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1. Introduction 

Land use and land cover (LULC) changes are considered to be the most prominent 

influence of humans on the environment. Technological and medical advancements 

have brought about unprecedented increases in the human population and, 

consequently, in the need for access to resources. This need has in turn caused 

substantial and growing transformations to the Earth’s surface (Vitousek et al., 1997) 

with often undesirable impacts and magnitudes that vary from local to global scales. 

The dual role of humans to actively contribute to LULC changes and, at the same time, 

be on the receiving end of experiencing the consequences of these changes, emphasizes 

the need for a better understanding of the human-LULC change nexus.  

A wide variety of LULC change models have been developed to meet the scientific 

community needs for understanding how and why LULC evolves (Schrojenstein 

Lantman et al. 2011). Generally, LULC models are widely used to analyze the complex 

structure of linkages and feedbacks between drivers of change, determine their 

relevance to particular changes and project how much land is used where and for what 

purpose, under different predefined attributes and conditions. This type of information 

is then adopted in a meaningful way in order to support policy decision making related 



to land-use (Mallampalli et al. 2016). However, by definition, LULC models can not 

exactly replicate the complex interactions and nonlinear relations which are apparent in 

LULC systems. At a fundamental level, they are, rather, a process that provides a 

platform that, allows computer experiments to be undertaken (Brown et al. 2013). When 

the system in question is simple, the processes and interactions that characterize it can 

be easily determined and the results are somehow expected, while projections and other 

kinds of extrapolations are a straightforward task. When dealing, however, with 

inherently complex systems, as is the case with LULC changes, the models are able to 

represent and exemplify only a small fraction of the whole mechanism in order to 

highlight important processes.  

The recent methodological and technological advancements have paved the way for 

more articulated LULC models which are able to answer more complex questions. Such 

questions could be in regard to what the possible outcomes would be if alternative 

pathways were followed, or which outcome is the most desirable from a list of 

alternatives, as well as a diverse range of other ‘what-if’ scenarios. Increasingly, 

scenario-based analysis is now being adopted by a range of disciplines pertaining to 

LULC change, as fruitful experiments for exploring the possible future trajectories of 

historical and current trends (Murray-Rust et al. 2013). Considering that the number of 

potential futures is actually infinite (Greeuw et al. 2000), scenarios are not used to 

predict the future in a precise manner, but to explore possible future directions and to 

consider a range of alternative pathways. To do so, the scenario-based analysis fully 

recognizes the infinity of potential futures and attempts to focus only to an 

understandable and manageable set of alternatives. This is achieved by delineating 

plausible, presumably coherent and internally consistent storylines of different socio-

economic development trajectories (Rounsevell and Metzger, 2010). 



When modelling LULC, the scale, the spatial resolution and the extent of the study area 

are important attributes of all spatially explicit models (Agarwal et al 2002). The term 

scale refers to the spatial, temporal, quantitative, or analytic dimension used to measure 

and study the processes that are modelled (Gibson et al., 2000). Scale also involves the 

terms extent and resolution: extent refers to the magnitude of a dimension used in 

measuring (e.g. study area boundaries on a map), whereas resolution refers to the 

precision used in this measurement (e.g. pixel size) (Gibson et al. 2000). Moreover, 

resolution refers not only to spatial resolution, but also to thematic, which is the level 

of precision in LULC categories. In addition, the term temporal resolution is used to 

refer to the time span and frequency of the analysis. Modelling LULC changes, 

therefore, requires a range of scales to be defined since it is a phenomenon that involves 

multiple processes that act over different scales. At each scale, different processes have 

a dominant influence on the outcome (Meentemeyer, 1989; Van Delden et al. 2011). 

Approaches that do not implement a multi-scale approach are prone to aggregation or 

oversimplification errors and thus fail to reproduce cross-scale interactions. This is due 

to the fact that features and processes that operate at local scales are not always 

observable when dealing with larger areas and coarser spatial resolution data (Verburg 

et al. 2004). On the other hand, studies that focus solely on the local level often fail to 

incorporate information about the general context which can only be derived from 

coarser spatial resolution data (Larondelle & Lauf, 2016). Given that all models are 

driven by their input data, studies focusing on specific LULC processes, considering 

only a single scale and using data that are particularly suitable only to a certain area, 

are not representative, transferable or reproducible to different scales. Therefore, such 

approaches are characterized by higher levels of uncertainty and depend on a number 

of critical assumptions (Kok and Veldkamp 2001, Van Delden et al. 2011; Veldkamp 



et al., 2001, Verburg et al. 2006). Moreover, it is a common assumption that the 

modelling results are highly affected by the quality and the technical details, such as 

the pixel size of inputs and the bias they entail (Kocabas & Dragicevic, 2006; Van 

Delden et al. 2011).  

Models designed to analyze LULC dynamics can be divided into categories according 

to their perspective, their domain, the methodological framework they apply, their 

spatial or non-spatial nature etc (literature reviews by Agarwal et al., 2002, Briassoulis 

2000; Schrojenstein Lantman et al. 2011). However, LULC models that solely rely on 

statistical approaches often suffer from limitations such as sensitivity to outliers and 

noise, collinearity issues and factors compatibility (Dormann et al. 2013; Eastman et al. 

2005). On the other hand, more recently, a variety of models pertaining to artificial 

intelligence, such as agent-based models, have been successfully applied for addressing 

the complex, non-linear behavior of human-nature interactions and decision making. 

This type of models, however, are suitable to capture processes at the individual, 

household or neighborhood levels and when it comes to agent behavior they can be 

very complex and are often parametrized with qualitative social survey data and other 

types of participatory approaches (Zagaria et al. 2017) 

Cellular automata (CA) consist of a dynamic simulation framework where space is 

represented as a grid of cells and time is considered as discrete unit.  The basic principle 

of this type of LULC modeling framework is that the state of a given pixel is determined 

by taking into account its previous state, the spatial interactions with the surroundings 

in a given neighborhood and a set of defined transition rules. These elements dictate 

the possible change of a cell and can be expert-based or calculated from statistical 

analysis of historical LULC changes (White and Engelen, 2000). A growing body of 

the literature demonstrate that, although very simple, CA models have the strong ability 



to represent rich LULC patterns and handle nonlinear, stochastic and spatially explicit 

LULC processes (Sante et al 2010).  

