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ABSTRACT 

Renal cell carcinoma (RCC) is a common type of cancer worldwide. It is found mainly in 

adults, and its incidence in males is higher than in females.  RCC has different histological 

subtypes, the commonest (>80%) being clear cell RCC (ccRCC), which originates in the 

proximal convoluted tubes. ccRCC is highly resistant to chemotherapy. Even targeted 

therapies do not lead to complete responses in the majority of the patients. New treatment 

options to ccRCC patients need to be developed. 

The lysyl oxidase family consists of lysyl oxidase (LOX) and LOX like enzymes (LOXL). LOX and 

LOXL2 have varying degrees of similarity in their structures and functions. They catalyse the 

crosslinking of the extra cellular matrix (ECM) proteins and promotes tumour progression 

and metastasis. The critical roles of LOX and LOXL2 in cancer (including ccRCC) development 

potentiate them as therapeutic targets. 

In this project, anti-cancerous properties of novel compound-1, 4 and 5 were investigated 

which include studying their effects on the proliferation, viability, adhesion, migration, and 

apoptosis of Caki-2 cells in vitro, as well as their regulation on the expression of LOX and 

LOXL2 and cellular signalling pathways.        

The results show that compound-1, 4 and 5 significantly reduced the expression of LOX/ 

LOXL2 and LOX activity in Caki-2 cells. All the three compounds displayed various degrees of 

anti-proliferation, anti-migration, inhibition of cell-ECM adhesion, and induction of 

apoptosis effects. The anti-ccRCC effects of compound-4, such as hindering cell cycle 

progression and inducing cell apoptosis, were stronger than compound-1 and 5 in vitro. The 

studies on cellular signalling pathways revealed that RRM2, CDKN1B, CXCL16 and CD98HC 

were significantly downregulated in all three compounds treated cells in comparison to the 

negative control. The expressions of MMP9 and CXCL12 were downregulated in compound-

4 and 5 treated cells, but upregulated in compound-1 treated cells. 

In conclusion, this study showed the three novel compounds are potential inhibitors of 

LOX/LOXL2. They displayed variable anti-cancer activities in vitro. They may provide 

potential therapeutic strategies for the treatment of cancer by inhibiting LOX/LOXL2. 

Compound-4 might hold greater therapeutic promise for ccRCC treatment in the future. 
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ABBREVIATIONS AND ACRONYMS 

LOX                 LYSYL OXIDASE 

LOXL2             LYSYL OXIDASE-LIKE 2 

RCC                 RENAL CELL CARCINOMA 

CCRCC             CLEAR CELL RENAL CELL CARCINOMA 

HIF                  HYPOXIA INDUCIBLE FACTOR 

VHL                 VON-HIPPEL LANDAU 

FH                    FUMARATE HYDROTASE 

BHD                 BIRT-HOGG-DUBE 

ARCD               ACQUIRED RENAL CYSTIC DISEASE 

ESRD               END STAGE RENAL DISEASE 

DM                  DIABETES MELLITUS 

TSGS               TUMOUR SUPPRESSOR GENE 

EMT                EPITHELIAL MESENCHYMAL TRANSITION 

PBRM1           POLYBROMO-1 

BAP-1              BRC-1 ASSOCIATED PROTEIN-1 

SETD2             SET DOMAIN CONTAINING 2 

IL-2                  INTERLEUKIN 

IFN-Α               INTERFERON ALPHA 

SRCR                SCAVENGER RECEPTOR CYSTEINE-RICH 

PRO LOX          PRO-PROTEIN 

LTQ                   LYSYL-TYROSYL-QUININE 

CRL                    CYTOKINE RECEPTOR-LIKE 
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MMTV              MOUSE MAMMARY TUMOUR VIRUS 

MMPS               MATRIX METALLOPROTEINASES 

ECACC               EUROPEAN COLLECTION OF AUTHENTIC CELL CULTURES 

FBS                    FOETAL BOVINE SERUM 

CCK-8                CELL COUNTING KIT-8 

DMSO               DIMETHYL SULFOXIDE 

RNA                   RIBONUCLEIC ACID 

CDNA                 COMPLEMENTARY DNA 
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1. Introduction 

Kidney cancer is a type of malignancy that occurs in the tissue of the kidneys; Kidney cancer 

has an incidence of approximately 270,000 worldwide annually, and causing over 115,000 

deaths every year (Ferlay et al, 2014). They consist of a number of histologically and 

genetically distinct types of cancers (Figure 1.1). Each type differs in its clinical course and 

responses to therapy. A patient presenting with a small cancer localized in the kidney, can 

be treated by surgery and can expect a 5 to 10-year 95% chance of survival. However, nearly 

80% of patients presenting with advanced kidney cancer, in which the primary tumour has 

spread to other organs, will die within 24 months (Pascual.D and Borque, 2008). 

 

 

 

 

 

 

 

 

 

Figure 1.1: Histological images showing human epithelial neoplasms of the different types of 

renal cell carcinoma (Taken from Bottaro, 2005). 

There were 12,000 cases of kidney cancer in the UK alone in 2014.  Approximately, 7,839 

(63%) of kidney cancers occur in males and 4,684 (37%) in females, which comes to a 

male/female ratio of around 17:10 (Figure 1.2). The major incidence is in the sixth and 

seventh decades of age (Rubagotti et al, 2006). 
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Figure 1.2: The incidence of kidney cancer in the UK comparing rates of male to female 

cases and rates per 100, 000 (The image was taken from Kidney Cancer UK, 2018). 

1.1 Renal cell carcinoma 

Renal cell carcinoma (RCC) arises from the renal epithelial cells which form the lining of the 

very small tubules in the kidney. RCC accounts for about 85% of kidney cancers. A quarter of 

patients present with locally invasive or metastatic RCC. Median survival for patients with 

metastatic disease is about 13 months. The pathogenesis of RCC is not clearly understood; 

although it has been suggested that the disease may be related to aspects of an individual’s 

lifestyle including smoking cigarettes, obesity, hypertension, End Stage Renal Disease and 

diabetes (Maher, 2013: Di Stefano et al, 2016). 

1.2 Clear cell renal cell carcinoma (ccRCC) 

Clear cell renal cell carcinoma (ccRCC) is the main histological subtype of RCC (Figure 1.3). It 

originates mainly in the proximal convoluted tubules and it is closely associated with 

mutations of Von-hippel Lindau (VHL) gene. VHL mutations lead to stabilization of hypoxia 
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inducible factors (HIF-1α and HIF-2α, also known as HIF1A and EPAS1) in both the sporadic 

and familial forms of ccRCC. (Maher, 2013; Di Stefano et al, 2016).   

1.2.1 Etiology of ccRCC 

The etiological factors associated with ccRCC are gender, ethnic background, smoking, 

obesity and increased blood pressure. 

The gender of an individual is one of the etiological factors affecting the incidence of ccRCC. 

It is generally reported to be higher in males compared to females. Also, an individual’s 

ethnic background is a common factor in the development of ccRCC. The incidence is 

commoner in Europeans and northern American white populations compared to those of 

Asian countries where the incidence is lower.  However, this difference in ethnic groups may 

be due to the variations in the frequency of diagnostic imaging, access to health care and 

the presence of other potential risk factors such as genetic differences. A large number of 

studies have established a strong link between smoking and ccRCC (Moore et al, 2011).  

Meta-analysis of many studies supports a strong link between excess body weight as 

identified by measuring the body mass index (BMI) and ccRCC. Strong evidence has also 

shown a link between elevated blood pressure and ccRCC. The strong evidence is also 

greatly linked to the continuous use of antihypertensive drugs which increases the risk of 

ccRCC (Moore et al, 2011). 
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Figure 1.3: The percentage frequencies of the renal carcinoma subtypes. The genetic basis 

of cancer of the kidney. The Von-Hippel Lindau (VHL) gene is a tumor suppressor which has 

a critical role in acing as a ‘gatekeeper’ for the regulation of growth and differentiation of 

human kidney cancer cells (Kaelin and Maher, 1998). Met receptor tyrosine kinase is a 

receptor specifically for the Hepatocyte growth factor. Met has been suggested to be 

responsible for the growth, invasion and metastasis of many tumours including Papillary 

type 1 RCC, where the Met is upregulated in RCC cell lines ((Lutterbach et al, 2007). 

The Fumarate hydrotase (FH) gene is a hereditary kidney cancer gene. The loss of function 

and mutations that occur in the FH gene have been suggested to be associated with the 

development of hereditary papillary RCC. Close inspection of the gene pathway suggests 

that it is strongly deregulated in papillary RCC compared to other RCC types (Sudarshan, 

Linehan and Neckers, 2007). Birt-Hogg-Dube (BHD) is a syndrome inherited genodermatosis 

which is characterized by a predisposition to RCC. It has been suggested that the loss of 

heterozygosity at the BHD locus occurs in approximately 17% of RCC. Results also suggest 

that BHD acts as a tumor suppressor gene which leads to the development of RCC when 

both copies of the gene become inactivated (Vocke et al, 2005). (The images were taken 

from Battaro, 2005). 
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1.2.2 Etiology of other diseases that lead to ccRCC: 

 

Acquired renal cystic disease (ARCD) consists of multiple hyperplastic renal cysts on each of 

the patient’s kidneys. It is mostly found in patients with end stage renal disease (ESRD) and 

is seen in patients who are on a long-term haemodialysis. Therefore, ARCD is most often 

associated with adenomas and can eventually progress to ccRCC. The incidence of ccRCC in 

ARCD is much higher in the general population, which increases three to six times and in 

severe cases may increase twenty times. This suggests that ARCD is definitely a high risk 

factor for ccRCC. 

Diabetes mellitus (DM) has been reported to be associated with increased risk of ccRCC with 

a relative risk of 1.3 in males compared to 1.7 in females (Fu et al, 2011). 

 

1.2.3 The molecular basis of ccRCC: 

Unlike many other cancers, tumour suppressor genes (TSGS) such as TP53 and RB1 are not 

as frequent in ccRCC. Mutations in TP53 and RB1 are thought to be found in only 11% of all 

types of kidney cancers and TGS and CDKN2A are only mutated in 10% of the ccRCC 

tumours. The VHL gene product and its regulation of the hypoxia inducible factor (HIF) is 

closely linked to the biology of ccRCC. Establishing the link between the VHL gene the VHL 

syndrome of the central nervous system hemagioblastomas, pheochromocytoma/ 

paraganglioma and ccRCC in 1993 rapidly led to the discovery that the VHL mutations tightly 

associated with sporadic ccRCC are present in 90% of the tumours.  Loss of the VHL gene 

function leads to the loss of regulation of the HIF family members including HIF1α, HIF2α 

and HIF3α. Studies conducted using Xenograft showed that the restoration of the VHL 

expression or suppression of the down regulated HIF2α leads to the impairment of these 

tumours (Srinivasan et al, 2015). 
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Figure 1.4: The Patterns of somatic variations in ccRCC samples and all the genes that are 

altered and lead to the formation of ccRCC communications. (Image taken from Munari et 

al, 2014). 

