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Abstract 

Climate and the environment are key determinants impacting various aspects of 

disease transmission, including lifecycle, survivability and prevalence. Recent 

changes in both the long-term climatology, and short term El Niño events are 

impacting the spatial distribution of disease, increasing the number of people being 

at higher risk of contracting fatal diseases. These changes are particularly 

detrimental in developing countries, where socioeconomic conditions hinder access 

to disease prevention and treatment.  

This thesis explores climate, environment and disease interactions using multiple 

epidemiological modelling methodologies to develop an informative framework 

within which disease risk can be assessed, to aid decision-making. Statistical 

analysis of the impact of extreme events indicate that El Niño has a significant 

impact on the Tanzanian climate, which differs by location. Spatial modelling results 

demonstrate that by 2050 under RCP 8.5 mean malaria risk will initially reduce by 

4.7%, which then reverses to an increase of 8.9% in 2070. Overall, analysis 

indicates increases in mean malaria risk. Biological modelling indicates that the 

predicted increases in malaria risk are likely a result of the reduction in time taken 

to complete the sporogonic and gonotrophic cycles due to increasingly optimum 

environmental conditions. The novel approach applied here contributes the 

development of a new model in environmental epidemiology.  

This thesis concludes that epidemiological modelling results could be beneficial in 

aiding decision makers to prepare for the impact of climate and environmental 

change, with a recommendation to continue research in this area with a particular 

focus on understudied and developing countries.  
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Chapter 1 : Introduction and aims 

1.1 Background 

Tropical diseases are those which are prevalent and unique to tropical regions, 

defined as those between the tropics of Capricorn (23 30’ °S) and Cancer (23 30’ 

°N). Historically, these diseases have been located as such due to suitable climate 

and environment conditions, which support and drive a plethora of diseases. 

Changes in climate, and subsequently, environmental conditions, have resulted in 

many tropical diseases emerging outside of historic altitudinal boundaries, 

alongside re-emerging and re-surging within previous known limits (Pathirana, 

2013).  

Climate and environmental changes are identified as responsible for the emergence 

of diseases outside of previously known boundaries, and increasing mortality in 

current areas (Parham and Michael, 2010; Altizer et al., 2013). This becomes 

increasingly apparent during El Niño conditions, where increases in epidemic 

outbreaks in sub-Saharan countries have been observed (Kilian et al., 1999; Kovats 

et al., 2003). Whilst the underlying biological and ecological determinants of 

infectious tropical diseases are increasingly well understood, the impacts of climate 

change on the epidemiological transition of diseases remain unclear, and are 

becoming increasingly important in epidemiological research (Khormi and Kumar, 

2015).  

At present, it is estimated that 13 million deaths will be attributed to infectious 

diseases, the majority of which will be caused by just a few pathogens and 

parasites: among the 1400 currently recognised (Dye, 2014). Vector-borne 

diseases are anticipated to play a large role in the changing distribution of disease 

as shown in figure 1.1 (IPCC, 1995). However, the specific impact of climate change 

on tropical diseases remains unclear, particularly in comparatively understudied 
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countries which currently possess a high disease burden, such as Tanzania in East 

Africa.  

 

Figure 1.1 - Likelihood of altered disease distribution (UNEP, n.d.). 

This chapter introduces the thesis by discussing the broader context within which 

this research is based, providing an overview of the quantifiable epidemiological, 

climatic relationships in tropical diseases and presents the challenges imposed by 

socioeconomic pressures on the disease ecosystem. An introduction to 

epidemiological modelling and its role in policy and decision guidance is also 

provided. It then outlines the research aims and objectives, and provides the 

specific scope covered within this thesis. It concludes with an outline of the overall 

thesis structure. 
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1.2 Research context 

1.2.1 Determinants of disease distribution 

A wide range of factors have been identified as contributing to disease prevalence. 

These can be split into biological and ecological factors, referring to disease 

bacteria, parasite and disease vector (e.g. mosquitoes) behaviour including biting 

rate, parasite growth rates and reproduction cycles (Hagenlocher et al., 2014; 

Emami et al., 2017). Climate and environmental factors provide suitable 

transmission conditions and habitats. This includes variables such as temperature, 

rainfall, humidity and associated environmental changes including standing water 

and vegetation. Furthermore, underlying environmental factors which support the 

pooling of water such as soil drainage and slope are also influential (Davidson, 

1995; Raso et al., 2009). In contrast to the environmental variables highlighted, 

socio-economic and cultural factors including population density, human behaviour 

and health policy, can all modify disease distribution and prevalence depending 

upon the aim of the specific intervention, or lack of.  

Biological variables are arguably a better understood aspect of disease 

transmission (Khormi and Kumar, 2015). Biological variables dictate the rate at 

which diseases replicate, and the intensity at which they spread (Smith et al., 2014). 

Key biological cycles identified as indicators of epidemic outbreaks from vector-

borne diseases are identified as the sporogonic (parasitic incubation) and 

gonotrophic cycles (reproduction cycle) (Hoshen and Morse, 2004). Transmission 

vectors are poikilothermic, indicating that their temperature is controlled by external 

ambient temperature, which further modifies parasite incubation periods, the 

gonotrophic cycle and survivability (Patz et al., 1998). Furthermore, reproduction 

cycles often require water for egg laying (Lardeux et al., 2008). Thus, external 

conditions must be, at minimum, suitable for biological processes to take place, 
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where intensity varies with increasingly optimum climatic and environmental 

conditions.   

Climatic variables control the local environment which support these biological 

processes and transmission (Teklehaimanot et al., 2004). Temperature plays an 

influential role in supporting parasite and vector reproduction, alongside vector 

survivability and larvae growth. Changes in temperature reduce the time taken to 

complete these processes, and increase transmission potential, for example during 

El Niño conditions (Jones et al., 2007; Parham and Michael, 2010). Temperatures 

which are too high or too low reduce and cease transmission, a feature often 

associated with increased altitude (Bødker et al., 2003). 

Transmission in sub-Saharan Africa often demonstrates seasonality associated with 

rainfall and humidity conditions, with a strong disease abundance relationship 

observed with rainfall (Chabot-Couture et al., 2014). Humidity is poorly understood 

in comparison to temperature and rainfall, with stronger signals observed with air-

borne diseases (Cheesbrough et al., 1995; Martens et al., 1995).Increasing 

research is being conducted to examine humidity, including the research within this 

thesis.   

Sustained transmission requires the presence of a human host. Proximity to 

humans, and subsequent human behaviour, influences exposure to disease 

pathogens or transmitting vectors (Silué et al., 2008). As population density 

increases, this supports quicker transmission via promoting parasite growth, 

bacteria and vector communities, contributing to disease prevalence (Ryan et al., 

2015). However, human behaviour, including use of bed nets, medical treatment 

and natural resistance to diseases resulting from high exposure in endemic 

countries, plays an unquantifiable role in influencing disease prevalence (Thomson 

et al., 1999; Alphey et al., 2010),  
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1.2.2 Epidemiological and climate modelling 

This understanding of the strong interactions between biological and climatological 

variables has led to concerns surrounding the potential impact of climate change on 

the distribution of disease (Khormi and Kumar, 2015). These relationships are 

understood and mathematically characterised through slight abstract variations of 

the epidemiological triangle depicted in figure 1.2 (Diekmann and Heesterbeek, 

2000). As indicated, climate (including rainfall, temperature and humidity) plays a 

role in every aspect of the epidemiological triangle, impacting upon hosts (humans), 

environment, agent (parasites) and if the disease is vector-borne, the transmission 

vector.  

This relationship was initially represented by Sir Ronald Ross in 1897, using a series 

of simple mathematical equations to represent the cycle of the malaria parasite 

within mosquitoes. This model is now known as the Ross model (Finley et al., 2014). 

As new data has become available, accompanied by technological advances, 

several variations and extensions of modelling methods have built upon the Ross 

model to represent current knowledge based upon differing biological and 

climatological factors (Mandal et al., 2011).  
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Figure 1.2 - The epidemiological triangle 

Epidemiological and climate models allow for the examination of various climate, 

environmental and biological elements, where models range from simple 

deterministic mathematical models through to complex-spatially explicit stochastic 

and dynamic decision support systems (Khormi and Kumar, 2015). Such models 

have become a powerful tool in assisting health policy, and decision makers 

overseeing disease prevention and control (Murtaugh et al., 2017).  

1.2.3 Epidemiological modelling and health policy 

Epidemiological models have successfully been used to inform health policy design 

and implementation, through the interface of science and health policy presented in 

figure 1.3 (Samet, 2000). Implementation of policies and the subsequent 

management actions, which have been guided by epidemiological models have 

been identified as playing a positive and critical role in reducing morbidity and 

mortality of epidemic outbreaks (Gu and Novak, 2005; Khormi and Kumar, 2015). 

However, communicating and implementing recommendations discovered from 
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epidemiological studies face numerous barriers. Increases in big data and research 

methodology used is associated with increased complexity of synthesising 

conclusions and results, which need to be clearly communicated to policy 

developers to enable progression (Wardekker et al., 2008; Murtaugh et al., 2017).  

Thus, it is imperative that scientific studies present clear conclusions and 

recommendations to enable uptake of research results into policy and practice.   

 

Figure 1.3 - The interface of science and health policy (Samet, 2000) 

Organisations such as the World Health Organisation (WHO) and the 

Intergovernmental Panel on Climate Change (IPCC) play a crucial role in the 

collection and dissemination of health and climate data, guiding and funding global 

health policies where possible in order to provide order and support in the decision-

making process (Peters et al., 2013; Smith et al., 2014b). Financing policies is a key 

concern and particularly challenging in developing countries, such as across sub-

Saharan Africa. Where non-governmental organisations (NGOs) and impartial 
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governmental bodies are unable to fund policies and preventions to the extent 

required, stakeholders can provide policy funding. However, policy makers are 

required to respond to the needs of the public as well as stakeholders, who provide 

financial backing, which can often influence the implementation of policy in a 

negative way and contain an element of politics (Brown et al., 2012; Mutero et al., 

2014).  

1.3 Research aims and objectives 

The overarching research aim of this thesis is to develop a validated framework for 

the integration of environmental and biophysical information to support health and 

disease decision-making and risk modelling resulting from short and long-term 

climate change. This research aim is investigated through a number of associated 

objectives:  

1. Identify key climatic characteristics and features of Tanzania, including 

assessing sensitivity to El Niño events. 

2. Develop an environmental malaria risk model to model current and future 

malaria risk in Tanzania.  

3. Establish the performance and predictions of a climatologically driven, 

dynamic mathematical-model for Tanzania.  

4. Assess the validity, accuracy and usefulness for prediction of change in 

disease distribution and transmission for Tanzania.  

5. Discuss the potential impact of socioeconomic characteristics, cultural 

behaviours and malaria policies on environmental model predictions.  
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1.4 Scope of the research 

The relationship between climate change, environment and infectious diseases is 

large and complex. This section aims to focus the research by outlining the scope 

covered within this thesis.  

1.4.1 The scope of climate change and epidemiological modelling 

Climate change is referred to as a change in the state of climate, which can be 

identified (e.g. using statistical tests) by changes in the mean and/or variabilities in 

its properties, and that persists for an extended period of time, typically decades or 

longer (IPCC, 2007). This definition refers to any change in climate over a period of 

time, and includes both natural and human causes of variability.  

This thesis will apply two epidemiological methodological approaches to build a 

model, examine the performance of current models, and predict disease risk based 

on a range of environmental, climatic and biological factors within Tanzania. These 

methods are: 

● A weighted sum method implemented using geographical information 

systems (GIS) 

● Dynamic mathematical-biological modelling 

 All model approaches include the minimum recommended climate components of 

rainfall and temperature, with an aim to go beyond this to include further known 

influential environmental variables (Chabot-Couture et al., 2014). There is currently 

no spatially explicit epidemiological model actively in use in guiding Tanzanian 

policy or actions. This will be further discussed within the context of the literature 

review and guiding future policy in chapter seven.   



40 
 

1.4.2 The scope of disease  

Numerous tropical diseases are present in Tanzania, this thesis outlines three key 

tropical diseases which contributed to the identification of Tanzania as at risk of 

changing disease distribution. These diseases are malaria, bacterial meningitis, and 

chikungunya virus. Malaria and chikungunya are both vector-borne diseases and 

bacterial meningitis is an airborne disease. These diseases will be critically 

assessed within the literature review (chapter two) to reaffirm the identification of 

Tanzania as a country at high risk of climate induced changes in disease 

distribution. It is important to state here that malaria will be the main focus of this 

thesis, with bacterial meningitis examined during the climatological assessment of 

Tanzania only and chikungunya presented for context and awareness of the risk 

within Tanzania. The rationale for the focus on malaria is outlined in this section 

after a brief overview of the incidence of each disease in Tanzania.  

Malaria (the main focus of this work) is endemic to Tanzania, and is globally, the 

most prevalent vector borne disease, with 214 million cases recorded in 2015, 

leading to 438,000 deaths (WHO, 2015c). Tanzania at present is the sixth highest 

contributor to the global malaria burden, with 678,207 reported confirmed cases, 

and 5368 deaths in 2014 (WHO, 2015c). Most deaths occur in children under the 

age of five, with potentially life debilitating disabilities for both adults and children 

that do recover from malaria. Malaria is caused by the parasite Plasmodium 

falciparum, and transmitted by mosquitoes, where multiple different species are 

capable of transmission (Githeko et al., 1996). 

Bacterial meningitis is dominant along the “meningitis belt” which spans from 

Ethiopia in the east to Senegal in the west, and southward into northern Tanzania, 

encompassing 26 countries across sub-Saharan Africa in total. The meningitis belt 

does not extend into southern Tanzania at present. The largest epidemic in recent 
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history (1996-1997), affected 250,000 people, causing 25,000 deaths and left 

50,000 people disabled (Pandya et al., 2015).  

Chikungunya virus (CHIKV), discovered in southern Tanzania in 1952, has gone 

through a period of quiescence, and there have been very few to no recorded 

incidences of the disease (Zhang et al., 2013). However, recent re-emergence of 

CHIKV cases outside of previously identified geographical boundaries, including 

northern Tanzania, has prompted the need for acknowledgement of this disease 

(Kajeguka et al., 2016). CHIKV is transmitted by a different vector to that which 

transmits malaria and is relatively poorly understood and understudied.  

This thesis will focus on malaria due to the high scope of endemicity, morbidity and 

mortality currently present throughout Tanzania, with further consideration applied 

to malaria being identified as highly likely to experience changes in disease 

distribution (section 1.1, figure 1.1). Bacterial meningitis will be examined in a 

climatic context due to periodic epidemic (non-endemic) presence which has high 

morbidity and mortality rates in northern Tanzania only, thus impacting a smaller 

population. As such this will be included in a baseline climate assessment and 

provide recommendations for this disease only and will not be modelled. Concerns 

with chikungunya virus will be highlighted due to concerns of re-emergence within 

Tanzania, but due to the understudied nature and low admissions related to the 

disease and differing transmission vector to malaria, only the literature will be 

critically assessed to highlight and provide further context for the impact of climate 

change on changing disease distribution with climate change.   

1.4.3 The scope of socio-economics, demographics and policy in disease 

transmission  

This thesis will assess the role of dominant individual socio-economic determinants 

within the context on the impact of human behaviour on health risk (Vasilj et al., 
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2014). This will include the demographic distribution of population including both 

population density and investigate total populations at risk of changing disease 

distribution as a result of climate change. The impact of individual circumstances 

will also be outlined and discussed, for example access to healthcare, education, 

age, gender, occupation and wealth have all been identified as influential variables 

in disease transmission. This will be discussed in a deductive manner based on the 

literature as the impact of socioeconomic relationships are at present, 

unquantifiable on an individual level. Attempting to measure the relationships and 

total impact of all socioeconomic and demographic factors would not be possible at 

present.  

Tanzania is a developing country with an estimated total population of 48.8 million 

as of 2015 (NBS, 2016).  Population density is not evenly spread. Overall the 

country’s population density is 51 (people per sq. km). However, regions such as 

Dar es Salaam have a much higher population density of 3.133 people per sq. km 

(NBS, 2013a). Higher population densities contribute to allowing disease to spread 

quickly, although also allow prevention methods and treatment to be facilitated for 

easier (Agwanda and Amani, 2014). The country has a diverse social structure, with 

percent of population below the basic needs poverty line ranging from 4.1% in Dar 

es Salaam, to 21.7% in other urban areas, reaching a maximum of 33.3% in rural 

areas. The last recorded country average is 28.2% of residents below the basic 

needs poverty line as of 2012 (NBS, 2016).  

This thesis will examine health policies currently implemented within Tanzania, 

alongside proposed initiatives which are implemented by the Ministry of Health and 

Social Welfare (MOHSW). At present, many health initiatives implemented by the 

MOHSW centre around malaria prevention, as a result of its consistent clinical 

presence and high contribution to disease burden on the country (30%). These will 
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be discussed in detail, and the impacts these policies have on population health 

explored.  

1.4.4 The geographical scope: Study area 

Tanzania is situated on the East African coastline, between longitudes 29° and 41° 

east and latitudes 1° and 12° south,  bordering; Kenya, Uganda, Rwanda, Burundi, 

Democratic Republic of Congo, Zambia, Malawi, Mozambique and the Indian ocean 

(figure 1.4) (NBS, 2016). Tanzania encompasses the mainland (883,600 km2) and 

the islands of Zanzibar, Pemba, Mafia, Ukerewe and Unguja. Tanzania mainland is 

the focus of this thesis, and will be referred to as Tanzania. Tanzania is situated in 

the Great Lakes region of Africa and includes Lake Victoria, Tanganyika, Nyasa, 

Rukwa and Eyasi within its borders.  

Tanzania’s topography is varied in elevation, ranging from 0 meters above sea level 

(masl) to the highest mountain summit (Mt. Kilimanjaro) at 5,895 masl. Tanzania’s 

elevation varies considerably due to two branches of the East African rift system 

running through Tanzania, and an elevated central plateau. Elevational outlines can 

be observed in figure 1.4. Variability in elevation has been identified as a key 

variable in changing disease distribution, where previously unaffected areas at high 

elevation have begun to see transmission as a result of climate change (Githeko et 

al., 2000). Thus, Tanzania is a suitable case study country. In addition, countries 

located in East Africa, including Tanzania, are comparatively understudied in 

epidemiology and climatology in comparison to West Africa. This thesis will adopt a 

spatially explicit approach and all of Tanzania mainland will be included. Some 

regions may be highlighted for further analysis within specific chapters where the 

suitability of this will be discussed there.  
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Figure 1.4 - Location map of Tanzania, including key features and elevation (Sémhur, 
2014). 
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1.5 Research approach  

This PhD thesis research adopts a predominantly quantitative approach. It utilises 

environmental modelling, epidemiological modelling and climate modelling. A range 

of GIS-based techniques are also applied, utilising geospatial data. Bespoke R code 

is also applied to perform statistical analysis which is used to verify theories and 

draw conclusions. A systematic and deductive approach is employed when 

assessing literature, and conclusions drawn from discussions focused on 

socioeconomic and policy interactions.  

1.6 Thesis layout  

This chapter introduced the scope and topic of the research, overarching research 

aims and objectives and identified a suitable region for analysis. The following 

chapters include:  

● Chapter two critically reviews the key literature which underpins the context 

for this research. This includes an investigation of the key themes in this 

research, climate and climate change, climate and epidemiological 

modelling, disease dynamics and socioeconomic and health policy in 

Tanzania. This provides an in-depth review of relationships and interactions.  

● Chapter three provides an overview of Tanzania’s climatology and a 

statistical assessment of the sensitivity of Tanzania’s climate to El Niño 

events. This addresses research objective one, and a paucity in the research 

since the sensitivity of Tanzania’s climate to changes during El Niño events 

are currently under assessed.  

● Chapter four presents the development of a spatially explicit weighted sum 

environmental risk model. This model is then used to forecast malaria risk 

under current and future climate conditions. Analysis of risk to populations 
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living in high risk areas at present and in the future, is undertaken with a view 

to aid policy makers. This chapter addresses research objective two.  

● Chapter five assesses the changing biological conditions for malaria under 

future climate conditions using a climate driven dynamic mathematical-

biological model. This chapter addresses research objective three.  

● Chapter six provides a summary of the main conclusions drawn from the 

empirical work presented in chapters three, four and five.  

● Chapter seven presents analysis of the role of non-physical socio-economic 

and population interactions on disease and how this modifies disease 

ecosystems beyond the drivers that can be physically modelled. This 

addresses research objectives four and five. Conclusions drawn from the 

work conducted in this thesis are then presented, summarising the 

contribution to knowledge, and providing recommendations for further 

research, policy and practice.  
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Chapter 2 : Literature review 

2.1 Introduction 

Climate is a key component affecting a disease life cycle and transmission. 

Tanzania’s climatic variability provides suitable living and transmission conditions 

for a host of diseases within the country (Tanser et al., 2003; Altizer et al., 2013). 

Recent evidence suggests a significant change in the dynamics of diseases affected 

by climate, including malaria, chikungunya and bacterial meningitis (Hoshen and 

Morse, 2004; Zhang et al., 2013). This review aims to provide an overview of the 

key climatic influences on Tanzania, including a critical discussion of the evidence 

supporting past and future climate change as well as outlining current climatic 

conditions and inter-annual variations. The impact of Tanzania’s varied and unique 

climate is then discussed in the context of disease presence and transmission, 

outlining how altering conditions are influencing changing disease dynamics 

through direct climatological impacts as well as indirectly through environmental 

change. Finally, the social and economic changes and challenges faced within 

Tanzania will be discussed, highlighting key features of health infrastructure, 

provision and accessibility. This will be reviewed in the context of climate and 

environmental change and the impact of this on health and health provision.  

2.2 Climate 

Climatic variables such as temperature, rainfall and humidity have a profound effect 

on a variety of both vector based and airborne diseases. These parameters provide 

suitable living and transmission conditions for a range of “tropical” based diseases 

as a result of disease vectors’ biological sensitivity to environmental conditions 

(Tanser et al., 2003; Altizer et al., 2013). Large-scale synoptic weather patterns 

such as El Niño and La Niña facilitate epidemics indirectly through affecting 

transmission vectors such as the mosquito and directly through diseases such as 
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cholera. Equatorial Africa experiences a high burden of disease in coincidence with 

climate elements, of which rainfall varies considerably over space and time 

(Basalirwa et al., 1999). Generally, rainfall distributions can be associated with large 

scale synoptic activity; for example the low level convergent winds in the Inter 

Tropical Convergence Zone (ICTZ) and somewhat with that of the El Niño Southern 

Oscillation (ENSO) despite the limited understanding of climate dynamics 

surrounding the Indian Ocean (Basalirwa et al., 1999; Elliott and Kipfmueller, 2010). 

However, in East Africa the impact of mesoscale systems induced by regional 

characteristics such as large water bodies and topographic features results in 

increasingly variable rainfall patterns.  

2.2.1 Current climate 

Rainfall is considered the most significant climate parameter within Africa, with 

Tanzania experiencing two different rainfall regimes. Northern Tanzania is 

characterised by two annual maxima, the first lasting March until May (long rains) 

and the second from October to December (short rains) (Kijazi and Reason, 2005; 

Mapande and Reason, 2005). The processes which drive these mechanisms 

remain poorly understood as multiple contributors have been identified from a range 

of published research (Anyamba et al., 2002; Hendon et al., 2007). The bimodal 

pattern is largely driven by the ITCZ, subtropical anticyclones, African jet streams 

and global scale systems such as the El Niño/Southern Oscillation (ENSO), the 

Madden-Julian Oscillation (MJO) and to a lesser extent the Quasi-biennial 

Oscillation (QBO) (Kabanda and Jury, 1999; Mutai et al., 2000; Anyah and Semazzi, 

2004). The most influential factors, including the unique influences of Tanzania’s 

local topography on the distribution and onset of rainfall are also considered.   

On average, total annual rainfall ranges from 200mm to 1000mm over most parts 

of the country (Basalirwa et al., 1999; Timiza, 2011; Griffiths et al., 2013). Some 
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areas, particularly the coastal and northeastern and inland southwestern parts can 

see over 1500mm of rainfall with up to 3690mm being recorded in the southwestern 

highlands (Timiza, 2011; TMA, 2014). The lowland central region experiences 

significantly less rainfall, receiving the lower values of approximately 500mm (TMA, 

2014).  

Mean annual maximum temperatures range from 25°C to 32°C, with minimum 

averages ranging from 5°C to 20°C with the highland regions experiencing the 

colder temperatures in comparison to the lower lying regions (Timiza, 2011; TMA, 

2014). A summary of climatological zones and their rainfall and temperature 

statistics is shown in table 2.1. Figure 2.1 shows the geographical location of each 

of the discussed zones in table 2.1.    

  



50 
 

Table 2.1 - Rainfall and temperature statistics in the eight climatological zones of Tanzania. 
Source: TMA (2014). 

