h. Immunofluorescence microscopy was used to compare the 

differentiation parameters of both cell lines at 48 and 72h with different 

concentrations of OPG and TNFα (See Figure 1). At each time point DM was aspirated 

and cells washed twice with DPBS. Cells were fixed using 4% paraformaldehyde, 

incubated for 8 minutes at 21°C. Cells were washed thrice with DPBS then 

permeabilized using 1x Tris (0.5M) TBS containing (0.2% Triton X-100) for 30 min at 

room temperature. Cells were then blocked using 1x Tris (0.5M) and TBS containing 

(5% normal goat serum) for 60 mins, at room temperature. Then washed x3 with TBS. 

Perm/wash buffer was aspirated and the cell washed a final time with DPBS. Cells were 

then stained with 5 μg.ml-1 Texas Red®-X Phalloidin from Invitrogen (Paisley, UK), 5 

μg.ml-1 Anti-Myosin Heavy Chain Alexa Fluor® 488 from eBioscience (Hatfield, UK), and 
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2 ng.ml-1 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) from Sigma-Aldrich® 

(Dorset, UK). The stained cells were visualized using a The Leica DMI6000 B inverted 

microscope from Leica Microsystems (Milton Keynes, UK), for fluorescent microscopy. 

ImageJ was used to measure the differentiation parameters. Five random fields of view 

were assessed at 20x magnification.  

Differentiation Media (DM) components as per 500ml Concentration 

DMEM (glucose 4.5g.ml-1 &L-glutamate) from Lonza 

(Nottingham, UK) 

500ml (100%) 

Recombinant Human insulin from Sigma-Aldrich (Dorset, UK) 10g.ml-1 

L-glutamine from Lonza (Nottingham, UK) 1% (5ml) 

Penstrip 10g.ml-1 (5ml) 

Plasmocin 10ng.ml-1 

Table 12: Complete Differentiation Media for Skeletal Muscle cell proliferation. 

6.1.3.4 Statistical Analysis for Objective 1 

Data was normally distributed as assessed using the Kolmogrov-Smirnov test. For 

objective 1, a repeated measures ANOVA was used to test whether the two incubation 

periods (48 and 72 hours) had the same myotube area percentage at the different 

concentrations (0, 5, 10, 15, 20 and 25ng.ml-1 of OPG, and 0, 5, 10, 15, 20 and 30 ng.ml-

1 for TNF. All comparisons were made using SPPS v21. Significance was accepted at 

the p<0.05 level. Results are displayed in figure 1. 
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6.1.3.5 Objective 2  

Differentiation Parameters 

To achieve objective 2, three six-well plates were seeded with cells as described in 

section 6.1.3.1. The plates were incubated for 60h with TNF and OPG as shown in the 

schematic below. 

Plate 1; 

TNF at 0h, OPG at 24h TNF at 0h GM 

TNF at 0h, OPG at 24h TNF at 0h, OPG at 24h DM 

Plate 2; 

OPG at 0h, TNF at 24h OPG at 0h GM 

OPG at 0h, TNF at 24h OPG at 0h, TNF at 24h DM 

Plate 3; 

OPG and TNF at 0h OPG and TNF at 0h GM 

OPG and TNF at 0h OPG and TNF at 0h DM 

 

6.1.3.6 Statistical analysis for objective 2 

For this objective 2, a one way ANOVA, with LSD as a post Hoc test, was used to 

determine the difference between the mean the differentiation parameters, myotube 

area (%), fusion index (%) and the aspect ratio, at a pre-determined end-point of 60h 

incubation, between the different co-cultures described above. Myotube area 

represents the percentage of myotubes within the field of view, the fusion index 

represents the percentage of nuclei within the myotube compared to the percentage 

of nuceli within the whole field of view and the aspect ratio represents the ratio of the 
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length of myotube to the width of the myotube (i.e. the smaller the ratio the higher 

the level of differentiation). The level of significance was determined at p<0.05. Results 

are shown in Table 13 and Figure 6.2.  

 

 

6.1.3.7 Objective 3 

Co-culture with TNF for ELISA and multiplex 

Human myoblast cells were seeded and cultured as previously stated. When adding 

DM to the wells of each plate, TNF was added at a concentration of 30 ng.ml-1, as 

used following on from optimisation. Leaving one well as DM only. Two plates were 

replicated and the incubated for 24, 48, 72 and 96 hours. The supernatant of each well 

was collected, labelled and then stored at -80C until analysis was to be carried out. 

6.1.3.8 Concentration of OPG in human cell culture. 

The concentration of OPG was measured using an ab100617-Osteoprotegrin Human 

ELISA kit (Abcam, UK) and was carried out according to the manufacturer’s 

instructions. Reagents and standards were prepped according to the 

recommendations. 100l of each standard and sample was added to each well. The 

plate was then covered and incubated over night at 4 C with gentle shaking. The 

solution was then discarded and washed with wash solution four times. 100L of 

Biotinylated Osteoprotegrin Detection antibody was added to each well, which was 

then incubated for 1 hour at room temperature, with gentle shaking. This solution was 

then discarded, and the plate washed 4 times with wash solution. 100L of the HRP-

Streptavidin solution was added to each well, the plate was then covered and 

incubated at room temperature for 45 mins with gentle shaking. The solution was 
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discarded, and the plate washed four times. Finally, 100L of TMB one-step substrate 

reagent was added to each well, the plate was then covered and incubated for 30 mins 

at room temperature, with gentle shaking. Immediately after incubation 50L of stop 

solution was added to each well. The plate was then read at 450nm. 

The absorbance for standards, controls and samples was calculated. The standard 

curve was plotted with standard concentration on the x-axis and absorbance on the y-

axis. The best-fit straight line was drawn through the standard points and the using the 

regression equation for the best-fit straight line the concentration of OPG was 

calculated in pg.ml-1. 