1.2.3.1 VHL and HIF 

The tumour suppressor gene VHL is located on chromosome 3p25 and encodes two 

functionally similar proteins (pVHL) of ~ approximately28-30kDa and 19kDa, which arise 

from; alternative translation initiations. pVHL is a factor with multiple functions but acts 

mainly as an adaptor protein which guides proteins to their different targets many cellular 

processes including angiogenesis, metabolism, glucose uptake, the suppression of epithelial 

to mesenchymal transition (EMT), apoptosis transcription regulation, prevention of 

aneuploidy and secretion of components from ECM. Its best known function is to regulate 

ubiquitination and proteasomal degradation of HIF. 
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Figure 1.5: The molecular targets of the VHL pathway in clear cell renal carcinoma and the 

mutation of the VHL gene in clear cell kidney cancer (Image taken from Linehan, 2004) 

Germline mutations of the VHL gene are spread across three exons and the most common 

mutations that occur are missense-mutations followed b non-sense mutations. Sporadic 

ccRCC has been characterized by the inactivation of the VHL gene by mutation, deletion or 

promoter hyper-methylation in 70% of tumours. Mutations in the VHL leads to HIF1α and 

HIF2α deregulation, effects on the rate of cell growth (Figure 1.5). The VHL mutant tumours 

that expressed both HIF1α and HIF2α (H2 tumours) showed over expression of the 

AKt/mTOR pathway, while the VHL mutant tumours which only expressed HIF2 (H2 

tumours) showed a more rapid replication, and these tumours were marked by over 

expression of Ki-67. Therefore, ccRCC can be characterized as H1H2 or H2 types, each of 

which has a different rate of tumour cell proliferation. The first whole sequencing study of 

ccRCC confirmed that genetic heterogeneity exists in ccRCC. This emphasizes that even 

though the vast majority of ccRCC contain mutated VHL, it is, however likely that the 

majority of patients with ccRCC have a unique gene signature. Although the mutated VHL 
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gene alone is unable to cause sporadic ccRCC mutations that occur within the gene have 

been consistently considered as clear biomarkers (Baldewijns et al, 2010). 

1.2.3.2 Hypoxia-driven tumorigenesis of ccRCC 

Low oxygen levels lead to the accumulation and inactivation of HIFα. HIFα forms complexes 

with HIFβ which leads to the inactivation of a number of genes involved in the angiogenesis 

process (such as VEGFA), proliferation process (TGF-α and EGFR), cell migration and invasion 

(CXCR4) and metabolic shifts towards glycolysis (Glut1), which all eventually contribute to 

ccRCC tumorigenesis (Figure 1.5). The activated HIFα pathway is seen as the key pathway 

that leads to ccRCC due to its ability to activate multiple oncogenic pathways and its 

involvement in establishing abnormal epigenome sequences (Atala, 2012). 

1.2.4 upregulated genes in ccRCC 

 In this study, some upregulated genes, which are associated with the in development and 

aggressiveness of ccRCC, were tested following the treatment of potential LOX-inhibitors. 

The changes of the gene expression profile would indicate the underlying mechanisms of 

the LOX-inhibitors. These genes and their association with ccRCC are outlined below. 

Heat shock-protein (HSP90) and ccRCC: 

Heat shock protein-90 encoded by HSP90 is an essential molecular chaperone in eukaryotes. 

It is involved in the activation of a group of proteins referred to as ‘‘clients, and HIF is one of 

the client proteins. HSP90 is regarded as a master regulator of the hypoxic responses and 

plays a critical role and progression of ccRCC. It has been shown that perturbing HSP90 

function promoted HIF-1α and HIF-2α protein degradation in ccRCC (Bohonowych et al, 

2010; Woodford et al, 2016). 

Ribonucleotide reductase M2 subunit (RRM2) and ccRCC: 

RRM2 encodes for both large and small subunits of the human ribonucleotide reductase 

(RNR) complex. RRM2 in general is overexpressed in ccRCC. It enhances ccRCC tumour to 

become chemo-resistant and initiates cellular invasiveness. Many studies have been 

conducted in order to suppress the RRM2 gene activity (Abudawood et al, 2013; Mark S, 

2004). 
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Hepatocyte growth factor receptor gene (c-MET) and ccRCC: 

c-MET proto-oncogene encodes for the cell-surface receptor tyrosine kinase. c-Met and its 

ligand, hepatocyte growth factor, have been implicated in ccRCC tumour development, 

invasion, migration and angiogenesis. c-MET overexpression is also linked with the 

dysregulation of the VHL /HIF signalling pathway and promotes ccRCC progression and 

metastasis (Harshman and Choueiri, 2013; Shuch et al, 2015; Lalani et al, 2017). 

C-X-C Motif Chemokine Ligand 12 (CXCL12) and ccRCC  

CXCL12 is a constitutively expressed chemokine with very important homeostatic functions. 

Elevated CXCL12 expression has been linked with several inflammatory conditions. A study 

has shown that both growth arrest and hypoxia are potentially important inducers of 

CXCL12 expression. In ccRCC, pVHL coordinately regulates expression of metastasis-

associated genes CXCR4/CXCL12 and MMP2/MMP9 but the exact molecular mechanism of 

this regulation remains unclear (Begona Santiago, 2010; Struckmann et al, 2008).  

Matrix metallopeptidase-9 (MMP9) and ccRCC 

Matrix metallopeptidase-9 (MMP9) is involved in the breakdown of extracellular matrix such 

as type IV and V collagens in normal physiological processes that occur in the human body. 

It involves embryonic development, reproduction, tissue remodeling, disease processes and 

metastasis. High expression level of MMP9 is associated with poor prognosis in patients 

with ccRCC (Deepak et al, 2006; Niu et al, 2018). 

1.2.4.1 Other LOX-inhibitors 

To date, different methods have been studied to inhibit LOX and/or LOXL2 activities, for 

example, using LOX or LOXL2 siRNA, microRNA-26a/b and microRNA-29s, anti-LOX and anti-

LOXL2 antibodies. However, to be generally applicable of these molecules, a number of 

intracellular and extracellular barriers still need to be overcome, such as the difficulty of 

delivering siRNA, miRNA and antibody into cell, low inhibitory efficacy (Osawa et al, 2014; 

Nishikawa et al 2015; Kurozumi et al, 2016; Kato et al, 2017; Barry-Hamilton et al, 2010). 

Therefore, small molecular inhibitors have advantages in inhibiting the activities of 

extracellular and intracellular LOX and LOXL2.  
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β-aminopropionitrile (BAPN) is currently used an irreversible LOX inhibitor in research. 

However, BAPN has variable potency and a long-term side effect including bone deformities 

(Nilsson et al, 2016; Tao Li et al, 2018). PXS compound is a novel haloallylamine-derived, 

small-molecular LOXL2 inhibitor with oral bioavailability. It has high potency and strong 

selectivity for LOXL2. PXS inhibited breast cancer MDA-MB-231 cells proliferation, migration 

and invasion in vitro and reduced primary tumour angiogenesis in athymic nude mice 

(Chang et al. 2017; Stangenberg et al. 2018). Another synthesized compound, (2-

chloropyridin-4-yl) methanamine 20, was shown to be a mostly reversible inhibitor on 

LOXL2 and selective for LOXL2 over LOX (Hutchinson et al, 2017). 

1.3 Treatment of ccRCC 

Kidney cancer including ccRCC is highly resistant to chemotherapy. The principal options for 

ccRCC treatment are surgery, radiation therapy, immunotherapy, molecular-targeted 

therapy which depend on the stage of tumor. Targeted therapy and immunotherapy are 

standard treatments in patients with metastatic disease (Huang et al, 2010) 

1.3.1 Targeted therapy for ccRCC 

In VHL mutated tumours, the overexpression of HIF stimulate signaling pathways involving 

VEGF, PDGF and TGFα (Section 1.2.3 and Figure 1.5). This provides a strategy in the 

treatment of ccRCC by blocking these pathways using targeted therapy. The tyrosine kinase 

inhibitors, sunitinib and Sorafenic, have been used to target VEGF and PDGF. Both drugs 

improved progression-free survival (PFS) in clinical trials and had been approved by the FDA 

for use as therapeutic agents for ccRCC in its advanced stages. Pazopanib and axitinib, two 

newer tyrosine kinase inhibitors, have been recently approved to treat metastatic ccRCC. 

Patients taking pazopanib exhibited an improvement in PFS versus those patients taking a 

placebo both in a first-line setting. Axitinib was examined against sorafenib as a second line 

agent and once again showed improvements in PFS. Two other targeted therapies, 

temsirolimus and everolimus, block the mTOR protein, which is involved in cancer cell 

proliferation. These drugs had also been approved to treatment ccRCC patients by the FDA 

(Huang et al, 2010). 

Unfortunately, targeted therapies do not lead to complete responses in the majority of the 

patients, and eventually patients become refractory to the treatments. To provide a wider 
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range of drug treatment options to ccRCC patients, more newly synthesized agents need to 

be developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The therapeutic targeting methods followed by the LOX family. (This image was 

taken from Barker et al, 2012). 
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1.3.2 Additional newly synthesized drugs for ccRCC treatment 

Nivolumab, an immune checkpoint inhibitor, was approved for advanced ccRCC in the 

United States in 2015 (and in Europe in 2016). Nivolumab blocks PD-1 protein located on T-

cell surfaces, and thus exposes cancer cells to an immune attack. Nivolumab is now the 

treatment of choice for the patients who do not response to first-line treatment (Schrödter 

et al, 2016). Recent study has shown that HIF-2α antagonist, such as PT2399, may have 

potential to treat ccRCC. Current anti-ccRCC drugs including tyrosine kinase inhibitors, 

checkpoint inhibitor, interleukin (IL-2) or interferon alpha (IFN-α), only slightly extend the 

PFS and some of these drugs can cause severe toxic side effects (Nishikawa et al, 2015). 

Therefore, developing new drugs with high PFS effects and minimized toxicities is the 

continuous needs for the treatment of ccRCC (Singer et al, 2012). 