S/N Climatological Zone Mean 
Annual 
Rainfall 
(mm) 

Mean 
Monthly Max. 
temperature 
(°C)  

Mean 
Monthly Min. 
temperature 
(°C) 

1 Lake Victoria Basin (Mara, Kagera, 
Mwanza and Shinyanga) 

1128 29.0 15.4 

2 Nort Eastern Highlands (Kilimanjaro, 
Arusha and Manyara) 

786 33.1 8.3 

3 North Coast (Dar es Salaam, 
Zanzibar, Tange, Pemba and part of 
Morogoro)  

1268 32.4 18.2 

4 Southern Coast (Mtwara and Lindi) 1180 32.4 18.2 

5 South (Ruvuma, Songea and 
Mahenge)  

1169 26.0 15.9 

6 South Western Highlands (Mbeya, 
Iringa, Ruvuma, part of Rukwa, and 
part of Morogoro) 

776 26.6 5.3 

7 Central (Dodoma, Singida and part of 
Tabora) 

630 31.1 13.7 

8 Western (Kigoma, part of Rukwa and 
part of Tabora) 

1105 30.3 16.5 

 

Figure 2.1 - Climatological Zones of Tanzania. Source: TMA, 2014. 
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2.2.2 Evidence of past climate change 

When assessing changes over the long-term trend, several changes in climatic 

parameters have been observed. McSweeney et al. (2010) undertook an analysis 

of change in Tanzanian climatic parameters since 1960 as part of the United Nations 

Development Programme (UNDP). Statistical analysis of observations of 

precipitation over Tanzania demonstrate significant decreasing trends in annual, 

JJAS and MAM rainfall. This conclusion is supported by studies conducted by 

Hulme (1992; 1996), Dore (2005) and others, which concluded that extreme events, 

particular droughts, have become increasingly common. The greatest change was 

seen in the southern most regions of Tanzania, decreasing a total of 4.8mm a month 

per decade since 1960 (McSweeney et al. 2010; Hulme 1992; Dore, 2005).  

Evidence published by McSweeney et al. (2010) shows that mean annual 

temperature for Tanzania was observed to increase by 1°C since 1960, averaging 

0.23°C per decade with the most rapid increases seen in January and February and 

the slowest in June, July, August and September. This is further supported by the 

World Meteorological Organisation (WMO) who report similar increases in overall 

temperature when compared to the long term mean (IPCC, 2014; WMO, 2015). 

However this reported change in temperature has not occurred uniformly across 

Tanzania with some areas experiencing greater change in comparison to others 

(IPCC, 2014; TMA, 2014).  

2.3 Environment 

The unique combination of Tanzania’s landscape and climate forms a range of 

environments throughout the country. Tanzania is situated in the Great Lakes region 

of Africa, with the mainland containing five identified major lakes and rivers covering 

61.5 sq/km within its borders, with the largest being Lake Victoria (table 2.2) (NBS, 

2013b). These lakes form part of the East African Rift System (EARS) which runs 
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through Kenya into Tanzania, splitting into three branches following western, central 

and eastern trajectories (figure 2.2) (Mattsson, 2009; Mulibo and Nyblade, 2016). 

The presence of a tectonic rift system has led to three key elevational features 

throughout Tanzania, predominantly the southeast mountain range, north-west 

mountain range (containing mount Kilimanjaro), and the Tanzanian plateau which 

contains the crater highlands to the north including the Ngorongoro crater 

(Mattsson, 2009). The topographical complexity contributes to providing a range of 

environments from low-elevation coastal regions to mountainous forest up the 

slopes of Mount Kilimanjaro.  

Table 2.2 - Coverage of major lakes and smaller water bodies on mainland Tanzania (NBS, 
2013b) 

Major lakes sq.km 

Victoria 34.9 

Tanganyika 13.4 

Nyasa 5.6 

Rukwa 2.8 

Eyasi 1.0 

  

Other water bodies on land mass (Small lakes, dams, rivers, etc.) 3.8 

Total 61.5 
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Figure 2.2 - Topographic map of East Africa showing the regional geology, including the 
Tanzania Craton (bold outline), the Proterozoic mobile belts surrounding the craton, the 
major Cenozoic rift faults and the three rift segments of the Northern Tanzania Divergence 
Zone (NDTZ). Seismic stations are also shown (Mulibo and Nyblade, 2016). 
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As a result of complex tectonic activity, the underlying geology and mineral 

composition is equally complex, however locational patterns are discernible (figure 

2.3). Coastal regions are predominantly underlain by fluvial sand, gravel, silt and 

limestone (Government of Tanganyika, 1955). The plateau region is underlain by a 

mix of plutonic rocks such as granite compounds and terrestrial sediments such as 

sand and gravel. The Kilimanjaro region is underlain by a mix of volcanic bedrock 

and Archean sediment and rock, such as marble and graphite (Fishwick and 

Bastow, 2011).  Lake Victoria is underlain by a plutonic bedrock, consisting mostly 

of granite variates. Southern Tanzania, possesses elements of the Archean 

sediment bedrock and Mesozoic era continental and marine sandstone 

(Government of Tanganyika, 1955; Mulibo and Nyblade, 2016). Bedrock factors are 

important to consider in the context of soil drainage and water pooling, which are 

discussed in the context of malaria in chapter four (Patz et al., 1998; Githeko et al., 

2000). 

There is a distinctive variation in vegetation coverage throughout Tanzania as 

shown in figure 2.4 and accompanying legend in figure 2.5. Vegetation distribution 

can be observed to loosely follow underlying bedrock formations. Coastal areas 

(with the exception of artificial human settlements) are dominated by a mix of 

forestry and rain fed croplands. The Tanzania craton (surrounding Lake Victoria) is 

covered by cropland and open grassland (Mulibo and Nyblade, 2016). The southern 

regions (including southern highlands) are covered by a mix of forestry and shrub 

land, with increasing density of forest upslope with the exception of highly elevated 

peaks as is clear on Kilimanjaro (Duane et al., 2008). The western region of the 

Tanzanian plateau exhibits a greater mix of crop land, shrub land and open 

broadleaf forest. Vegetation coverage shifts with the movement of the rainfall 

seasons, however rainfall explains only half the variability in vegetation in the 
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unimodal regime regions, with more links to vegetation coverage in the bimodal 

regime (Timiza, 2011). 
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Figure 2.3 - Geology and mineral map of Tanzania (Geological Survey of Tanzania, 2004) 
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Figure 2.4 - ESA GlobCover, high resolution land use map of Tanzania (ESA, 2009). 
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Figure 2.5 - Legend for figure 2.4 (ESA, 2009). 
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2.4 Rainfall mechanisms 

Initial examinations of the mechanics behind African rainfall variability stemmed 

from theory and observational studies undertaken by pioneers in teleconnection 

analysis such as Walker and Bliss (1932) whom demonstrated that these systems 

transcend latitudes having global impacts (Walker and Bliss, 1932; Nicholson, 

1986). The initial evidence provided by Walker and Bliss has since been further 

supported by more robust studies such as that undertaken by Egger (1977) and 

Van Loon and Rogers (1978) whom had access to substantially more data than the 

former examiners (Wallace and Gutzler, 1981). Work conducted by the 

aforementioned has provided the basis of numerous examinations on 

teleconnection behaviour on both the North Atlantic Oscillation (NAO) and Southern 

Atlantic Oscillation (SAO), of which no major oppositions to the dynamical coupling 

between the northern and southern hemispheres have emerged. In general, when 

pressure is high above the northern Pacific, it tends to be low in the Indian Ocean 

spanning from Africa to Australia. These conditions are associated with lower 

temperatures in both hemispheres, with rainfall varying in the opposite direction to 

pressure (Walker and Bliss, 1932; Rasmusson and Wallace, 1983; Milesi et al., 

2005; Barry and Chorley, 2010). This connection and confliction in atmospheric 

pressures is most clearly identified and defined by the Inter-Tropical Convergence 

Zone (ITCZ), a mechanism that plays a significant role in driving the equatorial 

climate.  

2.4.1 Inter-Tropical Convergence Zone  

The theoretical formation of the ITCZ began through the standard treatment of wind 

conditions near the equator, whereby the “trade winds” of the northern and southern 

Hadley convection cells blow toward the equator from the northeast and southeast 

in the northern and southern hemispheres respectively (Dobby, 1945; Barry and 
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Chorley, 2010). The meeting of the easterly moving trade winds creates a fast 

moving, rainfall laden low-pressure band, generally lying 6° north of the 

geographical equator and defining the meteorological equator (Waliser and Gautier, 

1993; Hardman-Mountford et al., 2003). This fast moving band is predominantly 

driven by the release of latent heat stemming from the equatorial region, within 

which conditions (both location and band continuity) vary depending on atmospheric 

factors (Dobby, 1945; Fletcher, 1945). In order to provide the convective energy 

required, the ITCZ forms predominantly over the ocean, generally located over the 

warmest surface waters of at least 27.5˚C. Above this temperature threshold, 

organised convective activity is competitive between different regions resulting in 

either fragmentation or a sustained continuous ITCZ (Barry and Chorley, 2010; 

Schneider et al., 2014). 

Upon reaching a substantial land mass, such as continental Africa, the contrasting 

forces exerted from the oceanic and continental pressure cells dictate the extent of 

ITCZ migration. Over the central Atlantic and Pacific Oceans, the ITCZ migrates 

between 9˚N and 2˚N in boreal winter. Over the Indian Ocean and its adjacent 

landmasses (including continental Africa), the ITCZ moves more significantly 

between the average latitudes of 20˚N in boreal summer and 8˚S in boreal winter 

(Schneider et al., 2014). Before the introduction of satellite technology, this 

considerably lower latitude ITCZ band was thought to be a commonly occurring 

separate entity, described as the double ITCZ. However following the assessment 

of satellite imagery, it has been accepted that a double ITCZ was in fact a rarity and 

the dip observed over the African landmass as a result of changes in convection as 

part of the whole ITCZ system (Hubert et al., 1969). 

Extreme changes in the seasonal movement of the ITCZ can result in droughts or 

floods, depending on the climatic circumstances (Basalirwa et al., 1999; Indeje et 
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al., 2000). Typically, the band of precipitation moves southward through Tanzania 

during October through to December, reaching the southern sections of the country 

in January and February before migrating during March, April and May (Basalirwa 

et al., 1999; Gaidet et al., 2012; McSweeney et al., 2013). This seasonal transition 

creates marked differences in annual rainfall distributions with defined monsoon 

seasons. Northern Tanzania experiences a bi-modal precipitation regime with the 

long rains (Masika) occurring between March and May (MAM), in conjunction with 

the ITCZ’s northward movement. The short rains (Vuli) begin in mid-October and 

last until early December (OND), coinciding with the ITCZ’s southward migration. 

Towards the central, southern and western areas of Tanzania a unimodal rainfall 

regime presides in association with the lowest migration point and curvature of the 

ITCZ band (figure 2.6) which starts from November and continues to the end of April 

(Zorita and Tilya, 2002; Rowhani et al., 2011; Timiza, 2011; TMA, 2014). Further 

detail on rainfall quantities and specific distribution can be found in section 2.2.1.  
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Figure 2.6 - Timing of the wet season and seasonal positon of the ITCZ (Gaidet et al. 2012). 

2.4.2 El Niño Southern Oscillation 

The El Niño Southern Oscillation (ENSO) is the most dominant inter-annual climate 

phenomenon in the tropical ocean-atmosphere system (Lau and Waliser, 2005). 

The El Niño anomaly represents the oceanic driver of climate, referring to the 

episodes of anomalously warm sea surface temperatures in the Niño 3 region, 

coupled with abnormally heavy rainfall in the equatorial Pacific (Niño 3.4 region) 

(Quinn et al., 1978). The Southern Oscillation component is a fluctuating bimodal 

wave of atmospheric mass between the eastern and western Pacific, and thus alters 

sea level pressure which is often represented by the normalised Southern 

Oscillation Index (Cane, 2005). Anomalous events are characterised by unusually 

warm (reduced air pressure) or cold sea surface temperatures in the Niño 3.4 region 
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and are referred to as El Niño or La Niña respectively (Kogan, 2000; Detsch et al., 

2016). Due to the tele-connective nature of the ENSO phenomena the impacts of 

changing SSTs and subsequent alteration to the connected air pressure and trade 

winds are known to significantly impact the global climate (Ropelewski and Halpert, 

1987; Cane, 2005).  

El Niño causes an overall increase in rainfall amount and temperature over the 

Tanzanian coastline during the OND season, and to a lesser extent during MAM, 

whereas La Niña results in a reduced amount of rainfall, with both impacting the 

rainfall seasonality (Nicholson and Selato, 2000; Kijazi and Reason, 2005). It must 

be noted that this influence does diminish towards the southern coastline as a result 

of approaching a transition zone between eastern equatorial and southern Africa 

(Kijazi and Reason, 2005). ENSO events are highly associated with Tanzania’s 

OND season, more so than MAM, the drivers of which remain poorly understood, 

but have been loosely linked to ENSO through the Madden-Julian Oscillation which 

is discussed further in section 2.4.3 (Kabanda and Jury, 1999; Pohl and Camberlin, 

2006b).  

ENSO events are becoming increasingly predictable on seasonal scales with lead 

times of up to a year, the impacts of these events are increasing in uncertainty due 

to increasingly observed changes in the understanding of precipitation-ENSO 

connections and breakdowns in occurrence relationships (Anyamba et al., 2002; 

Thomson et al., 2006a). There has been increased reporting of breakdowns in the 

inverse relationship between ENSO and the Indian summer monsoon, leading to 

speculations that changes in global temperatures could influence Walker 

circulations and the land-ocean thermal gradient (Kumar et al., 1999; Ashrit et al., 

2001). This is noted to be inconsistent as this relationship was present in the 2001-

02 ENSO event (Cane, 2005). Overall, this reduces certainty in predictions based 
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on ENSO impacts as it remains unclear how climate change will impact future ENSO 

events and subsequently the behaviour of Tanzanian rainfall (Ashrit et al., 2001; 

Thomson et al., 2006a).  

2.4.3 Madden-Julian Oscillation 

The Madden-Julian Oscillation (MJO) is characterised by a seasonally peaking, 

eastward-propagating tropical convective wave system and associated circulation 

anomalies with a time period between 30 and 60 days (Madden and Julian, 1994; 

Slingo et al., 2004). Regeneration of MJO convective anomalies begins over the 

Indian Ocean and propagates eastward evolving through a systematic cycle of 

amplification and decay (Hendon and Salby, 1994; Matthews, 2000). Where El Niño 

is considered the main mode of inter-annual variability, the MJO is recognised as a 

dominant driver of intra-seasonal variability in the tropics, with greatest activity 

occurring in boreal winter (Madden and Julian, 1994; Jones et al., 2004). The 

mechanisms driving its eastward movement and regeneration in the Indian ocean 

remain poorly understood and thus difficult to simulate in global climate models, 

though improvements continue to be made (Matthews, 2000; Slingo et al., 2004).  

Studies conducted on the MJO to examine its global influence on climate, have 

observed seasonal responses from precipitation patterns to the peaks and troughs 

associated with the amplification and decay cycle of the MJO (Hendon and Salby, 

1994). Results demonstrate that enhanced MJO activity in the Indian Ocean 

increases the likelihood of increased extreme precipitation over Tanzania when 

compared to quiescent episodes (Jones et al., 2004; Zhang, 2005). This impacts 

both the MAM and OND rainfall seasons, however responses are spatially different 

between each season which can be attributed to the influence of local topography 

and further differences in large scale zonal gradients which play differing roles in 

each season (Pohl and Camberlin, 2006a, 2006b). Further to this, there is mounting 
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evidence of links with the onset of El Niño and further evidence suggesting that the 

MJO may be a coupled ocean-atmosphere phenomenon (Madden and Julian, 1994; 

Mutai et al., 2000; Hendon et al., 2007).  

Strong MJO events have been frequently observed during the onset and growth 

stages of recent major El Niño events which has encouraged increased research 

into potential links (Kessler and Kleeman, 2000; Jones et al., 2004; Zhang, 2005; 

Hendon et al., 2007) . Results so far remain inconclusive, with differing and in some 

cases controversial conclusions reached. It is speculated that the MJO could 

influence ENSO events through the following; net cooling of SST’s, alterations in 

zonal currents and suppression of the thermocline via oceanic Kelvin waves for 

which discussion of each can be found in the relevant papers (McPhaden, 1999; 

Zhang, 2005; Hendon et al., 2007; Zavala-Garay et al., 2008). It is important in the 

scope of this research to acknowledge the potential impacting links between the 

MJO and ENSO phenomena for which understanding is still limited. Interpretation 

of results will be treated based on understanding of the impact of individual 

phenomena with the consideration that this could change with further examination.  

2.4.4 Topography and orography  

Variations in topography (and land cover) can act as a strong regional scale forcing 

mechanism which is able to modify surface heating abilities and rainfall distribution 

patterns through mechanisms such as the adiabatic lapse rate, foehn effect, and 

influencing low lying jet streams (figure 2.7) (Sumner, 1982; Wang et al., 2004; 

Barry, 2012). The adiabatic lapse rate relationship is observed where increases in 

elevation result in reductions in atmospheric pressure which in turn changes local 

atmospheric characteristics, resulting in lower temperatures at higher altitudes 

(table 2.3) (Met Office, 2011; Maeda and Hurskainen, 2014). Lapse rates for Mt. 

Kilimanjaro have been documented in the literature, in particular by an extensive 
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study carried out by Duane et al. (2008). Within the tropics, a typical lapse rate of 

0.55°C/100m was observed by Lauer in 1976 (Hemp, 2006). However, Duane et al. 

(2008) report high variability in lapse rates recorded at different elevations (table 

2.3). 

 

Figure 2.7 - Influences on mountain weather, including adiabatic lapse rate and the Föhn 
(Foehn) effect. (Met Office, 2016b). 
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Table 2.3 - Day and night-time recorded temperatures and accompanying descriptive data (including altitude) obtained at 10 logger sites, cross referenced 
with observed changes in mean, min and max temperatures associated with lapse rates for Mt. Kilimanjaro. Data obtained from Duane et al. (2008) and 
Maeda and Hurskainen. (2014). – means no data. M.a.s.l equals meters above sea level. Lapse rates are derived based on comparison with the immediate 
station below. 

 Annual mean LST (°C)    Recorded Air Temperature (°C) Relative 

Humidity 

(%) 

Altitude 

range 

(m.a.s.l) 

Daytime 

(10:30 am) 

Night-time 

(22:30 pm) 

Logger 

No. 

Elevation 

(m) 

Site description Mean Lapse 

Rate 

(°C/km) 

Min Lapse 

Rate 

(°C/km) 

Max Lapse 

Rate 

(°C/km) 

Mean 

1,500-2,000 26.6 13.7 1 1890 Dense montane 

rainforest 

- - - - - - - 

2,000-3,000 16.6 8.5 2 2340 11.5 - 8.4 - 14.8 - 97.7 

 

 

 

3 2760 Sparse montane 

rainforest 

9.2 5.6 4.9 8.3 14.4 0.9 96 

 

 

 

4 3170 Transitional 

zone between 

rainforest and 

subalpine 

heathland 

7.8 3.5 1.9 7.3 15.5 2.7 88.9 
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5 3630 Subalpine 

heathland 

7.1 1.4 3.3 3 13.3 4.8 77.3 

Above 4,000 19.3 -2.3 6 4050 Alpine with 

limited 

vegetation 

- - - - - - - 

 

 

 

7 4570 - - - - - - - 

 

 

 

8 4970 Bare rock -0.9 6 -3.9 5.4 3.4 7.4 65.5 

 

 

 

9 5470 -2.8 3.8 -6 4.2 2.4 2 56 

 

 

 

10 5800 Ice field -6.2 10.3 -9.4 10.3 -2 13.3 54.4 
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Furthermore, the northern orography of East Africa is observed to influence and be 

influenced by the East African Low Level Jet (EALLJ) also referred to as the Somali 

Jet. The jet is most prominent during the June-September season and thus does 

not directly impact the major monsoon seasons for Tanzania, although orographic 

influences do impact local climatology at altitude (Duane et al., 2008; Chakraborty 

et al., 2009). The jet is observed to originate in the Indian Ocean easterlies, 

travelling westward before traveling northward up the East African coast, following 

a narrow longitudinal line before crossing Somalia and turning eastward across the 

Arabian Sea as a westerly trade wind (figure 2.8) (Findlater, 1969; Krishnamurti et 

al., 1976). The East African highlands are noted to play a crucial role in providing a 

western boundary to the flow and reduces the overall speed of the jet, including 

Tanzania’s Mt. Kilimanjaro which lies within the jets influential zone of the East 

African highlands (Krishnamurti et al., 1976; Findlater, 1977; Chakraborty et al., 

2002).  

 

Figure 2.8 - Month by month progression of the pathway taken by the EALLJ (Krishnamurti 
et al., 1976) 
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The close proximity of the EALLJ, particularly during the months of June and July, 

to Mt. Kilimanjaro play a key role in further altering local climatologies in the area. 

The jet is a fundamental part of the rainfall transportation mechanism within the 

Indian Ocean monsoon system (Findlater, 1969, 1977; Cadet and Desbois, 1981; 

Vizy, 2003). As such, when moisture-laden clouds reach Mt. Kilimanjaro and by 

extension the East African Highlands, some of these clouds produce precipitation 

due to air being forced to rise, cool and condense into clouds (Barry, 2012). This is 

supported by the recording of rainfall and local rainfall patterns in the Mt. Kilimanjaro 

region during the non-monsoon months of JJAS (figure 2.9 and 2.10) (Nicholson, 

1996; Hemp, 2006). Furthermore, the EALLJ has been suggested to play a role in 

the temperature and humidity trends observed by Duane et al., (2008) in the Mt. 

Kilimanjaro region. Although, it is important to consider the logger location, elevation 

and month when observations were collected during their study due to variations in 

mountain climate depending on upslope or leeside location in comparison to the jets 

varying wind directions by month (figures 2.7, 2.8 and 2.9).  
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Figure 2.9 - Locations of loggers used in Duane et al., (2008) study. 
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Figure 2.10 - Mean monthly rainfall in mm during the period 1931-1985. (Nicholson, 1996). 

2.5 Malaria  

Malaria has evolved to become the most prevalent vector borne disease globally, 

where Tanzania is one of the greatest contributors to both the global number of 

malaria cases and malaria burden in 2015 (WHO, 2015c). Malaria accounts for over 

30% of the national disease burden in Tanzania, with approximately 14-18million 

new cases reported, resulting in 120,000 deaths (Makundi et al., 2007; Winskill et 

al., 2011). Understanding malaria and its development in Tanzania remains difficult 

to quantify as a result of inconsistent data provided between 2000 – 2015 (MoHSW, 

2013b; WHO, 2015c). Although, available data suggests Tanzania is undergoing an 

epidemiological transition, with 60% of the population living in hypo-endemic areas 

(up from 30% in 2000), and 100% of the population at risk of contracting malaria 

(MoHSW, 2013b; WHO, 2015c).  

Malaria is caused by the parasite Plasmodium of which multiple species are globally 

present (Lyke, 2017). P. falciparum is the most virulent and carries the highest 

incidences of mortality, accounting for 96% of infection in Tanzania, with the 
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remaining 4% being attributed to P. malariae and P. ovale (Silué et al., 2008; 

Mboera et al., 2013; USAID, 2015). The parasite P. falciparum has been 

problematic to treat, fast developing resistance to medical treatments raising 

concerns for future treatments for malaria as options are reduced (Mueller et al., 

2005; Whitty et al., 2008; Lyke, 2017). P. falciparum (figure 2.11) is introduced to 

humans (the host) via the bite of a female mosquito taking a blood meal to support 

its reproductive cycle, a cycle which is repeated with each blood meal (figure 2.12) 

(Tolle, 2009; Smith et al., 2014).  

The major vectors of malaria in most areas of Tanzania are members of the 

Anopheles gambiae complex found in table 2.4 (Githeko et al., 1996; MoHSW, 

2013b). An. gambiae s.s was historically the most significant transmission vector, 

of which pregnant women attracted twice as many An. gambiae s.s mosquitoes over 

a range of 15m than their non-pregnant counterparts (Mnzava and Kilama, 1986; 

Ansell et al., 2002). The introduction of multiple prevention methods has had a 

significant impact on the distribution of An. gambiae s.s, leading to a change in 

epidemiology, where An. arabiensis is becoming the major transmission vector 

(MoHSW, 2013b; USAID, 2015).  
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Figure 2.11 - Malaria parasites amid red blood cells (Bonniers Forlag, 2017). 

 

Figure 2.12 - Anopheles mosquito after a blood meal (Sturrock, 2017). 
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Table 2.4 - Major malaria transmitting vectors in Tanzania. (Githeko et al., 1996; MoHSW, 2013b). 

Malaria Vector 
Biting 
behaviour 

Resting 
behaviour Emerging treatment resistance 

Anopheles gambiae sensu stricto 
(s.s) anthropophagic endophilic 

Treatment is effective. Becoming resistant to pyrethroids in some 
districts. 

Anopheles arabiensis zoophilic exophilic 
Becoming resistant to IRS and LLINs, and becoming the dominant 
vector.  

Anopheles funestus anthropophagic endophilic Resistance to pyrethroids in some districts.  
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Table 2.5 - Comparing temperature ranges of mechanistic malaria transmission models. Adapted from (Mordecai et al., 2013). 

Model Min 
(°C) 

Max 
(°C) 

Opt 
(°C) 

Transmission metric Temperature-dependent parameters and 
functional forms 

Mordecai et al. 
(2013) 

17 34 25 R0 Quadratic: Vector competence, proportion of eggs 
that produce adults, daily adult survival, eggs per 
female per day 

Briere: parasite development rate, mosquito 
development rate, biting rate 

Parham and 
Michael (2010) 

20 39 32-33 R0 Linear (or combination of linear functions): total 
number of mosquitoes, biting rate, proportion of 
infected mosquitoes that become infectious 

Unimodal: adult mortality rate 

Craig et al. 
(1999)  

18 40 30 pEIP (fraction of vectors surviving 
sporogeny) 

Linear: parasite development time within the 
mosquito, larval duration.  