The biggest advantage of CA is that they are fully consistent with Geographic 

Information Systems (GIS) and remote sensing. Additionally, CA can be coupled with 

other types of models and thus they are flexible to allow the elaboration and extension 

of the methodological procedures according to the needs of a case study (Aburas et al. 

2016). For instance, CA have been previously combined with a plethora of modeling 

frameworks such as Markov chains (Jokar et al. 2013), neural networks (Li and Yeh, 

2002) support vector machines (Yang et al. 2008) and kernel-based methods (Liu et al. 

2008) among others. More recently, CA have been successfully combined with 

Random Forests (RF) (Kamusoko and Gamba, 2015; Gounaridis et al. 2018a).  

RF is a tree structured machine learning algorithm that generates a “forest” of 

randomized independent to each other and identically distributed decision trees. Each 

individual tree is composed with a random selection of the predictor variables and by 

searching across a randomly selected subset, it predicts the target response, casting a 

unit vote. This process is repeated until a user-defined number of trees has been built. 

The outputs are determined from the majority of votes by each individual tree. For a 

full detailed description of the RF algorithm, theory and applications, the reader is 

referred to Breiman (2001). The independency of each individual decision tree and the 

randomness in forming subsets of the input data makes RF insensitive to outliers, to 

noise and to overfitting (Chan and Paelinckx, 2008). Additionally, normal distribution 

of inputs is not a prerequisite and thus it can handle heterogenous data from various 

sources, units and scales (Gounaridis et al., 2014; Gounaridis et al., 2016; Gounaridis 

and Koukoulas, 2016). Another important advantage of RF is that it can handle large 



datasets with thousands of imputs being accurate and at the same time computationally 

faster (Rodriguez-Galiano et al. 2012).  

The aim of this paper is, therefore, to explore potential future LULC dynamics in the 

Attica region, using a CA modelling approach with scenarios that reflect different 

economic performance realities and alternative planning options. The central premise 

is to simulate all categories of LULC change at the regional level and to evaluate the 

effects of different proximate and underlying causes. In order to spatially associate the 

spatial determinants (proxies) with the observed historical changes, a set of factors 

derived from multiple sources and expressed in different scales, units and resolutions 

are incorporated in the modelling framework. A multi-resolution sensitivity analysis is 

also carried out to assess the effect of spatial resolution of the input data to the model 

outputs. The results will quantify the importance of various spatial determinants 

(proxies) of change and shed light to the effect different economic performance realities 

and land-use planning choices can have on the landscape.  

2. Study area 

The study area is the region of Attica in mainland Greece, an example of the rapid 

socio-economic transformations that occurred in the country during the last decades, 

including the demographic dynamics and population redistribution. The region includes 

Athens, the capital city of Greece and the country’s major economic hub. According to 

the latest census (2010), the region of Attica is inhabited by about 4 million people, or 

35% of the country’s total population. In more recent decades, economic and population 

growth triggered a persistent increase in housing demand and supply, and the 

redistribution of middle-class Athenians to the outskirts of Athens (Mantouvalou et al, 

1995; Leontidou et al. 2007). Additionally, socio-economic conditions favoured a 

persistent amenity-driven trend for second homes along the coastal zone, albeit within 



a commuting distance from the city-centre (Arapoglou and Sayas, 2009). As a 

consequence, the landscape of peri-urban Athens has changed substantially. The urban 

growth trend was indirectly emboldened by the weak presence of land use planning 

checks and controls, which permitted the unhindered development at any 

environmental, social or long-term economic cost (Pagonis, 2013). Moreover, after 

successfully attracting national and foreign funds, and in preparation to host the 

Olympic Games of 2004, the demand for construction sites to accommodate 

commercial, industrial, transportation and recreational activities further increased the 

built-up transformation of the urban periphery (Chorianopoulos et al. 2010). After the 

phase of a rather stable economic growth, however, the area has recently been exposed 

to the negative consequences of the sovereign debt crisis and the succeeding economic 

recession (2010-2016). The decrease in purchasing power and a drastic drop in 

consumer demand affected both the housing and the construction industries (Gounaridis 

et al. 2018a). 

Figure 1 about here 

In terms of its topography, Attica also constitutes an interesting study case since it is 

characterised by an undulated morphology (Figure 1). Mount Parnitha (elevation 

1413m), Pateras (elevation 1132m), Penteli (elevation 1109m), Hymettus (elevation 

1026m) and Egaleo (elevation 468m) are the main mountain ranges. These 

geomorphological features separate the city of Athens from the adjacent flat districts of 

Thriasio, Messoghia and Marathonas (Figure 1), which are the only available areas to 

host residential and industrial settlements.  



3. Material and methods 

3.1 LULC Data 

Five Landsat-based LULC maps spanning 25 years (1991, 1999, 2003, 2010, 2016) at 

30m spatial resolution were used for the modelling. These maps were generated by 

devising a semi-automated sampling extraction based on a context that combined the 

no-change areas, spectral controlling, and prior knowledge of the area (Gounaridis et 

al. 2018b). Overall accuracy for all maps is above 90%. Most importantly, the maps 

come with a very high thematic resolution, achieved after disaggregating the urban-

related LULC categories (Gounaridis & Koukoulas, 2016). Specifically, the maps 

depict eight land cover categories: i) continuous urban fabric, ii) discontinuous dense 

urban fabric, iii) discontinuous medium density urban fabric, iv) discontinuous low 

density urban fabric, v) industrial, commercial and transport units, vi) arable land and 

permanent crops, vii) forests, scrubs and other natural areas and viii) other (includes 

open spaces bare, mines and inland water bodies).  