6.1.3.9 Concentration of myokines in Human cell culture 

The concentration of the myokines were determined using a Multiplex immunoassay 

bead panel (Millipore, Billerica, MA, USA). The manufacturer instructions were 

followed and the magnetic bead panels quantified; Apelin, Fractalkine, BDNF, EPO, IL-

15, Myostatin, Irisin, FSTL, Oncostatin, FGF-21, Osteocrin, Osteonectin, LIF, FABP3 and 

IL-6, using a 96-well plate after an overnight incubation. The sensitivity of each analyte 

was 38ng.ml-1 (Osteonectin), 3pg.ml-1 (LIF), 6.5pg.ml-1 (FABP3), 0.6pg.ml-1 (IL-6), 

36pg.ml-1 (Apelin), 26 pg.ml-1 (Fractalkine), 3 pg.ml-1 (BDNF), 378 pg.ml-1 (EPO), 2 pg.ml-

1 (IL-15), 163 pg.ml-1 (Myostatin), 191 pg.ml-1 (Irisin), 548 pg.ml-1 (FSTL), 2 pg.ml-1 

(Oncostatin), 5 pg.ml-1 (FGF-21) and 44 pg.ml-1 (Osteocrin). Samples were processed 

using a Luminex 200 Bioanalyser and protein concentrations were estimated using the 

xPONENT software (Luminex, v.3.1.871). Apelin, Fractalkine, BDNF, EPO, IL-15, 

Myostatin, Irisin, FSTL, Oncostatin, FGF-21, Osteocrin were all below the level of 

detection and were not included in further analysis. 
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6.1.3.10 Statistical Analysis for Objective 3 

The third objective was to measure the expression of OPG and other myokines from 

cultured myoblasts after exposure to TNF. Univariate ANOVA was performed with 

time point and concentration of TNF as fixed factors and OPG concentration as the 

dependent variable. An interaction effect was found between TNF*Time, 

F;(15,24)3.3.40, p=0.004. Given this, simple main effects of the concentration of TNF 

(0 or 30ng.ml-1) with the concentration of OPG found within the supernatant were 

assessed per time point (24, 48, 72 and 96 hours). The effects of TNF concentration 

at each time point were evaluated with pairwise comparisons and LSD adjustments. 

Analysis was performed using SPSS Version 21 (SPSS, Chicago, IL) software and p<0.05 

was considered statistically significant. 

 

6.1.4 Results 
 
6.1.4.1 Objective1 
To investigate the actions of OPG human myoblast cell cultures were performed along 

with TNFα, a known cytokine that can be inhibited by OPG as a decoy receptor. 

To ensure optimal cell differentiation for studies using human recombinant OPG and 

TNFα, different concentrations (0, 5, 10, 15, 20, 25 ng.ml-1 for OPG and 0, 5, 10, 15, 20, 

30 ng.ml-1 for TNFα) were used concurrently in a 6 well plate lined with 0.5%  

gelatin. Staining procedure (as described in materials and methods) was carried out at 

either 48h or 72h. Phase contrast microscopy was used to assess a view at x20 

magnification and ImageJ software was used to process images and calculate myotube 

area percentage for each concentration at the two different time points. Results can 

be seen in Figure 6.1. 
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B.                                                                           C.  

 

 
 
 
 
 
 
 
 
 
 
Figure 6.1. A. Determining myoblast percentage with different concentrations of OPG. Myoblast area 
was calculated with 6 different concentrations of OPG after 48h and 72h of incubation. Data are 
mean±SEM taken from one x10 magnification image within the specified concentration well. B. Image 
taken at 72h incubation with 20ng.ml-1 of OPG. C. Image taken at 48h incubation with 20ng.ml-1 of OPG. 

 

Repeated measures ANOVA was performed to identify any significant differences 

between times and concentrations. No differences or interactions were found for 

TNFα or OPG at any of the different time points. When incubating with TNF α alone all 

myoblast cells died off. Given these results we chose to use 20ng.ml-1 for OPG [303, 

304] and 30ng.ml-1 for TNFα [17, 305] based on previous literature. 

 

 

0 100µm 0 100µm 



 116 

6.1.4.2. Objective2 

Differentiation parameters highlighted significant differences between the co-cultures 

(Table 13 and Figure 6.2). Aspect Ratio; OPG and TNFα at 24h was significantly lower 

(greater differentiation) than TNFα and OPG at 24h and TNFα and OPG at the same 

time. There was no significant difference in aspect ratio between OPG and TNFα at 

24h, TNFα and OPG at 24h and TNFα and OPG together, albeit values were higher for 

culturing TNFα alone (Table 13).  OPG and TNFα at 24h showed a significantly greater 

fusion index (%), and myotube area (%) than TNFα and OPG at 24h, TNFα and OPG and 

TNFα only (p<0.0005). There was no significant difference in fusion index or myotube 

area between TNFα and OPG at 24h and, either, TNFα and OPG or TNFα. There was 

also no significant difference between TNFα and OPG or TNFα only for fusion index or 

myotube area. 

Table 13; Differentiation parameters for different co-cultures 

Co-Cultures Aspect Ratio Fusion Index (%) Myotube area (%) 

TNF_OPG at 24h1 16.5±2.06$ 8.85±0.66 0.74±0.07+” 

OPG_TNF at 24h2 7.70±0.41*+$ 77.5±3.81* 39.9±5.15*# 

TNF and OPG3 15.1±1.90$ 6.15±0.66+ 3.41±0.37+ 

TNF 4 10.9±5.45+ 10.5±0.31+ 1.01±0.13 

OPG5 8.72±0.33*#~ 68.2±0.50*#~ 32.7±0.73# 

GM6 10.8±2.05+$ 3.84±0.72+$ 0.16±0.01 

DM7 8.57±0.80*+#~$^ 50.7±3.54*+#~^ 25.2±7.68* 

Data are mean±SEM.*significantly different to 1, + significantly different to 2, #significantly different to3, 
~significantly different to 4, $significantly different to5, ^significantly different to 6, “significantly different 
to7. 
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Figure 6.2; Differentiation parameters calculated at 60h of incubation. Panel A; Graphs Top to Bottom represent differentiation 

parameters; significantly different at ***p<0.0001 and **p<0.01 to TNF_OPG AT 24h. Significantly different to OPG_TNF at 24h 

at +++ p<0.0005, significantly different to TNF and OPG at ###p<0.005, #p<0.05. Panel B represent; Top to bottom, 

immunohistochemistry staining for TNF_OPG at 24h, OPG_TNF at 24h, TNF and OPG, TNF only. Green shows differentiated 
myotubes, blue hows nuclei. TNFα was added at a concentration of 30ng.ml-1 and OPG was added at a concentration of 20ng.ml-1. 
Data are mean ± SE. 