Nonlinear monotonic: adult daily survival probability 

Martens et al. 
(1997) 

18 38 31 Epidemic potential (reciprocal of the 
critical mosquito density necessary to 
maintain parasite transmission) 

Linear: parasite development time wtithin the 
mosquito, biting rate. 

Unimodal: adult daily survival probability 
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2.5.1 Environmental determinants of malaria distribution in Tanzania 

In order for malaria to successfully thrive, suitable environmental temperatures and 

water conditions must be present (Drakeley et al., 2005; Lardeux et al., 2008; Weiss 

et al., 2014). Warmer temperatures enhance the rate of malaria transmission 

through increasing the development rate of both the parasite and larvae (sporogonic 

cycle) and mosquito survival and feeding (gonotrophic cycle) (Teklehaimanot et al., 

2004; Bennet et al., 2016). Suitable temperatures are present throughout the 

tropics, however definitive optimal temperature conditions are still debated within 

the literature as shown in table 2.5 (Mordecai et al., 2013; Ryan et al., 2015). 

Overall, Tanzania’s year-round tropical temperatures provide a habitat suitable for 

malaria to thrive (Caldas de Castro et al., 2004; Hagenlocher and Castro, 2015).  

As introduced in section 2.4, rainfall is a key driving mechanism of changing 

environments in Tanzania. This contributes significantly to the seasonality and 

spatial distribution of malaria transmission (Reiner et al., 2015). Rainfall provides 

habitats which support vegetation growth for mosquito shelter as well as shallow 

pools of water for breeding (Parham and Michael, 2010; Gwitira et al., 2015). 

Vegetation plays an integral role in providing shelter for both larval habitats and 

mosquitoes, particularly during the hottest times of the day where overheating would 

lead to desiccation of larvae and mosquitoes (Bayoh and Lindsay, 2004). Changes 

in rainfall and vegetation coverage under El Niño conditions have been linked to 

increases in malaria incidence due to increasingly favourable conditions, further 

indicating the impact of both on malaria (Propastin et al., 2010). 

Links between malaria and relative humidity are poorly understood, despite 

increasingly compelling arguments to consider relative humidity in risk assessments 

due to recent results. It has been established that increases in relative humidity 

impact on the flight and subsequent host-seeking behaviour of mosquitoes and 
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influence in larvae development (Yé et al., 2007; Khormi and Kumar, 2015). Whilst 

further research is required, a clear link exists which prompts the inclusion of relative 

humidity in epidemiological modelling of malaria, which is discussed further in 

chapter four.   

2.5.2 Re-emergence of malaria 

Current literature focuses on the resurgence of malaria incidences as a result of 

environmental changes introduced in section 2.5.1 (Cohen et al., 2008; Smith et al., 

2014; Bhatt et al., 2015). A key consideration raised in the expansion of malaria 

despite significant reduction and increased efforts in containment is that of changing 

spatial limits. Historically, highland areas (> 1500m) were considered malaria free 

zones. However, observations during the 1990’s saw increasing occurrences of 

highland malaria epidemics suggesting considerable changes in conditions were 

occurring (Lindblade et al., 2000). Several hypotheses have been explored to 

increase understanding of alterations in highland malaria including the following; 

climate change (Hoshen and Morse, 2004; Parham and Michael, 2010; Mabaso and 

Ndlovu, 2012; Beck-Johnson et al., 2013), land use change (Lindblade et al., 2000; 

Kulkarni et al., 2010; Hardy et al., 2015), drug resistance (Gubler, 1998; Kweka et 

al., 2013; Killeen and Chitnis, 2014), subsidence of malaria control activities 

(Lindblade et al., 2000; Kristan et al., 2008) and demographic changes (Martens 

and Hall, 2000; Mlozi et al., 2015; Shayo et al., 2015). Each of these aspects 

highlight the complexity of malaria in relation to climatic and socio-economic factors 

that drive disease dynamics.  

Despite its importance, current knowledge on the nature and drivers of changing 

endemicity in sub-Saharan Africa remains weak by comparison, supporting the case 

for further investigation into the key drivers of change (Bhatt et al., 2015; Mlozi et 

al., 2015; Shayo et al., 2015).  
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2.6 Bacterial meningitis 

Meningococcal meningitis (sometimes referred to as cerebrospinal fever or 

cerebrospinal meningitis) is a bacterial infection of the thin lining (meninges) that 

surrounds the brain and spinal cord (WHO, 2015a). The bacterium responsible was 

identified as Neisseria meningitidis (the meningiococcus) initially reported as cited 

in Marchiafava & Celli (1884) (Moore, 1992; Greenwood, 1999; EOCHA, 2014). The 

bacterium itself can be classified into 13 distinct groups, and whilst a variety of these 

groups are responsible for cases of meningitis major epidemic outbreaks are 

caused predominantly by group A and to a lesser extent group C meningococci 

(Moore, 1992; Rosenstein et al., 2001). Humans are the only documented natural 

reservoir of N meningitidis, of which 2%-10% of healthy people were believed to be 

carriers, although recent WHO publications suggest that a much higher 10%-20% 

of humans are carriers of potentially pathogenic meningococci at any given time 

(Moore 1992; Rosenstein et al. 2001; WHO, 2015a). Transmission occurs via 

person-to-person contact through aerosol or throat secretions before colonising on 

the nasopharynx region. If the bacteria becomes pathogenic, the average 

incubation period is approximately four days however has been documented to 

range anywhere between 2 to 10 days (WHO, 2015a). Meningococcal meningitis 

has a case-fatality rate of 5% - 25% and neurological damage is common among 

survivors (Moore, 1992). 

Originally defined by Lapeyssonnie (1963), the meningitis belt was depicted as an 

area with high incidence and recurring epidemics of meningitis, which coincided with 

the 300 - 1100-mm mean annual rainfall isohyets south of the Sahara, comprising 

much of semi-arid and sub-Saharan Africa, including the Sahel (Lapeyssonnie, 

1963; Molesworth et al., 2003). This region in particular is uniquely susceptible to 

intense group A meningococcal epidemics, occurring in 8 to 14 year cycles (Moore, 
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1992). However, the boundaries of epidemic limits are not clearly defined. 

Numerous and regular reports from countries located outside the originally defined 

boundaries have appeared within examinations, including Kenya, Tanzania, 

Mozambique and South Africa (Greenwood, 1999). Whilst the original belt in the 

Sahel region experiences greater regularity in occurrence, it stands that a significant 

shift in distribution is highly possible given the high number of reports elsewhere in 

the African continent. Cheesbrough et al. (1995) re-mapped the distribution based 

on outbreak reports, retaining Lapeyssonnies (1963) original isohyet limit but 

including reports where outbreaks occurred from time to time (figure 2.13), 

illustrating the expansion of the original meningitis belt based upon reported 

epidemics.  
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Figure 2.13 - The original meningitis belt as described by Lapeyssonnie (1963). Including 
expansion of areas with infrequently reported epidemics of meningitis (Cheesbrough et al. 
1995). 
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2.6.1 Environmental contribution to bacterial meningitis distribution in 

Tanzania 

A significant theory in the geographical distribution and occurrence of meningitis 

outbreaks is that of environmental influence. Multiple studies report an explicit 

pattern of seasonality surrounding outbreaks whereby epidemics start during the 

dry season and subside with the onset of the rains. Notable ecological patterns have 

been reported by each study with the consensus being that factors such as low 

absolute humidity, land-cover and dusty atmospheric conditions may play an 

important role, particularly in allowing epidemic forecasting (Lapeyssonnie, 1963; 

Moore, 1992; Cheesbrough et al., 1995; Patz et al., 2001; Molesworth et al., 2002, 

2003; Thomson et al., 2006a). Whilst the relationship between climate is clear, the 

exact occurrence remains poorly understood and unpredictable (Thomson et al., 

2006a; Abdussalam et al., 2014). Furthermore, factors predisposing populations to 

meningitis epidemics are poorly understood with population susceptibility, 

introduction of new strains, poor living conditions and concurrent infections all being 

suggested as further potential catalysts behind driving epidemic outbreaks, the 

impact of which remains unquantified (Molesworth et al., 2003). It is of concern that 

these areas of climate interest could be disproportionately affected due to added 

vulnerability of the populations however further study is needed (Abdussalam et al., 

2014).  

The exact role of climate moderation on meningococcal disease remains unclear, 

particularly when considered in a wider context with population movement and living 

conditions. However, with recent advancements in records of both climatic and 

increased accuracy assessment of meningococcal disease within developing 

countries, all that remains is a comprehensive re-analysis of available datasets in 

order to establish a clearer relationship and in turn allow for more accurate 
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prediction (Greenwood, 1999; Molesworth et al., 2003). However, projecting the 

future risk involves a considerable number of uncertainties due to many factors in 

addition to climate including vaccination changes, cultural and behavioural practices 

and prevalence of other related diseases (Abdussalam et al., 2014).   

2.7 Chikungunya 

Chikungunya virus (CHIKV) is an arthropod-borne virus, which was first isolated in 

southern Tanzania in 1952. Initially documented as being transmitted by Aedes 

(Ae.) mosquitoes, the virus itself was initially constrained to the tropical and 

subtropical regions of Africa and around the Indian Ocean islands, including south 

and southeast Asia due to Aedes’ habitual limits (Burt et al., 2012; Zhang et al., 

2013). Recipients of CHIKV demonstrate acute febrile characteristics, skin rashes 

and incapacitating arthralgia following an incubation period ranging from 1 day to 

12 days with an average of 2-4 days (Pardigon, 2009; Burt et al., 2012). Although 

the incubation period has not been thoroughly examined, evidence provided from 

the re-emergence outbreaks support the short incubation period of approximately 2 

to 10 days (Renault et al., 2012; Thiberville et al., 2013). The virion itself is 

particularly sensitive to desiccation and air temperatures greater than 58°C 

(Thiberville et al., 2013). Whilst the majority of symptoms resolve, some patients 

continue to experience arthralgia for several years following infection, resulting in a 

bent or stooping posture and ultimately severely reducing quality of life (Burt et al., 

2012; Renault et al., 2012). Furthermore, there is no vaccine available for CHIKV. 

Cases are treated symptomatically with bed rest, fluids and medicines such as 

paracetamol, aimed more at relieving symptoms rather than treating the virus itself 

(Burt et al., 2012; Zhang et al., 2013).  

Lack of initial interest in chikungunya within the scientific community appears to 

have led to a significant knowledge shortage up until the recent outbreaks of the 
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disease in previously rarely documented areas, demonstrated by the publication 

records on chikungunya published by Thiberville et al. (2013) (figure 2.14).  

 

Figure 2.14 - Publications related to outbreaks of chikungunya fever in the PubMed 
database. Articles published between 1950 and September 2012 were identified using the 
MeSH term "chikungunya", and are reported by five year periods (Thiberville et al., 2013).   

Several sources speculate that the understudied nature of chikungunya (in 

comparison to diseases such as malaria) stemmed from the endemic behaviour of 

the virus and years of quiescence (Burt et al., 2012; Thiberville et al., 2013; Higgs 

and Vanlandingham, 2015). However, it is important here to note the similarity in 

the symptoms associated with chikungunya to that of those with malaria (see 

section 2.5). Each of these diseases demonstrate similar febrile symptoms, 

contributing to the leading causes of morbidity and mortality in developing countries 

(Higgs and Vanlandingham, 2015). When considering the growing concern 

surrounding malaria during the time-period of CHIKV quiescence, it is theoretically 

possible to see considerable potential in misdiagnosis of chikungunya cases being 

mistaken for malaria or dengue. Particularly during a time period where access to 

health facilities, let alone accurate diagnosis, was low. Whilst this will remain 

undetermined due to the gaps in chikungunya studies, one key development 
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supporting the plausibility of undetected chikungunya cases leading to spread 

during the “quiescent” period is the remaining dominance of febrile illnesses in 

developing countries, despite significant reductions in malaria transmission, 

morbidity and mortality (Chipwaza et al., 2014). This malarial decline coincides with 

recent resurgences in chikungunya cases, although present day diagnosis allows 

for increased accuracy, there are still significant limitations particularly in developing 

countries such as Tanzania (Zhang et al., 2013; Chipwaza et al., 2014). 

2.7.1 Re-emergence of chikungunya 

Current literature focuses heavily on the re-emerging nature of chikungunya, 

particularly documenting changes in its spatial location, distribution vectors and 

gene mutation (Pardigon, 2009; Ng and Hapuarachchi, 2010). The long-term impact 

of the gap in examination becomes clear when examining the scenario surrounding 

the re-emerging outbreaks. Where the virus was initially constrained to Africa and 

the Indian Ocean region, alterations in its vector transmission appears to have 

significantly expanded its sphere of influence, reaching as far as the United 

Kingdom, observed in 2014 (Burt et al., 2012; Zhang et al., 2013; Higgs and 

Vanlandingham, 2015). This is believed to be due to gene mutation within the virus 

to alter vector specificity, allowing the virus to adapt to allow replication in alternative 

vectors (Ng and Hapuarachchi, 2010; Thiberville et al., 2013). Evidence from the 

Reunion outbreak strongly supports the evidence placed forward disputing gene 

mutation, given the predominant vector on the island is Aedes albopticus, not 

aegypti, the vector identified as the original transmitter in its initial discovery (Burt et 

al., 2012; Renault et al., 2012) 

A key aspect of chikungunya transmission is the vector itself. Ae. aegypti is found 

mostly across the tropics and sub-tropics, displaying major variations in 

morphology, ecology, behaviour and vector competence. Two subspecies have 
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been described in the literature. One form described as the “light” form, named Ae. 

aegypti aegypti (Aae) possesses a highly domestic and anthropophillic behaviour 

often found distributed through urban landscapes. The second subspecies termed 

the “dark” form is referred to as Ae. aegypti formosus (Aaf) is endemic to Africa and 

thrives in wooded environments. Both forms are described to occur in sympatry in 

East Africa (Picker et al., 2004; Paupy et al., 2009). 

Thus, chikungunya remains a growing concern amongst multiple academic and 

social communities due to the comparatively understudied nature of the disease 

and its adaptive capacity coupled with a clear change vector dynamics as their 

epidemiological role remains unknown alongside a heightened potential of 

transmission from the urban distributor (Picker et al., 2004; Kucharz and Cebula-

Byrska, 2012). This results in a high amount of uncertainty when examining the 

development of the disease in relation to the climatic impacts on distribution via 

transmission vectors.  
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2.8 Climate and disease prediction  

Climate can be defined as the average state of the atmosphere observed as the 

weather over a finite time period (e.g. a season) for a number of different years 

(Lorenz, 1963; Schneider, 1992). The conditions of which vary significantly across 

the surface of the Earth, allowing suitable (or otherwise) conditions for climatically 

related diseases (combined with other factors) to be present across a wide swath 

of the Earths surface (Thomson et al. 2006b). Early climate studies formed the basis 

of climate modelling using empirical mathematical equations to predict short term 

weather changes based on observed parameters (Phillips, 1956; Schneider and 

Dickinson, 1974; Schneider, 1992). However, the physical laws which govern the 

climatic state do not allow for accurate representation or predictability of such a 

large scale system where minor changes can subsequently have significant impacts 

(Lorenz, 1963; Schneider, 1992). As numerical modelling progressed to utilise the 

computer power available at the time this allowed for development of more 

sophisticated coupled dynamical circulation models (Lynch, 2008).  

2.8.1 The science of forecasting  

The work of Lorenz (1963) on chaos theory proved fundamental in developing 

climate prediction. Lorenz outlined how climate may be defined as an ensemble of 

all states during a long, yet finite timespan (Lorenz, 1963; Schneider and Dickinson, 

1974). However, whilst this provided the basis for allowing the mathematical 

development of representative climate models examining change, issues were 

simultaneously highlighted in that accurate long term forecasting was highly 

uncertain given varied and incomplete representations of starting conditions 

(Lorenz, 1963; Schneider and Dickinson, 1974; Palmer, 1993). Early numerical 

weather prediction models based upon empirical analysis of observed values of 

periodic elements proved to be promising in representing more abstract and one-
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dimensional aspects of the climate system. Although, even at this stage 

uncertainties were fast encroaching as forecasts attempted to cover longer periods. 

Lorenz and others in the field noticed that the inherent instability within atmospheric 

motion rendered predictions increasingly inaccurate after approximately ten days or 

more using empirical based calculations (Phillips 1956; North & Cahalan 1981).  

This issue of inconsistency persisted as modelling developed into the first principles 

approach whereby models were created which examined circulation levels on a 

three-dimensional basis. Global Circulation Models (GCM) included 

multidimensional representation of parameters examining time evolution of 

temperature, humidity, wind, soil moisture, sea ice, and other variables through 

three dimensions in space (Phillips, 1956; Schneider, 1992). Whilst their capabilities 

extended beyond those of empirical methods, Lorenz (1963) noted that GCMs 

would still not solve the accuracy issues given that the advection/ convection 

processes, which initiate variances in climate behaviour, are sub-model-grid scale. 

Even as GCMs and computing power advances (despite limitations through costs 

and available technology) it remained that instabilities within atmospheric processes 

rendered predictions increasingly inaccurate after approximately ten days or more 

as a result of these smaller processes (Schneider and Dickinson, 1974; North and 

Cahalan, 1981; Schneider, 1992). Thus, it is crucial that models strive to represent 

the smaller processes as accurately as possible to increase accuracy in 

understanding larger processes. Several GCMs built upon this hierarchical 

foundation, where accurately representing the smaller process through 

mathematics were conglomerated into increasingly complex and dynamic models. 

These included the Kashara-Washington model at the National Centre for 

Atmospheric Research (NCAR), The Community Atmosphere Model (CAM) and by 

Extension the Community Climate System Model (CCSM) (Lynch, 2008).  
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Advancements in computational technology and dynamical formulas have allowed 

fully-coupled, global climate models to be created with the ability to simulate past, 

present and future climate states of the earth (Lynch, 2008). A key development 

and widely applied technique in addressing simulation accuracy is the method of 

ensemble forecasting. Palmer (1993) took the conventional Lorenz model and 

initiated an investigation into ensemble forecasting (Palmer, 1993; Branković and 

Palmer, 1997). The success of this technique in increasing output accuracy has 

since been widely applied as ensembles allow for an estimation of the probability of 

atmospheric states through a finite sample of deterministic integrations. The mean 

of the ensemble acts as a filter to average out the unpredictable processes, 

providing more uniform representations (Schneider, 1992; Palmer, 1993; Branković 

and Palmer, 1997).  

Current models have advanced significantly, with one of the most sophisticated 

being developed by the European Centre for Medium-range Weather Forecasts 

(ECMWF). The aim of this model is to deliver weather forecasts of increasingly high 

quality and scope from a few days to a few seasons ahead. This has been 

successfully achieved through using a spectral primitive equation model, with a 

semi-lagrangian integration to allow longer time steps, a semi-implicit time scheme. 

Furthermore the model is fully coupled to an ocean wave model and treats physical 

processes comprehensively (Wang et al., 2004; Lynch, 2008). ECMWF sought to 

advance the concept of seasonal climate forecasting via multi-model ensembles 

(MMEs) through the DEMETER project (Hoshen and Morse, 2004; James et al., 

2014). A central aspect to the DEMETER project is the evaluation of the potential 

behind seasonal climate forecasts for end-user communities, such as those 

concerned with agricultural output and malaria epidemic control (Hoshen and Morse 

2004; Thomson et al. 2006a; Thomson et al. 2006b).  
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2.8.2 Seasonal forecasting 

Over the past 30 years the science of predicting seasonal-timescale variations has 

improved significantly through the use of probabilistic forecasting, increasingly 

powerful technology and advancements in climate system knowledge (Palmer et 

al., 2004; Weisheimer and Palmer, 2014). As a result climate prediction has become 

a routine which is now carried out daily for a number of global uses (Weisheimer 

and Palmer, 2014). Despite advancements, it remains difficult to accurately predict 

weather events beyond two weeks maximum using traditional numerical forecasting 

and remains impossible using climate models due to the spin-up time required 

(Troccoli, 2010; Doblas-Reyes et al., 2013). However, due to seasonal weather 

events being linked to larger scale and slower developing climatic components (e.g. 

oceanic-land), it is possible to use these factors to assess how climate and thus 

seasonal weather events will develop (Chen et al., 2004; Doblas-Reyes et al., 

2013).  

Seasonal forecasting operates between short range numerical weather forecasting 

(NWP) and decadal to medium and long range climate projections, thus inherits 

shortcomings associated with each (Soares and Dessai, 2014). Due to the relatively 

short timescales involved, it is difficult to realistically simulate the atmosphere in 

such a short space of time using GCMs leading to initial condition uncertainty 

(Palmer et al., 2005). Furthermore, they inherit the uncertainties in climatic 

relationships and feedbacks which are a constraint in long range climate prediction 

models (figure 2.15) (Slingo and Palmer, 2011; Doblas-Reyes et al., 2013). 

Uncertainty in these models is reduced through the increased use of seasonal 

ensemble integrations (Palmer et al., 2000; Slingo and Palmer, 2011). A 

probabilistic method of modelling, which has been utilised in developing seasonal 

forecasting models from early models such as PROVOST and DEMETER (Palmer 
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et al., 2000). Improvements in computational capabilities and knowledge have 

allowed expansion in scope with newly implemented models such as the Met Offices 

GloSEA5. 

 

Figure 2.15 - Uncertainty in climate and weather prediction. (Slingo and Palmer, 2011). 

Translating seasonal-to-decadal forecasts is at present difficult, due to the complex 

mechanisms involved at the various stages of dynamical climate modelling. This 

consists of three major dynamical model types which have already been broadly 

introduced, specifically NWP (5-10 days), Seasonal (months), and decadal/medium 

to long-range projections (Schwierz et al., 2006; Soares and Dessai, 2014). For the 

latter, emphasis is placed on high spatial resolution and simulation of the ocean 

driven by emissions scenarios, each of which forces respective coupled climatic 

models to simulate atmospheric physics and chemistry. Synoptic-scale weather 

processes are not included (Schwierz et al., 2006).  This differs somewhat from the 

seasonal model drivers where both NWP and coarser resolution coupled 

Atmospheric-Oceanic-Global-Climate-Models are used, without climate 

scenarios/pathways, focusing on processes most relevant to the corresponding time 
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and spatial scales involved (Goddard et al., 2012; Weisheimer and Palmer, 2014). 

As a result, it is difficult to link seasonal and decadal forecasts.   

The importance of seasonal climate modelling has become more widely appreciated 

throughout a number of sectors, particularly with respect to its usefulness in malaria 

modelling (Githeko et al., 2014; Meehl et al., 2014; MacLeod et al., 2015). Malaria 

epidemics occur when increasingly suitable parasite and vector conditions develop, 

particularly in association with unusual meteorological conditions (Jones and Morse, 

2012). As a result, seasonal forecast models are highly useful in providing 

information on the evolution of a disease months in advance in order to support 

decision makers in putting appropriate measures into place should the conditions 

for an epidemic outbreak be observed (Palmer et al., 2004; Githeko et al., 2014). 

Due to the anticipated use of these models in decision making it is therefore of 

utmost importance that models are as accurate as possible in order to yield the best 

results for decision makers, governments and ultimately clinical patients (Jones et 

al., 2007; Meehl et al., 2014; Soares and Dessai, 2014).  

2.8.3 Taking climate modelling forward 

Climate modelling has developed substantially since its earlier conceptions; 

however, development is still needed in order to increase model precision, reliability 

and accuracy. The best approach to take with regards to advancing climate 

modelling is a current topic of interest within the literature in terms of both scenarios 

considered by the models and the modelling approach (Katzav et al., 2012; Ebi et 

al., 2014; Katzav and Parker, 2015). Katsav and Parker (2015) highlight the 

numerous issues apparent when choosing between the Unified, Hierarchy and 

Pluralist approaches, which are key to the challenges faced by current 

climatologists. There is still a considerable way to go in terms of providing end users 

with reliable forecasts, in particular for precipitation, which is of particular 
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importance for Africa. Whilst the ECMWF model does perform significantly well in 

comparison to other models and should be seen as an aspirational achievement, 

there are still regions of the globe which require improvement in simulation accuracy 

(Meehl et al., 2014; Weisheimer and Palmer, 2014).  

Overall, there are still improvements required, the models consensually perform well 

enough to allow progression to be made in terms of examining climate impacts on 

health in Tanzania since the models currently perform best in the African region. 

Debates continue on how best to improve model performances which may involve: 

changing scenario format (as seen in the recent IPCC report) (IPCC, 2013, 2014); 

changing models (Weisheimer et al., 2014); and importantly, better understanding 

and representation of the physical drivers behind the global climate (Weisheimer & 

Palmer 2014; Meehl et al. 2014). The latter would be best achieved through 

international research collaborations within structured frameworks such as the 

regional forums outlined in section 2.3.2 (Katzav et al., 2012; Katzav and Parker, 

2015).  