1.4 The characteristics of LOX and LOXL2 

The lysyl oxidase family consists of lysyl oxidase (LOX) and four-LOX like enzymes (LOXL1-

LOXL4). These enzymes are copper amine oxidases which simultaneously catalyse the 

crosslinking of the extra cellular matrix (ECM) proteins such as elastin and collagen. The 

collagen crosslinking in the ECM, caused by LOX and LOXL2 leads to increased stiffness and 

promotes tumor progression and metastasis in the kidney. Both LOX and LOXL2 have 

varying degrees of similarity to each other; however, LOX was also found in the cytoplasm 

and nucleus influencing proliferation and transformation from normal to malignant 

phenotypes (Chang et al, 2017). LOX expressions were found to be upregulated in ccRCC 

tissues compared to their normal counterparts (Fallah et al, 2010). Therefore, targeting LOX 

and LOXL2 proteins may lead to a new strategy for controlling ccRCC development.  

1.4.1 LOX-family structure 

All the LOX-protein family members share a highly-conserved homologous region at their 

carboxyl-terminal (Figure 1.7). This region includes the copper binding motif, cytokine 

receptor-like domain and the residues for lysine tyrosy-lquinone cofactor formation. These 

specific regions contain all the necessary elements that are required for their enzymatic 

activity. However, all the LOX-family members differ in sequence mainly in their amino-

terminal (N-terminal) region. Moreover, human LOX has three glycosylation sites in the N-

terminal region, consisting of Asn81, Asn97 and Asn144 residues which are also required for 
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enzymatic activity. LOXL2 has three predicted glycosylation sites (Asn288, Asn455 and 

Asn644) by mass spectrometry. LOXL2 contains four scavenger receptor cysteine-rich (SRCR) 

domains, which have a vital role in protein-protein interactions. The fourth SRCR in LOXL2 is 

required for full catalytic activity. LOX is secreted as pro-proteins (proLOX) into the 

extracellular space, where it is hydrolyzed by metalloproteinase. Release of the N-terminal 

region activates LOX enzyme (Barker et al 2012; Iturbide et al, 2015).  
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Figures 1.7: The structural homology of the LOX family members which contain a carboxyl 

terminus that is highly conserved and comprises a copper-binding motif in addition to a 

lysyl-tyrosyl-quinone (LTQ) cofactor residue and a cytokine receptor-like(CRL) domain . The 

N-terminal pro-peptides are viable and play a vital role in the substrate specificity and 

function. (The images were taken from (Wu and Zhu, 2015) et al, 2015 and (Barker et al, 

2011). 

 

1.4.2 Biological functions of LOX and LOXL2 

LOX family members are involved in a variety of biological processes. The primary function 

of LOX and LOXL2 is the covalent crosslinking of collagens and elastin in ECM, which is 

required for the structural integrity of many tissues (Erler et al, 2006). In addition to their 

roles in the ECM, LOX and LOXL2 showed other intracellular and extracellular functions 

(Iturbide et al, 2015). 

LOX has shown an important role in gene transcription. LOX transcriptionally regulates 

several gene promoters, like collagen III, elastin, and cyclin D1 and mouse mammary tumor 

virus (MMTV) promoter (Oleggini and Di Donato, 2011). Overexpression of LOX correlates 

with chromatin de-condensation, mitotic abnormalities, cell proliferation and cell survival in 

COS-7 and NRK-49F cells in vitro (Mello et al, 2010). 
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The transfection of ras-transformed NIH 3T3 cells with LOX antisense construct, introduces a 

recognizable change in the chromatin compaction of the cells which leads to a tighter 

organization. It suggests the capability of LOX in having the ability to impact on the 

chromatin structure (Itribude et al, 2015). 

LOXL2 has been involved in gene transcription, cell motility/migration and adhesion, 

angiogenesis and differentiation, demonstrating their ability to affect a wide spectrum of 

biological processes (Martin et al, 2015; Herranz et al, 2012; Millanes-Romero et al, 2013). 

LOXL2 participates in epithelial-mesenchymal transition (EMT), by repressing E-cadherin in a 

Snail1-dependent manner (Peinado et al, 2005). Recently study shows that LOXL2 catalytic 

activity is dispensable for EMT induction (Cuevas et al, 2014). LOXL2 function is also critical 

for chondrocytes differentiation by inducing epigenetic changes of TAF10 (Iftikhar et al, 

2010). Dysregulation of LOXL2 has been linked to many diseases, including osteoarthritis, 

fibrosis and heart diseases (Bais and Goldring, 2017; López-Jiménez et al, 2017; Zou et al, 

2017). 

 

Figure 1.8: The potential role of the LOX family members in the progression of ccRCC. The 

increased expression of the LOX-family in the pre-malignant tissue is greatly linked with 

tumor incidence due to the enhanced malignant transformation by active remodeling of the 

local microenvironment; this in turn leads to increased secretion and deposition of the ECM 
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components, crosslinking and tissue stiffness. (This image was taken from Barker et al, 

2012). 

1.4.3 LOX, LOXL2 and cancer development 

It was found that LOXL2 was significantly upregulated in human ccRCC tumor tissues, 

compared with adjacent noncancerous renal tissues, and this elevated expression correlated 

with the pathologic stages of ccRCC. LOXL2 knockdown suppressed proliferation, migration, 

and invasion of ccRCC cells (Hase et al, 2014). 

It has been suggested that LOX can be either a tumor suppressor and a tumor promotor. 

The tumor suppressor role was supported by over-expression of LOX inducing N1H3T3 cell 

transformation. Knockdown of LOX could restore transformed cells to original N1H3T3 

phenotype (Lee et al, 2010). 

More evidence validated recently backed up the fact that LOX is a metastasis promoter. This 

Studies have shown that LOX mRNA and protein expression is upregulated in various cancer 

types and especially in ccRCC. Collagen and elastin crosslinking catalyzed by LOX and LOXL2 

might contribute to malignant transformation of cells ( (Barker et al, 2011). 

In addition, LOX, may function by synergistically with matrix metalloproteinases (MMPs) in 

the remodeling of the ECM and in the occurrence of metastasis. The coordinated actions of 

LOX and MMPs generate a dynamic pro-tumorigenic microenvironment that enhances 

tumor progression. In addition, the transcriptional regulation of LOX and LOXL2 and 

dysregulation in their expression in certain genetic backgrounds also appears to play an 

important role in tumorigenesis (Janine et al, 2013 and Linghong et al, 2015).). 

The critical roles of LOX and LOXL2 in cancer (including ccRCC) development potentiate LOX 

and LOXL2 as therapeutic targets. Therefore, introducing synthesized novel drugs to target 

LOX/LOXL2, identifying their effects on the bioactivities of ccRCC cells are essential that 

could hold great therapeutic promise for ccRCC patients in the future. 
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1.5 Aim and objectives 

To investigate the effects of new potential drugs, inhibitors of LOX and LOXL2 that are 

potential drugs for treating on ccRCC cells in vitro. 

Objectives 

• To test the levels of LOX/LOXL2 enzymes in ccRCC cell line Caki-2 cells following the 

treatment of new LOX and LOXL2 inhibitors (Compound 1 to 5). 

• To study the effects of the compounds 1 to 5 on the proliferation, viability, cell cycle, 

apoptosis, cell adhesion and migration of Caki-2 cells in vitro. 

• To study the effects of the compounds on the metabolism production of NAD(P)H) of Caki-

2 cells in vitro. 

• To identify the changes in cell signaling pathways in Caki-2 cells ccRCC by observing the 

notch-signaling pathway following the compound treatment using western blot experiments 

and quantitative real time-PCR. 
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2. Methods 

2.1 Cell line and cell culture 

Human Caki-2 cell line used in this investigation was supplied by the European collection of 

Authenticated cell cultures (ECACC). The cell line originates from a kidney tumour in a 69-

year-old Caucasian male. The Caki-2 cells are tumorigenic when tested in nude mice. The 

Caki-2 cell type is epithelial and the growth mode shown by the cells is adherent (Public 

Health England, www.phe-culturecollections.org.uk, 2017). 

Caki-2 cells were cultured in a complete medium consisting of RPMI-1640 (LONZA, UK) 

supplemented with 10% foetal bovine serum (FBS) (LONZA, UK), 10 unit/ml penicillin and 

100µg/ml streptomycin (Sigma Aldrich, UK). The cells were incubated at 37ᵒC and 5% CO2 

until about 80% cell confluence was achieved. Then the cells were used in subsequent. 

Caki-2 cells in continuous culture mode are prone to genetic drifts and susceptible to 

microbial contamination. The established Caki-2 cell line is a valuable resource and its 

replacement is relatively expensive and time consuming. Unused cells were therefore frozen 

down and preserved in liquid nitrogen for long-term storage. 

2.2 Compound preparation 

Potential anti-LOX inhibitors (compound-1,2,3,4,5) were originally synthesised and kindly 

provided by Dr Alan Jones (School of Pharmacy, University of Birmingham, UK). The formula 

and molecular weights (Mr) of these compounds are provided in Table 2.1: 

Table 2.1: the chemical formulas, extract mass and molecular weight of the five compounds: 

Compound type Chemical formula Extract mass Molecular weight 

Compound-1 C5H8H4OS 208.04 208.24 

Compound-2 C15H12N4O2S 312.07 312.35 

Compound-3 C15H19N4O2S 310.03 310.33 

Compound-4 C17H14N4O2S 338.08 338.39 

Compound-5 C15H10N4O2S 310.05 310.33 

http://www.phe-culturecollections.org.uk/
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Unfortunately, proliferation experiments on compound-2 and 3 showed the Caki-2 cell 

growth was greater than the negative control following the treatment with these two 

compounds, which clearly demonstrates that these two compounds did not inhibit Caki-2 

cells growth. Therefore, compound-2 and 3 were excluded from subsequent studies 

Caki-2 cells in all subsequent experiments were treated with compound-1, 4 and 5 

respectively at concentrations of 10, 50 or 200µg/ml and incubated in the same conditions. 

The negative control used in each of the experiments was dimethyl sulfoxide (DMSO) (0.5%, 

V/V) was added to negative control cells in lieu of the test compound-1, 4, or 5. 

2.3 Cell morphology evaluation 

The morphologies of Caki-2 cells treated with or without compound-1, 4 and 5 were 

analysed using an inverted microscopy (Zeiss Primo Vert, Thermo Fisher Scientific). 

Representative cell images were using (ZEN software).  

2.4 Proliferation assay 

A cell counting kit-8 (CCK-8) (Dojindo molecular techniques.INC.UK) was used to analyse the 

Caki-2 cell proliferation following the treatment with compound-1, 4 and 5. The cell 

counting kit-8 (CCK-8) uses a sensitive colorimetric assay to determine the viability of cells in 

proliferation and cytotoxicity assays. Its reagents contain highly water soluble tetrazolium 

salt, WST-8, which is reduced by dehydrogenase activities in the cells to an orange coloured 

formazan dye. This type of dye is soluble in the tissue culture media. Therefore, the amount 

of formazan dye generated by the activities of the dehydrogenases in cells is directly 

proportional to the number of living cells (Dojindo, http://www.dojindo.eu.com, 2018). 