3.2 Transition probability modelling 

Exploring future LULC patterns is a useful experiment for evaluating the causes and 

identifying the impact of LULC changes. The scenario-based simulations have been 

proven to be a useful way to sketch out how LULC patterns can evolve under different 

pathways with a level of plausibility (Greeuw et al. 2000; Rounsevell and Metzger, 

2010). Scenario-based analyses involves a certain degree of uncertainty originating 

from the very nature of socioeconomic predictions that help define the scenarios. This 

is due to the inability to foresee any unexpected circumstances and integrate any 

emerging discontinuities or the data inputs for the models. Especially when dealing 

with complex systems, such as LULC changes, assumptions are unavoidable. The level 

of uncertainty can be minimized by combining an empirical analysis and sketching 



different scenarios, attributes and conditions that deviate from historic trends in LULC 

changes (Brown et al. 2013; Verburg et al. 2016) 

3.2.1 Predictor variables 

Taking into account previous LULC change modelling efforts (Gounaridis et al. 

2018a), as well as data availability, a suite of 27 variables were chosen to best describe 

the LULC change processes that took place throughout Attica in the study period (1991-

2016; Table 1). They are both categorical and continuous in nature and cover a broad 

spectrum of potential LULC change factors. They can act as spatial determinants of the 

changes that occurred during the last decades in Attica, and are derived from multiple 

sources, with different scales and resolutions.  

Table 1 about here 

During the study period, changes related to artificial surfaces were dominant in Attica 

and, therefore, the majority of the chosen variables represent factors that affect the 

decision-making process when selecting locations for the construction of new housing 

or infrastructure. Factors pertaining to social shifts, economic motives, inherent quality 

and attractiveness of a given place and proximity to basic needs and amenities were 

assumed to play a key role (Table 1). Variables related with the topography of the 

terrain, such as elevation, slope and aspect influence the inherent quality of a certain 

location and define the land suitability for built-up expansion. Proximity to the sea, to “blue-

flag” beaches (Foundation for Environmental Education- http://www.fee.global/), as well as to 

natural reserves or urban green spaces are also perceived as added value in the pursuit for 

a better quality of life and aesthetics for both primary or secondary homes. Proximity 

to the city center of Athens or to nearest towns, to public transport, and the road density 

are proxies that reflect the commuting distance to work. Additionally, distance to social 



infrastructure including, among others, health provision, education and sports facilities, 

together with the density of private enterprises (kernel density of geo-tagged newly 

developed enterprises at 30m spatial resolution) serve as proxies to amenities. 

Demographic and socio-economic variables such as changes in population density, 

employment and unemployment rates provide insights on the shifts in the socio-

economic profile of the area estimated at local authority (municipal) level.  

It is worth noting that, variables available at a higher administrative level, that of the 

region, were not included since in Greece, implementation of local land use 

management policies falls under the remit of local municipal authorities. Factors 

expressed at the municipal level, therefore, were considered to represent an appropriate 

spatial unit for our analysis (Panori et al. 2016; Gounaridis et al. 2018a). All spatial and 

non-spatial datasets were collated in a GIS environment. Census data were mapped at 

the municipal level while distances were computed using the Euclidean distance 

function. The variables were then converted (resampled with bilinear interpolation) to 

30m spatial resolution rasters to match the resolution of the Landsat-based land cover 

classifications (Gounaridis et al. 2018b).  

3.2.2 Leap-frog development index (LFDI) 

To enhance the accuracy of the model, and to ensure the accurate detection and 

representation of scattered development, the Leap-frog development index (LFDI), 

originally proposed by Xu et al. (2007) was calculated and included in the modelling 

scheme. Leap-frog development refers to the new urban patches that are formed 

spontaneously and have no direct spatial connection and shared boundaries with the 

existing urban patches. The index applies to artificial LULC types and has been proved 

to effectively delineate any type of scattered development, classifying the historical 

changes according to sharing boundaries properties (Gounaridis et al. 2018a). 



Specifically, the index is calculated after dividing the length of the common boundaries 

between newly developed urban patches and already existing urban patches with the 

perimeter of the newly developed urban patches Xu et al. (2007). When the resulting 

value is higher than 0.5 the growth type is denoted as infilling. A resulting value lower 

than 0.5 denotes the edge growth while when the result is 0, it denotes the absence of a 

shared boundary, and the growth is identified as Leap-frog development. Therefore, 

following the approach by Gounaridis et al (2018a) the maps of 1991 and 2016 were 

converted to vector format and patches representing the four urban categories and 

industrial commercial and transport units were assigned values denoting which patches 

appeared in each date. Subsequently, using common functions in GIS, the length of 

common boundaries, their perimeter and the index were calculated. The last step was 

to convert the vector file to raster format at 30m spatial resolution. 

3.2.3 Random Forests regressions 

Following the approach adopted by Gounaridis et al. (2018a), the transition probability 

surfaces were generated by employing the machine learning regression algorithm of 

Random Forests (Breiman, 2001) using all variables, including the LFDI. Eighteen 

possible transitions were identified (Table 2), under three assumptions: (a) it is 

impossible for the urban fabric class to convert to any other land type as well as to 

decrease in density; b) the industrial, commercial and transport units cannot convert to 

any other land type, and c) the “other” category, that includes inland waters, bare land 

and mines, cannot interact with any of the other 7 classes. To train each of the 18 

models, 5000 random points were dispersed throughout the study area. Two possible 

values were associated with these training points: 1 denotes change from any LULC 

class to any other class, and 0 denotes no change. The RF regressions were then 

implemented in R using the RandomForest package (Liaw & Wiener, 2002). To fine 



tune the RF regressions, five predictor variables (equal to the square root of the total 

number of 27 predictor variables) were used for each tree split and 700 trees for each 

run. The modelling process generated 18 transition probability surfaces, each indicating 

the degree of potential future LULC change.  

Table 2 about here 

RF also offer meaningful metrics about the importance of each predictor variable. To 

quantify the importance and contribution for each of the 27 predictor variables, two 

metrics, the Mean Decrease Gini and the Mean Decrease Accuracy were computed 

(Gounaridis and Koukoulas, 2016). The mean decrease in Gini coefficient informs 

about each variable’s contribution to the impurity of the resulting random forest model. 

Variables with a high value in the decrease of Gini, tend to have nodes with high purity 

which is a measure of model’s homogeneity. The mean decrease in accuracy provides 

information about how much the accuracy would decrease if a variable were excluded 

from the model. Therefore, the larger the value of mean decrease, the higher the 

importance of a variable is. 