 

0   100µm 



118 
 

6.1.4.3. Objective 3 

Human myoblast cells were cultured with the previously established (Objective 1) 

concentration of TNF (30 ng.ml-1) and with DM only. These cultures were ceased at 

24,48,72 and 96 hours. The various concentrations of OPG found within the 

supernatant of these cultures are displayed in Figure 6.3. An effect of TNF was found 

with univariate analysis F; (15,24) 4.931, p=0.003. There was also an interaction effect 

between TNF and time F;(15,24) 3.340, p=0.004. 

Simple main effects by pairwise comparison are displayed in Table 13. There was a 

significant difference at 24h for TNF compared with DM only (p=0.001). At 48h a 

significant difference of OPG secreted was found for TNF cultures compared with DM 

(p=0.003). At 72h, TNF cultures differed significantly, albeit a lower concentration, 

from DM cultures (p=0.020), but at 96h no significant difference between TNF and 

DM cultures was found. 

 

Figure 6.3; The percentage change of OPG concentration when cultured with a concentration of     

30ng.ml-1 of TNF compared to 0ng.ml-1 of TNF. Baseline is zero when cultured with Differentiation 
media only. Error bars display standard error of the mean. Significantly different to baseline (*p<0.05, 
**;p<0.01,***p<.0001). Two repeats for each culture were carried out. 
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Table 14; Simple main effects displayed for differences in concentration of OPG 

secreted when cultured with different concentrations of TNF at different time points. 
Data are mean ±SEM. 
 

As well as investigating the concentration of OPG released by myoblasts when 

incubated with TNF at 30ng.ml-1, a multiplex was used to identify selected myokines 

that may also be released in response to the culturing with TNF, compared with no 

TNF (DM only). It was found that osteonectin, LIF, IL-6 and FAPB3 showed significant 

changes.  Interaction effects were seen for all four myokines; Osteonectin; F (15,24) 

7.45, p<.0005. LIF; F (15,24) 15.7, p<.0005. FABP3; (15,24) 14.5, p<.0005. IL-6 F (15,24) 

14.5, p<.0005.  Pairwise comparison was used to identify simple main effects, between 

the concentration of TNF and the concentrations of the myokines released. The 

results are found in table 3 with significance shown at p<0.05. Osteonectin showed 

significant difference at 72h and 96h with TNF concentration of 30ng.ml-1 (p<0.020). 

LIF showed significant differences at all time points (p<0.004). FABP3 only showed a 

significant difference at 96h (p<0.0005). Finally, IL-6 showed significant differences at 

48 and 96h (p<0.0005). 

 

    95% Confidence 

Interval 

Time 

(Hours) 
TNF 

Concentration 

(ng.ml-1) 

OPG 

concentration 

(pg.ml-1) 

Significance p (Simple 

main effects compared 

to Ong.ml-1 of TNF) 
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Bound 
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Bound 

24 0 

30 

617±17.7 

877±10.2 

 

0.001 

521 

781 

712 

972 

48 0 

30 

641±6.36 

861±19.1 

 

0.003 

545 
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736 

956 

72 0 

30 

918±1.84 

755±2.73 
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822 

659 

1014 

851 

96 0 

30 

734±7.05 

703±14.6 

 

0.639 

638 

607 

829 
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Table 15; Simple main effects displayed for differences in concentration of myokines secreted when cultured with different concentrations of TNF 
at different time points. Data are mean ±SEM 

      Significance 

(Simple main effects compared to 0ng.ml-1 of TNF) 

Time (Hours) TNF  

(ng.ml-1) 

Osteonectin (ng.ml-1) LIF 

(pg.ml-1) 

FABP3 

(pg.ml-1) 

IL-6 

(pg.ml-1) 

Osteonectin 

P value 

LIF 

P value 

FABP3 

P value 

IL-6 

P value 

24 0 

30 

427±57.5 

196±8.90 

0±0 

38±1.98 

169±14.6 

123±5.03 

0±0 

150±12.9 

 

0.066 

 

0.004 

 

0.960 

 

0.733 

48 0 

30 

203±0.08 

233±30.1 

0±0 

98±6.70 

944±48.8 

854±101 

3±0 

4082±985 

 

0.807 

 

<.0005 

 

0.923 

 

<.0005 

72 0 

30 

530±16.1 

132±2.63 

0±0 

41±4.41 

2308±236 

5153±555 

0±0 

821±5.43 

 

0.020 

 

0.002 

 

0.142 

 

0.071 

96 0 

30 

793±201 

127±0.14 

18±5.48 

70±26.9 

11720±1155 

6031±327 

6±0 

1868±293 

 

<.0005 

 

<.0005 

 

<.0005 

 

<.0005 
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6.1.5 Discussion 
The primary aim of this original research study was to identify if OPG protects against 

the effects of TNFα on human myoblasts in vitro. This was done through three main 

objectives stated in section 6.1.2. 

 

Optimisation experiments did not identify any differences between concentration of 

TNFα or OPG and the myotube area percentage. Previous literature was used as a 

guideline for concentrations to be used in further experiments [17, 305]. 

 

 Differentiation parameters, fusion index (%) and myotube area (%) were significantly 

greater when human myoblasts were subject to OPG adding TNF⍺ after 24 hours 

(Figure 6.2a), compared with myoblasts cultured with TNF⍺ adding OPG at 24h, TNF⍺ 

alone and when adding TNF⍺ and OPG at the same time. 

As shown in the images in Figure 6.2b, it is clear the see the large variation in 

differentiation in these different culture models. If TNF⍺ is added to the media on its 

own there are very few myotubes differentiated (less green illuminated in 

immunohistochemistry, figure 6.2b), whereas when adding OPG first and then adding 

TNF⍺ after 24h there is clearly a significantly greater amount of differentiation, as 

shown from our statistical analysis, figure 6.2a. From this data it is indicated that OPG 

may be providing an initial ‘protective’ mechanism if added to the media before TNF⍺. 