2.8.4 Climate and environment roles in epidemiological modelling 

Diseases such as malaria and bacterial meningitis are associated with specific 

environments, dictated by a number of climate and environmental factors as 

presented in section 2.5 (Kalluri et al., 2007; Khormi and Kumar, 2015). These 

relationships, although complex, can be approached and represented through 

various modelling methods, including mathematically driven biological models, 

statistically based geographical analysis and seasonal climate models (Ermert et 

al., 2011; Mandal et al., 2011; Khormi and Kumar, 2015). Mathematical models have 

been used in predicting malaria outbreaks for over 100 years, where understanding 

of interactions between the host, parasite and environment has improved 

considerably (Mandal et al., 2011; Chabot-Couture et al., 2014). Supporting 
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mathematical developments, spatially explicit geographic distribution models have 

further developed, allowing disease rates and transmission to be addressed more 

thoroughly (Chaput et al., 2002). Whilst many approaches are now present in 

disease modelling, almost all rely on environmental and climate information, 

provided by historic climate records or climate models, the details of which have 

been discussed for Tanzania earlier in this section.    

Controlling and monitoring vector-borne diseases in particular, such as malaria, 

presents a major ongoing challenge to health officials and policy makers (Mutero et 

al., 2014; WHO, 2015c). The overall benefits of disease modelling are abundantly 

clear, despite outstanding improvements to be made, environmental disease 

models using a range of methods have been proven to be successful in providing 

crucial information to decision makers (WHO et al., 2013). This has allowed for the 

successful surveillance and prediction of outbreaks though decision support tools 

which have not yet been thoroughly examined or implemented for Tanzania (Racloz 

et al., 2012; MoHSW, 2013b; Pathirana, 2013). Whilst malaria is predominantly, 

controlled by environmental conditions, the role of socioeconomic, cultural and 

population dynamics has been recognised to play a role in malaria distribution and 

is discussed in section 2.7 (Khormi and Kumar, 2015; Mlozi et al., 2015; Shayo et 

al., 2015).  

2.9 Socio-economic, cultural and policy implementations impacting 

malaria in Tanzania 

2.9.1 Population dynamics and distribution 

Population dynamics within Tanzania have been significantly shaped by ecological 

suitability (water provision and land fertility) alongside specifically designed political 

policies aimed to influence population distribution (Maro, 1990). The population of 

Tanzania (as of 2012) was recorded to be 44.9 million people, almost four times 
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that recorded in 1967, projected to further increase to 50.1 million people as of 2016 

(MoHSW, 2015; NBS, 2016). Population growth to this degree can be attributed to 

increased longevity, from 42 years (1967) to 61.8 years (2015) and declining infant 

mortality from 155 (1967) to 46.2 (2015) per 1000 live births. Despite its large 

population, Tanzania remains sparsely populated with an overall population density 

of 51 persons per square kilometre, varying by region with Dar es Salaam and Mjini 

Magharbi (on the island of Zanzibar) being 3,133 and 2,581 respectively (figure 

2.16) (NBS, 2013a). High risk demographic categories for malaria include children 

under five, which make up 15.2% of the population, and women, whom slightly 

outnumber men in Tanzania at a ratio of 100 to 95 according to the 2012 census 

(figure 2.17 and table 2.6) (NBS, 2013a).  

Whilst all age groups are at risk of developing severe malaria, women and children 

under the age of five are biologically most vulnerable and account for the highest 

malaria morbidity and mortality rates (Deressa and Ali, 2009; Bousema et al., 2012). 

In addition, women and children in poverty, often living in rural areas and urban 

slums, are at higher risk than those in comparatively well off urban areas (Reuben, 

1993). Women are at increased risk, especially during pregnancy, due to alterations 

in immunity status, leading to an increased susceptibility to P. falciparum malaria. 

In cases of no natural immunity, malaria parasites can result in still-birth or low birth-

weight babies (Schwarz et al., 2008; Dellicour et al., 2010). Additional 

consequences of malaria exposure during pregnancy, is increased risk of malaria 

contraction, morbidity and mortality in early life for the child, alongside natural lack 

of immune system defence due to under-exposure in children under the age of five 

(Schantz-Dunn and Nour, 2009). These demographic groups are important to 

consider throughout policy discussion, and is further expanded upon in section 

2.9.4.  
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Figure 2.16 - Population density per region (people per km2). Data from the 2012 Tanzanian 
census (NBS, 2013b). 
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Figure 2.17 - Percentage distribution of population by age group and sex in Tanzania, 2012. 
(NBS, 2013b, 2016). 
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Table 2.6 - Key indicators from 2002 and 2012 population housing censuses, Tanzania 
(NBS, 2013a, 2016). 

Indicators 2002 2012 

Total population (million) 34.5 44.9 

Children population < 5 years (%) 16.4 15.2 

Young population < 15 years (%) 44.2 43.9 

Youth population 15 – 35 years (%) - 35.1 

Working age population 15 – 64 

years (%) 

51.8 52.2 

Elderly population 60+ years (%) 5.7 5.5 

Elderly population 65+ years (%) 3.9 3.8 

Sex ratio (males per 100 females) 96 95 

Life expectancy at birth 51 61.8 

Life expectancy at birth (male) 47 59.8 

Life expectancy at birth (female) 50 63.8 

Percent of urban population 23.1 29.6 

Percent of rural population 76.9 70.4 

Persons with Disability (%) 2 9.3 

Child orphan hood (%) 1.1 7.7 

Annual growth rate 2.9 2.7 

Households without toilets (%) 9.2 7.8 

Floor materials (Mud) (%) 73 60 
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2.9.2 Current malaria prevention and treatment policies  

Various approaches to malaria prevention and treatment have been implemented 

during the period 2000 to 2014, predominantly since 2001 and funded by various 

bodies throughout this period (figure 2.18). With some governmental policies 

predating this period, discussed further in section 2.9.2.1. As shown in figure 2.18 

a), funding for implementation of malaria policies has varied throughout 2000 to 

2014, with a five-year period where no extra funding at all was provided (or 

recorded) from 2004 to 2008. This observation could be considered unusual when 

multiple flagship malaria policies for Tanzania were launched in 2004, this is further 

discussed in sections 2.9.2.1 to 2.9.2.3. Funding has predominantly come from 

external sources, with the greatest contributions coming from the global fund, 

followed by USAID and the world bank / others according to WHO records (USAID, 

2015; WHO, 2015c). Sources of funding is an important factor to consider when 

examining the effectiveness of prevention and treatment policy as donors have 

been observed to disproportionately impact malaria policy based on their own 

agendas (Mutero et al., 2014).    
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Figure 2.18 - a) Sources of financing for malaria policies in Tanzania b) Distribution of 
funding by intervention method in 2014 (WHO, 2015c).   

2.9.2.1 Insecticide Treated Nets (ITNs)  

As shown in figure 2.18 b) ITNs currently form the majority of malaria intervention 

in Tanzania, and are widely identified as one of the most effective malaria 

prevention methods (Alliance for Case Studies for Global Health, 2009; West et al., 

2012). Investment in ITNs in Tanzania can be attributed to extensive research and 

investment prior to 2000 in the development and implementation of bed nets in 

Tanzania (table 2.7) (Magesa et al., 2005). This research led to the development of 

the National Insecticide Treated Nets programme (NATNETS), a large public private 

partnership (PPP), which aims to make ITNs accessible and affordable to all those 

at risk of malaria, alongside a countrywide target of protecting 60% of the population 

at high risk by 2005 (Hanson et al., 2005; Magesa et al., 2005). The programme 

was further developed through the introduction of the Tanzanian National Voucher 

Scheme (TNVS) in 2004 and implemented countrywide in 2006, which targeted 

pregnant women and children, distributing discount vouchers at their first antenatal 

visit (Marchant et al., 2010; Bonner et al., 2011; Kramer et al., 2017).  

A) 

B) 
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Table 2.7 - The critical path of insecticide-treated nets (ITN) research and implementation 
in Tanzania, 1982 to 2004 (Magesa et al., 2005). 

Efficacy studies Effectiveness 
studies 

Policy 
developments 

Going to scale  

Reducing malaria 
vector exposure 
(including net and 
insecticide 
developments)  

Reducing 
malaria 
morbidity and 
mortality 

Impact (morbidity 
and mortality) and 
cost assessment in 
pilot programmes. 

National 
strategies and 
partnerships 
for an enabling 
environment 

National 
ITN 
strategy 
and policy 
NATNETS 

1983 - 1995 1985 - 1995 1992 - 2000 1997 - 2000 >2000 

 

The impact of the implemented PPP, ITNs and TNVs combined within Tanzania on 

malaria has been closely examined with regards to its success and continued 

development. A key upgrade phase was the universal coverage campaign (UCC) 

starting in 2009, aiming to distribute 17.6 million Long Lasting Insecticide Nets 

(LLINs) to replace current ITNs, offering longer lasting protection, particularly for 

households in rural locations with poor access to dispensaries and clinics (Magesa 

et al., 2005; Bonner et al., 2011; Kramer et al., 2017). Overall the combined 

ITN/LLIN and TNV is an argued success, with average national bed net ownership 

increasing from 45.7% (2008) to 63.4% by 2011 with regional variations. ITN/LLIN 

use for under-fives was reported to increase from 28.8% to 64.1% (Bonner et al., 

2011; Eze et al., 2014; Kramer et al., 2017). A summary of voucher redemptions 

and ITN/LLIN distributions can be found in table 2.8.  

Despite overall successes, this is not unanimously achieved countrywide. 

Affordability amongst the poorest residents, and often the ones at highest risk, who 

cannot afford the $0.80USD (1000 TZS) top up remains an issue to which no 

feasible solution has yet been found (figure 2.19) (Heierli and Lengeler, 2008; 

Marchant et al., 2010). In addition, whilst distribution of nets has been an overall 

success, education on their use and effectiveness appears lacking in some districts. 

In order for the TNV system to be effective, a five step process must be adhered 

too. Steps include: women attending an antenatal clinic, obtaining a voucher, 
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retrieving and subsidising the remaining cost of a net, treating the net themselves 

with insecticide and then using the bed net properly (Marchant et al., 2010). 

Information on how to use nets properly varies by district, for example only 74.5% 

of households in the Muleba district (Kagera region) were provided with guidance 

on how to hang or use nets, with hang-up campaigns being identified as an 

important step to ensure conversion of ownership into usage (West et al., 2012).    

 

Figure 2.19 - Net use (any net) of children under one year of age by socio-economic strata 
(Q1 = lowest quintile, or poorest group) and by year (Heierli and Lengeler, 2008). 
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Table 2.8 - Malaria prevention outputs, 2007 – 2012 (MoHSW, 2013b). 

 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 Total 

TNVs Infant vouchers 
redeemed 

332,055 516,102 394,690 768,338 548,924 750,783 3,310,892 

TNVs Pregnant women 
vouchers redeemed 

931,193 827,805 527,163 722,439 675,278 785,084 4,468,962 

Under five years catch up 
campaign LLIN distributed 

0 0 5,498,322 3,264,116 0 0 8,753,438 

Universal coverage campaign 
LLIN distributed 

0 0 0 4,641,192 12,976,699 0 17,617,891 

Total ITN/LLIN distributed 1,263,248 1,343,907 6,420,175 9,363,085 14,200,901 1,535,867 34,151,183 

Number of house structures 
sprayed with insecticides 

34,745 95,548 425,118 425,118 1,144,621 1,167,998 3,053,247 

Number of districts 
implementing IRS 

1 2 2 7 18 18 18 
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2.9.2.2 Antimalarial medicines 

Chloroquine (CQ), a mono-therapeutic antimalarial, was used as the antimalarial 

drug of choice globally for 45 years in most malaria endemic sub-Saharan African 

countries due to an effective cost to performance ratio and its availability (Nsimba 

et al., 1999; Mubyazi and Gonzalez-Block, 2005). However, as malaria resistance 

to the drug rose, the clinical usefulness eroded (Baird, 2005). Extensive research 

was presented to the Tanzanian government and policy makers supporting the case 

for changing the first line malaria drug treatment from chloroquine to sulfadoxine 

pyrimethamine (SP), with the second line drug of choice as Amodiaquine (AQ) 

(Mubyazi and Gonzalez-Block, 2005). Following drug use policy changes, the 

performance of SP was assessed in 2004, with treatment failure increasing for SP 

at 25.5% and 12% for AQ prompting further policy change in 2006 (MoHSW, 2006; 

Mboera et al., 2007). Some studies conducted during this time period further 

indicated that misuse of antimalarials was likely to be a further contributory factor, 

with only 8% of mothers stocking antimalarials and widespread negative 

perceptions of SP (Eriksen et al., 2005).  

The observed steady decline in clinical success of mono-therapeutic antimalarials 

(such as CQ, SP and AQ) in malaria-endemic countries, including Tanzania, has 

led to the recommendation and adoption of artemisinin combination therapy (ACT) 

for the treatment of uncomplicated malaria (table 2.9) (MoHSW, 2006; Whitty et al., 

2008; Masanja et al., 2010). Whilst ACT is recommended by the WHO, the 

implementation of ACT in Tanzania has proved problematic and has stagnated 

between 2009 and 2013 with SP still being overall favourable in 2016 (Eriksen et 

al., 2005; Mboera et al., 2013; ACTwatch Group et al., 2017). Challenges include 

overcoming high cost and distribution to the poorest communities which need them 

most (MoHSW, 2006; Whitty et al., 2008). These challenges are aiming to be 
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addressed by policies such as the Affordable Medicines Facility for malaria (AMFm), 

aiming to reduce cost and increase accessibility in rural Tanzania, although early 

results suggest that this scheme has not yet proved effective (Yadav et al., 2012). 

A crucial step in the success of ACT is that the treatment is only accessible with a 

positive malaria diagnosis test, due to high cost and the need to slow the rate of 

parasite resistance, which is discussed further in section 2.9.2.3 (Masanja et al., 

2010; Hutchinson et al., 2017).  



106 
 

Table 2.9 - Malaria diagnosis, treatment and preventive therapies, 2007 – 2012 (MoHSW, 2013b). 

 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 Total 

ACT procured and distributed 

through public healthcare facilities 

16,227,81

8 

15,387,30

2 

18,091,53

2 

16,156,62

0 

16,159,89

0 

11,835,26

0 

93,858,42

2 

QAACT procured and distributed 

through private facilities 

0 0 0 1,865,050 9,747,340 14,060,20

0 

25,672,59

0 

mRDTs procured and distributed 

through public healthcare facilities 

0 0 1,937,300 5,003,000 9,247,600 13,335,85

0 

29,523,75

0 

Number of regions (n=21) 

implementing mRDTs 

0 0 3 8 16 21 21 
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2.9.2.3 Diagnostics, monitoring and management 

As indicated in section 2.9.2.2, the accessibility and effectiveness of new malaria 

treatments such at ACT is increasingly dependent on accurate malaria diagnosis 

(Hutchinson et al., 2017). Historically, malaria was treated presumptively although 

research found that in many cases this led to over-diagnosis, the over prescription 

of malaria drugs and under-diagnosis of other illness inducing ailments (Reyburn et 

al., 2007; Aung et al., 2015). The development of malaria rapid diagnostic testing 

(mRDT) (figure 2.20) was seen as a crucial step forward in solving issues 

surrounding over-diagnosis and over-treatment of malaria, allowing for appropriate 

management of newly introduced ACT treatments (MoHSW, 2013b; WHO, 2015b; 

Hutchinson et al., 2017). Despite this, early evidence has indicated widespread 

misuse whereby mRDT were either not used at all or in cases where a negative 

result was received, malaria treatment was prescribed despite the negative 

indication by the test (Reyburn et al., 2007; Hutchinson et al., 2017).  

 

Figure 2.20 - Example of a malaria rapid diagnostic test (USAID, 2013). 

In Tanzania, on-site malaria diagnosis was highlighted as an important step forward 

under the national malaria strategic plan (2008 to 2013) which led to the introduction 
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of mRDT in 2009 with national treatment guidelines updated to further support the 

use of mRDT in 2011 (MoHSW, 2008, 2013b; WHO, 2015b). The initiative can 

widely be viewed as successful in Tanzania in terms of mRDT capacity increase 

which has improved from 30% coverage when mRDT were first introduced (2009) 

to 75% as of 2012 (table 2.10) (Mboera et al., 2013). Despite mRDT presence in 

Tanzania improving considerably since 2009, and widespread availability since 

2012, mRDT does not yet dominate as a means of decision making around malaria, 

highlighting the need for further work (Mboera et al., 2013; Bruxvoort et al., 2015; 

Hutchinson et al., 2017).  
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Table 2.10 - Malaria service readiness of health facilities in Tanzania, 2009 and 2012. 
*Rapid diagnostic test of microscopy (Mboera et al., 2013). 

Variable 2008/2009 2012 

Offering diagnosis (%) 81 86 

Offering treatment (%) 97 86 

Facilities with malaria treatment services (n)  603 1209 

Trained staff (diagnosis and treatment) (%)  66 59 

Guidelines available (%)  64 60 

Trained in Intermittent Preventive Treatment (%) - 37 

Guidelines on Intermittent Preventive Treatment 

(%) 

- 45 

Diagnostic capacity on site* (%) 30 75 

Artemisinin Combination Therapy in stock (%)  80 77 

Sulfadoxine-pyrimethamine (%) 80 78 

Insecticide treated mosquito nets (%)  - 61 

Total health facilities (n)  635 1297 

 

2.9.3 Healthcare accessibility  

As shown in section 2.9.2, availability of malaria treatment in various forms including 

mRDTs, ACT, ITN’s / LLINs, has improved significantly throughout Tanzania over 

the past 15 years as a result of increased investment and management (Mboera et 

al., 2013). Whilst many policies have led to increased availability in malaria 

prevention, diagnosis and treatment, overall accessibility remains a concern. These 

concerns are particularly applicable to the most vulnerable demographics and 

populations, the disparities of which will be highlighted in this section.  
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The Tanzanian health system is based on a central-district government structure 

with a hierarchical system and referral structure from primary to tertiary district, 

regional, consultant and specialised hospitals outlined in figure 2.21 (MoHSW, 

2013a, 2013b). Dispensaries serve populations ranging from 6000 to 10,000 

people, health centres serve 50,000 – 80,000 people and a district hospital serves 

more than 250,000 people. Regional hospitals serve as a referral centre to four to 

eight district hospitals, with four consultant hospitals serving as referral centres to 

several regional hospitals. Examination of Tanzania’s service availability and 

readiness using a sample of the total health facilities (table 2.11) concluded that as 

of 2013, 65% of all types of facilities are located in rural areas, with 35% in urban 

areas (MoHSW, 2013a). Facility ownership varies between urban and rural areas, 

with more than half of facilities in urban areas being private-not-for-profit or private-

for-profit owned facilities in comparison to only 12% ownership in rural areas (table 

2.12) (MoHSW, 2013a).  

 

Figure 2.21 - Administrative and functional level type of facilities (MoHSW, 2013b). 
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Table 2.11 - Number of health facilities in Tanzania Mainland, 2010-2015 (*including 89 
clinics) (NBS, 2016). 

Health Facilities by 

Type 

2010 2011 2012 2013 2014 2015 

Hospitals 240 236 241 254 254 252 

Health Centers 687 684 742 711 713 718 

Dispensaries 5,394 5,132 5,680 5,680 6,002* 6,549* 

Total 6,321 6,052 6,663 6,645 6,969 7,519 

 

Table 2.12 - Percent distribution of health facilities by residence, according to level of 
service, managing authority and owner. Based on sample study for the SARA report. 
(MoHSW, 2013a). 

Background 

Characteristic 

Percent 

Rural 

Percent 

Urban 

Number of 

Facilities 

Level of service    

Dispensary 77 24 1100 

Health Centre 60 40 137 

MCH Clinic 46 54 8 

Hospital 47 54 52 

Managing authority    

Government / public 84 16 923 

Mission / faith based 64 36 132 

NGO/Not-for-profit 56 44 9 

Private-for-profit 18 83 233 

Ownership    

Public/Govt 84 16 923 

Private 39 61 372 

Total 73 27 1297 
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2.9.4 Current access and immunity to malaria treatment 

Human population dynamics greatly influence malaria vector, transmission and its 

control in urban and rural settings (De Silva and Marshall, 2012). In Tanzania, 

malaria prevalence in urban areas is one third of that found in rural areas (3% and 

10% respectively), resulting from a number of influential factors (Mboera et al., 

2007; MoHSW, 2013b). Densely populated and built-up areas limit the breeding 

capacity of mosquitoes due to reduced vegetation and suitable breeding habitats, 

where potential habitats are easily identified and accessed for vector control (figure 

2.22) (Caldas de Castro et al., 2004; Kabaria et al., 2016). Access to facilities is also 

comparatively high in urban areas with 96% of the population living within a 5km 

radius of a health facility in urban areas compared to 54% in rural (MoHSW, 2013a, 

2013b). Despite good access in terms of proximity, the urban public health sector is 

severely overburdened, particularly for the densely populated Dar es Salaam, and 

the private sector unaffordable for a large part of the population, of which dominates 

urban environments in Tanzania (section 7.3) (MoHSW, 2013b). This is an 

important factor to consider within the context of wider initiatives and urban 

environment changes.  

2.9.4.1 Urban malaria 

Although malaria prevalence is considerably lower in urban areas when compared 

to rural areas, the prevalence of fever is similar between the two settings, 

highlighting concerns of over-diagnosis in urban settings where the newly 

implemented diagnosis techniques are still not used routinely and clinical diagnosis 

is applied instead (Mboera et al., 2007; Rumisha et al., 2007; MoHSW, 2013b). 

These concerns of over-diagnosis are warranted, considering urban malaria is 

overall predicted to be low and reducing with increasing populations due to 

generally better quality “mosquito-proof” housing, higher human to mosquito ratios, 
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polluted water deterring mosquitoes, and lack of habitat suitability in urban 

environments (De Silva and Marshall, 2012; Kabaria et al., 2016). Over-diagnosis 

leads to increased resistance which would be have a greater impact on rural 

communities in comparison to the urban communities, where patients are often 

misdiagnosed due to symptom similarity to other febrile illnesses, as proven in 

numerous studies where parasite presence was examined, demonstrating 

misdiagnosis of malaria (Mboera et al., 2007; Reyburn et al., 2007; Chandler et al., 

2008). Thus, despite access to malaria treatment being overall acceptable, 

diagnosis shortfalls and private clinic costs are problematic in urban settings.   

Transmission risk remains high, particularly in peri-urban areas, often where low 

socioeconomic migrants from rural communities have settled looking for work, 

overall contributing to increased likelihood of malaria contraction (De Silva and 

Marshall, 2012). Despite overall environmental difficulties for mosquitos in urban 

areas, peri-urban areas offer a foothold through a combination of the less dense 

building layout, increased vegetation, and water pooling in domestic containers 

(Kabaria et al., 2016). Anopheles gambiae s.l / s.s have been discovered in both 

organic and polluted urban aquatic habitats, such as urban rivers and rain filled 

domestic containers (Awolola et al., 2007; Kabaria et al., 2016). This emphasises 

the need to continue preventing, treating and monitoring the development of urban 

malaria.  
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Figure 2.22 - Example of the urban environment in Dar es Salaam. (Reynolds, 2015). 

2.9.4.2 Rural malaria 

Section 2.9.3 highlights the disparity between healthcare access and availability 

between urban and rural environments, with only 54% of the rural community within 

5km of a hospital, often experiencing much poorer transport links (MoHSW, 2013a). 

This is somewhat offset by increased focus of policy implementations introduced in 

section 2.9.2 which has contributed to rural communities overtaking urban 

populations in terms of percentage ownership of LLINs as a result of vulnerable 

group focus programmes, however urban ownership does remain high (86.8% 

urban, 92.7% rural) (Mboera et al., 2013). This indicates that the increased efforts 

are beginning to improve overall accessibility to healthcare in rural locations, 

although improvement in other facilities such as roads, electricity and public 

transport could further contribute to accessing healthcare facilities (MoHSW, 2015; 

Shayo et al., 2015).  

Rural communities are increasingly likely to experience intense malaria 

transmission, commonly as a result of low human population density in proximity to 

a large number of potential mosquito breeding sites due to suitable environmental 
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conditions (figure 2.23 and 2.24) (Caldas de Castro et al., 2004). Mosquitoes prefer 

cleaner, organic water for breeding and vegetation for shelter making pastoral and 

crop fields surrounding rural villages increasingly suitable and surrounding villages 

and workers at higher risk (Bødker et al., 2003; Mboera et al., 2010; Mlozi et al., 

2015). This is further exacerbated by considerably different livelihoods of the rural 

community, including farming and pastoral practices, housing and education which 

is further discussed in section 2.9.5.  

 

Figure 2.23 - Many Tanzanian villages are surrounding by highly suitable environments as 
depicted here, with provision of water and vegetation with close proximity to human hosts. 
(Reynolds, 2015). 
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Figure 2.24 - Example of farming conditions in Africa, where irrigation is required to grow 
staple grains such as maize (Farm Africa, 2017). 

Unlike urban communities, rural communities are observed to possess increased 

natural immunity through generations of exposure to malaria infection, although this 

is further influenced by malnutrition and prevalence of immunodeficiencies, 

alongside the presence of non-immune residents who are increasingly likely to 

contract malaria such as young children (Kovats et al., 1999; Kuhn et al., 2005). 

Herd immunity offers a natural collective protection against malaria, often in 

historically high transmission areas, creating endemic stability (Sutherst, 2004). 