The Caki-2 cells were seeded in 96-well plates at a concentration of 1.5-3 X 105 cell/ml, and 

100 µl per well. The cells were treated with compound- 1, 4 and 5 at different 

concentrations of 10, 50 or 200 µg/ml for 24, 48 and 72 hours. The negative control cells 

were described in Section 2.2. At the end of compound-treatment, the cells were cultured 

with 10 µl of the CCK-8 solution per well and incubated for 60 minutes at 37˚C with 5% CO2. 

The absorbance for the compound treated and untreated Caki-2 cells in each well was 

measured using a Multi-scan GO microplate spectrometer (Thermo Fisher Scientific, UK) at 

450nm. 

http://www.dojindo.eu.com/
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2.5 Trypan blue exclusion assay 

The viability Caki-2 cell were determined using the Trypan blue dye-exclusion test. The Caki-

2 cells at a concentration of 3 X105 cell/ml seeded into 24-well plates were treated with 

compound-1, 4 and 5 at concentrations of 10, 50 and 200µl/ml for 24, 48 and 72 hours 

respectively. Negative control cells as described in Section 2.2 were incubated for the same 

periods. 

Following incubation, the cells in the 24-well plates were trypsinised. A total volume of 15µl 

of cell suspension was equally mixed with 15µl of Trypan blue dye (Sigma) before pipetting 

into a haemocytometer. A light microscope was then used to obtain a total cell count and a 

dead cell count (stained cells) in each of the chambers in the haemocytometer. Then the 

percentage of viable cells was calculated using the equation below: 

 

Viability (%) = 
Total number of cells - Total number of dead cells

Total number of cells
 × 100 

 

 

2.6 Lysyl oxidase activity assay 

Caki-2 cells were treated with Compound-1, 4 and 5 at concentrations of 10, 50 and 200 

µl/ml for 24, 48 and 72 hours respectively and the negative control cells were treated with 

DMSO (Section 2.2). Then 50 µl of each of the treated Caki-2 cell medium was pipetted into 

a black-walled 96-well plate (Sigma Aldrich, UK) along with 50µl of LOX-activity assay 

reaction mixture (Abcam, UK). The 96-well plate was sealed with aluminium foil to protect 

the mixture from the light and incubated at 37˚C for 30 minutes. The SynergyTM HT Multi-

Detection Microplate Reader BioTek, UK) was used to analyse the lysyl oxidase enzyme 

activity by measuring the fluorescence produced (Ex/Em= 540/590 nm). 

 

 

 



ABIR ALKHFAJI                                                           MSc BY RESEARCH                                                                   MMU 
 

31 | P a g e  
 

2.7 RNA extraction method 

Ribonucleic acid (RNA) extraction was carried out using a total RNA extraction kit and 

protocol (EZ-RNAII) (BI, Biological Industries, Israel) Compound-1, 4 and 5 treated Caki-2 

cells and negative control cells were harvested after culture for 48 hours. The cell pellet 

were homogenised in 0.5ml of denaturation solution and incubated for 5 minutes at room 

temperature. Then 0.4ml of phenol was added to each sample, followed by 0.09ml of 1-

Bromo-3-Chloroproane and the mixture was left at room temperature for 10 minutes after 

being vigorously shaken. The mixtures were then centrifuged at 12,000g for 15 minutes at 

4˚C. The RNA in the upper aqueous phase were extracted and placed in separate tubes with 

0.5ml per tube of isopropanol. The sample were then incubated at room temperature for 10 

minutes followed by centrifugation at 12,000 x g for 8 minutes and the supernatant was 

discarded. The remaining RNA pellet was washed thoroughly using 75% ethanol and once 

again centrifuged at 7,500g for 5 minutes at 4˚C and then dissolved in RNase-free water. 

Finally, a nanodrop 2000 machine (Thermo-Scientific) was used in order to quantify the 

RNA.  

2.8 cDNA synthesis 

After the RNA extraction cDNA was prepared using a double strand cDNA synthesis kit 

(ImProm-II™ Reverse transcription system, Promega, UK). The reagents for each reaction 

included 4µl of 25nM MgCl2, 4µl of ImProm-II 5X reaction buffer, 1µl of reverse 

transcriptase, 0.5µl of Ribonuclease inhibitor, 0.5µl of Oligo (dT)15, 4.5µl of nuclease-free 

water and 1µg of RNA a complete final volume of 20µl. The mixtures were incubated in a Q-

cycler II (Quanta Biotech, UK) at 70˚C for 5 minutes, 25˚C for 5 minutes, 42˚C for 1 hour and 

70˚C once again for 15 minutes. The final step included storing the cDNA sample at -20˚C. 

A SensiFAST™ cDNA synthesis kit (BIOLOINE, UK) was also used to synthesise the cDNA. The 

manufacturer’s protocol was followed which included mixing specific amounts of each of 

the reagents to obtain the desired master mix. The reagents for each reaction included 1µg 

RNA, 4µl 5X TransAmp buffer, 1µl reverse transcriptase, and DNase/RNase free-water to a 

final volume of 20µl. The reagents were mixed gently by pipetting. The following program 

was applied by using the (Q-cycler II) thermal cycler, 25 °C for 10 min (primer annealing), 42 

°C for 15 min (reverse transcription), an optional Step included 48 °C for 15 min (for highly-
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structured RNA), 85 °C for 5 min (inactivation) and finally 4 °C in hold. The reaction product 

were then stored at -20 °C until required.  

2.9 Real time polymerase chain reaction (PCR) 

Real time PCR was performed using the prepared cDNA samples to test the expressions of 

LOX and LOXL2 at mRNA levels following treatment with the three compounds. Eleven 

genes related to cell signalling pathways including CASP9, HSP90, CD98HC (Table 2.2) were 

also examined by real time PCR. The values of gene expression in the compound treated 

cells were compared to those in the negative control. The two house-keeping genes 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and actin beta (ACTB) were used as 

controls for normalisation of gene expression. The primers used in this investigation are 

included in Table 2.2 below: 

Table 2.2:  The primers used in Real time PCR gene expression test (all primers were 

purchased from Thermo Fisher Scientific). 
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Gene Forward primers (5’ to 3’) Reverse primers (5’ to 3’) 

LOXL2  

 

AGGATGTCGGTGTGGTGTG TTGCGGTAGGTTGAGAGGAT 

LOX   

 

GAATAACTGCCGAAACTCAAAG GTGTAAAAGCCAATCTCCTGTC 

GAPDH  

 

AGCCACATCGCTCAGACAC 

 

GCCCAATACGACCAAATCC 

ACTB  

 

CCAACCGCGAGAAGATGA 

 

CCAGAGGCGTACAGGGATAG 

CAPS9 

 

AAGCCCAAGCTCTTTTTCATC- 

 

ACTCGTCTTCAGGGGAAGTG 

HSP90  

 

GGGCAACACCTCTACAAGGA 

 

CTTGGGTCTGGGTTTCCTC 

RRM2  

 

CGCCTCCACTATGCTCTCC 

 

GCTAAATCGCTCCACCAAG 

CDKN1B 

 

TTTGACTTGCATGAAGAGAAGC 

 

AGCTGTCTCTGAAAGGGACATT 

MET  

 

GGCATTGAAACTTGAAACTCATATAC 

 

ACTGGGTTGAAATCTTGG 

MMP9 

 

GAACCAATCTCACCGACAGG 

 

GCCACCCGAGTGTAACCATA 

CD98HC  

 

CAACTACCGGGGTGAGAACT 

 

AGCCAAAACTCCAGAGCATC 

VMP  

 

GCACACCTTTCTGCTTTATCTG 

 

CACCTGAGAGGCGAGCTG 

CD26 

 

GCACGGCAACACATTGAA 

 

TGAGGTTCTGAAGGCCTAAATC 

CXCL12  

 

ATGCCGATTCTTCGAAAGC 

 

CCACCTGCACAGCTCAGA 

CXCL16  

 

GCCCTTTCCTATGTGCTGTG 

 

CAGGTATATAATGAACCGGCAGAT 
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The real time PCR reactions included 12.5µl of SYBR® green (Promega), 1.5µl of the forward 

and reverse primers, 8µl of nuclease-free water and 3µl of cDNA to make a total volume of 

25µl for each sample. PCR was carried out in a thermocycler (Stratagene MX3000). The 

samples were incubated at 94°C for 10 minutes followed by 45 amplification cycles of 94°C 

for 30 seconds, 59°C for 30 seconds and 72°C for 30 seconds. Finally, the samples were 

incubated at 72°C for a further 10 minutes of elongation to ensure that the maximum 

amount of dsDNA WAS fully extended. Ct values were recorded. 

Ct values were then used to calculate the fold change of selected gene expression following 

the compound treatment. The equations used are presented below: 

∆CtTarget or housekeeping gene= Cttreated sample −  Ctnegative control sample  

∆∆Ct = ∆CtTarget gene −  ∆CtHousekeeping gene 

Fold change in gene expression = 2−∆∆Ct 

 

2.10 Detection of NAD(P)H-Glo™ production 

The NAD(P)H-Glo™ kit (Promega) was used following the manufacture’s protocol to detect 

the production of NAD(P)H by Caki-2 cells. 

Caki-2 cells were treated with compound-1, 4 and 5 at a concentration of 200µg/ml and 

incubated for 24 hours at 37˚C and 5% CO2. The samples were then placed into a 96 white 

illuminometer-compatible well plate along with the negative controls. A volume of 50µl of 

NAD(P)H-Glo™ detection reagent (Promega) was added to each well and the plate was 

incubated for 60 minutes at room temperature before the luminescence was recorded using 

SynergyTM HT Multi-Detection Microplate reader. 

2.11 Cell cycle flow cytometry assay 

Caki-2 cells (6 X 105 cells/ml) were seeded into a 6-well plate, and treated with 50µg/ml or 

200µg/ml of each compound for 24 hours. The negative control was set as previously 

described (Section 2.2). Following the treatment, the cells were trypsinised and centrifuged 

at 300g for 5 minutes at 4˚C. 
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The cell pellet was re-suspended in 500µl of PBS and fixed by suspending in 3ml of ice cold 

75% ethanol. The cells were then stored overnight at -20˚C. The samples were centrifuged 

at 500g for 10 minutes at 4˚C and re-suspended in 500µl of PBS along with 25µl of 

propodeum iodide (PI) and 20µl of 10mg/ml RNase (Sigma). The samples were then 

centrifuged at 5 minutes at 4˚C incubated in the dark for 30 minutes at 37˚C. Cell pellets 

were re-suspended in 500µl of FACS-binding solution, then analysed via flow cytometry (BD 

FACs Calibre).  