OPG has previously been shown to have protective mechanisms using C2C12 cells of 

mice with muscular dystrophy, an OPG immunoglobulin fragment complex can 

improve muscular force, up to 54%, and reduce levels of inflammation [279]. Previous 

literature has focused on C2C12 cells or mouse models, this experiment shows the 

benefits of OPG can also be applied to human muscle cells in vitro. 
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To investigate the mechanisms of OPG in response to TNF⍺ further co-culture models 

were used. It is known that OPG has been shown to be released from muscle cell 

cultures using C2C12 cells in response to immunoglobulin fragment complex [279], as 

stated previously. Here it is shown OPG is be released from human myoblast cells in 

culture in response to TNF⍺ (Table 14). There has been speculation as to how it is that 

these muscle cells respond to TNF⍺ in this protective manner and it has been assumed 

that the RANK/RANKL/OPG pathway is the key regulator. However, recent findings 

have shown this may not be the case [306]. Dystrophin/RANK double deficient mice, 

i.e. models that cannot stimulate through the RANK/RANK, pathway, are still able to 

respond to an OPG fragment complex and induce increases in muscular force [306]. 

This does not deny the fact that OPG is still able to protect against TNF⍺, a marker of 

inflammation that is associated with sarcopenia and bone ageing [134, 144, 146, 147]. 

These culture models would indicate that OPG, a well-known circulating bone marker  

[272, 294-296] is able to be released from human muscle in response to a marker of 

inflammation, which could therefore become a potential therapeutic target for ageing 

muscle. TNF also has a large influence in cardiomyopathy and causes decline in 

cardiac muscle function [298, 301], OPG could act as a protective role in the same way 

as shown here, making it a clear option for intervention.  

 

With the plates being cultured at different time points, it allows the pattern of OPG 

secretion to be seen, as shown in Figure 6.3. At 24h there is a significant increase 

compared to culturing with DM only. At 72h, a significant decrease, with 96h showing 

no significant change. This suggests that the majority of OPG is released during the first 

24 to 48h in response to TNF⍺, and then OPG secretion begins to decline due to, 
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perhaps, another factor, although this cannot be certain. Further investigation is 

needed to identify the specifically activated signaling pathways, at these different time 

points. 

 

Further analysis has shown other myokines are released from muscle in response to 

TNF⍺. Table 15 displays the findings of our multiplex analysis, highlighting four 

myokines to be measured in the supernatants of the culture models, described above. 

Osteonectin, Leukemia inhibitory factor (LIF), Fatty acid binding protein (FABP) and IL-6 

were shown to be released from the muscle at different time points.  

 

Osteonectin had the most significant differences at 96 h. Given that the majority of the 

changes in OPG happened during the first 24-48h, this could suggest that the 

Osteonectin is being taken up in response to the build-up of OPG, as there is a decline 

compared to baseline values. Osteonectin is a bone matrix glycoprotein that is 

abundantly expressed in bone [307]. Osteonectin deficient mice have shown to be 

severely osteopenic, highlighting that osteonectin is a positive regulator of bone 

formation [307], acting in a similar fashion to OPG [250]. It may be that Ostenectin is 

the secondary responder to OPG, taken up by the muscle in response to TNF⍺. The 

majority of FABP was also taken up at 96h, as there is a decline in concentration 

compared to baseline values. FABP’s comprise of a large number of 15kDa proteins 

and they facilitate the transport of long chain fatty acids across the plasma membrane 

[308]. Exercise training, combined with low glycemic diets have been shown to 

increase insulin sensitivity and fat utilization [309], allowing fat to be ultilised as fuel 

for the training. Here the FABP seems to be increased in response to the OPG 

production after 96h of incubation. This gives further evidence that FABP is another 
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key participant in bone-muscle cross talk, here responding once OPG secretion has 

significantly declined.  

 

LIF has shown significant differences at all time points. The secretion could, therefore, 

be in response to either OPG or TNF⍺. LIF is essential for embryo implantation in the 

mouse [310]. Its receptor (LIFR) has also been implicated to be involved the regulation 

of bone formation [307], through binding with Oncostatin M. There is little evidence 

available to show that LIF can be released from muscle in response to inflammation 

markers or circulating bone factors. Our findings show that LIF can be released from 

human muscle cells and another factor influencing bone-muscle cross talk. Finally, IL-6, 

showed the most prominent secretion at 48h and 96h. This fits with previous findings 

that show IL-6 to be released from muscle in response to exercise and inflammation 

[179, 182, 311].  

 

Further research should be directed to identify the signaling pathways that are 

activated within the muscle cells to secret OPG, in response to TNF⍺, along with LIF, 

Osteonectin, FABP and IL-6. As well as the signaling pathways, any interaction at the 

receptor level of TNF⍺ molecules would help to identify what these circulating factors 

do to the myoblast cells to protect the muscle cells from apoptotic effects of TNF⍺ its 

action. 
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7.1 Chapter 7: General Discussion 
The overarching aim of the PhD project was to provide novel insights into how exercise 

and circulating bone regulatory factors may influence both bone and muscle health 

within older age. This was addressed through four objectives: 

1. Investigate the relationship between BMD and lean mass in athletic older people, 

taking into account accelerometry data, the training age and type of athlete (sprint 

or endurance). 

2. Identify the circulating bone remodelling factors associated with BMD in healthy 

young and older adults.  

3. Identify the circulating bone remodelling factors associated with whole body lean 

mass in healthy young and older adults.  

4. Using the selected circulating factors identified in objective 2 and 3, investigate the 

responses of cultured human immortalised myoblasts after exposure to these 

factors. 

 

7.1.1 Overview  
Chapters 3-6 cover the original research carried out as part of this PhD, each 

addressing one of the objectives stated above, fulfilling the overall aim. 

 

Chapter 3, objective1, revolved around a sample of exceptionally athletic older people 

and non- active healthy old. Comparisons of bone health and muscle strength were 

made between those active and non-active, as well as within the active group, 

between sprinters and endurance. The main findings here showed that sprinters had a 

higher BMD at the hip and spine than those competing in endurance activity and those 

not competing at all. On some occasions those carrying out endurance activity have no 
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greater bone health than those not competing. The differences in BMD between 

groups could not be explained by muscle mass or function, further research is needed 

to investigate these changes. Further studies are required to identify to what extent 

discipline-specific advantages in BMD relate to pre-existing differences in skeletal 

health, or to variance in skeletal loading not captured in this study.   