3.3 LULC change scenarios 

Figure 3 shows the LULC trends in Attica between 1991 and 2016, based on the 

Landsat-based land cover maps. Three different phases of economic development and 

performance can clearly be identified and based on these, we devised the following 

three potential future scenarios: 

Figure 3 about here 

Low development scenario: this scenario reflects the 2010-2016 period, when urban 

expansion rates curtailed significantly as a consequence of economic recession and a 

drop in investment spending. Throughout this time, for instance, approximately 

150,000 newly built houses in the region were left uninhabited (unsold), while over one 



third of commercial facilities in the city of Athens closed down and remained shut 

(Serraos et al., 2016). Under this scenario, economic growth, as well as the population 

mobility would remain relatively stable. 

Medium development scenario: this scenario reflects the period between 1991 and 

1999, when the peri-urban areas of Athens conurbation, especially the uplands and the 

Messoghia plain, experienced significant population gains.  Increase in demand for new 

houses boosted urban growth at the expense of other less profitable land uses, bringing 

gradually major changes in the peri-urban landscape. In fact, during this time, peri-

urban Athens population had grown ten times faster than the Athens conurbation 

population, which remained relative stagnant (Petrakos and Mardakis, 1999). 

According to this scenario, peri-urban Athens experiences a steady population increase, 

fueled by the relocation choices of Athenians questing residence in lower density areas.  

High development scenario: this scenario reflects the sharp urban expansion rates noted 

in the region in the 2000-2009 period, facilitated by stable economic growth and the 

continuation of a rather “loose” approach to land use planning controls. The era is 

chronologically framed by the effects of the 2008 global financial crisis, which were 

felt locally, however, in late 2009, in the form of an excessive budgetary deficit and a 

prolonged recession (Chorianopoulos and Tselepi, 2017). Under this scenario, 

population decentralization from Athens conurbation continues apace, further enhanced 

by labour migration from outside the country, fueling demand for new housing 

constructions. Following the development trends of the reference period, the spotlight 

of investment falls on the waterfront areas shifting further real estate dynamics towards 

tourism-related facilities and secondary homes. Similarly, spatial planning continues to 

play an important role in the “construction spree” by approving investment in 

transportation infrastructure, enhancing peri-urban accessibility to the city of Athens. 



Consequently, major infrastructure works, private enterprises and shopping centres will 

keep on colonizing the Northern outskirts (Maranthon, Oropos, Messoghia and the 

Thriasio plains forming a ‘suburban exploitation thesis’ case (Pacione, 2009).  

All three scenarios draw from clear reference periods and assume that profound social 

and political changes will not alter their traits. As far as the land use planning apparatus 

is concerned, it is assumed that it will continue to be rather permissive to development, 

following a political stance that approaches unregulated urban expansion as a “shortcut” 

to economic growth.  

 

3.4 Model calibration  

The CA model was designed and implemented using the Dinamica EGO platform 

(Soares-Filho et al. 2002). An important step, prior to the prediction phase, is model 

calibration. To calibrate the model and evaluate the goodness of fit, a comparison of 

simulated maps with reference maps is the most efficient way (Gounaridis et al. 2018a). 

Any CA modelling framework involves four components: the probability maps, the 

historical LULC maps, the transition rules and the neighborhood characteristics that 

define the parameters of the simulation.  

The CA model was trained based on the 1991-2010 period, and the observed changes 

were used to predict the landscape structure and composition on 2016. To do so, the 

annual rates of change per LULC category between 1991 and 2010 were calculated 

generating a transition matrix. In order to replicate the actual structure and composition 

of the area, three landscape metrics were computed: (i) the mean patch size, (ii) the 

variance of patch size, and (iii) the patch isometry. In general, an increased patch size 

results in less fragmented landscapes, while the patch size variance denotes the diversity 

of newly developed patches. Isometry usually varies from 0 to 2 and thus, the greater 



the isometry, the more isometric (i.e. equal) the newly developed patches are. The first 

two metrics were computed for the input LULC map (2010) while the latter was 

adjusted through a trial-and-error process. Finally, the 18 transition probabilities were 

stacked together to drive the allocation of cells, based on the premise that the cells with 

the highest likelihood values should change first. The model was then set to run and 

predict LULC for 2016.  

To evaluate the model's performance, the simulated LULC map of 2016 was compared 

with the observed LULC map of 2016 (i.e. the outcome of the Landsat-based 

classification; Gounaridis et al. 2018b) using the fuzzy similarity index at multiple 

resolutions (Hagen, 2003). This index evaluates the accuracy of simulation results 

considering the similarities of two maps (simulated versus observed) in a neighborhood 

context and within increasing window sizes (Mas et al. 2012). This involves the 

comparison of map fit and spatial agreement within a certain pixel vicinity allowing the 

comparisons of maps not only in a strict pixel-by-pixel basis but also considering the 

spatial similarity in multiple resolutions (Hagen, 2003). To gain insights about per class 

agreement we also computed the error matrix between the simulated and the observed 

maps of 2016. The sampling was based on 9399 samples holding LULC class values of 

2016 (Gounaridis et al. 2018b). The samples come with relatively equal distribution 

among the LULC classes that ensures equal representation.   

After calibration, the simulation of LULC changes under the three scenarios was 

implemented, taking 2016 as the initial year and 2040 as the final year, in a 5-year time 

step. The parameters used to calibrate the model were kept constant and only the 

quantity of LULC transitions per scenario were changed. A transition matrix was 

constructed for each epoch, i.e. 1991-1999, 1999-2010 and 2010-2016, to reveal the 

quantity of each possible transition per scenario (Table 2). Ideally, the predictor, and in 



turn, the transition probability surfaces, would also change per scenario, to better reflect 

the socio-economic conditions of each epoch. However, in our case, this option was not 

feasible due to data availability and temporal mismatch issues.  