Herd immunity is observed to naturally fluctuate with exposure, where periods of 

low malaria transmission disrupted by environmental factors can reduce immunity 

(Reiter, 2001). The introduction of prolonged mass drug administration during 

epidemic outbreaks can reduce natural herd immunity, causing a rebound effect in 

infection cases (Brady et al., 2017). Thus the impact of drug administration should 

be carefully considered in rural communities (WHO, 2015b).  
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2.9.5 Socioeconomic and sociocultural impacts on malaria  

As indicated throughout this chapter socioeconomic and sociocultural conditions 

play a vital role in an individuals (and wider communities) exposure to malaria and 

subsequent health seeking behaviour (Tanner and Vlassoff, 1998; Mlozi et al., 

2015). Despite facilities and programmes being in place, the success of these 

schemes relies on public engagement with these policies to have a significant 

impact upon malaria control. A number of factors, both economic and cultural have 

been identified to impact malaria exposure and treatment which are further 

discussed in the following sub-sections, with potential changes to the existing 

dynamic discussed in section 2.10 and chapter seven.  

2.9.5.1 The impact of working and housing conditions on malaria transmission 

Malaria is prominent amongst low socioeconomic status families and often referred 

to as a disease of those in poverty (Reuben, 1993). The dominant source of income 

for rural residing and in most cases low-socioeconomic status families is pastoral 

and farming work which forms the backbone of the Tanzanian economy, and in 

cases results in a migratory lifestyle (Mboera et al., 2010; Shayo et al., 2015; Swai 

et al., 2016). Besides the importance of crop farming as a source of food for many 

families in poverty, crop irrigation systems such as rice farming provide increasingly 

suitable habitats for breeding adult mosquitoes (Mboera et al., 2010; Mazigo et al., 

2017). This is reflected in studies examining these communities, where higher 

disease burden is observed in comparison to other communities, particularly 

wealthier urban communities (Kitula, 2006; Mazigo et al., 2017).  

Higher disease burden is observed as a result of increased exposure and farming 

practices, however the exact interactions and roles of each are not yet fully 

understood (Mayala et al., 2015; Moshi et al., 2017). Community based studies 

conducted so far report that housing type and lack of outdoor biting prevention 
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methods could be considerable contributors to high malaria burden amongst these 

communities (Shayo et al., 2015; Swai et al., 2016; Mazigo et al., 2017). Housing 

often consists of mud walls, palm leaf roofs and a gap between to allow for air 

circulation (figure 2.25) (Oberlander and Elverdan, 2000). Despite increases in use 

of bed nets within mud-huts due to distribution programmes, rural communities often 

consist of large communities leaving family members sleeping under non-treated 

bed nets or improperly fitted bed nets if a bed is on the ground, leaving little to no 

protection (Kweka et al., 2013; Swai et al., 2016; Mazigo et al., 2017). Alternatives 

are currently being researched in the form of protected portable housing for pastoral 

workers (Swai et al., 2016).  

 

Figure 2.25 - Example of Tanzanian mud huts (National Geographic, 2009). 
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Malaria prevalence generally peaks at harvest time, as a result of increased outdoor 

biting and exposure in rural communities due to working during hours which are 

suitable for outdoor malaria transmission (Mboera et al., 2007). Harvest time is 

crucial for securing food and income for low-socioeconomic families. However, it is 

estimated that a single bout of malaria can result in an individual losing an average 

of one to five working days, or up to 10 working days for severe malaria, leading to 

a cycle of increased poverty due to lost working days (Chima et al., 2003; Mboera 

et al., 2007). Until the poorest populations are able to modify farming and housing 

practices (figure 2.26), as well as exploring solutions to reduce outdoor biting in rural 

areas, malaria will continue to be a severe economic burden to many rural 

communities as well as impacting overall Tanzanian economic development.  

 

Figure 2.26 - Conditions in rice paddy farming (Guardian, 2013). 
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2.9.5.2 Social beliefs, education and malaria presence  

Household responses to illness are known to be further influenced by cultural 

factors, including beliefs about causes of disease and effective cures, as well as 

patriarchal society structure, and issues surrounding age and gender discrimination 

(MoHSW, 2007; Shayo et al., 2015). The extent of this impact remains uncertain, 

particularly surrounding gender studies where evidence shows cases where gender 

has not been an influencing factor in malaria acquisition (Ghebreyesus et al., 2000; 

Brooker et al., 2004). Tanzania is making improvements in education, gender and 

age discrimination with regards to equality in malaria treatment access issues 

discussed in this section. Although it is recognised that further inclusion of social 

science studies across urban and rural communities is required to begin to truly 

assess the impact cultural roles have on health seeking behaviour and malaria 

treatment as multiple studies report varying results (Brooker et al., 2004; Pool et al., 

2012).  

2.9.5.3 Factors relating to age and gender 

Women are biologically, increasingly susceptible to malaria when pregnant, 

attracting twice the number of disease carrying vectors within Tanzania from both 

long and short ranges (Lindsay et al., 2000; Himeidan et al., 2004; Kourtis et al., 

2014). This is a result of immune system changes, making women increasingly 

susceptible to malaria with recent studies showing women with blood type O and 

carrying a female child are even more at risk (Ansell et al., 2002; Adam et al., 2017). 

Pregnancy causes further exposure through the necessity for women to leave the 

safety of ITNs/LLINs more frequently during mosquito peak biting times, a factor 

which is unavoidable (Ansell et al., 2002).  

Studies have shown the difficulties in women accessing healthcare once malaria 

has been contracted, due a traditionally run patriarchal household hierarchy which 
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is responsible for providing and controlling household finances (Mlozi et al., 2015). 

This includes the approval of funding healthcare, which could be declined for 

women due to many factors including financial hardship, potential perceptions of 

disloyalty if healthcare was provided by a male healthcare worker and in some 

cases social pressure constraining women from overtly expressing illness for fear 

of being perceived as “weak” (Oberlander and Elverdan, 2000; Williams and Jones, 

2004). In addition, males often seek to sleep under the protection of the bed-net 

(figure 2.27), leaving women and children vulnerable, due to them being the main 

financial provider for the household, where their sickness could result in lost 

finances leading to further financial difficulties (see section 2.9.5.1) (MoHSW, 2007).  

 

Figure 2.27 - Bed nets hung in dorms, many have holes and are not fitted properly 
(Stanmeyer, 2017). 
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Age plays a further role in exacerbating conditions described above, more so for 

women. Many pregnancies still occur at young ages in rural communities, 

contributing further to health vulnerabilities. The recommended age for maternity is 

from 20 years old onwards. However, in Tanzania 23% of young girls aged 15-19 

begin to have children with a total of 46% within this age bracket being currently or 

formerly pregnant (MoHSW, 2007; Makulilo, 2014). In addition, 7.6% of young 

women aged 15-19 are in a relationship with a man 10 years their senior. 

Traditionalist values remain dominant particularly with regards to a womans age 

and subsequent vulnerability, contributing an element of gender-based violence in 

some cases. This is present in all socio-economic and cultural groups in Tanzania 

where women are socialised to accept, tolerate and even rationalise domestic 

violence, contributing to withdrawal and difficulties accessing healthcare (NBS, 

2011; Makulilo, 2014).  

Tanzania is working towards improving equality between men and women through 

the national strategy for gender development, overseen by the Tanzanian ministry 

of community development, gender and children which was implemented in 2003 

(Ministry of Community Development Gender and Children, 2003). There has been 

no official report thus far documenting policy impacts, however it is recognised 

under the social institutions and gender index that Tanzania has further adopted a 

program successfully implemented in Brazil, partnering with men to reduce 

violence, promote shared parental duties and gender equality (OECD, 2014). This 

is somewhat reflected in increasing use of bed nets by women in remote rural 

communities, although it remains unclear how much the bed net initiatives have 

contributed to this by making more bed nets available to families (Mboera et al., 

2013; Mazigo et al., 2017). Overall, inequality remains categorically high, 

particularly within education and work (Pacchiotti, 2012; OECD, 2014).  
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2.9.5.4 Education  

Lower education levels have also been significantly associated with lower levels of 

malaria knowledge, fewer antenatal visits and hospital deliveries, and lower 

frequencies of clinic visits (Williams and Jones, 2004; Hagenlocher and Castro, 

2015). Women tend to have lower levels of education than men in Africa, which is 

reflected in the percentage of women in unskilled manual labour (17% vs 13% for 

men) and lack of women in management roles in Tanzania (3% vs 5% for men) 

(Williams and Jones, 2004; NBS, 2011). This is even greater in the high-risk 

agricultural sector where the majority of women who work are not paid (72%) and 

42% are employed by a family member (NBS, 2011; Pacchiotti, 2012). Malaria 

transmission is typically high in rural communities, where education is low and 

funding for health provisions and schools are limited. In these communities, malaria 

awareness is spread through community knowledge.  

Studies have shown that in low education and rural communities there is an 

awareness surrounding malaria exposure. Many communities report increased 

incidences of outdoor biting, particularly as many rural residents stay outdoors in 

the evening due to poor housing structure and ventilation (Mayala et al., 2015; 

Moshi et al., 2017). Whilst education on indoor prevention is growing due to large 

public projects and investment (section 2.9.2), education surrounding outdoor 

prevention is poor in Tanzania, resulting in persistent malaria transmission due to 

lack of outdoor biting awareness and lack of investment in outside prevention 

methods, such as residual spraying (Shayo et al., 2015; WHO, 2015c; Moshi et al., 

2017). This indicates outdoor malaria transmission awareness and prevention 

methods should be implemented in order to effectively tackle malaria transmission, 

particularly in rural communities (Mayala et al., 2015; Swai et al., 2016).   
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2.10 Translating scientific evidence into policy  

Policy development and decision making utilises both quantitative (e.g. 

epidemiological) and qualitative data (e.g. narrative accounts) upon which to base 

final implementations and decisions (Brownson et al., 2009; Peters et al., 2013). 

Scientific evidence is highlighted as an important factor in guiding public health 

policy development (Samet, 2000; Murtaugh et al., 2017). However, there is 

concern that the gap between what scientific evidence demonstrates as an effective 

approach, and what public health policies are being implemented and enforced is 

growing (Brownson et al., 2009).  

This could be due to several factors. Research is considered most likely to influence 

policy development through an extended process of communication and interaction, 

as outlined in the interface of science and health policy in chapter one (Samet, 2000; 

Brownson et al., 2009). There is increasing evidence that scientific findings and 

results are inaccessible due to poor communication of findings in a way which is 

useful to policy makers (Samet, 2000; Wardekker et al., 2008). Bodies such as the 

WHO and IPCC are able to guide public policies and policies with direct 

involvement, however further influential force is exerted by private funding bodies. 

Projects which are stakeholder driven and thus have an invested interest, have 

been discovered to be biasedly influenced by stakeholder demands over scientific 

evidence (Tonnang et al., 2010; Mutero et al., 2014) 

Despite the challenges faced in science informed policy the importance of data 

communication cannot be overlooked. This thesis will attempt to summarise 

recommendations and conclusions drawn from the following experimental chapters 

in a way which is clear and direct for the benefit of policy consideration.  
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Chapter 3 : Examining baseline climatology and 

the effect of El Niño events on climate conditions 

in Tanzania.  

3.1 Introduction  

As outlined in chapter two, a variety of environmental variables underpin the 

epidemiological processes for a range of tropical diseases found throughout the 

African continent and Tanzania. Climatic conditions play a key role in the formation 

of suitable habitats and conditions and thus form a basis upon which disease 

transmission occurs (Tonnang et al., 2014; Pandya et al., 2015). This premise forms 

the motivation for this chapter, which builds upon the points outlined within chapter 

two in relation to climate conditions and intra-annual patterns throughout Tanzania, 

further examining how these patterns are altered through the impact of large climatic 

changes such as El Niño events. This is important to the overall aims and objectives 

of this thesis as in order to understand the processes at work, the foundation, in this 

case climat, must be thoroughly understood and examined (Bhatt et al., 2015; Mlozi 

et al., 2015; Shayo et al., 2015).  

The meteorological stations and parameters chosen for examination provide an 

original insight into the climates experienced within these locations. The results will 

guide future chapters and contributions and therefore relevance to later work is 

commented upon.  

3.1.1 Aims and objectives 

Objective one is to provide an analysis of the climatological mean, minimum and 

maximum conditions and seasonality for temperature, rainfall and humidity across 

five identified locations within varying environments in Tanzania for a set time 

period. These variables were specifically chosen due to their importance in 
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influencing the distribution patterns of a number of diseases (Kulkarni et al., 2010; 

Rohr et al., 2011; Altizer et al., 2013). Objective two aims to statistically assess the 

impact of categorically strong El Niño events on the baseline climatology. El Niño 

was chosen to be representative over La Niña due to the global scale on which 

disasters of varying types and capacities area seen during El Niño events, alongside 

the general global temperature rise of 0.5˚C (Kovats et al., 2003). This value is more 

indicative of potential future climate conditions than those seen under La Niña 

episodes, where epidemics are predominantly seen to follow periods of increased 

temperature and rainfall (Kovats et al., 2003; Kulkarni et al., 2010).  

The overall aim of this chapter is to address research objective one, identifying key 

climatic characteristics and features of Tanzania including assessing sensitivity to 

El Niño events. This research will contribute to understanding how various 

environments and locations within Tanzania react to changes in the local climate 

and to identify areas and environments that suggest heightened sensitivity and 

quick response to climatic alterations within each area. This highlights areas which 

may be increasingly sensitive to changes in climate dynamics, using the impact of 

El Niño as a proxy, overall outlining areas which may experience epidemiological 

shifts under anticipated future scenarios.  

3.2 An overview of climate and environments of Tanzania 

Tanzania is broadly identified as having two major rainfall zones or regimes. North 

Tanzania experiences a bi-modal regime where southern Tanzania generally 

experiences a unimodal regime within which conditions and time of onset can vary 

considerably (Zorita and Tilya, 2002; Rowhani et al., 2011; Timiza, 2011). The 

controlling factor of this annual seasonality is the movement of the Inter-Tropical 

Convergence Zone (ITCZ), a large scale synoptic process which affects a number 

of countries across the African continent (figure 3.1). Prior analysis upon Tanzania’s 
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regimes have resulted in area classifications which vary between 7-12 separate 

climatic “zones” within the country which are based solely upon rainfall values 

(Ogallo and Chillambo, 1982; Basalirwa et al., 1999; TMA, 2014).   

Rainfall amounts are generally reported as mean annual values. These appear to 

vary within the literature with some examinations concluding between 200mm up to 

1000mm of rainfall is distributed across various locations within Tanzania, with 

higher amounts seen within the highland areas (Basalirwa et al., 1999; Timiza, 

2011; Griffiths et al., 2013). However, more recent reports provided by the Tanzania 

Meteorological Agency (TMA) conclude that higher altitudes do not necessarily 

equate to higher rainfall amounts. For example, Dar es Salaam lies at 55m above 

sea level and is reported to receive a mean annual rainfall total of 1268mm whereas 

Mbeya, the highest station included in this study at 1704 masl receives only 776mm 

of rainfall per year which by comparison is considerably less (TMA, 2014). 

Annual mean temperature range is reported to vary from 25˚C up to 32˚C, where 

cooler temperatures persist in the highland areas averaging between 10˚C and 20˚C 

(McSweeney et al., 2013).  Although this contradicts other literature reporting 

average temperatures reaching as low as 5˚C in the Mbeya (south western 

highlands region) (TMA, 2014). Low elevation areas experience more tropical humid 

conditions with temperatures generally remaining above 20˚C with the warmest 

temperatures experienced along the coastal belt. Minimum temperatures are 

generally experienced in July, where maximum temperatures are reported to peak 

in February (Timiza, 2011; McSweeney et al., 2013; TMA, 2014).  

In comparison to temperature and rainfall, humidity is less well studied and reported 

for Tanzania. Studies conducted by the TMA (2014) on selected stations for relative 

humidity demonstrate no discernible annual trend for Dar es Salaam, Iringa, Kigoma 

and Zanzibar meteorological stations between 1971-2001. Duane et al. (2008) 
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examined variations in relative humidity following an up-slope transect for Mt. 

Kilimanjaro covering a range of environments beginning at 1890m and covering 

environments from dense rainforest, through alpine conditions up to the summit ice 

field zone. Results from this particular analysis reported mean relative humidity 

conditions of approximately 97.7% at a station situated at 2340m, reducing to a 

mean of 54.4% at 5800m (Elliott and Kipfmueller, 2010). Whilst humidity records 

are not widely documented it is important to note in order to provide a comparison 

for the results in this chapter.  

Each of the parameters described above vary considerably from location to location 

across Tanzania. This provides a range of environments which are further shaped 

by local topographical variations, soil properties and the resulting local vegetation 

as a result of a combination of these factors. The five meteorological stations 

chosen for inclusion in this analysis aimed to represent a range of environments 

including different climates, topography, landscapes and population densities as 

summarised in table 3.1. This is in order to ensure that impacts of El Niño conditions 

on a range of local conditions are adequately assessed. Figure 3.2 demonstrates 

the location of each of the chosen stations within Tanzania. The station selection 

process is further expanded upon in section 3.2.1.  
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Figure 3.1 - Movement of the ITCZ across the African continent and associated timing of 
wet seasons (Gaidet et al., 2012). 
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Table 3.1 - Meteorological station information for chosen stations in Tanzania. Climate Zones and summary values taken from TMA (2014). A timescale over 
which this data was collected is not reported in TMA (2014). Population density figures obtained from NBS (NBS, 2013b). 

Station Elevation 
(m) 

Latitude Longitude Climate Zone Mean 
Monthly Min 
Temp (˚C) 

Mean 
Monthly Max 
Temp (˚C) 

Mean 
Annual 
Rainfall 
(mm) 

Population 
density 
(2012) 
(Pop/km 2) 

Dar es Salaam 
Airport 

55 -6.867 39.2 North Coastal 18.2 32.4 1268 3113 

Dodoma 1120 -6.17 35.767 Central 13.7 31.1 630 50 

Kilimanjaro 
Airport 

896 -3.417 37.067 North Eastern 
Highlands 

8.3 33.1 786 124 

Mbeya 1704 -8.933 33.467 South 
Western 
Highlands 

5.3 26.6 776 45 

Mwanza 1140 -2.476 32.917 Lake Victoria 
Basin 

15.4 29.0 1128 293 
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Figure 3.2 - Meteorological station locations and elevation for Tanzania. Grid units: Decimal 
Degree Seconds.  
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3.2.1 Meteorological stations analysed in this study 

Station location choice was guided through climatological rainfall zones reported by 

Basalirwa (1999), Timiza (2011) and TMA (2014). Further to this topographic 

variation was taken into account in conjunction with varying bedrock and soil 

composition found across Tanzania which further contributes to local environmental 

conditions and influences local microclimates (Government of Tanganyika, 1955; 

Natural Resources and Tourism, 1974). Demographic factors were also considered 

given the premise of the overall thesis in relation to disease transmission and to aid 

in decision making for future chapter assessments as outlined in the aims and 

objectives of this chapter (Section 3.1.1).  

3.2.1.1 Dar es Salaam Airport 

Dar es Salaam is geologically underlain by fluvial sand, gravel, silt and limestone 

(Government of Tanganyika, 1955). Soils are predominantly red laterite (locally 

known as murram) soils overlaying grey and black non-calcareous soils, with areas 

including friable clay (Government of Tanganyika, 1955). This combination of 

bedrock and soil conditions support bushland of various plant species, with some 

areas possessing friable clay (imperfect drainage conditions) supporting the growth 

of open woodland (Natural Resources and Tourism, 1974). The area immediately 

surrounding the meteorological station is urban in nature, with a minor patch of open 

woodland being present immediately adjacent to the airport in the Kitunda district. 

Overall, the station is surrounded by a dense urban environment as a result of Dar 

es Salaam’s growth since the station began operation in 1974. The airport lies 4km 

from the city centre and coastline, which similarly will influence the station via urban 

heat impacts and coastal conditions.  
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3.2.1.2 Dodoma 

Dodoma is located on the Tanzanian plateau, 1120 masl. The meteorological 

station began operation in 1983 and is located in the centre of an urban settlement 

north-east of the Dodoma city airport. A mixture of plutonic rocks such as granite 

compounds and terrestrial sediments such as sand and gravel underlies the area. 

Patches of marine limestone, clay, mudstone and sand are also present 

surrounding Dodoma. This forms the basis for predominantly red laterite soil with 

grey and calcareous black soil with areas containing friable clay sediments nearby 

(Government of Tanganyika, 1955). Vegetation is sparse with the area being 

covered predominantly by open bushland of various species with patches of dry 

open grassland where drainage varies from imperfect to good (Natural Resources 

and Tourism, 1974).  

3.2.1.3 Kilimanjaro Airport 

Kilimanjaro airport is located at the foot of Mount Kilimanjaro at 896 masl. The 

airport meteorological station began operation in 1974. The region is underlain by 

typically alkaline volcanic rocks including basalt and pyroclastics. The Airport itself 

lies at a boundary between the volcanic bedrock and Archaean sediment with rocks 

including marble, graphite and a variety of others (Government of Tanganyika, 

1955; Fishwick and Bastow, 2011). Surrounding soils are of a brown clay type. 

Vegetation is dry open grassland generally characterised by imperfect to good 

draining depending on the soils. In this case a clay underlay would make for poorer 

drainage. The airport is surrounded by open grassland with no urban settlements in 

the immediate vicinity, reducing the impact of urban heat effects (Natural Resources 

and Tourism, 1974). The nearest urban settlement is a small village 2.8km from the 

site.  
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3.2.1.4 Mbeya  

Mbeya station began operation in 1983 and is located on the outskirts of Mbeya city 

at 1704 masl. Mbeya is located in the south west highlands in a valley within the 

mountain range’s varied topography. The local geology varies between Mesozoic 

Era continental and marine sandstone and Archaean marble, granite and other 

varieties of sediments and rock. Soils in the area are predominantly pumice layered 

which generally allows for good drainage, interspersed with brownish red soils 

containing friable clay (Government of Tanganyika, 1955; Fishwick and Bastow, 

2011). The dominant vegetation type ranges from woodland to grassland north of 

Mbeya, where woodland density increases upslope accompanied by sandy/loamy 

soils and drainage ranging from imperfect to excessive. To the south (where the 

station is located) vegetation changes to more dry, open grassland with varied 

drainage (Natural Resources and Tourism, 1974). The general bedrock suggests 

drainage should overall be adequate in the area. Its proximity to a substantially sized 

urban area and dense urban sprawl may allow some urban signal in records.  

3.2.1.5 Mwanza 

Located at 1140 masl on the shores of Lake Victoria, Mwanza’s meteorological 

station began operation in 1983. Mwanza has a similar total population to Mbeya 

but is more densely populated (NBS, 2013b). The area is characterised by a plutonic 

bedrock consisting mostly of orogenic granite varieties. Local top-soils are mostly 

red/grey mixed with calcareous black soils (Government of Tanganyika, 1955). 

Bushland vegetation of a mixture of variations dominates the immediate area 

surrounding Mwanza before transitioning into dry open grassland further afield 

(Natural Resources and Tourism, 1974).   
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3.3 Methodology 

3.3.1 Data 

Meteorological station data was collected from the Met Office Integrated Data 

Archive System (MIDAS), which is supplied via the British Atmospheric Data Centre 

(BADC) (Met Office, 2012). Whilst there are now a number of publicly available 

datasets which allow access to global meteorological records, the MIDAS dataset 

was chosen for this study due to its implementation of a network wide guided data 

collection system. Further to providing guidance for data recorders, the Met Office 

(MO) also runs quality checks on data before being released with the aim to provide 

high quality data (Met Office, 2016a). Despite this, some anomalous data was found 

during analysis and treatment of this, for example the removal of outliers, is further 

explained in section 3.3.2.   

Years 1985 through to 1995 were chosen to represent the baseline climatology for 

Tanzania. This was due to many stations within Tanzania only officially beginning 

operation from 1983 onwards with initial issues with irregular data entries hence 

starting the data period two years after the start of the majority of the stations 

themselves. Furthermore, an El Niño year of particular interest and included in this 

study (1997) occurred relatively shortly after data recording began hence restricting 

the dataset to 11 years. The 11 year period chosen is reflective of the wider 30 year 

climatology (1985 - 2014) with examples taken from Kilimanjaro Airport for 

temperature, precipitation and absolute humidity as shown in figures 3.3, 3.4 and 

3.5 respectively. This highlights the suitability for the use of the chosen 11 year 

period for this analysis.   
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Figure 3.3 - a) Distribution of monthly temperature data over a 30year climatological period 
(1985 – 2014) b) Distribution of monthly temperature data over the 11 year baseline period 
(1985 – 1995). Outliers are represented as a circle, and are deemed plausible genuine 
results and thus have been retained. Units: °C. 

  

Figure 3.4 – a) Distribution of monthly absolute humidity data over a 30 year climatological 
period (1985 – 2014) b) Distribution of monthly absolute humidity data over the 11 year 
baseline period (1985 – 1995). Outliers are represented as a circle, and are deemed 
plausible genuine results and thus have been retained. Units: gm-3. 
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Figure 3.5 - Distribution of mean monthly rainfall data for a 30 year climatological period 
(1985 – 2014) and for the 11 year baseline period (1985 – 1995). The baseline period data 
is within one standard deviation of the 30 year climatological period. Units: mm.   