 

Chapter 4, objective 2, aimed to identify any associations between the circulating 

factors; DKK1, FGF23, OC, OPG, OPN and sclerostin with whole body bone mineral 

(WBMD) density. It was found that Sclerostin, DKK1, OPG and OC were each positively 

associated with WBMD in older adults, despite the average WBMD being lower and 

circulating DKK1, OPG and sclerostin being higher in old than young. Multiple linear 

regression identified BMI, circulating sclerostin and whole-body lean mass as 

explaining, approximately, 14% of all variation on WBMD amongst older adults. This 

helped to refine the number of circulating factors that could be associated with both 

bone and muscle during ageing.  

 

Chapter 5, objective 3, was designed to investigate those circulating factors and how, 

this time, they may be associated with whole body Lean mass, as well as WBMD. The 

same statistical procedure was used to identify associations with WB Lean mass, as 

used in Chapter 4. It was identified that OPG accounted for 12% of the variation in WB 

Lean mass, in the old. Further to this, we were able to carry out additional analysis 

between OPG and TNF⍺. When using TNF⍺ as a covariate, OPG was significantly 

inversely correlated with WB Lean mass in both young and old. Whilst this chapter only 

represents statistical analysis, it confirmed two circulating factors, TNF⍺ and OPG, that 

can interact with one another and in doing so OPG may be able to interact between 



127 
 

muscle and bone and influence the age-related decline in muscle mass and bone 

strength. Thus, this leads into the final chapter where these two factors are 

investigated at the cellular level using human myoblast cells, Objective 4. 

 

In order to carry out cell culture models it was necessary to, first, find optimum 

concentrations of OPG and TNF⍺ that the cells could be seeded at, this was identified 

at 20ng.ml-1 for OPG and 30ng.ml-1 for TNF⍺. Once concentrations were confirmed, the 

human myoblast cells could be cultured with the two factors, adding OPG and TNF⍺ 

together and at varying time points. As shown in Chapter 6, Figure 6.2, there were 

clear differences between models used, with OPG showing to provide a “protective” 

mechanism against TNF⍺, allowing the myoblasts to differentiate, when OPG is added 

to the cultures before TNF⍺. As it was found here that some interaction was existing 

between the TNF⍺ and OPG at the muscular level, the next stage of experiments were 

carried out to identify if OPG was able to be secreted from the muscle cells in response 

to the TNF⍺. Using 30ng.ml-1 of TNF⍺ it was shown that the myoblast cells were able to 

secret OPG, in particular during the first 24h of incubation. Along with OPG other 

myokines were released; Osteonectin, LIF, FABP and IL-6. This chapter identified 

several molecules that are able to interact with both bone and muscle and in particular 

identified OPG as a potential therapeutic target against inflammation in older age.  

7.1.2 Summary of main findings 
The research carried out as part of this PhD has achieved the four objectives stated in 

section 2.2, addressing the overall aim; to investigate how exercise and circulating 

bone regulatory factors influence both bone and muscle health in older age. 

These findings confirm that sprinting can cause greater increases in bone mineral 

density compared to endurance training, in older age. Endurance training does not 



128 
 

seem to produce any benefits to bone mineral density of the hip and spine, compared 

with non-active controls. The gains in sprinters comparatively to endurance master 

athletes cannot be explained by impact counts, muscle power or body composition. 

Circulating factors play a clear role in the bone mineral density and muscle mass of 

older adults. These differences seen initially between sprinters and endurance athletes 

could possibly be explained by variations in circulating factors, brought about by the 

specific training regimes. TNF has been shown to have particularly detrimental 

effects during ageing and is associated with sarcopenia and chronic inflammation. It 

has been shown here that osteoprotegrin (OPG) can counter act these damaging 

effects of TNF. It may be, within sprint training, OPG levels are somewhat elevated 

allowing OPG to act as a decoy receptor to the TNF ligand. TNF, therefore, is unable 

to stimulate its inflammatory and apoptotic pathways, reducing its negative effects, 

resulting in a slowed rate of the loss of muscle mass and bone strength as age 

progresses. 

 

These findings add to current literature investigating exercise effects on bone in older 

age, identifying sprint training to have positive effects for the spine and hip, and that 

endurance running may not be the best exercise to slow the age-related loss of bone 

mass. Osteoprotegrein has been discovered to be a key factor that can influence both 

bone and muscle in older adults and can act in a protective mechanism from another 

factor TNF. Osteoprotegrin could be targeted for further therapeutic intervention to 

slow down the loss of bone and muscle mass during ageing, and reduce chronic 

inflammation normally associated with ageing. 
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7.1.3 Further studies and limitations 
Accelerometry data shown in Chapter 3 was not collected in the control population, if 

it were then a more comparable data set may have been better able to explain the 

differences in BMD between groups. The cross-sectional nature of the study limits 

assessment of causal relationships between type of sport and BMD due to possible 

uncontrolled confounders.  There was very little information about other factors 

potentially related to bone health, such as use of medications and nutrient intake 

including vitamin D. In addition, a detailed training log was not taken, so there may 

have been some additional information missed, highlighting differences in exposure to 

higher impacts between sprinters and endurance runners. Master athletes may not be 

representative of the general ageing population, they have been training for the 

majority of their lives and they have avoided the age associated diseases. It cannot be 

certain that their physical activity is the reason they have avoided these 

diseases/comorbidities or if they are genetically predisposed.  The findings in this 

chapter can only show the differences in BMD between sprinters and endurance 

master athletes. Longitudinal data collection is needed to be able to identify if 

sprinting in the general ageing population has the same effects on BMD, compared to 

endurance running, as shown in the master athletes   

 

The circulating levels of markers, may be influenced by release from non-bone cells, so 

it is not possible to determine the originating cell type. It is possible that altered renal 

function can affect the levels of the circulating factors, but markers of renal function 

were not included in the present study due to limitation of plasma sample quantity. A 

phantom was not used to calibrate the DXA scanners across sites and we did not adjust 

the results to derive “standardised” DXA values, as others have done for hip and femur 
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sites [264]. Instead, all study centres followed the local quality control procedures, 

including use of phantoms and daily calibration and the results were adjusted for 

country of testing to account for possible systematic differences.  