3.5 Multi-resolution sensitivity analysis 

After completing the model simulations at 30m spatial resolution, a sensitivity analysis 

was also conducted at various spatial resolutions. It was hypothesized that when all 

other parameters of the model are held constant and only the spatial resolution of inputs 

changes, then the quantities, the spatial allocation and thus, the spatial patterns of 

outputs, can differ. The central premise behind this step was that the spatial resolution 

of the models’ inputs can have important and substantial effects on the output. Thus, 

this parameter can limit or even enhance the ability of a model to project future 

scenarios of LULC change. Sensitivity analysis is a process that examines the variation 

in model outputs in response to variation in a set of model parameters, in this case the 

spatial resolution of input data. To do so, the 1991 and 2016 Landsat-based 

classifications were resampled (nearest neighbor) to 100m, 250m and 500m, 

respectively and change detection was performed for each case. Next, the transition 

probabilities were re-constructed through RF regression after resampling (bilinear 

interpolation) all predictors for each case. The calibration followed the same steps as 

aforementioned. The landscape metrics along with the transition quantities were re-

calculated and introduced to the models for each case. After calibration, each scenario 

was simulated based on the transitions observed throughout each of the three epochs. 

Finally, all maps generated from each run were overlapped using rule-based cross 

classification in order to produce the final map per scenario. This step identified areas 

of change that are common regardless the spatial resolution of the inputs. To explore 

the influence of the spatial resolution on various consecutive steps of the modelling 



process, we compared the transition probability surfaces produced at the native 

resolution (30m) and at several coarser resolutions (100m, 250m, 500m). This was done 

after sampling the transition probability surfaces at 1000 random points, and computing 

the concordance correlation coefficient (Lin, 1989; 2000).  

 

4. Results and discussion 

4.1 Model calibration and performance 

One common way to assess the level of model calibration and performance is to 

compare the simulated map for a given year versus the observed map, which is often 

derived from the classification of satellite data. Figure 4 depicts the resulting map of 

2016 after calibration versus the reality (observed map of 2016). A visual comparison 

of these maps shows the relatively high similarity. This suggests that the RF-CA model 

was relatively accurate at allocating the LULC patterns of change in the study area. 

Table 3 reveals the level of agreement per class between the simulated map of 2016 and 

the observed map of 2016. Overall accuracy was acceptably high (88.36%) and the User 

and Producer accuracies for all classes ranged from 83.4% to 96.5%. Regarding the 

disagreements, confusion is evident between certain classes that are mostly spatially 

adjacent. For instance, between “discontinuous medium density urban fabric” and 

“discontinuous low density urban fabric”, as well as between “discontinuous low 

density urban fabric” and “arable land and permanent crops”.  

Figure 4 about here 

Table 3 about here 



Figure 5 illustrates the fuzzy similarity index computed based on the overlay of the two 

maps. The accuracy assessment yielded a spatial fit of 85.18% within the 1x1 window 

size radius which improved to 95.08 % when widened to a 15x15 window size. The 

high scores in performance suggest that the suite of 27 predictor variables were used 

efficiently and the RF algorithm performed well with an adequate fit.  

Figure 5 about here 

Figure 6 depicts the components of agreement and disagreement between the simulated 

versus the observed maps. It reveals information about: (i) observed change simulated 

correctly as change (i.e. hits); (ii) observed persistence (i.e. LULC that remained 

unchanged) simulated correctly as persistence (i.e. null successes); (iii) observed 

change simulated incorrectly as persistence (i.e. misses), and (iv) observed persistence 

simulated incorrectly as change (i.e. false alarms). Most importantly, the model 

predicted accurately the leap-frog development and this proves the added value of the 

LFDI and the extensive training of the RF model.  

Figure 6 about here 

4.2 Variable importance  

Figure 7 is the Mean Decrease in Gini coefficient which informs about each variable’s 

contribution to the impurity of the resulting random forest model. Road density, 

enterprises density and elevation contributed the most for changes related to dense 

urban fabric. The same variables along with the distance to shoreline and education 

centers are the most related to discontinuous dense and medium density urban fabric. 

For the discontinuous low density urban fabric, which is a category broadly related to 

second homes, distance to shoreline, to blue flag beaches, elevation, road density and 

enterprises density were the most influential variables. 



Figure 7 about here 

Figure 8 is the mean Decrease in Accuracy which informs about how much the accuracy 

decreases if a variable would be excluded from the model. According to this, road 

density, distance to natural reserves, to prefecture center and to shoreline, as well as 

slope and elevation were the most influential variables for changes related to dense 

urban fabric. The same variables along with the distance to beaches, to urban green 

areas and to public buildings were the most influential to changes related to 

discontinuous dense and medium density urban fabric. For the discontinuous low 

density urban fabric, the elevation, slope, road density along with the distance to urban 

green, to shoreline, to natural reserves and to prefecture center contributed the most into 

the spatial changes description. 

Figure 8 about here 

4.3 Multi-resolution sensitivity analysis 

The models yield similar patterns for each scenario but, as anticipated, as the resolution 

increases, the patterns tend to become more aggregated and smaller patches of change 

tend to be lost. Figure 9 depicts the concordance correlation coefficient (Lin, 1989, 

2000) derived from transition probabilities for the continuous urban fabric class per 

different spatial resolution. The higher concordance value can be observed between the 

30m and 100m pixel size. Gradually, as the difference in spatial resolution increases so 

is the distance of data's reduced major axis from the line of perfect concordance which 

reflects the concordance between the transition probability surfaces.  

Figure 9 about here 

The multi-resolution sensitivity analysis results provide evidence that the technical 

characteristics have substantial impact to the outputs of a model and thus to the 



observed patterns and to the conclusions drawn. Even if a model is rigorously 

calibrated, the predictability will decrease relative to the spatial resolution, and the 

patterns revealed in the results will become less informative.  

4.4 Model predictions for 2040 

Figures 10-12 depict the LULC changes projection under the three scenarios while 

Figure 13 provides a quantified insight to the final results.  