2.12 Annexin V apoptotic detection using fluorescent microscopy assay 

Caki-2 cells treated with compound-1, 4 and 5 at concentrations of 10, 50 or 200µg/ml for 

24 hours. The negative controls were applied (see Section 2.2). Cells were trypsinised, 

centrifuged and re-suspended in 500µl of binding buffer (BD Biosciences, UK). 5µl of PI and 

5µl of Annexin V-FITC (BD Biosciences) were added to the cells, which were then incubated 

for 5 minutes in complete darkness at room temperature. 10µl of cell suspension along with 

30µl of Vectashield DAPI H-1200 were mixed and added onto a glass slide and covered by a 

glass cover slip. The cells are then observed under a using a dual filter which is were set for 

FITC and PI. Cells that had bound Annexin V-FITC displayed green fluorescent staining in the 

plasma membrane, whereas cells that had lost membrane integrity show red fluorescent 

staining in nuclei. Five microscopic field were scanned for counting the number of 

stained/apoptotic cells and total number of cells. 

2.13 Cell adhesion assay 

Caki-2 cells (2 X 104 cells/ml) treated with the three compounds (1,4 and 5) at 

concentrations of 10, 50 and 200 µg/ml respectively for 48 hours before being seeded in 

triplicates on ECM gel-coated (Sigma) 96-well plates. The plates were then incubated at 37˚C 

in a humidified atmosphere with 5% CO2 for 3 hours. The plates were then rinsed gently 

three times with PBS in order to remove any unattached cells. Attached cells in each well 

were fixed with 100% methanol for 5 minutes and then stained with 0.5% crystal violet 

solution for 20 minutes. After three washes with PBS, crystal violet was eluted with 2% SDS 

extraction buffer for 30 minutes and the plate was placed on an orbital shaker at room 

temperature. The optical densities of the Caki-2 cells were measured using a Multi-scan™ 

GO microplate reader (LabSystems) at 620 nm.  
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2.14 Cell migration assay 

Caki-2 cells at a concentration of 2×105 cells/ml in complete medium were seeded in a 24-

well plate (1ml/well) and incubated in a humidified 5% CO2 atmosphere, at 37 °C overnight. 

Cells in each well were subsequently wounded with a sterile pipette tip to produce uniform 

and straight edged cuts. The wounded cell monolayer was washed three times with PBS to 

remove cellular debris and dislodged cells. Cells were incubated for further 24 hours in 

complete medium containing 200 µg/ml compound-1, 4, 5 respectively. Negative control 

was described in Section 2.2. After 24 hours incubation, the medium was removed from 

each well. Cells were rinsed three times with PBS, fixed in ethanol for 5 minutes, and 

allowed to air-dry. The cells were stained with 0.1% methylene blue for 2 minutes and 

washed abundantly with distilled water. The plates were left for air-dry. Pictures of five 

random areas of each wound were taken using phase contrast microscopy at 40X 

magnification. The migration of the cells into the cell denuded area was quantified by 

measuring the distance of migrated cells in each field of view. 

2.15 Statistical analysis 

All experimental assays were repeated at least three times, and the results are expressed as 

mean ±SD. The quantitative experiments were analysed using Student’s T-test. p <0.05 were 

considered significant. 
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3. Results 

Table 3.1 Results summary. Significant effects of each compound on Caki-2 cellular 

processes in vitro are presented as ‘+’, while insignificant effects are presented as ‘-‘, 

untested are presented as ‘u’. a, cell viability at 48 and 72 hours following compounds 

treatment; b, 72 hours cell proliferation; c, 48 hours cell migration;  

 compound-1 

(µg/ml) 

compound-4 

(µg/ml) 

compound-5 

(µg/ml) 

10 50 200 10 50 200 10 50 200 

Reduce cell viability a   + + + + + + + + + 

Inhibit cell proliferation b + + + + + + + + + 

Inhibit LOX activity - - - - + + - + + 

Decrease NAD(P)H 

production 

u u + u u + u u + 

Cell cycle arrest at G1 

phase 

u + + u + + u + + 

Reduce cell adhesion 

(ECM) 

- + + + + + - - - 

Inhibit cell migration c u u - u u + u u + 

Induce cell apoptosis u + + u + + u + + 
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3.1 The effects of compound-1, 4 and 5 on the viability of Caki-2 cells 

Figure 3.1 The percentage of viable and dead Caki-2 cells following 24, 48 and 72 hours 

treatment with compound-1,4 and 5 at a concentration of 10,50, and 200µg/ml are shown 

in figure 3.1 to 3.3. In general, the viabilities of the Caki-2 cells did not show significant 

changes at 24 hours’ treatment with compound-1, 4 and 5 compared to the viability of the 

Caki-2 cells in the negative control. The average percentage of viability of the compounds 

treated Caki-2 cells were between 50-75%, while the negative control cells were 80% (figure 

3.1). 

Following 48 hours treatment with compound-1, 4 and 5, the viability of the Caki-2 cells did 

show significant decrease when compared to the viability of negative control cells (p< 0.05). 

The average percentage of viability of the compounds treated Caki-2 cells were between 19-

59%, while the viability of negative control cells was 80% (Figure 3.2). 

Following 72 hours treatment with compound-1, 4 and 5, the viability of the Caki-2 cells 

were significantly decreased when compared to the viability of negative control cells (p< 

0.05). The average percentage of viability of the compounds treated cells were between 29-

55%, while the viability of negative control cells was 82% (Figure 3.3) 
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Figure 3.1: A graph showing the effect of compound-1, compound-4 and compound-5 (at 

concentrations of 10, 50 and 200µg/ml) on the viability of the Caki-2 cells after 72 hours of 

incubation compared to the untreated negative control in a Trypan blue exclusion assay. 

Data represent mean ± SD, from three measurements in three separate experiments (n = 3).  

Student’s t-test, (*p<0.05, and NS, not significant). 
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Figure 3.2: A graph showing the effect of compound-1, compound-4 and compound-5 (at 

concentrations of 10, 50 and 200µg/ml) on the viability of the Caki-2 cells after 48 hours of 

incubation compared to the untreated negative control in a Trypan blue exclusion assay. Data 

represent mean ± SD, from three measurements in three separate experiments (n = 3).  

Student’s t-test, (*p<0.05, and NS, not significant). 
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Figure 3.3: A graph showing the effect of compound-1, compound-4 and compound-5 (at 

concentrations of 10, 50 and 200µg/ml) on the viability of the Caki-2 cells after 72 hours of incubation 

compared to the untreated negative control in a Trypan blue exclusion assay. Data represent mean ± 

SD, from three measurements in three separate experiments (n = 3).  Student’s t-test, (*p<0.05, and NS, 

not significant). 
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3.2 The effects of compound-1, 4 and 5 on the proliferation of Caki-2 cells 

Figure 3.4 to 3.6 shows the proliferation results of Caki-2 cells following the treatment with 

compound-1, 4 and 5 at a concentration of 10,50 and 200 µg/ml for 24, 48 and 72 hours 

respectively.  

After 24 hours treatment, compound-4 significantly inhibited Caki-2 cell proliferation in 

comparison to the negative control (p <0.05). While the effects of compound-1 and 5 on cell 

proliferation were insignificant (p >0.05) (Figure 3.4). 

Following 48 hours treatment, compound-4 at concentrations of 10, 50 and 200 µg/ml and 

compound-1 at a concentration of 200 µg/ml inhibited Caki-2 cell proliferation significantly 

(P<0.05). However, the effects of compound-1 at lower concentrations of 10 and 50 µg/ml, 

and compound-5 on cell proliferation were insignificant (Figure 3.5). 

After 72 hours treatment, all three compound-1, 4 and 5 at concentrations of 10 to 200 

µg/ml significantly inhibited Caki-2 cell proliferation compared to the negative control 

(P<0.01). Compound-4 had greater impact on inhibiting cell proliferation than compound-1 

and 5 (Figure 3.6). 
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 Figure 3.4: A graph showing the effect of compound-1, 4 and 5 at a concentration of 10,50 and 

200µg/ml on the proliferation of the Caki-2 cells after 24 hours of incubation irrespectively, 

compared to the negative control. The cell proliferation was measured using a cell counting Kit-8 

(CCK-8). Data represents mean ± SD, n=6 from three separate experiments (*p<0.05, and NS, not 

significant). 
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Figure 3.5: A graph showing the effect of compound-1, 4 and 5 at a concentration of 10, 50 and 200µg/ml on the 

proliferation of the Caki-2 cells after 48 hours of incubation irrespectively, compared to the negative control. The cell 

proliferation was measured using a cell counting kit-8 (CCK-8). Data represents mean ± SD, n=6 from three separate 

experiments (*p<0.05, and NS, not significant). 
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Figure 3.6: A graph showing the effect of compound-1, 4 and 5 at a concentration of 10,50 and 200µg/ml on the 

proliferation of the Caki-2 cells after 72 hours of incubation irrespectively, compared to the untreated negative 

control. The cell viability was measured using a light microscope. Data represents mean ± SD, n=6 from three 

separate experiments (**p<0.01, *p<0.05, and NS, not significant). 
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3.3 Inhibition of LOX and LOXL2 expression in Caki-2 cells following treatment with 

compound-1, 4 and 5. 

Figure 3.7 shows the qRT-PCR results for the LOX expression in Caki-2 cells following 24 

hours of treatment with compound-1, 4 and 5 at a concentration of 200µg/ml. LOX mRNA 

expression in these three compounds treated cells were all significantly (P<0.05) lower than 

in the negative control cells. The results show that the average fold change was between 

0.09 and 0.26 for the three compounds treated cells compared to the negative control. It 

shows compound-1 has the greatest inhibition on the expression of LOX than compound-5 

and compound-4.  

Figure 3.8 shows the change of LOXL2 mRNA expression in Caki-2 cells after 24 hours of 

treatment with compound-1, 4 and 5 at a concentration of 200µg/ml using a qRT-PCR test. 