 

Within our cell culture models whilst we identified various factors that were released 

from the muscle it is not certain how they interact with the TNF⍺, OPG or at the 

cellular level of the muscle. Nor were we able to identify what was happening on the 

myoblast cells when OPG was added to the co cultures before TNF⍺ to then allow the 

myoblasts cells to differentiate and be protected from the normal apoptotic effects of 

TNF⍺. Future studies should look to identify the specific interactions and pathways 

that occur at the muscular level. OPG has been identified as a potential therapeutic 

target for intervention with muscle ageing, however, without translation into an 

animal model, it cannot be certain that the interactions we have seen in culture will 

also be those that are seen within animal models. Using knock out OPG mice the levels 

of TNF⍺ compared to controls would be able to show whether the interactions we 

have seen between OPG and TNF⍺ are true. 

 

7.1.4 Conclusion 
This original research has shown circulating factors to have an influence on both bone 

and muscle, in particular OPG and TNF⍺. Muscle is able to secret OPG in response to 

TNF⍺ as well as Osteonectin, LIF, FABP and IL-6, that are released as a response to 

TNF⍺ and/or OPG. During ageing these factors could influence both bone and muscle 

deterioration. If these factors are further investigated they could become therapeutic 

targets of intervention to reduce the loss of bone strength and muscle mass during 

ageing. The most appropriate exercise regime suggested for ageing has not been well 
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defined, however, it has been shown, within this thesis, that sprinting, in master 

athlete, has more beneficial effects to bone health than endurance exercise and this 

should be taken into account when prescribing exercises for the elderly to slow down 

the effects of ageing on muscle and bone. The research conducted will contribute to 

the understanding of muscle and bone loss throughout older age and how these two 

organs may interact through circulating factors.



132 
 

7.3. Appendix 
 

Author Year Journal Intro Measurements Intervention Conclusion 

Cunha et al  2018 Journal of 
Sport Science 

Effects of Resistance 
Training with 1 or 3 sets of 
exercise on 
osteosarcopenia obesity 
older women 

62 older women, aged 68, 
12 weeks RT program 

2 training groups 
performed 1 or 3 sets of 
resistance exercises 3 times 
weekly and control group. 
Measured muscle mass and 
bone with DXA.  

No difference between 
training groups but 
Training groups showed a 
greater increase in muscle 
mass than controls. No 
effect on BMD between 
three groups.  
Overall higher positive 
change of Z scores in 3 set 
training group. 

Beavers et 
al 

2017 J Gerontol A 
Bio Sci Med 
Sci 

To examine the effect of 
exercise during weight loss 
on hip and spine BMD, in 
overweight and obese 
older adults 

Two, 5 month Randomised 
controlled trials, Calorie 
restriction with either 
aerobic or resistance 
training.  
123 adults ages 69yrs- 67% 
female. Resistance training 
n=60 and aerobic N=63.  

Resistance program 
involved 3 days per week of 
8 body exercises, 3 sets of 
10 reps at 70% 1RM, 
Aerobic training involved 
treadmill walking for 30 
mins at 65-70% max hr. 
Measured BMD with DXA 
at baseline and 5 months 

Total hip and femoral 
neck BMD was unchanged 
in the resistance training 
group and decreased in 
the aerobic training 
group. 

Duckham et 
al 

2015 Age and 
Ageing 

To evaluate the effects of 
home (Otago Exercise 
Programme, OEP) and 
group (Falls exercise 
management, FEM) falls 
prevention exercise 
programs relative to usual 
care in older people 

N=319 men and women 
aged 72yrs. Randomised 
into OEP, FEM or usual 
care, BMD and BMC and 
structural properties 
measured before and after 
24 weeks of intervention 

OEP group completed 58 
mins per week of home 
exercise while the FEM 
completed 39 and 30 min 
per week of group and 
home exercise. For 24 
weeks 

No difference between 
groups in femoral neck 
BMD, or BMC at other 
skeletal sites. Exercise 
may need to exert higher 
strains for longer. 
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Elsisi et al 2015 Clinical 
Intervention 
Aging 

Compare the response of 
BMC and BMD in elderly 
women to low frequency 
low plus magnetic field or 
circuit weight training 
(CWT) 

12 weeks of intervention. 
N=30 aged 60-70 yrs. 
Randomly assigned to 
magnetic field or CWT. 

12 Weeks of intervention, 3 
times per week. Measured 
BMD and BMC of lumbar 
spine, femoral neck and 
trochanter 

Both interventions 
showed statistically 
significant increases but 
Magnetic field showed 
slightly greater increase 

Rantalainen 
et al  

2011 Eur J Applied 
Physiology 

To identify the effects of bi 
lateral hopping on bone 
markers 

12 week bilateral hopping 
on balls of the feet. 25 
men aged 72, assigned to 
control group or 
intervention group. 

Subjects were tested in the 
lab three times per week 
for 12 weeks, conducting 
the bilateral hopping 5-7 
times in sets of 10 seconds. 
Sets were performed at 7—
90% intensity. 

Bone markers, CTx Cicp 
bALP did not change from 
base line to 12 weeks in 
either groups 

Marques et 
al 

2011 Calcified 
Tissue 
International 

Examine the effects of 
exercise against bone 
induced weakness 

8 month multicomponent 
training with weight 
bearing exercises on BMD. 
N= 30 in exercise group 
and 30 in control group. 

Training was performed for 
60 mins 2x per week. 
Involved 10 min of warm 
up activities, 15 min of 
weight bearing exercises, 
10 min muscular 
endurance, 10 min of 
balance, 10 min agility and 
5 min of stretching. Carried 
out for 8 months 

Femoral neck had an 
increase of 2.8% BMD 

Sakai et al  2010 J Bone 
Mineral 
Metabolism 

To test the effect of 
unipedal standing exercise 
on BMD of the hip in post 
menopausal women 

N=94 Mean age 68 yrs, 
randomly assigned to 
exercise or control group. 
BMD of hip measured with 
DXA. 

Exercise group performed 
the exercise three times a 
day for 6 months, with eyes 
open the participant was 
required to stand on one 
leg for one minute then the 
other leg= one set. One set 
was performed in the 
morning, noon and 
afternoon. 