Figure 10 about here 

Under the medium economic development scenario (Figure 10), and with a pace of 

urban growth equivalent to that of 1991–1999, artificial surfaces are expected to expand 

predominantly at the expense of other, less profitable, land uses. Urban areas are 

anticipated to reach 41% of the region’s surface, of which 17% will be discontinuous 

low density urban fabric. Industrial areas are expected to occupy almost 8% of the total 

area. At the same time agricultural land is expected to decline from 23.5% in 2016 to 

10% in 2040 (Figure 13). Most changes will occur along the waterfront and in the 

periphery of Athens conurbation, effecting notable changes in Messoghia, the 

Thriassian plain, Marathonas, Oropos and Sounio. In these areas, pre-existing urban 

and industrial clusters portray a tendency to become denser and to expand considerably, 

ending up almost connected with Athens conurbation, especially in its northern parts. 

The region’s coastline, especially in Messoghia, Marathonas, Oropos and Sounio, is 

also expected to exhibit remarkable changes. Existing towns display a tendency to 

become denser and to expand, transforming waterfront areas into a large and solid low 

density urban patch. Leap-frog development is also expected to increase sharply around 

road junctions of existing urban areas.  

Figure 11 about here 



Under the high economic development scenario (Figure 11), where the pace of urban 

growth reflects the traits of the 1999-2010 period, artificial surfaces are expected to 

increase remarkably. At the same time, they are expected to occupy more than half of 

the total surface of Attica region (56.7%). In more detail, urban uses, are expected to 

occupy an area of almost 48% in 2040, which can be translated to an increase of 

approximately 21%. In this land use category, discontinuous low density urban fabric 

will reach a high peak of almost 21% of the total area. The continuous dense, 

discontinuous high density urban fabric and discontinuous medium density urban fabric 

are expected to reach 9%, 10% and 8% respectively. At the same time agricultural areas 

are expected to decrease by 18%, occupying only 5.2% of the total area (Figure 13). 

All these accelerated landscape transformations are expected to occur throughout Attica 

region, leading to a mosaic of mixed land uses. Pre-existing urban and industrial 

clusters will become denser and expand considerably. In a similar fashion with the 

medium growth scenario, most changes are observed along the coastline and to the peri-

urban zones of Athens conurbation. Changes are expected to be centered on the 

northern suburbs of Athens, the Messoghia and the Thriassian plain, Marathonas, 

Oropos and Sounio areas. Most notably, existing urban patches in the waterfront 

(Marathonas, Messoghia, Sounio, western Attica and Oropos), are expected to be linked 

with the conurbation forming an urban-rural continuum of low, and at places, medium 

density. In the western part of Attica, the Thriassian plain is expected to experience a 

considerable increase in industrial development and a notable increase in medium 

density urban use. Last but not least, the density of urban areas will increase sharply, 

especially in the northern and eastern suburbs of Athens.  

Figure 12 about here 



Under the low development scenario (Figure 12), an increase in artificial surfaces of 

approximately 6% is noted in the region; a rate, however, that is significantly lower if 

compared with the other two scenarios. Discontinuous low density urban fabric, for 

instance, is expected to occupy 15% of the total area by 2040, an increase of only 3% 

since 2016. Similarly, continuous dense and discontinuous high density urban fabric 

are expected to reach 6.7% and 5.6% respectively (Figure 13). Following the traits of 

the recession (2010-2016), urban expansion is observed throughout the region, yet at 

relatively moderate rates and in rather compact form. Foreseen changes will mostly 

occur around the road network and in the waterfront areas, particularly in the eastern 

and northern parts of Attica. Already existing urban areas appear to increase in density, 

rather than expanding, while leap-frog development is noted in areas of adequate 

transportation infrastructure, guaranteeing ease of access to Athens. Regarding urban 

density, slightly higher densities are expected in the northern suburbs of Athens.  

Figure 13 about here 

5 Discussion 

5.1 RF-CA land use/cover modelling 

The coupling of CA and RF proved to be a sound way to combine the advantages of 

each approach. Implementing the RF algorithm for transition potential modelling, 

allows the efficient combination of qualitative and quantitative data derived from 

multiple sources and with different nature in terms of scale and origin. In addition, RF 

proved insensitive to collinearity issues and normal distribution of data was not a 

prerequisite. The predictors incorporated in the models proved capable to spatially 

determine the phenomenon while the incorporation of the Leap-frog development index 

at the regional level, assisted the models in LULC prediction. In this approach, a total 



of 18 distinct transitions were identified and equal transition probability surfaces were 

generated. Their combination in a CA modelling environment seemed challenging and 

required intense training and calibration through trial and error. Currently, most LULC 

models can only simulate limited possible transitions due to complexity in definitions, 

attributes and transition rules (Liu et al. 2017). However, in reality, even in the same 

location, different LULC dynamics occur simultaneously and affect each other. Thus, 

a comprehensive outlook of these processes is much more effective in order to 

realistically determine the future trajectories. The interactions and competition among 

different types of LULC was explored by using a simple, yet effective competition 

mechanism. This approach allows the incorporation of various LULC transition 

probabilities as a single layer stack, containing all the probability surfaces. Each layer 

represented one single possible transition, while each cell contained values denoting 

the dominant LULC type and the likelihood to retain the current land type or transform 

to another type. The reproduction of LULC patterns and the calibration procedure, as a 

whole, improved considerably with the inclusion of the mean patch size, the variance 

of patch size, and patch isometry. Introducing these metrics to the CA framework, 

allows the models to take into account and to reproduce the actual parameters of the 

study area. The adoption of the fuzzy similarity index (Hagen, 2003) for assessing the 

model’s spatial fit was another advantage of the approach, as it performs comparisons 

of simulated versus observed data within a neighborhood context, and not in a strict 

per-pixel context.  

5.2 LULC predictions for 2040 

We employed three socioeconomic and associated urban growth scenarios to explore 

potential LULC pathways to 2040. The ‘low development’ scenario draws from the 

current economic austerity and recession reality, framing a long-term setting in which 



economic downturn keeps on hindering urban expansion dynamics. Results obtained 

from the medium and high economic development scenarios, however, are 

multifaceted. Both scenarios shed light on the ways in which Attica would look like 

when the current economic crisis is reversed. Against this backdrop, they point to the 

critical role of land use planning in regulating urban expansion. Our results outline a 

future landscape shaped by the unmediated prerogatives of rapid economic 

development. They also underscore the significant socio-economic consequences such 

as enhanced residential segregation, high infrastructure investment costs, central areas 

underfunding. Moreover, the environmental impact such as increased car dependency 

and usage, loss of agricultural land and natural habitats are also evident. In light of the 

consequences, LULC changes that would occur locally are expected to create a 

maladaptive and nonfunctional setting, liable to undermine future economic 

development prospects (Chorianopoulos, et al. 2010).  