The average fold change of LOXL2 was between 0.03-0.27 and across all of the three 

compounds used. LOXL2 mRNA expression in the Caki-2 cells treated with compounds 1 and 

4 were significantly (P<0.05) lower than in the negative control cells but compound-5 did 

not show significant results. 
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Figure 3.7: The change in LOX expression in Caki-2 cells following their treatment with 

compound-1, 4 and 5 compared to negative control. Expression of the housekeeping genes, 

ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 from 

three separate experiments (*, p <0.05). 
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Figures 3.8:  The fold change of LOXL2 expression in Caki-2 cells following the treatment 

with compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (*, p <0.05). 
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3.4 The reduction of LOX activity in Caki-2 cells following treatment with compound-1, 4 

and 5 

Figure 3.9 shows the effect of compound-1, 4 and 5 at a concentration of 10 and 50µg/ml on 

the activity of LOX in Caki-2 cells following 24 hours of treatment. LOX activities in the Caki-2 

cells treated with compound-4 and 5 at 50µg/ml were significantly (p<0.05) lower than the 

negative control cells. Compound-1, at 10/50µg/ml, compound-4 at 10µg/ml and 

compound-5 at 10µg/ml also reduced the LOX activity compared to negative control, but 

the reduction was not significant. 

Figure 3.10 shows the effect of compound-1, 4 and 5 at a concentration of 200µg/ml on the 

activity of LOX in Caki-2 cells following 24 hours of treatment. LOX activities in the Caki-2 

cells treated with compound-4 and 5 were significantly (P<0.05) lower than in the negative 

control cells. Compound-5 also reduced LOX activity compared to negative control, but the 

reduction was not significant. 
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Figure 3.9: The lysyl oxidase (LOX) activities in Caki-2 cells treated with 10 and 50µg/ml 

compound-1, 4 and 5 or without compound (negative control) for 24 hours were measured 

using a fluorescence microplate reader (Ex/Em=540/590nm). Data represents mean ± SD, 

n=6 from three separate experiments. The LOX activity in compound treated samples was 

compared with negative control by student t-test; (*p<0.05, and NS, not significant). 
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Figure 3.10: The lysyl oxidase (LOX) activities in Caki-2 cells treated with 200µg/ml 

compound-1, 4 and 5 or without compound (negative control) for 24 hours were measured 

using a fluorescence microplate reader (Ex/Em=540/590nm). Data represents mean ± SD, 

n=6 from three separate experiments. The LOX activity in compound treated samples was 

compared with negative control by student t-test; (*p<0.05, and NS, not significant). 
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3.5 The effects of compound-1,4 and 5 on the production of NAD(P)H in the Caki-2 cells 

Figure 3.11 shows the NAD(P)H production in the Caki-2 cells following 24 hours of 

treatment with compound-1, 4 and 5 at a concentration of 200µg/ml. NADH and NAD(P)H 

production in the Caki-2 cells treated with the three compounds were all significantly 

(P<0.01) lower than those in the negative control cells. The inhibitory effect of compound-4 

was stronger than compound-1 and 5.  

 

 

Figure 3.11: The production of NADH and NADPH in the Caki-2 cells after treatment with 

compound-1, 4 and 5 at a concentration of 200µg/ml respectively, compared to the 

negative control. The data represents mean ± SD and n=4, Student’s t-test, (**P<0.01 and 

NS, not significant). 
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3.6 The effects of compound-1, 4 and 5 on Caki-2 cell cycle profile 

Figure 3.12 to Figure 3.14 show the phases of cell cycle distribution of Caki-2 cells following 

24 hours treatment with compound-1, 4 and 5 at concentrations of 50 and 200µg/ml 

respectively.  

Caki-2 cells treated with 50 or 200µg/ml compound-1 showed that the proportions of G1-

phase cells increased, while the proportions of G2/M-phase cells decreased significantly 

(P<0.01) compared to the negative control (Figure 3.9). 

Following 24 hours treatment with compound-4 at concentrations of 50 and 200µg/ml, the 

proportions of G1-phase cells increased significantly, while the percentage of S phase and 

G2/M-phase cells decreased significantly compared to the negative control (P<0.01) (Figure 

3.10). High concentration (200µg/ml) of compound-4 had a greater impact on cell cycle 

distribution than low concentration (50µg/ml) (Figure 3.10). 

Similar to compound-1, compound-5 treated Caki-2 cells showed that the proportion of G1-

phase cells increased significantly, while the proportions of G2/M-phase cells decreased 

significantly compared to the negative control (P<0.01) (Figure 3.11). 
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 Figure 3.12: Flow cytometry analysis of cell cycle distribution of Caki-2 cells after 24 hours 

incubation with 50 or 200 µg/ml of compound-1, compared to the negative control cells. 

Data represents mean ± SD, n=6 from three separate experiments (*p<0.05), (**p<0.01), 

Not significant (NS). 
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Figure 3.13: Flow cytometry analysis of cell cycle distribution of Caki-2 cells after 24 hours 

incubation with 50 or 200 µg/ml of compound-4, compared to the negative control cells. 

Data represents mean ± SD, n=6 from three separate experiments (*p<0.05), (**p<0.01), 

Not significant (NS). 
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Figure 3.14: Flow cytometry analysis of cell cycle distribution of Caki-2 cells after 24 hours 

incubation with 50 or 200 µg/ml of compound-5 compared to the negative control cells. 

Data represents mean ± SD, n=6 from three separate experiments (*p<0.05), (**p<0.01), 

Not significant (NS). 
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3.7 The effects of compound-1, 4, and 5 on Caki-2 cell adhesion 

Figure 3.15 to Figure 3.17 show the effects of compound-1, 4 and 5 on Caki-2 cells adhering 

to the ECM gel in- vitro following 48 hours of treatment with each compound at 

concentrations of 10, 50 and 200µg/ml respectively. The Caki-2 cells adhering to the ECM 

results showed that Compound-1 treatment reduced the adhesion of Caki-2 cells to ECM in 

vitro in a dose-dependent manner. Compound-1 at 10µg/ml did not show significant results 

when compared to the negative control. While compound-1 at concentrations of 50 and 

200µg/ml had significant effects (p<0.05 or p<0.01) (Figure 3.12).  

Similar results were shown on compound-4 treated Caki-2 cells. Cell adhesion to ECM in 

vitro were significantly reduced following 10, 50 and 200 µg/ml compound-4 treatment 

when compared to the negative control (p<0.05 or p< 0.01) (Figure 3.13). 

Although there were noticeable decreases in the adhesion of the Caki-2 cells to the ECM 

following treatment with compound-5 at concentrations of 10, 50 and 200µg/ml when 

compared to the Caki-2 cells treated with the negative control. However, none of the results 

were significant (p >0.05) (Figure 3.14). 
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Figure 3.15: The effect of compounds-1 on the Caki-2 cells adhering to ECM gel in vitro. 

Caki-2 cells had been treated with 10, 50 or 200µg/ml for 48 hours before they were added 

to ECM gel-coated 96-well plates. The capacity of compound-treated cells adhering to ECM 

gel were compared to the negative control cells. Data represents mean ± SD, n=6 and 

(*p<0.05), (**p<0.01), Not significant (NS).  
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Figure 3.16: The effect of compounds-4 on the Caki-2 cells adhering to ECM gel in vitro. 

Caki-2 cells had been treated with 10, 50 or 200µg/ml for 48 hours before they were added 

to ECM gel-coated 96-well plates. The capacity of compound-treated cells adhering to ECM 

gel were compared to the negative control cells. Data represents mean ± SD, n=6 and 

(*p<0.05), (**p<0.01), Not significant (NS). 
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Figure 3.17: The effect of compound-5 on the Caki-2 cells adhering to ECM gel in vitro. Caki-

2 cells had been treated with 10, 50 or 200µg/ml compound-5 for 48 hours before they 

were added to ECM gel-coated 96-well plates. The capacity of compound-treated cells 

adhering to ECM gel were compared to the negative control cells. Data represents mean ± 

SD, n=6 and (*p<0.05), (**p<0.01), Not significant (NS).  
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3.8 The effects of the three compounds- (1, 4 and 5) on the migration distance of the Caki-

2 cells in vitro 

Figure 3.18 shows the effect of compound-1, 4 and 5 at 200µg/ml on Caki-2 cell migration 

over a period of 24 hours in-vitro compared to the negative control, compound-1, 4 and 5 

significantly inhibited Caki-2 cell migration (p<0.05). 

Figure 1.19 shows the effect of compound-1, 4 and 5 at 200µg/ml on Caki-2 cell migration 

over a period of 48 hours in-vitro compared to the negative control, compound-4 and 

compound-5 significantly inhibited Caki-2 cell migration (p<0.05). While the effect of 

compound-1 was not significant 

 

 

Figure 3.18: The effect of 200µg/ml compound-1, 4 and 5 on Caki-2 cells migration over a 

period of 24 hours in-vitro. The migration distance of compound-treated Caki-2 cells was 

compared to the negative control cells. Data represent mean ± SD, n=6 from three separate 

experiments (*p<0.05) and Not significant (NS). 
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Figure 3.19: The effect of 200µg/ml compound-1, 4 and 5 on Caki-2 cells migration over a 

period of 48 hours in-vitro. The migration distance of compound-treated Caki-2 cells was 

compared to the negative control cells. Data represent mean ± SD, n=6 from three separate 

experiments (*p<0.05) and Not significant (NS). 
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3.9.1 Alterations in gene expression in Caki-2 cells following the treatment with 

compound-1, 4 and 5 

Following 24 hours of incubation with compound-1,4 and 5 at a concentration of 200µg/ml, 

the expressions of genes associated with cell proliferation, migration, adhesion and 

apoptotic signalling pathways were tested using qRT-PCR, and results are shown in Figure 

3.20 to Figure 3.27. 

3.9.2 Changes in the expression of cell growth-controlling genes RRM2 and CDKN1B  

Figure 3.20 shows RRM2 mRNA expression in the Caki-2 cells treated with compounds 1, 4 

and 5 were significantly reduced between 0.01-fold to 0.27-fold compared to its expression 

in the negative control cells (p<0.05).  

 

Figure 3.20: The fold change of RRM2 expression in Caki-2 cells following the treatment with 

compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (*, p <0.05, **p<0.01). 
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Figure 3.21 shows the downregulation of CDKN1B mRNA expression in Caki-2 cells following 

treatment with compound-1,4 and 5 at a concentration of 200µg/ml. The average fold 

change of CDKN1B expression was between 0.03 and 0.28 in the three compounds treated 

cells compared to negative control. The effects of compound-4 on CDKN1B expression was 

greater than compound-1 and 5. 

 

 

Figure 3.21: The fold change of CDKN1B expression in Caki-2 cells following the treatment 

with compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (*, p <0.05, NS, p>0.05). 
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3.9.3 Changes in the expression of cell migration and adhesion-associated genes  

Figure 3.22 shows that MMP9 mRNA expressions in Caki-2 cells following 24 hours 

incubation with 200µg/ml compound-4 and 5 were significantly downregulated compared 

to its expression in the negative control (p<0.05). While in compound-1 treated cells, MMP9 

expression was upregulated.   