El Niño years 1997 and 2015 were chosen to assess the impact of changing global 

conditions on the Tanzanian climate due to their categorically strong Southern 

Oscillation Index (SOI) values and relatively recent occurrence with the overall 

impacts of the 2015 event yet to be fully assessed and quantified (NOAA, 2015).  
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3.3.2 Analytical process 

The workflow diagram presented in figure 3.6 demonstrates the process to assess 

each dataset for each station. Baseline climatology (1985-1995), 1997 and 2015, 

were each individually assessed using descriptive statistics before being combined 

and compared using ANOVA analysis. ANOVA tests were applied to determine 

whether there was any statistically significant difference between the climatological 

baseline (1985-1995) and the two El Niño years (1997, 2015). If a P value above 

0.05 was returned, then further tests were not carried out.  

Post-hoc tukey and bonferroni tests were undertaken if ANOVA returned statistically 

significant results in order to highlight within which months the statistically significant 

differences lie. The Tukey test performs to a reasonable accuracy despite 

theoretically requiring equal sample sizes and is outlined the stronger of the two 

tests for this type of analysis hence the presentation of the Tukey results in tables 

3.7-3.11. Equal sample sizes have been maintained as far as achievable through 

the use of reducing the dataset to use synoptic hours only (Wallenstein et al., 1980). 

Bonferroni tests were performed to provide further evidence to support the statistical 

outcome as whilst every measure has been taken to ensure equal sample sizes this 

does vary (see section 3.6) (Ekstrøm and Sørensen, 2015).  

The removal of outliers was required despite the quality assurance checks 

performed by the MO upon the MIDAS dataset (Met Office, 2016a). Some records 

still indicated errors of abnormally high temperatures when the dataset was 

manually scanned, for example some entries included recorded temperatures of 

99˚C and in some cases lower dew point values than the recorded temperature 

resulting in relative humidity values above 100%. 
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Figure 3.6 - Workflow of analytical process. Equations referred to can be found at equations 3.1 to 3.4. 
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Data was obtained in synoptic hours (00:00, 06:00, 12:00, 18:00 GMT) in order to 

have an equal number of data observations per year due to earlier records only 

recording parameters at synoptic hour intervals (Met Office, 2016a). Relative 

humidity was calculated initially using temperature and dew point provided in the 

station data and calculated using equation 1 (Equation 3.1) and the constant values 

provided in table 3.2. Whilst relative humidity is commonly reported, absolute 

humidity provides more comparable results when examining diseases such as 

bacterial meningitis and hence relative humidity was converted using equations 3.2, 

3.3 and 3.4 (Cheesbrough et al., 1995; Vaisala, 2013; Pandya et al., 2015). All 

conversion equations and constants used have been taken from Vaisala (2013). 

Synoptic hourly recordings for rainfall were aggregated into daily totals to allow for 

easier interpretation. Temperature and humidity values were assessed in synoptic 

hourly format in order to retain minimum and maximum daily variations with a view 

to further use this data to calculate degree day cycles in a later chapter and thus 

daily range, minimum and maximum values were necessary to retain.  

Table 3.2 - Constants used in humidity conversion (Vaisala, 2013) 

 A m Tn Max error 

(%) 

Temperatur

e Range (˚C) 

Water 6.116441 7.591386 240.7263 0.083% -20…+50 ˚C 

 

Equation 3.1 - Calculating relative humidity using dew point, temperature and constant 
values (Vaisala, 2013). 

𝑅𝐻 = 100% ∙ 10
𝑚[

𝑇𝑑
𝑇𝑑+𝑇𝑛

 + 
𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡+𝑇𝑛
]
 

Equation 3.2 - A, m, Tn = constants found in table 3.2. Units are in hPa (Vaisala, 2013). 

𝑃𝑤𝑠 = 𝐴 ∙ 10(
𝑚∙𝑇

𝑇+𝑇𝑛
)
 

Equation 3.3 - Calculation of water vapour pressure (Pw) (Vaisala, 2013). 

𝑃𝑤 = 𝑃𝑤𝑠 ∙ 𝑅𝐻/100 
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Equation 3.4 - Calculation of A (absolute humidity) using constants and values outlined in 
table 3.3 (including units) (Vaisala, 2013). 

𝐴 = 𝐶 ∙
𝑃𝑤

𝑇
  

Table 3.3 - Constants used in equation 3.4. 

C Constant 2.16679 gK/J 

Pw Vapour pressure in Pa 

T Temperature in K 

Units g/m-3 

 

When identifying outliers (figure 3.7), any values outside of four times the standard 

deviation were removed. This method is common practice at NOAA (Peterson et 

al., 2013; Weisent et al., 2014). It is important to note that this method was only 

applied to temperature and humidity due to these parameters being normally 

distributed. Rainfall outliers were removed manually and discretion applied. For 

example, values depicting 601mm of rainfall in one synoptic hour period (6 hours) 

seemed unreasonable when compared to other values. The non-normal distribution 

of the data made this unsuitable to apply a four times standard deviation rule as 

potential natural variability would have been otherwise removed. 
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Figure 3.7 - Process for removal of outliers using four times standard deviation method (Weisent et al., 2014; Reynolds et al., 2017). 
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3.4 Results 

3.4.1 Climatology (1985-1995)  

Mean monthly conditions for each parameter assessed are presented in figures 3.8-

3.10 and accompanied by standard deviation results in tables 3.4-3.7. Highest 

monthly mean temperatures are observed in the coastal region of Dar es Salaam 

all year round, with all temperature profiles exhibiting a reduction in temperature 

between the months of May and September (figure 3.8). Mwanza demonstrates the 

most consistent profile, with minor annual fluctuations in temperature (table 3.4). 

Mbeya, the highest station altitudinally, demonstrates the lowest temperatures.  

 

Figure 3.8 - Mean monthly temperature (˚C) for Tanzania’s baseline climatology at each 
chosen meteorological station (1985-1995). 
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Monthly standard deviation was calculated to provide an indication of monthly 

temperature variability (table 3.4). Kilimanjaro airport demonstrates the highest 

degree of standard deviation peaking at 4.80°C temperature deviation from the 

mean, followed by Dodoma and Mbeya. Dar es Salaam and Mwanza demonstrate 

less variation from the mean monthly temperature, indicating more consistent 

temperature conditions.  

Table 3.4 - Standard Deviation values for mean monthly temperature (˚C) at each station 
(1985-1995). 

Month Dar es Salaam 

Airport 

Dodoma Kilimanjaro 

Airport 

Mbeya Mwanza 

Jan 2.57 3.80 4.56 2.72 2.95 

Feb 2.76 3.73 4.80 3.06 3.11 

Mar 2.99 3.76 4.52 3.01 3.11 

Apr 2.67 3.52 3.47 2.63 2.83 

May 2.81 3.80 3.02 2.86 2.92 

Jun 3.36 4.26 3.44 3.99 3.45 

Jul 3.54 4.27 3.79 4.40 3.66 

Aug 3.58 4.18 3.84 4.29 3.39 

Sep 3.80 4.43 4.37 4.41 3.02 

Oct 3.61 4.50 4.61 4.05 2.76 

Nov 3.24 4.27 4.31 3.53 2.81 

Dec 2.78 4.12 4.27 3.03 2.89 
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Mean total monthly rainfall is observed to reach the highest peak in the coastal 

region of Dar es Salaam during the MAM rainfall season, reducing between May to 

September before increasing again during the OND season. Kilimanjaro and 

Mwanza follow a similar profile, with overall less total rainfall recorded. Mbeya and 

Dodoma are in the unimodal rainfall regime which is clearly profiled in figure 3.9 with 

both reaching their maximum total monthly rainfall in January.  

 

Figure 3.9 – Mean monthly total rainfall (mm) representing Tanzania’s baseline climatology 
at each chosen meteorological station (1985 – 1995). Monthly totals were summed to 
include each contributing year then the total divided by the number of years included to 
provide mean monthly totals.  

 

 

  

Figure  STYLEREF 1 \s 3. SEQ Figure \* ARABIC \s 1 9 -Mean total monthly rainfall (mm) 
representing Tanzania’s baseline climatology at each chosen meteorological station (1985-
1995). Monthly totals were summed to include each contributing year then the total divided 
by the number of years included to provide mean monthly totals. 
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Monthly standard deviation was calculated to provide an indication of monthly total 

rainfall variability (table 3.5). Dar es Salaam demonstrates the highest degree of 

standard deviation peaking at 23.01 in May, followed by Mwanza. Dodoma, 

Kilimanjaro and Mbeya demonstrate less variation from the mean within a month, 

indicating more consistent rainfall totals. 

Table 3.5 - Standard deviation values for mean total monthly rainfall (mm) at each 
meteorological station (1985-1995). 

Month Dar es Salaam 

Airport 

Dodoma Kilimanjaro 

Airport 

Mbeya Mwanza 

Jan 18.52 12.40 8.82 10.95 9.39 

Feb 11.66 10.31 4.13 9.18 15.38 

Mar 18.90 13.57 10.49 10.38 13.16 

Apr 21.58 5.77 13.47 5.48 13.31 

May 23.01 0.86 8.52 2.77 9.89 

Jun 10.71 0.07 1.37 0.14 7.21 

Jul 9.35 0.00 6.10 0.13 4.90 

Aug 11.79 3.92 2.62 0.02 4.06 

Sep 5.47 0.85 0.95 4.32 4.86 

Oct 16.73 0.11 3.75 3.35 11.41 

Nov 16.72 6.09 8.10 8.98 15.50 

Dec 13.84 10.96 8.13 9.27 14.79 
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Mean monthly absolute humidity is highest in the coastal region of Dar es Salaam, 

peaking during March, reducing between May to September before increasing 

again, in line with the bi-modal rainfall seasons (figure 3.10). All stations follow a 

similar profile, with similar values observed between Dodoma, Kilimanjaro and 

Mwanza. Mbeya demonstrates the lowest overall absolute humidity, reaching below 

nine gm-3 during July and August.  

 

Figure 3.10 - Mean monthly absolute humidity (gm-3) for Tanzania’s baseline climatology at 
each meteorological station (1985-1995). 
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Monthly standard deviation was calculated to provide an indication of monthly 

absolute humidity variability, demonstrated in table 3.6. Mwanza demonstrates the 

highest degree of standard deviation in absolute humidity peaking at 2.6 gm-3 in 

August, followed by Kilimanjaro Airport, and Dodoma. Mbeya and Dar es Salaam 

demonstrate less variation from the mean within a month, indicating more consistent 

absolute humidity values. 

Table 3.6 - Standard Deviation values for mean monthly humidity (gm-3) at each chosen 
meteorological station (1985-1995). 

Month Dar es Salaam 

Airport 

Dodoma Kilimanjaro 

Airport 

Mbeya Mwanz

a 

Jan 1.25 1.47 1.8 1.09 1.4 

Feb 1.28 1.46 2.2 1.03 1.4 

Mar 1.21 1.37 2.2 1.04 1.7 

Apr 1.18 1.22 1.5 1.09 1.2 

May 1.45 1.29 1.3 1.22 1.6 

Jun 1.68 1.36 1.4 1.29 2.2 

Jul 1.73 1.41 1.3 1.21 2.3 

Aug 1.64 1.48 1.4 1.21 2.6 

Sep 1.48 1.69 1.5 1.33 2.5 

Oct 1.59 1.88 1.9 1.56 2.1 

Nov 1.38 1.85 1.9 1.60 1.5 

Dec 1.21 1.95 1.7 1.29 1.4 
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3.4.2 Comparing El Niño and baseline climatological conditions 

Monthly minimum and maximum values for temperature have been plotted and 

compared for the baseline time period, 1997, and 2015 (figure 3.11a-e). Statistical 

comparisons are presented in section 3.4.3.  

All stations demonstrate changes across baseline minimum and maximum 

temperatures during El Niño years. Minimum temperatures increase on average 

across all stations under El Niño conditions, further depicting clear variations in 

seasonality across the majority of stations (figure 3.11a-e). Increased annual 

fluctuations in minimum temperature are observed during El Niño conditions for 

some stations. This is most prominent for Mwanza and Mbeya (figure 3.11d, 3.11e). 

In contrast, decreases in minimum temperature fluctuations are observed at some 

locations, specifically Dodoma and Kilimanjaro Airport (figure 3.11b, 3.11c). Despite 

variations in minimum temperature fluctuations between El Niño year profiles, both 

demonstrate an average increase in minimum temperature.  

Maximum temperatures demonstrate overall little change to both seasonality and 

fluctuation in extremities, with average decreases in maximum temperature 

observed at Dodoma, Mbeya and Mwanza (figure 3.11b, 3.11d and 3.11e). 

Fluctuations are less extreme than those observed for minimum temperatures, 

suggesting maximum temperatures are less impacted than minimum temperatures 

under El Niño conditions. Stations such as Dar es Salaam Airport and Kilimanjaro 

Airport demonstrate reductions in fluctuation and an overall similar seasonality to 

the baseline during El Niño years (figure 3.11a, 3.11c).  

Average temperature profiles under El Niño conditions indicate overall increases 

across all stations due to minimal changes to maximum temperatures and 

widespread increases for minimum temperatures.  
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Figure 3.11 - Minimum and maximum temperature values for baseline climatology, 1997 
and 2015 for a) Dar es Salaam Airport b) Dodoma c) Kilimanjaro Airport d) Mbeya and e) 
Mwanza. 
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Total monthly rainfall values have been plotted for the baseline climate, 1997 and 

2015 (figure 3.12a-e). Statistical comparisons are presented in section 3.4.3.  

Results show clear changes in rainfall seasonality for both the MAM and OND 

seasons under El Niño conditions. This is accompanied by increased variation in 

rainfall fluctuation. Dodoma demonstrates the largest increase in rainfall volume at 

the start of the OND season for both 1997 and 2015, with total rainfall amount 

increasing by over 300% in comparison to baseline conditions (figure 3.12b). 

Dodoma also demonstrates the biggest decrease at the start of the 1997 MAM 

season with 100% decrease in rainfall.  

Changes in seasonality are most prominent at Dar es Salaam Airport, Dodoma and 

Mwanza (figures 3.12a, 3.12b and 3.12e). Seasons do not change unanimously 

under El Niño conditions, although at Dodoma similar changes to seasonality are 

observed for both El Niño years during the MAM season (figure 3.12b). Dar es 

Salaam shows the greatest seasonal change with a sudden increase in rainfall 

amount at the start and end of the 2015 MAM season. During 1997 at this time, 

rainfall is observed to start early, decline mid-season and peak again in June, post 

season. In addition, during 1997 the OND season starts early, peaking in 

September (figure 3.12a). A similar occurrence is observed in Mwanza where 

seasons extend beyond current boundaries.  

Overall, rainfall volume is observed to increase under El Niño conditions due to 

increases in extreme volumes of rainfall both in and out of season.   



152 
 

 

 

 

Figure 3.12 - Total monthly rainfall (mm) values for baseline climatology, 1997 and 2015 
for a) Dar es Salaam Airport b) Dodoma c) Kilimanjaro Airport d) Mbeya and e) Mwanza. 
*Differing scales for Dar es Salaam Airport and Mwanza.  
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Monthly minimum and maximum absolute humidity values have been plotted for the 

baseline climate, 1997 and 2015 (figure 3.13a-e). Statistical comparisons are 

presented in section 3.4.3.  

Minimum absolute humidity values are observed to increase for all stations under 

El Niño conditions. This is predominantly in accordance with changes in 

temperature and water vapour as explained by the equations presented in section 

3.3.2. Increases in fluctuations of minimum absolute humidity are observed in 

comparison to baseline conditions. This can be attributed to increased variation in 

atmospheric water vapour due to increased variation in rainfall for both El Niño years 

assessed. Dar es Salaam demonstrates the greatest increase in comparison to the 

baseline conditions, with Mbeya demonstrating the least amount of change 

respectively.  

Maximum absolute humidity values show little to no change across all stations with 

the exception of Dodoma, which demonstrates a unanimous reduction in maximum 

absolute humidity (figure 3.13a-e). Maximum humidity profiles demonstrate overall 

increased fluctuation in values under El Niño conditions in comparison to the 

baseline. Changes do not occur equally between El Niño years. The greatest 

fluctuations are observed at Dar es Salaam and Mbeya (figures 3.13a, 3.13d). 

Reduced fluctuation in maximum humidity values are also observed at Kilimanjaro 

airport, Mbeya and Mwanza for 2015 (figure 3.13c, 3.13d and 3.13e).  

Overall, average absolute humidity values are observed to increase under El Niño 

conditions due to increases in minimum absolute humidity values and little to no 

change observed for maximum humidity values.  
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Figure 3.13 - Minimum and maximum absolute humidity (gm-3) values for baseline 
climatology, 1997 and 2015 for a) Dar es Salaam Airport b) Dodoma c) Kilimanjaro Airport 
d) Mbeya and e) Mwanza.  
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3.4.3 Statistical difference between the baseline climatology and El Niño 

conditions 

Tukey test results are presented in tables 3.7-3.11. Statistically significant figures 

are presented in bold. If the conclusion of a statistically significant result is not 

supported by Bonferroni tests a “*” is present.  If ANOVA returned a result depicting 

no statistically significant difference (P > 0.05) a “–“ symbol is used.  

3.4.5.1 Dar es Salaam Airport 

Statistical significance test results for Dar es Salaam are shown in table 3.7. 

Temperatures demonstrate significant differences were observed in January and 

December during the 1997 El Niño event in comparison to baseline climatology. 

Conversely for the 2015 El Niño event, all months experience a significant difference 

in temperature compared to baseline conditions (except for May). Comparing 1997 

and 2015 temperatures, results indicate statistically significant differences between 

the two events, indicating differing climatic reactions between El Niño events in Dar 

es Salaam.  

Rainfall results show that five months throughout the year have statistically 

significant differences in total rainfall amounts where 2015 experienced four months 

of significantly differing rainfall amounts. These significant changes can be 

attributed to increases in rainfall (figure 3.12a). Comparing 1997 and 2015 El Niño 

events, four months demonstrate statistical significance between the events, further 

confirming differing reactions in climate to El Niño events.  

Absolute humidity shows the most significant difference between baseline 

conditions and both 1997 and 2015 El Niño events. 2015 shows statistically 

significant changes in absolute humidity throughout the entire year, whilst 1997 

shows 11 months of significant change except for February. When compared to 

each other, 2015 and 1997 demonstrate less statistically significant difference to 
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each other than baseline conditions, indicating potential similarities in absolute 

humidity reaction between El Niño events. This is supported by the Dar es Salaam 

absolute humidity profiles shown in figure 3.13a where similar values are observed 

in 1997 and 2015.  
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Table 3.7 - Dar es Salaam Airport statistical significance test results. Results highlighted in bold demonstrate months of statistically significant difference 
between the associated years. Results not in bold or marked “–“ are not statistically significant. Results with a “*” indicate results are not supported by 
Bonferroni correction tests. 

 Climatology and 1997 Climatology and 2015 1997 and 2015 

Month Temperature Rainfall Humidity Temperature Rainfall Humidity Temperature Rainfall Humidity 

January 0.005 - 0.000 0.020 - 0.000 0.952 - 0.011 

February 0.302 - 0.851 0.000 - 0.000 0.000 - 0.000 

March 0.536 0.000 0.000 0.003 0.007 0.000 0.005 0.762 0.879 

April 0.765 - 0.000 0.000 - 0.000 0.017 - 0.581 

May 1.000 0.682 0.000 0.500 0.008 0.000 0.219 0.010 0.000 

June 0.291 0.000 0.000 0.000 0.969 0.000 0.085 0.000 0.001 

July 0.561 - 0.000 0.000 - 0.000 0.015 - 0.003 

August 0.155 - 0.000 0.000 - 0.000 0.266 - 0.104 

September 0.936 0.032 0.000 0.013 0.991 0.000 0.157 0.104 0.010 

October 0.644 0.000 0.000 0.001 0.500 0.000 0.000 0.000 0.862 

November 0.818 - 0.000 0.001 - 0.000 0.075 - 0.413 

December 0.007 0.000 0.000 0.000 0.823 0.000 0.000 0.000 0.000 
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3.4.2.2 Dodoma 

Statistical significance test results for Dodoma are shown in table 3.8. Temperatures 

overall demonstrate very little statistically significant changes between baseline 

conditions and both El Niño years. 1997 results indicate only May and June 

experience a statistically significant change in temperatures, with only February 

indicating the same in 2015. The same three months demonstrate statistically 

significant differences from each other when 1997 and 2015 were compared. 

Overall, results indicate mostly non-statistically significant changes in temperature 

under both El Niño years examined here.  

Rainfall analysis results for both 1997 and 2015 exhibit statistically significant 

differences in both May and December for Dodoma. When compared to each other, 

no statistical difference between rainfall in El Niño years was found. This indicates 

both El Niño events resulted in similar impacts to each other, and overall little impact 

on baseline conditions.  

Absolute humidity values demonstrated more significant changes under 2015 El 

Niño conditions than 1997 conditions. Results comparing 1997 and baseline 

conditions indicate absolute humidity values only differed significantly during 

December. 2015 results indicate six months of statistically significant change in 

absolute humidity. When compared to each other, El Niño events demonstrated five 

months of significant difference between the two years.   

 



159 
 

Table 3.8 - Dodoma statistical significance test results. Results highlighted in bold demonstrate months of statistically significant difference between the 
associated years. Results not in bold or marked “–“ are not statistically significant. Results with a “*” 

 Climatology and 1997 Climatology and 2015 1997 and 2015 

Month Temperature Rainfall Humidity Temperature Rainfall Humidity Temperature Rainfall Humidity 

January - - 0.082 - - 0.082 - - 0.009 

February 0.457 - 0.977 0.001 - 0.000 0.037 - 0.047* 

March - - 0.288 - - 0.000 - - 0.942 

April - - - - - - - - - 

May 0.002 0.000 - 0.765 0.000 - 0.023 0.777 - 

June 0.016 - 0.091 0.816 - 0.000 0.015 - 0.000 

July - - - - - - - - - 

August - - 0.242 - - 0.001 - - 0.015 

September - - 0.580* - - 0.000 - - 0.655 

October - - - - - - - - - 

November - - 0.738 - - 0.000 - - 0.471 

December - 0.000 0.000 - 0.050* 0.457 - 0.226 0.006 
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3.4.2.3 Kilimanjaro Airport 

Statistical significance test results for Kilimanjaro airport are shown in table 3.9. 

Temperature results for 1997 compared to baseline climatology indicate statistically 

significant temperatures for four months of the year. 2015 El Niño conditions show 

2 months (January and August) of significant difference, correlating with two of the 

months demonstrating significant change under 1997 conditions. There is no 

significant difference observed between 1997 and 2015, suggesting similar impacts 

of El Niño conditions on temperatures at Kilimanjaro.   

Rainfall results for 1997 compared to baseline climatology indicate two months of 

significantly differing rainfall amounts (May and June) which can be observed in the 

rainfall profiles (figure 3.12c). 2015 results indicate no significant difference between 

2015 El Niño rainfall and baseline rainfall amounts. 1997 and 2015 indicate 

significant differences in rainfall in May only.  

Absolute humidity results demonstrate a significant change throughout eight months 

of the year during 1997 El Niño conditions when compared to baseline conditions. 

February to May demonstrated no change in absolute humidity. 2015 shows 

significant changes during seven months of the year compared to baseline 

conditions. This indicates that the greatest impact from both El Niño years occurs 

in absolute humidity values. When compared, 1997 and 2015 results demonstrate 

five months of statistically significant difference from each other, further indicating 

differing local reactions to El Niño events. 
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Table 3.9 - Kilimanjaro statistical significance test results. Results highlighted in bold demonstrate months of statistically significant difference between the 
associated years. Results not in bold or marked “–“ are not statistically significant. Results with a “*” indicate results are not supported by Bonferroni correction 
tests. 

 Climatology and 1997 Climatology and 2015 1997 and 2015 

Month Temperature Rainfall Humidity Temperature Rainfall Humidity Temperature Rainfall Humidity 

January 0.000 - 0.000 0.017 - 0.000 0.051 - 0.810 

February 0.024 - - 0.727 - - 0.121 - - 

March 0.031 - 0.580 0.787 - 0.000 0.157 - 0.370 

April - - - - - - - - - 

May - 0.000 0.662 - 0.990 0.001 - 0.003 0.483 

June - 0.000 0.000 - 0.992 0.425 - 0.005 0.000 

July - - 0.000 - - 0.000 - - 0.077 

August 0.001 - 0.000 0.015 - 0.931 0.277 - 0.000 

September - - 0.000 - - 0.000 - - 0.000 

October - - 0.000 - - 0.017 - - 0.016 

November - - 0.000 - - 0.000 - - 0.198 

December - - 0.000 - - 0.887 - - 0.000 
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3.4.2.4 Mbeya  

Statistical significance test results for Mbeya are shown in table 3.10. Temperature 

results comparing baseline climatology and 1997 El Niño conditions demonstrate 

three months of significant temperature changes under El Niño conditions. 2015 El 

Niño results indicate six months of significant temperature change, indicating 2015 

El Niño conditions had a greater impact on baseline temperature in comparison to 

1997. Comparisons between 1997 and 2015 show six months where significant 

differences occur between each year, further indicating differing local climatological 

reactions to El Niño conditions.  

Rainfall results demonstrate less change than temperature conditions. 1997 exhibits 

statistical change from baseline conditions for two months (April and December) 

where 2015 demonstrates no significant impact on rainfall conditions in comparison 

to baseline climatology. Statistically significant differences between each El Niño 

year is observed in April only, and is clearly observed in the rainfall profiles in figure 

3.12d.  