Regarding the factors that contribute and the extent of this contribution to the different 

types of LULC change, our study incorporated a total of 27 variables into the modelling. 

By implementing 18 different models representing every permitted LULC transition, 

the contribution of each factor was quantified using the Mean Decrease Gini and the 

Mean Decrease Accuracy metrics. From the application of these models, three 

messages emerge: 

(a) Firstly, the results demonstrate that depending on the LULC type, different factors 

play a key role in the spatial configuration of LULC change (Kizos et al. 2018). The 

interrelationships of urban related classes, for example, can clearly be distinguished 

according to their density, which translates to different residential use (e.g. secondary 

homes). In densely built urban areas, spatial factors, such as road network density, 

density of enterprises, proximity to social infrastructure (health services, educational 



institutions) and accessibility to the municipal centres, were the dominant determinants 

of change. In urban areas with lower density, distance to the shoreline and to “blue-

flag” beaches were among the most important. The results are in agreement with the 

findings of other studies, especially with those related with the coastal zone of the 

Mediterranean (Boavida-Portugal et al. 2016; Houet et al. 2016; Lagarias, 2012; 

Marraccini et al. 2015; Petrov et al. 2009). 

(b) Secondly, some factors that rank among the top determinants for a type of LULC 

change, may have a strong positive or negative correlation coefficient with the 

phenomenon. For instance, the slope and elevation variables, rank high in the urban 

categories with strong negative correlation coefficients, mostly due to the topography 

of Attica, limiting the majority of settlements within the plains. 

(c) Finally, a possible important limitation that should be noted is that, all these patterns 

and numbers are case-specific and the conclusions drawn from the quantitative insights 

might not be transferable to other regions. This is mostly due to specificities present 

only in Attica, for example, the physical constraints related to the topography, the 

cultural choices for primary and secondary housing, or the presence or absence of a 

regulatory planning mechanism. Future research directions should include cross-cases 

comparison with areas that share common characteristics with Attica, e.g. coastal areas, 

Mediterranean administrative regions that include a big metropolitan area and areas 

with rapid socio-economic changes.  

5.3 Multi-resolution sensitivity analysis 

This paper demonstrated the importance of a multiple scales analysis, by incorporating 

in the modelling framework data derived from multiple sources, expressed at various 

scales and resolution. Given that, the data used as input in any model, affect the 



outcomes, and in turn the usefulness and the accuracy of the model, studies that utilize 

only data that concern a single scale or spatial resolution, fail to account for a wide 

range of information. Moreover, their transferability is limited (Veldkamp et al. 2001). 

Data expressed at coarse scales might hold information and patterns that are 

undetectable at finer scales and vice versa (Brown et al. 2013; Van Delden et al. 2011; 

Verburg et al. 2004). Furthermore, factors that determine a LULC change, might 

operate at a distance from the area of focus. Thus, when dealing with a system that 

involves multiple nonlinear relationships and various proximate and underlying factors, 

it is necessary to consider all available information (Larondelle & Lauf, 2016). Here, 

we exploited all possible resources and efficiently combined and integrated the 

available multi-scale and multi-resolution data. 

Additionally, the simulation results were subjected to a multiple resolution sensitivity 

analysis. Since the modelling approaches generate outputs that are more or less driven 

by the parameters and characteristics of input data (Kocabas & Dragicevic, 2006; Van 

Delden et al. 2011), the results obtained by this approach are consistent to all pixel sizes 

and thus insensitive to the effect of pixel size. 

4. Conclusions 

This paper demonstrated an integrated approach to explore potential future LULC 

dynamics under different scenarios that reflect different economic performances and 

policy options. Our integrated framework was able to sufficiently: i) take into account 

socioeconomic, biophysical, legislative and land use factors spanning a broad spectrum 

of LULC change spatial determinants (proxies); ii) provide insights into hidden patterns 

by taking into account, not only the prominent changes between major LULC 

categories, but also changes in density; iii) take into account the multiple scales 



involved in LULC systems,  and, v) provide results that are insensitive to the spatial 

resolution of the inputs.  
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Table 1 1 

Variable Discription Source Time interval 
Spatial 

resolution 

Territorial variables 

Elevation Elevation in m GLSDEM* (-) 30m 
Slope Slope in degrees GLSDEM (-) 30m 
Aspect Aspect in degrees GLSDEM (-) 30m 
Climate Quality Climate quality index EEA* 1961-1990 1km 

Viewshed 
Visibility from residential areas at the parcel level 

(centroids from UA) 
GLSDEM and Urban 

Atlas* 
(-) 30m 

Distance from beaches 
Euclidean distance from beaches signed with a blue 

flag in m 
Ministry of Environment 

& Energy* 
2010 30m 

Distance from the sea Euclidean distance from the shoreline in m  (-) 30m 
Socio-economic variables 

Distance from Education 
centers 

Euclidean distance from public education centers (all 
levels) 

Ministry of Education & 
OSM* 

2010 30m 

Distance from public 
health centers 

Euclidean distance from public health centers 
Society of Information* 

& OSM 
(-) 30m 

Distance from nearest 
town 

Euclidean distance from the center of the nearest 
town (Markopoulo, Paiania, Koropi, Keratea, Artemida) 

in m 
OSM (-) 30m 

Distance from public 
buildings 

Euclidean distance from public buildings  
Society of Information & 

OSM 
 30m 

Distance from public 
health 

Euclidean distance from public hospitals and other 
public health care units in m 

OSM (-) 30m 

Distance from public 
transport 

Euclidean distance from public transport stops (bus, 
metro, tram, suburban train) in m 

OSM & opendata (-) 30m 

Distance from road 
network 

Euclidean distance from road network in m OSM (-) 30m 

Demographics Changes in population density at the municipality level ELSTAT* 1991-2011 30m 