Percentages changes in 
the hip BMD between 
groups did not differ. 
Effects of exercise on 
BMD did show an effect 
only on participants over 
age 70 yrs . 
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Bocalini et 
al  

2009 J Aging 
Health 

Evaluate the effects of 
strength training on BMD 
of post menopausal 
women without Hormone 
replacement therapy 

Subjects were randomized 
into training or no training 
groups. 

24 weeks of strength 
training sessions three 
times per week . Measured 
BMD of lumbar spine and 
femoral neck 

Demineralisation 
percentage was higher in 
the un trained group than 
trainer group, training 
attenuated the loss of 
BMD in post menopausal 
women. 

Tolomio et 
al 

2008 J Phys Act 
Health 

Evaluate the effects on 
bone tissue and muscular 
strength of short term 
exercise program in post 
menopausal women 

N=49 osteopenic/ 
osteoporotic women.  
Bone assessed by 
phalangeal quantitative 
osteosonography  

Two groups exercise and 
control group. Supervised 
20-week physical activity 
program that included 
aerobic, balance and 
strength training. 

After training period, all 
bone parameters 
significantly improved in 
exercise group (p<0.05). 
No sig changes in control 
group. 

Woo et al 2007 Age Ageing Investigate the beneficial 
role of exercise in 
improving bone mineral 
density in elderly 
community dwelling 
participants 

N=180 Subjects 90 men 90 
women aged 65-74 yrs old 

12 months. Subjects 
assigned to participate in 
Thai Chi or resistance 
training 3 times a week or 
no training. BMD was 
measured at baseline 6 
months and 12 months 

In women both the Thai 
Chi and resistance 
training had moderate 
lower loss of hip BMD 
compared to controls. No 
effects found in men. 

 
Table 16; A systematic review of bone and exercise in the old. The literature was systematically reviewed using the search engine PubMed. The words and 
descriptors used for the data search were (Ageing or aging) AND (Bone) AND (Sport or exercise or Physical activity). The search was refined to include only 
publications within the last 20 years, the studies being randomised controlled trials (RCT) or Observational studies, participants aged 65 years or over and human 
studies only. The search returned a total of 72 papers. Out of the 72 papers returned, a total of 10 studies were appropriate for the systematic review because they 
described direct effects of exercise on bone. 
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Author Year Journal Intro Measurements Intervention Conclusion 

Fielding et 
al 

2017 PLoS One To understand the 
effect of Physical 
activity on changes in 
physical function and 
the onset of major 
mobility disability. 
Lifestyle Interventions 
and Independence for 
Elders Study (LIFE) 

Multi centre ranomised 
control trial followed for 
2.6 yrs average. 1635 
sedentary men and 
women aged 70-89 yrs. 

Randomised to a structured 
moderate intensity walking, 
resistance and flexibility 
physical activity programme. 
Physical activity assessed by 
7 day accelerometry and self 
report at baseline and 24 
months. Outcomes included 
400m gait speed, short 
physical performance battery 
test and onset of disability. 

Small changes in physical 
activity improved 400 m gait 
speed and SPPB scores, 
which are used as indicators 
of frailty 

Ossowski 
et al  

2016 Clinc Interv 
Aging 

Evaluate the impact of 
Nordic walking training 
on skeletal muscle 
index, muscle strength, 
functional mobility and 
functional performance 
in women with low 
bone mass 

Participants were women 
aged 63-79 years with 
osteoporosis or 
osteopenia. 
Measurements taken with 
bioimpedance body 
analyser and muscle 
dynamometer. 

Randomly assigned to 
control group or activity 
group. The activity group 
carried out the nordiac 
walking 3 times a week for 
60 mins each session for 12 
weeks. Measured at baseline 
at 12 weeks 

Skeletal muscle mass, index 
and strength index of the 
knee extensor and flexor, all 
showed significant 
improvements. No change in 
the hang grip muscle 
strength or in the control 
group. 

Landi et al  2016 BMJ Open Evaluate the effect of 
sarcopenia on all cause 
mortality and the 
interaction among 
muscle loss, physical 
function impairment 
and multimorbidity on 
mortality risk over 10 
years in community 
dwellers  

All people within Sirente, 
Italy area n=364 aged 80 
yrs+. Measured all cause 
mortality over 10 yrs, 
impact of physical 
function impairment asses 
using  Short physical 
performance batter and 
multi morbidity on 10 
year mortality risk 

Sarcopenia was identified in 
103 participants. 253 deaths 
recorded in 10years, 10 
sarcopenic, 162 non 
sarcopenic. Of those, low 
physical performance levels 
had a greater mortality rates.  

Physical function impairment 
is predictive of mortality in 
this region. In sarcopenic 
older persons, interventions 
to reduce functional decline 
may reduce mortality rates. 

Mijnarends 
DM 

2016 Age and 
Ageing 

Physical activity may 
slow the rate of muscle 
loss and the incidence 

People within Reykavik 
Area n=2309 Aged 66-
93yrs old. Sarcopenia was 

n/a Sarcopenia at baseline was 
7.3% and 16.8 % at follow 
up. Those reporting higher 
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of sarcopenia. The aim 
was to examine  the 
association of Physical 
activity with sarcopenia 
over 5 years.  

identified using muscle 
mass, grip strength and 
gait speed. Amount of 
activity was assessed by 
self reported 
questionnaire.  

levels of physical actvity had 
significantly lower likelihood 
of sarcopenia. 

Nunes et al 2016 Age (Dordr) Evaluated the effect of 
resistance training 
volume on muscular 
strength and on 
indicators of abdominal 
adiposity in post 
menopausal women 

Muscle strength was 
measured and indicators 
of abdominal adiposity. 
No difference at baseline 
between groups 

N=32 average age 61yrs.  11 
in control group doing no 
exercise, 10 in low volume 
resistance training group and 
11 in high volume resistance 
training group. 8 exercises 
were performed at 70% of 1 
rm 3 times a week. For 16 
weeks 

In both trained groups 
showed increase in muscular 
strength and fat % reduction 
after intervention.  Some 
differences between trained 
groups in indictors of 
adiposity 

Zdzieblik et 
al 

2015 Br J Nutr Protein 
supplementation in 
combination with 
resistance training may 
increase muscle mass 
and strength in elderly 
subjects 

53 male subjects aged 
72.2 yrs. With sarcopenia 
completed as a 
randomized controlled 
study. Measured FFM FM 
and bone mass before and 
after intervention with 
DXA. Isometric quad 
strength was determined 
with standardized one leg 
stabilization test 

12 week guided resistance 
training programme with 
here sessions a week. 
Supplemented either with 
collagen or a placebo.  