Absolute humidity results indicate that during 1997 El Niño conditions, three months 

experienced significantly different absolute humidity values (January, May and 

December). For the 2015 El Niño event, a greater impact was observed. Nine 

months demonstrate a significant change in absolute humidity during 2015 which is 

supported by the absolute humidity profiles shown in figure 3.13d. Comparison 

results between 1997 and 2015 demonstrate significant differences in absolute 

humidity during five months.  



163 
 

 

Table 3.10 - Mbeya statistical significance test results. Results highlighted in bold demonstrate months of statistically significant difference between the 
associated years. Results not in bold or marked “–“ are not statistically significant. Results with a “*” i 

 Climatology and 1997 Climatology and 2015 1997 and 2015 

Month Temperature Rainfall Humidity Temperature Rainfall Humidity Temperature Rainfall Humidity 

January 0.012 - 0.000 0.721 - 0.000 0.287 - 0.000 

February 0.004 - 0.132 0.009 - 0.010 0.000 - 0.001 

March 0.448 - - 0.029 - - 0.014 - - 

April 0.068 0.000 0.817 0.136 0.975 0.000 0.006 0.015 0.000 

May 0.000 - 0.000 0.233 - 0.000 0.000 - 0.000 

June 0.647 - - 0.000 - - 0.082 - - 

July 0.743 - 0.284 0.015 - 0.034 0.035 - 0.865 

August - - - - - - - - - 

September 0.902 - 0.109 0.000 - 0.050* 0.026 - 0.004 

October 0.983 - 0.276 0.008 - 0.000 0.224 - 0.188 

November - - 0.254 - - 0.000 - - 0.234 

December - 0.029 0.000 - 0.630 0.000 - 0.063 0.936 
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3.4.2.5 Mwanza 

Statistical significance test results for Mwanza are shown in table 3.11. Temperature 

results indicate significant differences during the 1997 El Niño event occurred during 

four months of the year. During 2015, significant differences in temperature were 

observed during six months of the year. Comparing each El Niño event, significant 

differences were seen from August through to November, which can be observed 

in the temperature profiles presented in figure 3.11e, where 2015 minimum 

temperatures are lower than that observed during the 1997 event.   

Rainfall results indicate that during 1997 only April experienced significantly 

different rainfall values.  In contrast, during 2015 five months exhibit significantly 

different rainfall amounts, which can be clearly seen within the rainfall profiles 

presented in figure 3.12e. Significant differences between rainfall during El Niño 

years are observed during three months, September, October and December.  

Absolute humidity values demonstrate four months of significant difference under 

1997 El Niño conditions when compared to baseline conditions, occurring around 

both rainfall seasons in March, May, September and November. 2015 results 

demonstrate five months of significant difference in absolute humidity compared to 

baseline conditions. Comparisons between both El Niño events demonstrate four 

months of significant difference between events, further indicating differing 

circumstances which can occur during El Niño conditions.  
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Table 3.11 - Mwanza statistical significance test results. Results highlighted in bold demonstrate months of statistically significant difference between the 
associated years. Results not in bold or marked “–“ are not statistically significant. Results with a “*” indicate results are supported by Bonferroni correction 
tests. 

 Climatology and 1997 Climatology and 2015 1997 and 2015 

Month Temperature Rainfall Humidity Temperature Rainfall Humidity Temperature Rainfall Humidity 

January - - - - - - - - - 

February 0.282 - - 0.000 - - 0.869 - - 

March 0.000 - 0.001 0.000 - 0.000 0.134 - 0.394 

April 0.787 0.039 - 0.025 0.000 - 0.760 0.434 - 

May - - 0.012 - - 0.971 - - 0.039 

June - - 0.599 - - 0.000 - - 0.003 

July 0.098 - - 0.042 - - 0.822 - - 

August 0.000 - - 0.011 - - 0.030 - - 

September 0.000 0.813 0.000 0.703 0.006 0.183 0.000 0.020 0.000 

October 0.001 0.943 0.679 0.367 0.000 0.000 0.000 0.013 0.007 

November 0.993 0.259 0.002 0.000 0.026 0.000 0.044* 0.789 0.934 

December - 0.961 0.399 - 0.000 0.000 - 0.014 0.343 
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3.5 Discussion  

3.5.1 Baseline climatology 

An examination of the baseline climatology clearly demonstrates that varied climatic 

conditions occur in each of the stations included in this study. The majority of 

meteorological stations adhere to a similar temperature regime with most peaking 

between December and February. Mwanza however appears to be an exception 

whereby peak temperatures are observed in September, and decrease over what 

is generally classified as the warmer months. This is likely to be due to the addition 

of complex mesoscale circulation patterns known to operate in the Lake Victoria 

basin (Anyah and Semazzi, 2004), an influence that would not be present in the 

other four stations. Overall, the greatest daily range in temperatures per month as 

demonstrated by standard deviation (table 3.4) show both Kilimanjaro and Dodoma 

as having the greatest varying daily temperatures. Annually, Kilimanjaro 

temperatures vary the most (figure 3.8) peaking at 26˚C and reaching as low as 

20˚C.  

Mean monthly total rainfall trends (figure 3.10) clearly outline areas which 

experience a unimodal regime, such as Dodoma and Mbeya, where differing 

monthly totals can be seen, but a similar trend followed with slightly different onset 

periods, related to the movement of the ITCZ. Both of these stations are confirmed 

to lie within the unimodal zone (Zorita & Tilya., 2000; Gaidet et al., 2012). Dar es 

Salaam experiences the greatest variation in rainfall (table 3.5), peaking in April at 

approximately 12mm per day. Given the proximity of Dar es Salaam to the coast, it 

can be interpreted that the movement of clouds over the ocean deposit significant 

rainfall amounts upon reaching the Tanzanian landmass which is further dictated by 

the movement of the ITCZ. Clear seasonal trends exist at all stations in association 

with the ITCZ movement and associated rainfall regimes for the individual station 
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locations. Overall, there is a clear reduction in rainfall between June and September 

for all stations where some experience zero to very minimal rainfall for this period, 

particularly Dodoma and Mbeya which are dominated by the unimodal regime.  

Mean monthly absolute humidity depict very similar seasonal trends across all 

stations with the exception of Kilimanjaro airport of which the intra-annual trend 

varies somewhat more than the other four stations (figure 3.11, table 3.6). However, 

there is a very clear and similar seasonality present across Tanzania where 

absolute humidity begins to decline at all locations from April through to minimum 

values in July. Absolute humidity then begins to rise from August reaching a peak 

in December. An exception is Mwanza which peaks in October, and can be linked 

to proximity to Lake Victoria and local mesoscale processes due to the relevance of 

water vapour in influencing humidity. As with temperature, a clear altitudinal 

relationship can be seen, reported previously by Duane et al. (2008), and Mbeya 

(1704 masl) experienced the overall lowest mean monthly absolute humidity where 

values drop below 10gm-3 during June to September, a key value associated with 

the onset of bacterial meningitis (Cheesbrough et al., 1995; Pandya et al., 2015). 

Dar es Salaam (55 masl) experiences the highest.  

In comparison to previous studies, baseline temperatures fit well with those reported 

previously by various studies (Timiza, 2011; McSweeney et al., 2013; TMA, 2014). 

This confirms that the data used here to simulate baseline conditions is an accurate 

representation of these areas and thus a good foundation to base future analysis 

upon. Due to humidity generally being reported in relative humidity (%), the 

presentation of absolute humidity values cannot be specifically compared.  

3.5.2 Statistical significance and impact of El Niño  

Overall, temperature demonstrates a varied reaction to El Niño conditions. Dar es 

Salaam demonstrates this reaction particularly well. 1997 results show overall no 
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difference between the baseline climatology with the exception of January and 

December. Alternatively, 2015 experienced significantly different temperatures 

across the whole year with the exception of May where temperatures remained 

similar to the baseline. This suggests that Dar es Salaam could potentially be at risk 

of experiencing significant temperature changes. Dodoma experienced very little 

statistically significant change. Kilimanjaro, Mwanza and Mbeya all demonstrated 

between 2-6 months where statistically significant differing temperatures occurred 

though no discernible pattern either between stations or between years could be 

seen.  

Total monthly rainfall values demonstrate predominantly increased variation in 

monthly totals with some shifts in seasonality observed. Where statistical 

significance is observed between the baseline climatology and both El Niño years 

they are often seen in association with general rainfall periods for that area, whether 

unimodal or bi-modal. A particularly stark example is Dar es Salaam where total 

rainfall amounts vary quite considerably in the earlier rainfall period, where 

seasonality and rainfall pattern varies considerably (MAM). Similarly, Dar es Salaam 

depicts clear seasonal change in 1997 where total rainfall demonstrates a clear lull 

in the earlier rainfall period and appears to have 3 significant periods of rainfall within 

the year with a shorter break period. This is supported in both statistical significance 

and descriptive statistics (figure 3.12a and table 3.7).  

Humidity values demonstrated the most prominent differences when assessed for 

statistical significance. Dar es Salaam demonstrates the greatest change in 

absolute humidity for both 1997 and 2015 when compared to the baseline. All 

months demonstrated significant change with the exception of February, 1997. The 

reason for this difference can clearly be seen in the descriptive analysis (figure 

3.13a) where minimum absolute humidity values can be seen to remain between 1-



169 
 

4 gm-3 higher throughout an El Niño year. Maximum humidity values remain 

comparatively unchanged with the exception of slight changes in seasonality 

suggesting that mean absolute temperatures will slightly increase under warmer 

conditions. Dar es Salaam is the closest station to the coastline, the most densely 

populated and thus the most developed, both of which could be contributing factors 

to the results observed. 

Less significant changes were experienced at other locations including, Kilimanjaro 

Airport demonstrates statistically significant changes, and thus sensitivity, to 

absolute humidity from June through to December in 1997 (table 3.9). This may be 

attributed to local environment conditions and proximity to forestry which covers the 

slopes of Mt. Kilimanjaro (Natural Resources and Tourism, 1974). In Mbeya, 2015 

conditions also demonstrate significant differences in humidity with the exception of 

three months, although there is no clear distribution pattern. Overall humidity 

demonstrates no consistent pattern of change by location, with a number of 

instances where the conditions experienced in both 1997 and 2015 are different to 

each other as well as to the baseline climatology. However, it can be concluded that 

humidity changes experienced under El Niño conditions occur more rapidly by 

month (figures 3.13a-e). It is notable that the location with the least amount of 

change is Dodoma which is located inland, away from any water bodies and not 

influenced by mountain ranges.  

3.6 Conclusion 

Overall, baseline conditions analysed using the MIDAS dataset for Tanzania are 

comparable to those reported by the TMA (2014) and McSweeney et al., (2013). 

Due to absolute humidity (gm-3) commonly being reported as relative humidity (%) 

no direct comparison was able to be made. However, absolute humidity values were 

crucial for the consideration of bacterial meningitis and were therefore investigated. 
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Results demonstrate clear increases in minimum, and reductions in maximum 

values for temperature and humidity under El Niño conditions. Maximum 

temperatures do not reduce as much as minimum temperatures increase, resulting 

in an overall increase in mean temperature and humidity.   

Statistically significant differences were observed for temperature, rainfall and 

humidity between baseline, 1997 and 2015 El Niño conditions. Changes observed 

are not consistent across Tanzania and no discernible pattern has been identified. 

Dar es Salaam experienced the most significant differences between baseline 

climatology and El Niño years. This in part could be attributed to local factors, 

particularly proximity to the ocean and increased urbanisation. Mbeya, Kilimanjaro 

and Mwanza each experience a similar degree of statistical change throughout the 

year, which manifests differently in each area. These variations are likely as a result 

of varying topography, location and local ground conditions which were not 

specifically assessed in this chapter.  

These results demonstrate a definitive sensitivity and difference in reaction to 

climate in certain areas, highlighting some locations that appear to be more robust 

to changes, i.e. Dodoma, brought on through events such as El Niño. Dar es Salaam 

warrants further investigation into the impacts of potential future climate change 

given the evidence provided here. Kilimanjaro, Mbeya and Mwanza all pose 

compelling cases for further investigation, given their elevation and demonstrated 

sensitivity to El Niño events. Evidence from the literature would support the 

examination of an area such as Mbeya where vector borne diseases in particular 

have been shown to be overall increasing in altitude. At present Mbeya would be 

classified as being on the ecological boundary of mosquito survival (Lindblade et 

al., 2000; Parham and Michael, 2010; Beck-Johnson et al., 2013). Further to this 

Mbeya’s current absolute humidity suitability for bacterial meningitis during the dry 
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months, shown in figure 3.14, also provides a compelling reason to further examine 

this area (Cheesbrough et al., 1995; Pandya et al., 2015).   

 

Figure 3.14 - Current absolute humidity (gm-3) suitability threshold for bacterial meningitis 
(highlighted in red).   

It is important to note that there are inherent errors within meteorological data 

(Biswas and Rao, 2001; Katz and Group, 2002). This has been mitigated where 

possible through use of a reliable data source (MIDAS dataset) with further checks 

implemented to ensure a good quality dataset (Met Office, 2012). A further aspect 

to note is limitations posed by data availability and number of observations. Every 

step was taken to ensure an even spread of data, although some variation in 

observation numbers is still present (using synoptic hours). This is something to 

consider when using and interpreting these results. Furthermore, a future 

recommendation stemming from this would be an aim to improve the collection, 

storage and analytical processes amongst the climate data community. This data 

has been assessed in accordance with methods present in the literature and 

interpreted to bring out the key conclusions. Whilst more can be drawn from the 

(gm-3) 
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conclusions and results presented the most relevant and impacting have been 

discussed in order to direct the following chapters accordingly.  
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Chapter 4 : Current and projected environmental 

risk mapping of malaria.   

4.1 Introduction 

As climate modelling and disease simulation develops, epidemiological 

assessments and environmental risk mapping are able to be carried out in ever 

greater detail. This in particular comes with changes in the IPCC’s approach to 

climate modelling, offering increasingly sophisticated future climate simulations, 

termed Representative Concentration Pathways (RCPs) replacing the older SRES 

scenarios (Moss et al., 2010; Rogelj et al., 2012; IPCC, 2013). Consensus within 

epidemiological studies is that the relationships between climate, environment and 

disease remain poorly understood, particularly when examining the importance and 

contribution of each aspect (Parham and Michael, 2010; Christiansen-Jucht et al., 

2014; Gwitira et al., 2015; Hardy et al., 2015). Thus, a key element underpinning 

the criticality and uniqueness of this particular research is the highlighted necessity 

for further research to better understand the nature and drivers of changing 

endemicity in sub-Saharan Africa (Githeko et al., 2014; Bhatt et al., 2015; Mlozi et 

al., 2015; Shayo et al., 2015). 

4.1.1 Aims and objectives 

The aim of this chapter is to develop and apply a predictive environmental risk model 

to produce a risk map for malaria. This will be achieved through the development of 

a weighted environmental model consisting of environmental variables relevant to 

malaria distribution. The model will be built in objective based stages. The initial 

weighted sums will be ranked and assigned through careful examination of relevant 

factors identified within the literature before being applied to current environmental 

data. In order to validate the model, outputs will be compared for accuracy against 

the observed disease distribution within Tanzania. Once representative of current 
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malaria prevalence distribution, the model will be applied to simulations from the 

Hadley HADGEM2-ES model for the four RCPs. This will provide a future modelled 

output for environmental risk for years 2050 and 2070 over four separate scenarios. 

The final stage will be to compare the future simulation distributions of potential 

change for the four pathways to that of current distribution.  

4.1.2 Associations between diseases and environmental factors 

In order to develop an environmentally weighted risk map for disease distribution, 

the known relationships between malaria and environmental factors, of which 

climatic factors are considered to be a key dimension, need to be carefully 

considered (Githeko et al., 2000; Khormi and Kumar, 2015). The impacts of climate 

and environment on mosquito-borne diseases such as malaria have been closely 

examined within the literature; being identified as playing important roles in defining 

population density, reproduction, and transmission of disease (Khormi and Kumar, 

2015). To date, no importance ranking of climatic and environmental variables with 

regards to disease has been published or agreed upon (Mordecai et al., 2013; 

Ferraguti et al., 2016). Regardless, a number of environmental variables (introduced 

in section 4.3) have been identified as critically linked to varying stages within the 

mosquito lifecycle as well as parasite development and thus, integral to examining 

disease distribution.  

Mosquitoes are known to be critically dependent on temperature for a number of 

aspects on their lifecycle and reproduction cycle, alongside key temperatures in 

pathogen development within them (Bayoh and Lindsay, 2004; Blanford et al., 

2013). Generally, higher temperatures allow for more optimum development into 

adulthood and thus into a disease transmitting vector within a shorter time period. 

A number of studies have been conducted to establish the optimum development 

and transmission temperatures reaching differing conclusions (Martens et al., 1997; 
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Craig et al., 1999; Hoshen and Morse, 2004; Parham and Michael, 2010). A recent 

study conducted by Mordecai et al. (2013) used a combined approach, using 

laboratory data, observed data and historical records in a quadratic model approach 

and provided a comparison of results from previous studies. Their overall 

conclusions demonstrated that temperature is a key driver, with optimum conditions 

at 25°C, which is on average 5°C lower than previously considered by other studies 

(for example, Martens et al., 1997; Craig et al., 1999; Parham and Michael, 2010).  

Rainfall and water bodies are also strongly associated with enhancing transmission 

and vector distribution (Lindsay et al., 1998; Parham and Michael, 2010). Spatial 

and temporal distribution of precipitation alongside volume have been found to 

impact on disease vector habitats and breeding cycles in both the short and long 

term disease distribution, where increased rainfall is generally associated with an 

increase in breeding sites and site duration (Githeko et al., 2000; Gwitira et al., 

2015). Whilst it is understood that temperature and rainfall both play crucial roles in 

affecting vector-borne disease transmission, the significance of each individual 

factor and the cumulative effect of both climatic parameters is still highly debated 

within the literature, with findings supporting both temperature and rainfall as being 

most influential in differing locations (Hay et al., 2002; Blanford et al., 2013; 

Mordecai et al., 2013; Gwitira et al., 2015). It is clear that both parameters do play 

an important role, particularly through influencing key bioclimatic variables and that 

this relationship requires further investigation.   

Alongside rainfall, substantial permanent and perennial water bodies such as 

permanent lakes, temporary lakes, or rivers, can play a vital role in supporting and 

sustaining malaria transmission although varying analyses conclude differing 

results. Houngbedji et al. (2016) concluded that distance to water bodies was not 

considered a risk by their particular model framework when conducting a localised 
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study despite strong evidence of the impacts of both temporary and permanent 

water bodies elsewhere (Ernst et al., 2006; Brown et al., 2008; Thomas et al., 2013). 

However, Houngbedji et al. (2016), study site was not local to any significant water 

bodies and thus is considered an anomaly when compared to the wider body of 

literature. The consensus is however, that distance to water bodies is important, 

with recent studies suggesting that a distance of 1500m or closer can have a higher 

than 0.5 impact on incidence rate-ratio (Silué et al., 2008; Raso et al., 2009).  

Soil drainage properties have become an area of growing interest, particularly when 

examining water pooling for mosquito habitats. Patz et al. (1998) demonstrated that 

for a location in Kenya, modelling soil moisture substantially improved prediction of 

mosquito biting rates when compared to precipitation alone (Patz et al., 1998; 

Githeko et al., 2000). Alternatively, Hardy et al., (2015) demonstrated with their 

boosted regression model that slope angle had a greater influence on malaria 

infection rates in Zanzibar than soil moisture capacity for both wet and dry seasons, 

although soil moisture was demonstrated to have a minor influence overall. Both 

models include varying supporting parameters, where Patz et al., (1998) uses the 

normalised difference vegetation index (NDVI), Hardy et al., (2015) adopts land 

cover type over the vegetation index. Similarly to temperature and rainfall, soil 

conditions and slope remains an area requiring further study in a disease 

association context (Patz et al., 1998; Githeko et al., 2000; Kelly (Letcher) et al., 

2013; Ratmanov et al., 2013; Hardy et al., 2015).  

Vegetation coverage is considered an important variable in disease spread due to 

the increasing body of literature demonstrating a correlation between high NDVI and 

mosquito larval production (Hay et al., 1997; Thomson et al., 1999). NDVI is a 

measure of the presence and condition of green vegetation, thus indicating how 

much vegetation coverage is within an area and can also be related to more 
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common ecological measures (Brown et al., 2008). Vegetation plays an integral role 

in disease distribution through providing cover for larval habitats and adult 

mosquitoes, preventing them from overheating and perishing in intense equatorial 

sunlight (Bayoh and Lindsay, 2004). Furthermore increased incidence of malaria 

has been linked to areas experiencing an increase in vegetation coverage following 

El Niño events, conditions which may be potentially representative of future 

conditions (Githeko et al., 2000; Glass et al., 2000; Propastin et al., 2010).  

Relative humidity is often an overlooked factor in the mosquito life-cycle despite 

recent examinations presenting compelling arguments to consider relative humidity 

in disease risk assessments. Relative humidity is increased by rainfall, particularly 

when following a drought period (Takken and Knols, 2009; Khormi and Kumar, 

2015). Increases in relative humidity strongly impact on the flight and subsequent 

host seeking behaviour of mosquitos (Khormi and Kumar, 2015). Furthermore, 

relative humidity has been noted to be an influencing factor in larvae development 

(Hopp et al., 2003; Yé et al., 2007). Very few existing models appear to incorporate 

relative humidity as an influential factor due to a lack of understanding regarding its 

influence and to some degree due to data resolution and availability. However, as 

model sophistication and environmental understanding linked to mosquitoes, 

increases the inclusion of relative humidity is also expected to follow (Chabot-

Couture et al., 2014).  

Historically malaria transmission in high elevations such as the East African 

highlands was mainly sporadic and unstable (i.e. epidemic) as a result of 

increasingly unsuitable conditions as elevation increases (Devi and Jauhari, 2004; 

Cohen et al., 2008). It has been noted, however, that these patterns are beginning 

to change, particularly in the latter part of the 20th century (Chaves and Koenraadt, 

2010). Increasing instances of epidemic outbreaks have been recorded at higher 
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elevation, an aspect which has been noted to be an important factor for some 

species of malaria transmitting vectors (Bødker et al., 2003; Shanks et al., 2005; 

Kulkarni et al., 2010). Typically, as altitude increases, temperature and vegetation 

cover decreases, resulting in poorer conditions for vector development and 

transmission. Though recent studies suggest this boundary may be changing as a 

result of climate change, with malaria conditions observed as high as > 1900m, 

though no specific elevation has been identified as the new limit (Bødker et al., 

2003; Ernst et al., 2006).  

Alongside changes in elevation, other topographic features have been identified to 

potentially contribute to vector habitat suitability and thus malaria distribution 

(Mushinzimana et al., 2006; Cohen et al., 2008; Chabot-Couture et al., 2014). 

Terrain attributes such as variation in slope can allow water to collect for a period of 

time sufficient enough to allow mosquitoes to breed and larvae to develop (Cohen 

et al., 2008; Githeko et al., 2014). However, whilst the impact of this is briefly 

mentioned in multiple publications and methods developed to examine runoff 

direction, research into the angles at with significant runoff and pooling occurs 

remains somewhat lacking in comparison (Tarboton, 1997; Ragab et al., 2003). 

Similarly, slope aspect is also mentioned in a number of publications with only a 

controlled urban study on rooftops directly commenting on slope and aspect impact 

on evaporation and runoff (Ragab et al., 2003). The conditions described in Ragab 

et al. (2003), differ markedly from terrain conditions although the basic principles 

can be applied with looking at the impact on mosquito and disease environments 

(Balls et al., 2004; Peterson, 2009).  

All of the environmental and climatic factors described in this section contribute to 

malaria seasonality and spatial distribution, some of which are related, and others 

which counteract each other in terms of effect (Ermert et al., 2012; WHO, 2013b). 
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Malaria is endemic in Tanzania, and inconsistent or missing data within the 

climatological record alongside poor station coverage makes it difficult to accurately 

ascertain seasonal patterns of malaria associated with climate (Githeko et al., 

2014). Increases in transmission, leading to epidemics often occur after heavy 

rainfall and optimum temperatures, which for Tanzania could be a result of the 

rainfall season occurring or extreme and changing conditions as a result of El Niño 

(Ernst et al., 2006; Jones et al., 2007). 

4.1.3 Representative Concentration Pathways 

Representative Concentration Pathways (RCPs) are the set of scenarios from the 

IPCC, replacing the former sequentially based Special Report on Emissions 

Scenarios (SRES) (Moss et al., 2010). These new emissions scenarios were 

developed to adapt to the advancements in data acquisition and knowledge, 

incorporating the needs of end users whom overall required more flexibility from the 

scenarios to include globally varying aspects such as socio-economic status as well 

as moving from a sequential based approach to a parallel approach in modelling 

(Moss et al., 2010). The final four RCPs (table 4.1) were carefully selected based 

on criteria tailored to the needs of scenario developers and end users, and span a 

large range of stabilization, mitigation and non-mitigation pathways, and named 

according to their peak value in radiative forcing (Wm-2) (Rogelj et al., 2012; IPCC, 

2013).  
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Table 4.1 - The four RCP Pathways (Moss et al., 2010). * MESSAGE: Model for Energy 
Supply Strategy Alternatives and their General Environmental Impact. International Institute 
for Applied Systems Analysis, Australia. AIM, Asia-Pacific Integrated Model, National 
Institute for Environmental Studies, Japan. GCAM, Global Change Assessment Model 
Pacific Northwest National Laboratory, USA (previously referred to as MiniCAM).IMAGE, 
Integrated Model to Assess the Global Environment, Netherlands Environmental 
Assessment Agency, The Netherlands. 