Employment rate 
 Total number of employed persons per total 

population at the municipality level  
ELSTAT 1991-2011 30m 

Unemployment rate 
Total number of unemployed persons per total 

population at the municipality level  
ELSTAT 1991-2011 30m 

Landscape values 
Instagram 

Landscape values quantifyed using Instagram data van Zanten et al. (2016) 2004-2015 1km 

Landscape values Flickr Landscape values quantifyed using Flickr data van Zanten et al. (2016) 2004-2015 1km 
Landscape values 
Panoramio 

Landscape values quantifyed using Panoramio data van Zanten et al. (2016) 2004-2015 1km 

Land use         

Distance from green 
urban areas 

Euclidean distance from green urban patches in m Urban Atlas 2006 30m 

Soil Sealing rate Average soil sealing per municipality EEA 2006-2012 30m 

Tree cover 
Average tree cover canopy percentage per 

municipality 
USGS* 2010 30m 

Built-up rate 
Cumulative total number of new houses built per 

municipality  
ELSTAT 1997-2016 30m 

HeatMap of Enterprizes HeatMap of new enterprises registered to ACCI  ACCI* 1991-2016 30m 

Enterprises count 
Cumulative total number of new enterprises registered 

to ACCI per municipality 
ACCI 1991-2016 30m 

Distance from natural 
reserves 

Euclidean distance from forested patches, areas of 
high nature value and protected areas in m 

Ministry of Environment 
& Energy & OSM & 

Natura 2000  
(-) 30m 

 2 
a Global Land Survey Digital Elevation Model (GLSDEM) http://glcf.umd.edu/data/glsdem/  3 

http://glcf.umd.edu/data/glsdem/
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b European Environmental Agency. https://www.eea.europa.eu/data-and-maps/data/indices-of-1 
climate-soil-and-vegetation-quality-1#tab-metadata 2 
c European Environmental Agency. Urban Atlas. GMES/Copernicus land monitoring services. 3 
https://www.eea.europa.eu/data-and-maps/data/urban-atlas 4 
d Ministry of Environment & Energy. http://geodata.gov.gr/dataset/poioteta-udaton-akton-5 
kolumbeses-2013  6 
e Open Street Map. https://www.openstreetmap.org  7 
f Society of Information. http://geodata.gov.gr/dataset/demosia-kteria 8 
g Hellenic statistical authority. http://www.statistics.gr/ 9 
h van Zanten et al. (2016). PNAS. http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-10 
of-landscape-values-using-social-media-data 11 
i USGS. Global Tree Canopy Cover. 12 
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php  13 
j Athens chamber of commerce and industry 14 
http://www.acci.gr/acci/catalogue/search.jsp?context=201  15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

https://www.eea.europa.eu/data-and-maps/data/indices-of-climate-soil-and-vegetation-quality-1#tab-metadata
https://www.eea.europa.eu/data-and-maps/data/indices-of-climate-soil-and-vegetation-quality-1#tab-metadata
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
http://geodata.gov.gr/dataset/poioteta-udaton-akton-kolumbeses-2013
http://geodata.gov.gr/dataset/poioteta-udaton-akton-kolumbeses-2013
https://www.openstreetmap.org/
http://geodata.gov.gr/dataset/demosia-kteria
http://www.statistics.gr/
http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-of-landscape-values-using-social-media-data
http://geoplaza.vu.nl/data/dataset/continental-scale-quantification-of-landscape-values-using-social-media-data
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
http://www.acci.gr/acci/catalogue/search.jsp?context=201
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Table 2 1 

 2 

From To 
Medium 

development 
High 

development 
Low 

development 

Discontinuous dense urban fabric Continuous urban fabric 0,319 0,392 0,051 
Discontinuous medium density urban 
fabric 

Continuous urban fabric 
0,029 0,040 0,005 

Discontinuous medium density urban 
fabric 

Discontinuous dense urban fabric 
0,356 0,384 0,070 

Discontinuous low density urban fabric Continuous urban fabric 0,001 0,004 0,001 

Discontinuous low density urban fabric Discontinuous dense urban fabric 0,044 0,049 0,008 

Discontinuous low density urban fabric 
Discontinuous medium density urban 
fabric 0,383 0,436 0,022 

Arable land and permanent crops Continuous urban fabric 0,001 0,002 0,000 

Arable land and permanent crops Discontinuous dense urban fabric 0,010 0,019 0,001 

Arable land and permanent crops 
Discontinuous medium density urban 
fabric 0,026 0,043 0,005 

Arable land and permanent crops 
Discontinuous low density urban 
fabric 0,049 0,174 0,055 

Arable land and permanent crops 
Industrial commercial and transport 
units 0,018 0,045 0,014 

Arable land and permanent crops 
Forests Scrubs and other natural 
areas 0,090 0,099 0,083 

Forests Scrubs and other natural areas Continuous urban fabric 0,000 0,000 0,000 

Forests Scrubs and other natural areas Discontinuous dense urban fabric 0,001 0,002 0,000 

Forests Scrubs and other natural areas 
Discontinuous medium density urban 
fabric 0,002 0,004 0,001 

Forests Scrubs and other natural areas 
Discontinuous low density urban 
fabric 0,007 0,029 0,002 

Forests Scrubs and other natural areas 
Industrial commercial and transport 
units 0,001 0,002 0,001 

Forests Scrubs and other natural areas Arable land and permanent crops 0,060 0,064 0,056 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 3 2 

 3 

 
Simulated 

2016         

Observed 
2016 1 2 3 4 5 6 7 Totals P.A 

1 1731 148 18 25 11   1933 89,55 

2 112 1371 78 33 10   1604 85,47 

3 36 77 1293 61 19  1 1487 86,95 

4 3 23 99 1420 7 29 3 1584 89,65 

5 17 21 11 7 529 12  597 88,61 

6  3 9 121 14 957 32 1136 84,24 

7   1 2 14 1 36 1004 1058 94,90 

Totals 1899 1644 1510 1681 591 1034 1040 9399  

U.A 91,2 83,4 85,6 84,5 89,5 92,6 96,5   

O.A 88,36         

 4 

 5 