 

Figure 3.22: The fold change of MMP9 expression in Caki-2 cells following the treatment 

with compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (*, p <0.05, NS, p>0.05). 
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Figure 3.23 shows that the changes of CXCH12 mRNA expression in Caki-2 cells after 24 

hours incubation with 200µg/ml compound-1, 4 and 5 were similar to the changes of MMP9 

expression. CXCH12 expression was upregulated in compound-1 treated cells, but 

downregulated in compound-4 and 5 treated cells (p<0.05) compared to its expression in 

negative control. 

 

Figure 3.23: The fold change of CXCH12 expression in Caki-2 cells following the treatment 

with compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (**p<0.01, *, p <0.05, NS, p>0.05). 
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Figure 3.24 shows the changes of VMP1 mRNA expression in Caki-2 cells after 24 hours of 

incubation with compound-1,4 and 5 at a concentration of 200µg/ml using a qRT-PCR test. 

The average fold change of VMP1 expression was between 0.01 and 0.32 across all of the 

three compounds used. VMP1 mRNA expression in the Caki-2 cells treated with compound-

4 and 5 was significantly (P<0.01) down-regulated compared to the negative control cells, 

compound-1 also showed significantly (p<0.05) lower results when compared to the 

negative control. The impact of compound-5 on VMP1 expression was greater than 

compound-4 and compound-1. 

 

Figure 3.24: The fold change VMP1 expression in Caki-2 cells following the treatment with 

compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (**p<0.01, *, p <0.05, NS). 
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Figure 3.25 Shows CD98HC mRNA expression in Caki-2 cells following 24 hours of incubation 

with 200µg/ml compound-1, 4 and 5 were downregulated 0.01-fold to 0.5-fold compared to 

its expression in the negative control. However, the downregulation was only significant in 

compound-1 and 5 treated cells (p<0.05/p<0.01). 

 

 

Figure 3.25: The fold change CD98HC expression in Caki-2 cells following the treatment with 

compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (*, p <0.05, NS, p>0.05). 

 

 

 

 

 



ABIR ALKHFAJI                                                           MSc BY RESEARCH                                                                   MMU 
 

69 | P a g e  
 

Figure 3.26 shows that CXCR16 mRNA expression in Caki-2 cells following 24 hours 

incubation with 200µg/ml compound-1, 4 and 5 were significantly downregulated 0.005-fold 

to 0.13-fold compared to its expression in the negative control (p<0.01). 

 

 

Figure 3.26: The fold change CXCR16 expression in Caki-2 cells following the treatment with 

compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (**, P<0.01, *, p <0.05). 
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3.9.4 Changes in the expression of cell apoptosis-associated gene CASPA9  

Figure 3.27 shows that CASPA9 mRNA expression in Caki-2 cells following 24 hours 

incubation with compound-1 was significantly upregulated 2.2-fold (p<0.05) compared to its 

expression in negative control. However, in compound-4 and 5 treated cells, CASPA9 

expression were downregulated. 

 

 

Figure 3.27: The fold change CASPA9 expression in Caki-2 cells following the treatment with 

compound-1, 4 and 5 were compared to negative control. Expression of housekeeping 

genes, ß-Actin and GAPDH, were used for normalization.  Data represent mean ± SD, n=6 

from three separate experiments. (*, p <0.05, NS, p>0.05). 

 

 

 

 



ABIR ALKHFAJI                                                           MSc BY RESEARCH                                                                   MMU 
 

71 | P a g e  
 

3.10 The effect of compound-1, 4 and 5 on the apoptotic activity of the Caki-2 cells 

Figure 3.28 shows the apoptotic activity of the Caki-2 cells following 24 hours of treatment 

with compound-1, 4 and 5 at a concentration of 50 and 200µg/ml. More apoptotic cells 

were observed when Caki-2 were treated with compound-1, 4 and 5 compared to the 

negative control cells. The differences were significant (p< 0.01). The higher concentration 

200µg/ml had a greater effect than the lower concentration 50 µg/ml. 

Figure 3.29-3.32 shows fluorescent images of the apoptotic activity of the Caki-2 cells 

following 24 hours of treatment with compound-1, 4 and 5 at a concentration of 50 and 

200µg/ml. More apoptotic cells (red) cells were observed in the images of the Caki-2 cells 

treated with compound-1, 4 and 5 compared to the negative control which showed more 

viable (green) cells. The Caki-2 cells treated with higher (200µg/ml) concentrations showed 

more apoptotic cells compared to the lower concentrations (50µg/ml). 
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Figure 3.28: The effect of compound-1, 4 and 5 at a concentration of 50 and 200µg/ml on 

the apoptosis of Caki-2 cells after 24 hours of incubation irrespectively, compared to the 

negative control. The apoptotic cells were measured using fluorescent microscope. Data 

represent mean ± SD, from six measurements in three separate experiments (n = 3).  

Student’s t-test, (**p<0.01, and NS, not significant). 

 

 

 

 

 

 



ABIR ALKHFAJI                                                           MSc BY RESEARCH                                                                   MMU 
 

73 | P a g e  
 

 

(A) 

 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 

 

Figure 3.29: Fluorescent images showing apoptotic activity of Caki-2 cells using fluorescent 

microscopy assay following 24 hours treatment with negative control. Then the Cak-2 cells 

were then fixed and treated with both DAPI (blue) and Anti-Fluorescein antibody (green). 
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Figure 3.30: Fluorescent images showing apoptotic activity of Caki-2 cells using fluorescent 

microscopy assay following 24 hours treatment with compound-1 at a concentration of (A) 

50µg/ml and (B) 200µg/ml. Then the Caki-2 cells were then fixed and treated with both DAPI 

(blue) and Anti-Fluorescein antibody (green). 
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Figure 3.31: Fluorescent images showing apoptotic activity of Caki-2 cells using fluorescent 

microscopy assay following 24 hours treatment with compound-4 at a concentration of (A) 

50µg/ml and (B) 200µg/ml. Then the Caki-2 cells were then fixed and treated with both DAPI 

(blue) and Anti-Fluorescein antibody (green). 
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Figure 3.32: Fluorescent images showing apoptotic activity of Caki-2 cells using fluorescent 

microscopy assay following 24 hours treatment with compound-5 at a concentration of (A) 

50µg/ml and (B) 200µg/ml. Then the Caki-2 cells were then fixed and treated with both DAPI 

(blue) and Anti-Fluorescein antibody (green). 
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4. Discussion 

The novel compounds (compound-1 to 5) not previously tested for anti-cancerous 

properties were investigated for their potential as therapeutic agents for ccRCC by targeting 

LOX/LOXL2. ccRCC is the most frequent malignancy of the kidneys. Despite all the current 

therapies for ccRCC, the tumours eventually become resistant to them (Rizzo and Porta, 

2017). Identifying new molecular targets and developing potentially novel drugs against 

them is essential for treatment of ccRCC patients. 

Emerging evidence indicate that tumour microenvironment is pivotal in tumour initiation 

and progression. Increased ECM deposition and remodelling creates a microenvironment 

that promotes tumour progression by affecting cell-cell adhesion and cell migration. ECM 

remodelling also elevates growth factor signalling (Bissell and Hines, 2011; Gilkes et al, 

2013; Sangaletti et al, 2017); Aberrant expression and activity of LOX and LOXL2 have been 

reported in many cancers, including in ccRCC. LOX and LOXL2 initiate the crosslinking of 

elastin and collagens, play important roles in remodelling the tumour microenvironment. 

Inhibitions of LOX and LOXL2 have shown considerable promise and have become exciting 

novel targets for the treatment and prevention of tumour metastasis (Schietke et al, 2012; 

Barker et al, 2012; Wang et al, 2016). In this study, three newly synthesised drugs 

(compound-1, 4 and 5) were evaluated on their inhibition of LOX and LOXL2 expression and 

on LOX activity. 

It was found that compound-4 and 5 significantly inhibited LOX-activity in Caki-2 cells 

(P<0.05) following 24 hours’ treatment. The inhibitory effect on LOX-activity by compound-1 

was shown, but not significant (Figure 3.9 and 3.10). The significant downregulations of both 

LOX and LOXL2 mRNA expressions in Caki-2 cells following the treatment with compound-1, 

4 and 5 were demonstrated by qRT-PCR (Figures 3.7 and 3.8). These results indicate three 

newly synthesised compound-1, 4 and 5 are potential inhibitors of LOX and LOXL2. They can 

be used to target overexpressed LOX/LOXL2 in cancer cells if they are able to interfere 

cancer cell properties. Therefore, the effects of the three compounds on cell proliferation, 

adhesion, migration, and survival of Caki-2 cells in vitro and changes in cell signalling gene 

expressions were evaluated in the present study. 
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The results show that compound-1, 4 and 5 decreased the viability of Caki-2 cells 

significantly following the treatment for 24 and 48 hours in vitro (Figures 3.5 and 3.6). The 

cell proliferation was also inhibited significantly following the 72 hours’ treatment with 

compound-1, 4 and 5 respectively in comparison with negative control (Figure 3.6). The 

results indicate that compound-4 has greater impact on Caki-2 cell viability and proliferation 

than compound-1 and 5. Downregulation of LOX activity and LOX/LOXL2 expression may 

directly linked to the decreased proliferation and viability of Caki-2 cells. 

These findings were supported by similar previous studies carried out to investigate the 

roles of LOX and LOXL enzymes in proliferation of prostate cancer (Nilsson et al, 2016) and 

colorectal cancer (Tang et al, 2017). Inhibition of LOX enzymes, using beta-

aminopropionitrile (BAPN) reduced rat prostate tumour AT-1 cell growth in vitro (Nilsson et 

al, 2016). Tang et al (2017) demonstrated that knocked-down of LOX expression in 

colorectal cancer cell line (SW480) cells displayed a significant reduction in cell proliferation 

compared to the negative control cells. Their study also showed that the role of LOX in 

colorectal cancer cell proliferation was completely dependent on the activation of SRC. 

Interestingly, downregulation of ribonucleotide reductase subunit 2 (RRM2) gene 

expression was found in compound-1, 4 and 5 treated cells in this study (Figure 3.20). RRM2 

expression is essential for the proliferation of cancer cell (Yoshida et al, 2016). The 

stimulation of RRM2 gene expression in proliferating cells involves SRC and ERK1/2 kinases 

(Fredriksson and Nedergaard, 2002). It suggests that the anti-proliferation effects of 

compound-1, 4 and 5 on Caki-2 cells may through inhibition of LOX/LOXL2 mediated via 

RRM2 and SRC involved cell signalling pathways. Further studies are required to confirm it. 