Fat free mass and bone mass 
showed significant changes, 
Higher isometric quad 
strength all in group taking 
collagen supplementation 

Lauseen et 
al 

2015 J Am 
Geriatric 
Society 

Progressive resistance 
exercise is used in 
patients to improve 
muscular strength and 
physical activity in older 
adults, but it is 
unknown if this will 
improve physical 
function. 

Measure changes in 
physical function before 
and after 6 month 
progressive resistance 
exercise 

Community dwelling older 
adults aged 70-85yrs, 6 
month programme, Physical 
activity was measured with 
an activity monitor, physical 
function was assessed using 
short physical performance 
battery and repeated chair 
rise, stair climb and the 
400m walk test. The 

There were significant 
improvements in all 
measures of physical 
function from baseline to six 
months, no change in 
physical activity from 
baseline to 6 month . 
Other factors need to be 
targeted to improve physical 
activity 
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resistance training was done 
3 times a week, intensity 
progressed from two sets of 
10 reps at 80% of 1RM to 
three sets of 12.  Measured 
at baseline to 6 months. 

Reid et al 2015 J Gerontol A 
Biol Sci Med 
Sci 

We compared two 
different lower 
extremity power 
training interventions 
on changes in muscle 
power, physical 
performance, 
neuromuscular 
activation and muscle 
CSA in mobility limited 
older adults. 

52 subjects aged 78yrs.  16 weeks of progressively 
high velocity resistance 
training or high external 
resistance training. Two 
times a week for both groups 
Completing leg and knee 
extension exercises at max 
velocity. 

Improvements in 
neuromuscular activation, 
short physical performance 
battery and leg extensor. 
There were no significant 
between group differences.  

Shahar et 
al 

2013 Clinc Interv 
Aging 

To determine the 
effectiveness of 
exercise intervention 
and protein 
supplementation alone 
or in combination  

65 sarcopenic elderly 
participants aged 60-
74yrs. Assigned to control 
group, exercise group, 
protein supplementation 
or a combination. 

60 mins of exercises twice a 
week for 12 weeks 

The exercise programme 
was to found muscle 
strength and body 
composition, while protein 
supplementation reduced 
body weight and increased 
upper body strength among 
sarcopenic elderly. 

Hanson et 
al 

2009 J Strength 
and 
Conditioning 

To investigate the 
effects of strength 
training on physical 
function and the 
influence of strength, 
power, muscle volume 
and body composition 
on physical function. 

Healthy inactive adults 
aged 65 years and older. 
Underwent strength, 
power, total body 
composition and physical 
function testing before 
and after 22 weeks of 
strength training. 

10 week unilateral strength 
program using untrained leg 
as an internal control 
preceded 12 weeks of whole 
body strength training. 

Strength, power and fat free 
mass increased significantly 
with strength training in 
overall group. Women 
improved in walking 
whereas men improved in 
stair climb. Strength training 
improves functional tasks 
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Harber et 
al 

2009 Am J Physiol 
Regul Integr 
Comp Physiol 

To assess the influence 
of aerobic training on 
muscle size and 
function.  

12 week cycle ergometer 
training. Muscle volume 
measured by MRI. Muscle 
biopsies taken to 
determine size and 
contractile properties of 
slow and fast twitch 
fibres.  

12 week cycle ergometer 
training, 20-45 mins of 3 or 4 
sessions per week 

Aerobic training inc type 1 
fibre size. And type 1 peak 
power was elevated, while 
type 1 unaltered in size and 
power. Indicate that aerobic 
training improves muscle 
function through remodeling 
contractile properties at 
myofiber level. 

Raue et al  2009 J Appl Physiol To assess single muscle 
fibre contractile 
function and whole 
muscle characteristics 
before and after 12 
weeks oh high intensity 
resistance training. In 
very old women, aged 
85+ 

Young women acted as a 
control group. Whole 
muscle size using CT and 
strength by 1 rep max 
were asses before and 
after training. 

12 weeks progressive 
resistance training 
programme, assessed size, 
peak force, velocity and 
power on VL MHC 1 and 11 
type fibres. Training sessions 
were 2-3 times per week. 

1 rep max increased in old 
and young, no increase in 
thigh muscle csa in old. Type 
two fibres improved in size, 
peak force and power but no 
change in type 1 fibres. No 
changes in MHC type 1 or 
type 2 in the older women, 
shows the old women have a 
blunted response to 
resistance training at muscle 
and cellular level 

Reid et al  2008 Aging Clin 
Exp Res 

Investigate whether 
high velocity high power 
training improved lower 
extremity muscle power 
and quality in 
functionally limited 
elders greater than slow 
velocity resistance 
training 

N=57 Adults aged 74yrs 
Randomised into power, 
strength or control 
groups. Outcome 
measures include 1RM 
strength and peak power. 
Total leg lean mass was 
used to determine specific 
strength and specific PP. 

Training performed 3 times 
per week for 12 weeks, 
subjects performed three 
sets of double leg press knee 
extension exercises at 70% of 
1rm 

Peak power and specific 
peak power increased 
similarly from baseline in 
power and strength 
compared to controls. Gains 
in leg press peak power 
were greater in power than 
other groups. Total leg lean 
mass didn’t change in any 
group 

Table 17; A systematic review of muscle and exercise in the old. The following section of the review has been conducted as a systematic review, using the search 
engine PubMed. The words and descriptors used for the data search were (Ageing or aging) AND (Sarcopenia) AND (Sport or exercise or Physical activity). The search 
was refined to inclusion with publication within the last 20 years, the studies being randomised controlled trials or Observational studies and including participants 
aged 65+. This search produced 705 papers. Due to the large number for a small section within a review the search was further refined to include those with free full 
text. This search returned 254 papers, 20 of which were suitable for inclusion in the systematic review.  
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