Moreover, the cell cycle analyses reveal that the treatment with three compounds caused 

increased percentage of Caki-2 cells in the G1 phase, while percentage of cells in the S phase 

and G2/M phase decreased compared to the negative control (Figures 3.12, 3.13, and 3.14). 

Cell apoptotic analyses show that treatment with compound-1, 4 and 5 increased apoptotic 

cell numbers in Caki-2 cells (Figure 3.28). The apoptotic data were consistent with the cell 

viability data; and both showed the inhibitory effects of compound-4 was greater than 

compound-1 and 5 on cell survival. These results indicate that compound-1, 4 and 5 inhibit 

the proliferation of Caki-2 cells might by arresting cells in the G1 phase and inducing cell 

apoptosis. Unexpectedly, gene expression analysis showed that CDKN1B was downregulated 
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in compound-1, 4 and 5 treated cells compared to negative control (Figure 3.21). CDKN1B 

encodes p27Kip1 protein, which belongs to the cyclin dependent kinase family. Increased 

p27Kip1 is usually associated with the cell cycle arrest in the G1 phase (Sharma and Pledger, 

2016).  

Recent studies have identified CDK-independent functions of p27Kip1. Depending on the 

cell context, the activities of CDKN1B encoded protein might turn pro-oncogenic and even 

stimulate cancer progression (Bencivenga et al, 2017). Thus, the roles of CDKN1B gene in 

the anti-cancer activities of compound-1, 4 and 5 need further investigation. 

The mRNA expression of cell apoptosis-associated gene CASPA9 in Caki-2 cells was 

significantly upregulated following compound-1 treatment, however, its expression were 

downregulated in compound-4 and 5 treated cells when compared to negative control 

(Figure 3.27). CASPA9 gene encodes an initiator caspase protein, caspase-9. The process of 

apoptosis is mediated by the sequential activation of caspases. Two pathways lead to the 

activation of caspases: the intrinsic pathway (mitochondrial apoptosis) and the extrinsic 

pathway associated with membrane receptors and their ligands (Matsuura et al, 2016). This 

result indicates compound-1 may induce Caki-2 cell apoptosis by activating intrinsic 

apoptosis pathway, which includes the stimulation of caspase-9 expression. While whether 

compound-4 and 5 mediated apoptosis through extrinsic apoptotic pathway need further 

study. 

Chang et al, (2017) demonstrated that LOXL2 inhibition did not directly induce apoptosis in 

the MDA-BM-321 breast cancer cells when PXS-S2A inhibitor was used, whereas, a dual 

inhibition of LOX and LOXL2 when PXS-S1A inhibitor was used, a significant increase in 

apoptosis was shown when compared to the negative control. Therefore, a combination of 

compound-4 and compound-1 or 5 can be used on Caki-2 cells in the future to see whether 

they can synergistically increase the anti-apoptotic effects. 

Cancer cells exhibit higher glucose consumption and NAD(P)H production. The amount of 

intracellular NAD(P)H is higher in tumour cells than in normal cells (Matsuura et al, 2016). 

This study shows the reduction of NAD(P)H in compound-4 treated Caki-2 cells was greater 

than in compound-1 and 5 treated cells (Figure 3.11). Cancer-associated alterations in 

metabolism have been viewed as an indirect response to cell proliferation and survival 
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signals (Heiden 2011). The reduction of NAD(P)H generation caused by the compounds 

treatment further supports the proliferation and viability results obtained in this study. 

Metastasis is one of the hallmarks of cancer cells. It is the major cause of cancer-associated 

death. The capability of cancer cell to invade and metastasize depends on the ability of cell 

migration, cell-cell and cell-ECM adhesion (Hanahan and Weinberg, 2011). LOX and LOXL2 

promote tumour progression and metastasis (Wang et al, 2016). Overexpression of LOXL2 in 

N87 and MKN45 gastric cancer cell lines led to a significant enhancement of cell adhesion to 

fibronectin and collagen I matrix in vitro (Peng et al, 2009). In this study, compound-1 and 4 

significantly reduced the adhesion of Caki-2 cells to ECM in vitro (p<0.05). The reduction was 

in a dose-dependent manner, higher dose caused a greater effect (Figures 3.15 and 3.16). 

While the decrease in cell adhesion to the ECM caused by compound-5 was not significant 

(p >0.05) (Figure 3.17). Wound-healing cell migration assays showed that compound-4 and 

compound-5 significantly inhibited Caki-2 cell migration (p<0.05) following 24 hours 

treatment compared to the negative control (Figures 3.18, 3.19). Compound-1 treatment 

also slowed down the cell migration, but was not significant compared to the negative 

control (Figure 3.19). These results are in agreement with previous finding by Hase et al 

(2014). They found that knockdown LOXL2 expression by siRNA significantly inhibited 

migration of human ccRCC cell line 786-O cells in vitro. Similar result was shown in 

colorectal cancer cells that LOXL2 knockdown led to a significant reduction in the migratory 

potential of SW480 cells (Park et al, 2017). Data from current study and previous studies 

suggest that compound-1, 4 and 5 have potential to control ccRCC metastasis by inhibiting 

LOX and LOXL2. Compound-4 may have a greater potential than compound-1 and 5. As the 

three compounds affected the properties of Caki-2 cell migration and adhesion differently, it 

is probable that different mechanisms might be involved in their regulations.  

In this study, the changes in expression of cell migration and adhesion-related genes in Caki-

2 cells were identified following the treatment with compounds. Compound-1, 4 and 5 

treatments significantly downregulated CXCL16 and CD98HC mRNA expression in Caki-2 

cells (Figures 3.25 and 3.26). CXCL16 is a transmembrane chemokine, not only found on 

immune cells, but also on cancer cells. High expression of CXCL16 promotes metastasis of 

lung cancer (Liang et al, 2018). CXCL16-CXCR6 interactions in prostate cancer cells promote 

αvβ3 integrin clustering, modify cellular adhesion as well as enhance migration (Singh et al, 
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2016). Overexpression of CD98HC occurs in a variety of cancers. CD98HC regulates 

adhesion-induced intracellular signal transduction via integrin. A CD98hc/integrin 

interaction was required for ccRCC cell migration (Poettler et al, 2013). Hase et al, (2014) 

have shown that LOXL2 promotes tumour progression by regulating integrin α5 levels in 

RCC. These data suggest that compound-1, 4 and 5 suppressed Caki-2 cell adhesion and 

migration by targeting LOX/LOXL2 might link to down-regulation of CXCL16 and CD98HC and 

their interaction with integrins.  

MMP9 is involved in the breakdown of the extracellular matrix in a normal physiological 

process including embryonic development, reproduction and tissue remodelling (Human 

Genome Resources at NCBI - NCBI, 2018). Expressions of Snail, MMP9 and CXCL12 promote 

RCC metastasis. Snail stimulates MMP9 upregulation of in RCC (Mikami et al, 2011; Pan et 

al, 2006). Park et al (2017) found that LOXL2 participates in the regulation of the expression 

of Snail. In this study, the expressions of MMP9 and CXCL12 were downregulated in 

compound-4 and 5 treated cells (Figures 3.22 and 3.23). This explains the cell migration 

results that down-regulation of MMP9 and CXCL12 led to the suppressed cell migration. In 

compound-1 treated cells, both genes were upregulated, which may link to insignificant 

effects of compound-1 on Caki-2 cell migration.  

VMP1 is a novel cell-cell adhesion protein. VMP1 mRNA level was significantly reduced in 

kidney cancer metastases as compared to primary tumours (Sauermann et al, 2008). 

However, in this study, VMP1 expressions in the Caki-2 cells were decreased following 

compound-1, 4 and 5 treatment (Figure 3.24). Whether these compounds can efficiently 

suppress ccRCC cell metastasis in vivo, and the mechanisms underline their control of cell 

migration and adhesion need further studies. 
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5. Conclusion 

In relation to this, there was significant difference in proliferation rates between the treated 

and untreated cells. Therefore, the proliferation and viability of the Caki-2 cells. 

Additionally, a noticeable and significant decrease was observed in the lox-activity, cell 

cycle, migration, adhesion and gene expression after the three inhibitors were introduced. 

these findings highlight the potential of the three compounds in order for them to be used 

after further research as pro-apoptotic drugs and ant-ccRCC therapy. 

In conclusion, this study found that three newly synthesized compound-1, 4 and 5 

decreased the expressions of LOX and LOXL2 and reduced LOX activity of Caki-2 cells in vitro. 

They are potentially novel inhibitors for LOX and LOXL2.  The three compounds showed anti-

cancer properties by inhibiting proliferation, migration, cell-ECM adhesion, and stimulating 

apoptosis of Caki-2 cells. Compound-4 has greater effects than compound-1 and 5. 

Probably, different cellular signalling pathways and mechanisms are underline their effects. 

These findings highlight the potential of the three compounds in their usage in anti-ccRCC 

therapy. This project represents a preliminary investigation of a new potential therapy for 

ccRCC. The three compounds exhibited promising anti-ccRCC properties worth further 

studies in the further.  
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6. The recommended future work 

This study enabled us to identify the three potential LOX inhibitors and their effects on the 

proliferation, migration, adhesion and survival of Caki-2 cells in vitro. Further studies related 

to the current project may be carried out in the following areas in the future:  

1. To evaluate the inhibition of both extra- and intra-cellular LOX and LOXL2 protein 

expression by western blotting. 

2. To understand the molecular mechanisms underlying the anti-ccRCC effects of 

compound-1, 4 and 5, protein microarray can be utilized to investigate the signalling 

pathways induced by the inhibition of LOX/LOXL2 in a broad spectrum.  

3. To see whether there is synergistic increase on the anti-apoptotic effects, a 

combination of compound-4 and compound-1 or 5 can be used on Caki-2 cells. 

4. To reveal whether compound-1, 4 and 5 can efficiently suppress ccRCC cell growth 

and metastasis in vivo, animal models with ccRCC tumour can be applied with the 

administration of these three compounds. 
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                                                                  APPENDICES 

Appendix 1: Microscopic images showing Caki-2 cell morphology at 20% confluence 

 

 

Figure A: Microscopic image showing morphology of the Caki-2 cells at 20% confluence and 

x100 magnification. 
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Appendix 2: Microscopic images showing Caki-2 cell morphology at 90% confluence 

 

 

 

 

 

 

 

 

 

 

 

Figure B: Microscopic image showing morphology of the Caki-2 cells at 90% confluence and 

x100 magnification. 