Name Radiative Forcing Concentration (ppm) Pathway Model 

providing 

RCP* 

RCP 8.5 >8.5 Wm-2 in 2100 >1,370 CO2-equiv. in 

2100 

Rising MESSAGE 

RCP 6.0 ~6.0 Wm-2 at 

stabilization after 2100 

~850 CO2-equiv. (at 

stabilisation after 2100) 

Stabilization 

without overshoot 

AIM 

RCP 4.5 ~4.5 Wm-2 at 

stabilization after 2100 

~650 CO2-equiv. (at 

stabilisation after 2100) 

Stabilization 

without overshoot 

GCAM 

RCP 2.6 Peak at ~3 Wm-2 

before 2100 and then 

declines 

Peak at ~490 CO2-equiv. 

before 2100 and then 

declines.  

Peak and decline IMAGE 

 

 

Figure 4.1 - a) Changes in radiative forcing relative to pre-industrial conditions. b) Energy 
and industry CO2 emissions for the RCP candidates (Moss et al., 2010). 

RCP 2.6 is the lowest, most modest greenhouse gas trajectory, peaking in radiative 

forcing before 2030 and declining (figure 4.1) (Moss et al., 2010; Rogelj et al., 2012; 

IPCC, 2013; Abdussalam et al., 2014). Models run using this pathway demonstrate 

that global temperature change is unlikely to exceed 1.5˚C by the end of the 21st 

century, comparative to 1850 to 1900 (IPCC, 2013). RCP4.5 and RCP 6.0 are 

intermediate stabilisation pathways where radiative forcing is stabilised by 



181 
 

approximately 2080. RCP 4.5 is not likely to exceed warming of 2˚C by 2100, 

however RCP 6.0 is likely to exceed a warming of 2˚C (IPCC, 2013). RCP 8.5 

represents a high-emission, non-mitigation future, projecting a high range of 

outcomes by 2100 being likely to exceed 2˚C but unlikely to exceed 4˚C (Rogelj et 

al., 2012; IPCC, 2013).  

4.2 Data methods and processing 

The environmental factors highlighted as important which will be included in this 

study are: temperature, precipitation, relative humidity, elevation, slope, aspect, 

vegetation coverage, and soil drainage capacity. Datasets for these parameters, 

both current and CMIP5 simulations, have been collected from a range of sources 

as outlined in the relevant section below. The datasets described in this section will 

be referred to as baseline environmental conditions for the month of May, upon 

which the model will be developed and which future simulations will be compared 

against. This is due to cumulative peak rainfall for the preceding MAM rainfall 

season, presented in chapter three, which contributes to heightened malaria risk 

during this month in conjunction with suitable temperature conditions (Sewe et al., 

2016). Some datasets required some pre-processing prior to implementing the main 

experimental method which are also outlined below.   

4.2.1 Temperature 

Data for current temperature conditions were freely downloaded from WorldClim, a 

dataset developed by Hijmans et al. (2005). Baseline conditions are based on 

observations made from 1960-1990 from a range of sources and were obtained at 

a resolution of 30 arc-seconds (approximately 1km). For more information on the 

methods involved development of this particular dataset see Hijmans et al. (2005). 

Temperature data for four RCP climate model pathways were collected for 
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HADGEM2-ES, a full earth system model developed by the MO. The pathways 

included are: RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5.  

4.2.2 Precipitation 

Data for baseline precipitation conditions were freely downloaded from WorldClim. 

Current conditions are based on observations made from 1960-1990 from a range 

of sources and were obtained at a resolution of 30 arc-seconds (approximately 

1km). For more information on the methods involved development of this particular 

dataset see Hijmans et al. (2005). Precipitation data for four RCP climate model 

simulations produced from 11 global climate models (GCMs) were also obtained via 

WorldClim at a resolution of 30 arc-seconds. Precipitation data for four RCP climate 

model pathways were collected for HADGEM2-ES, a full earth system model 

developed by the MO. The pathways included are: RCP 2.6, RCP 4.5, RCP 6.0 and 

RCP 8.5. 

4.2.3 Relative humidity 

Data for current relative humidity for the month of January was downloaded from 

Climond, a global climate project for bioclimatic modelling developed by Kriticos et 

al. (2012). The data representing current conditions is based on 30 years worth of 

data collected from 1960-1990 and downloaded at a resolution of 10’ (arcminutes). 

Daily observations were recorded at 09:00 hours and 15:00 hours and the 

corresponding relative humidity files were split into each observation time in order 

to provide a daily approximation of relative humidity for easier comparison and 

inclusion in the model. The files were combined and averaged using ArcGIS. 

No future projections of absolute or relative humidity under the RCP scenarios are 

available and so a proxy dataset has been created as detailed in section 4.3.1.3.  
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4.2.4 Elevation, slope and aspect 

The 30m resolution ASTER Global Digital Elevation Model (DEM) version 2 was 

freely obtained through the NASA reverb client. The ASTER GDEM is a product of 

METI and NASA, where there are known inaccuracies and artefacts in the data set. 

More information on the dataset itself can be collected via NASA Earth Observation 

(NEO) (NASA, 2016b).   

The elevation model was downloaded in a total of 233 tiles, which were stitched 

together using the raster mosaic tool available in Arc GIS 10.3.1. Following this, the 

data was clipped to the administrative region of Tanzania only using a shapefile 

provided by DIVA GIS. Errors were observed in the dataset, which was corrected 

for using nearest neighbour resampling to re-assign erroneous pixels to a proxy 

value. Inaccuracies were located mostly at the highest and lowest elevations.  

Using the corrected DEM, both the maximum rate of slope change and direction of 

slope change files were created in ArcGIS using the slope and aspect tools 

respectively.  

4.2.4.1 Slope  

Examination of the literature provided no clear threshold regarding the angles at 

which water will increase the likelihood of runoff and pooling, particularly for clay 

based soils. The ability for water to pool is a crucial factor in aiding or preventing 

the formation of appropriate mosquito breeding and residential habitats. Due to the 

lack of appropriate information available, an experiment was designed and 

conducted to examine the angles at which runoff could begin to aid pooling and the 

angles at which runoff is too great and would prevent levels of pooling or potentially 

wash away mosquito larvae.   
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Clay soil was chosen as the key representative soil group for this experiment due 

to this soil type being the most likely to represent pooling opportunities for 

mosquitoes as a result of low permeability and its presence in areas of Tanzania 

(Government of Tanganyika, 1955; Mosha, 1983). Due to the difficulty of acquiring 

a mixed clay soil to use as the base of the experiment an initial step was taken to 

test two representative soil samples. One was a compost mix found at a local 

garden centre and the second a pure moulding clay. The soil sample used from a 

local garden centre proved too absorbent to gain any meaningful results from and 

thus the pure clay representative was used.  

The clay was moulded into a container (figure 4.2a) and an indent the size of a 

thermos lid made (figure 4.2b). This is to represent potential natural holes in the 

landscape where mosquitoes may choose to lay eggs if there is a suitable depth of 

water available. A protractor was attached to the side of the container with a plumb-

line and weight (in this instance a needle) attached at the centre of the protractor 

and set to fall at zero to begin with. Thus, when the container was tilted, the plumb-

line would adjust to indicate the angle of the slope. 5ml of water was inserted into 

the indent via a syringe. Higher volumes of water were tested but this overfilled the 

indent and would not have provided a good indication of slope runoff.  

 

Figure 4.2 - a) (Left) Indent size in clay base and container. b) (Right) thermos lid used to 

make indent with size and clay markings. 
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Six individual tests were conducted overall, including three for assessing the lower 

angle and three for the upper angle. The lower angle was indicated by the angle at 

which water will flow over the lip of the indent and run smoothly downslope. The 

upper angle was assessed as the point at which water flow would be too fast and 

disruptive for mosquitoes to lay eggs in the indent, and where water may empty 

from the indent at a quicker rate. The results from both sets of three tests are shown 

in figure 4.3, tiles a, b and c demonstrate results for the lower angles, with d, e and 

f demonstrating results from the upper angles. The results were averaged to give 

one value for lower and upper angles and distributed evenly for the suitability scale 

discussed in section 4.3.1.1.  
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Figure 4.3 - Results from lower angle experiment (a, b, c) and results from upper angle 
experiment (d, e, f) 

4.2.5 Vegetation coverage (NDVI)  

Normalised Difference Vegetation Index (NDVI) monthly data was freely obtained 

for the month of May for years 2003 and 2013. The dataset itself was collected by 

the MODIS-Terra satellite series and a floating-point raster dataset created by 

a) b) c) 

d) e) f) 
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NASA at a resolution of 0.1 degrees. More information on the development of the 

vegetation data can be found via the NASA earth observation website (NASA, 

2016b).  

NDVI for May 2003 is used in development of the baseline predictive model. Whilst 

future NDVI values are not available for inclusion in the 2050 and 2070 projections, 

a proxy dataset has been created as detailed in section 4.3.1.7.  

4.2.6 Soil drainage capability 

Soil drainage data was obtained from the FAO and created as a bi-product of the 

HWSD (world soil dataset). Soil drainage data was pre-ranked on a scale of one to 

seven where one represents low drainage rates and seven represents high 

drainage rates (FAO, 1985; Davidson, 1995).   

4.2.7 Water bodies 

Vector shape files for lake and river location were obtained from DIVA GIS. These 

were then combined into one file and rasterized for inclusion in analysis.  

4.2.8 Malaria prevalence map  

Data for malaria prevalence for the year 2000 was freely obtained in raster format 

from the Malaria Atlas Project (MAP) (University of Oxford). Data is currently 

available from 2000 up to 2015 and described in detail by Bhatt et al. (2015). The 

year 2000 was chosen for this study due to it being most likely to reflect the least 

amount of disease prevention and control, thus providing clearer evidence in 

relation to environmental influences. The dataset pixel-size was resampled using 

the nearest neighbour method in order to compare to the developed model outputs. 

Prevalence data was used instead of incidence as this accounts for population 

density and size impact thus removing the impact of population sizes on malaria 

distribution allowing for clearer environmental relationship results.  
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4.2.9 Tanzania population density 

Data for current population density and distribution (as of 2015) was freely 

downloaded in raster format from the WorldPop project (The WorldPop Project, 

2016). Data provides estimations of population per square grid which have been 

adjusted to match the UN population division estimates. Data for estimated future 

population for 2050 and 2070 were downloaded in spreadsheet format provided by 

the UN population division which was revised in 2015 (UNDP, 2016).  

4.3 Methods 

4.3.1 Suitability assignment 

Prior to running the weighted sum analysis in ArcGIS 10.3.1 each chosen variable 

(outlined in sections 4.2 and 4.3) required re-classifying to a normalised scale which 

would be representative and comparable across all variables and thus provide a 

meaningful environmental risk map.  

4.3.1.1 Temperature 

Temperature suitability for the transmission of malaria was developed through the 

examination of papers focusing around the ecological modelling of the transmission 

of malaria (Martens et al., 1997; Craig et al., 1999; Hoshen and Morse, 2004; 

Parham and Michael, 2010; Mordecai et al., 2013). Temperature ranges used in this 

study were collected from analysis conducted by Mordecai et al. (2013). The 

temperature values used are presented in section 4.3.1.11 with the original and 

suitability assigned datasets displayed in figure 4.4a and 4.4b. Furthermore, the 

model weighting of the temperature variable accounted for studies examining the 

role of temperature in malaria variation, where minimum and maximum 

temperatures were shown to account for a total of 27.2% of the spatial distribution 

of malaria in Tanzania (Mboera et al., 2010, 2011).  
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Figure 4.4 - a) Original temperature dataset (Hijmans et al., 2005) b) Temperature dataset 
after being assigned suitability categories. 
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4.3.1.2 Precipitation 

Rainfall thresholds differ by model and, methods used. Precipitation patterns also 

play a highly influential role. Previous studies have shown that almost the entirety 

of Tanzania is endemic for malaria, with inherent spatial variation of which mean 

precipitation accounts for 72.8% of this variation (Mboera et al., 2010, 2011). When 

examining monthly rainfall quantities required to sustain adequate malarial 

environments there were notable variations. Usher (2010) reported the lowest 

monthly rainfall value of 10mm based on agricultural modelling, however this must 

be sustained for a period of 4 months. Given Tanzania’s multi-modal rainfall regime 

this was not fitting to model the entire country and thus higher values considered.  

A number of studies report adequate rainfall values ranging from 50mm up to as 

much as 80mm per month to sustain transmission ranging from stable: perennial 

through to epidemic (Craig et al., 1999; Tanser et al., 2003; Parham and Michael, 

2010). However, in a number of cases this also varies depending on the associated 

temperature given that mosquitoes require adequate provision of both for growth 

and transmission (Craig et al., 1999; Ostfeld et al., 2005; Bomblies, 2012). 

Tanzania’s temperature in most regions is adequate in sustaining potentially 

epidemic conditions (although this varies spatially). A minimum rainfall value of 

50mm per month was chosen as the minimum requirements to aid transmission, 

with amounts higher than this being more influentially weighted. Temporary pools 

of water of approximately 50mm are also considered deep enough to sustain 

reproduction cycles for a given period of time, although pool life time is also 

dependent on persistence and thus linked to temperature (Ostfeld et al., 2005; 

Bomblies, 2012). The precipitation dataset prior and post suitability classification 

are presented in figures 4.5a and 4.5b.  
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Figure 4.5 - a) Original precipitation dataset (Hijmans et al., 2005) b) Precipitation dataset 
after suitability categorisation. 
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4.3.1.3 Humidity 

As noted, humidity is comparatively under-examined in comparison to temperature 

and rainfall. Relative humidity impacts adult mosquitoe mortality as well as 

impacting upon their larval development cycle (Hopp et al., 2003; Yé et al., 2007; 

Chabot-Couture et al., 2014). Ye et al., (2007) demonstrated how relative humidity 

values below 60% are linked to a low-risk in contracting malaria, and at 55% 

humidity the risk of clinical malaria was 25% lower than observed at 60%. Thus 60% 

relative humidity was allocated as the minimum risk in this model. The original 

humidity dataset and dataset after suitability classification are presented in figure 

4.6a and 4.6b.  

Relative humidity projections for the current RCP pathways are not readily available 

at present. In order to include relative humidity in the future simulations, the baseline 

average relative humidity has been modified in accordance with the percentage 

change of ambient air temperature (figure 4.7), given the relationship between 

relative humidity and temperature (equation 4.1) and assumes no alteration to dew 

point has occurred.  
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Figure 4.6 - a) Original humidity dataset (Kriticos et al., 2012) b) Humidity dataset after 
suitability categorisation. 
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Equation 4.1 - Calculating relative humidity using dew point, temperature and constant 
values. (Vaisala, 2013) 

𝑅𝐻 = 100% ∙ 10
𝑚[

𝑇𝑑
𝑇𝑑+𝑇𝑛

 + 
𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡+𝑇𝑛
]
 

 

Figure 4.7 - Methodology used to calculate relative humidity in relation to future 
temperatures. 

4.3.1.4 Elevation 

Incidences of malaria transmission with relation to elevation have begun to vary in 

more recent literature than when compared to publications prior to the year 2000. 

This could be due to increasing awareness of the impact of elevation on disease. 

The generally accepted height of reduction in transmission is 1500m, and whilst 

there is evidence of transmission above these altitudes, conditions are overall 

deemed to be less suitable (Bødker et al., 2003; Ernst et al., 2006). Despite 

increasing reports of transmission above 1500m, this has been allocated as the cut-

off point for this model. Elevations below 1500m have been deemed optimum for 
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transmission on a presence-absence basis (Drakeley et al., 2005; Cohen et al., 

2008; Gwitira et al., 2015).  
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Figure 4.8 - a) Original slope dataset (NASA, 2016a) b) Slope dataset after suitability 
categorisation 
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4.3.1.5 Slope 

Optimum to unsuitable slope values (figure 4.9) were obtained through the 

experiment conducted specifically for this thesis as outlined in section 4.2.5.1. This 

is due to no specific slope angles being available for terrain runoff as outlined in 

section 4.1.2.  

 

Figure 4.9 - Optimum slope angles for standing water (habitats) through to unsuitable. 

4.3.1.6 Aspect 

As discussed in section 4.1.1 little is understood about the impact of aspect on 

mosquito habitats, with no studies to date being conducted that directly examine the 

impact of aspect on habitats and behaviour. Theoretically, slopes facing away from 

the sun receive overall less heat, a key variable in mosquito development. 

Furthermore, slopes facing the sun will experience increased evapotranspiration as 

a result of being in direct sunlight. For the Northern Hemisphere, Ragab et al. (2003) 

concluded that northern facing slopes (270° - 90°) receive less sunlight and 

therefore would be considered less suitable for mosquitoes, whereas southern 

facing slopes (90° - 270°) face the sun for the majority of the time and thus would 

be considered more suitable. Evaporation processes and heat are both influential 

when examining mosquitoes behaviour and habitats (Hoshen and Morse, 2004). 
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The premise described above was adapted for the Southern Hemisphere where the 

study is located. Northern facing slopes (270° - 90°) would experience more sunlight 

in the Southern Hemisphere and thus were assigned a mosquito presence value, 

where southern facing slopes (90° - 270°) would receive less sunlight and thus were 

assigned a mosquito absence value (figure 4.10). Due to the lack of investigation 

surrounding aspect, easterly and westerly facing slopes could not be individually 

accounted for and as a result were split between both north and south.  

 

Figure 4.10 - Presence / absence angles used to determine influential slope Aspects. 
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Figure 4.11 - a) Original aspect dataset (NASA, 2016a) b) Aspect dataset after suitability 
categorisation. Where 1 = suitable and 0 = unsuitable. 
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4.3.1.7 NDVI 

The direct statistical relationship between NDVI and incidence of malaria outbreaks 

or plasmodium falciparum presence in blood does remain limited despite increasing 

observations of correlation between outbreaks and vegetation coverage (Githeko et 

al., 2000; Sewe et al., 2016). Studies carried out to assess this direct statistical 

relationship generally conclude that should NDVI values fall below 0.3 then there is 

not enough vegetation to support mosquito habitats or disease transmission (Hay 

et al., 1998; Gaudart et al., 2009; Sewe et al., 2016). Thresholds which have been 

ascertained through various statistical analysis conclude that NDVI values between 

0.3 and 0.4 are strongly associated with increased incidence (Hay et al., 1998; 

Rogers et al., 2002; Gemperli et al., 2006; Gaudart et al., 2009; Sewe et al., 2016). 

Thus, based on the available evidence, a threshold of 0.3 was applied in order to 

cover all potential local biological reactions to NDVI coverage as demonstrated in 

Sewe et al. (2016). Similarly, vegetation values greater than 0.65-0.7 are shown to 

have a strong incidence-rate ratio, thus higher suitability (Raso et al., 2009).  

 

Figure 4.12 - Parasite prevalence in relation to NDVI (Kabaria et al., 2016). 
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Figure 4.13 - a) Original NDVI dataset (NASA, 2016b) b) NDVI dataset after suitability 
classification. 
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Unlike other variable factors in this study, future simulated NDVI values are not 

available or forecast for any climatic scenario. In order to retain inclusion of NDVI in 

the simulated future RCPs, a proxy dataset has been created. Two proxy datasets 

in total were created, one to represent NDVI in 2050 and one for 2070. These 

datasets were created through examining the changing coverage and distribution of 

vegetation between 2003 and 2013.  

Percentage change in NDVI over a ten-year period between 2003 and 2013 was 

calculated and multiplied by five to represent change to 2050 and multiplied by 

seven to represent change to 2070. To avoid capturing any impacts from an ENSO 

year, two years were chosen where the SOI was recorded as neutral for both years 

at ten years apart (NOAA, 2015). Furthermore, NDVI values for the entire month of 

May were included to incorporate any lag time, estimated at around 15 days for 

vegetation to impact on malaria transmission (Gaudart et al., 2009; Sewe et al., 

2016).  

Whilst this method allows for the projection of potential spatial distribution and 

values for NDVI in 2050 and 2070, there are several considerations to be noted. 

Firstly, the method assumes the spatial pattern of change continues along a linear 

trend of that seen between 2003 and 2013. Secondly, NDVI differences between 

RCPs cannot be accounted for, there is only one projected scenario for each year. 

However, performing more complex NDVI and land use projections would require 

more sophisticated modelling which lies beyond the scope of this project and would 

introduce further uncertainty into the output. Nevertheless, it is important to consider 

this factor when interpreting model outputs as there could potentially be 
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considerable differences in vegetation coverage between RCPs which cannot be 

projected at this time with the data available (Poyil et al., 2016). 

 

Figure 4.14 - Method to calculate proxy NDVI datasets for 2050 and 2070. 
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Figure 4.15 - a) Projected NDVI coverage for 2050 b) Projected NDVI coverage for 2070 
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4.3.1.8 Soil drainage 

Soil drainage thresholds were predefined into seven classes by the FAO (FAO, 

1985; Davidson, 1995). In order to appropriately fit into the weighting system, they 

were reduced to four categories based on appropriate judgement ascertained from 

the FAO and in relation to water requirements for mosquitoes (FAO, 1985).  

Table 4.2 - FAO soil drainage classes (FAO, 1985). 

Class Code Drainage Quality Suitability Code 

1 Very poorly drained 1 

2 Poorly drained 

3 Imperfectly drained 0.66 

4 Moderately well drained 

5 Well drained 0.33 

6 Somewhat excessively drained 

7 Excessively drained 0 
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Figure 4.16 - a) Original soil drainage dataset b) Soil drainage set after suitability 
classification 
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4.3.1.9 Water bodies 

Distance to water bodies are a key environmental factor associated with malaria 

transmission. Studies including this factor demonstrate populations with notably 

higher incidence-rate ratios greater than 98% within 1000m of a water body, and 

greater than 60% within 1500m of a water body (e.g. lake or river) (Raso et al., 

2009; Houngbedji et al., 2016). Thus populations within this 1500m range of a water 

body are increasingly at risk of malaria when compared to populations further than 

1500m (Brown et al., 2008; Silué et al., 2008; Raso et al., 2009; Houngbedji et al., 

2016). However, the resolution required to capture the changing rate of risk between 

500m, 1000m and 1500m was too small for the 1km resolution dataset, thus a 

presence absence approach was adopted where any area within 1500m would be 

considered at risk and anywhere outside 1500m distance would be considered no 

risk in order to include water bodies.  

 

Figure 4.17 - a) Water dataset created from two files (lakes and rivers) where suitability is 
present or absent (1 or 0). 
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4.3.1.10 Population density 

Changes in population distribution cannot be simulated. However, population 

figures based on the current distribution have been calculated using percentage 

change for 2050 and 2070 using figures provided by the United Nations Population 

Division (UNPD, 2016).  

4.3.1.11 Suitability weightings 

A suitability weighting assessment was carried out based on the examination of 

optimum to unsuitable factors presented above and in section 4.3.1. Where 

appropriate, factors were distributed equally over a normalised scale using equal 

interval classification. This is in order to reclassify each factor to be on an equivalent 

scale to produce meaningful and comparable results. An overall summary of the 

reclassified values and corresponding suitability thresholds can be found in table 

4.3.  
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Table 4.3 - Suitability classification values for each variable included in the model where 0 is unsuitable and 1 is optimum. 

Code Layer 0 0.33% 0.66% 1 

T Temperature (°C)  0-16 16-19.5 19.5-23 23-28 

T Temperature (°C) 35+ 31.5-35 28-31.5  

P Precipitation (mm) <50 50 - 100 100 - 150 150+ 

H Humidity (%) <60% 60 - 70 70 - 80 80< 

E Elevation (m) 1500<   <1500 

S Slope (°) 34< 29-34 24-29 <24 

A Aspect (°) 90 - 269   270-89 

NDVI Veg Coverage < 0.3 0.3/0.5 0.5/0.7 0.7< 

D Soil drainage bands 7 and 6 5 and 4 3and 2 1 

WB Water Bodies (including rivers) 1500   0 -1499 
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4.3.2 Weighted sum development 

4.3.2.1 Sensitivity analysis 

A sensitivity analysis using a one factor at a time (OAT) sampling method, where 

each of the parameters was changed one at a time, was conducted in order to better 

understand the role of individual factors within the model and to aid in developing 

the model weightings presented in section 4.3.2.2. Furthermore, it aimed to highlight 

which variables demonstrated greater sensitivity to varying ranges of percentage 

change within the context of suitability for malarial mosquitoes. Not all model 

variables were included as many were nominal datasets which had been pre-

categorised and thus did not allow a percentage change to be conducted on the raw 

observable values. Factors included are: precipitation, temperature, vegetation 

coverage, relative humidity, elevation and slope.  

Each individual factor is adjusted by 10% intervals up to 100% to examine how 

changes in raw values influence the model suitability category. Results for intervals 

20%, 50% and 80% are presented in section 4.4.1. These intervals were chosen to 

represent an even coverage of the percentage change assessed from 

comparatively low to high.  

4.3.2.2 Exploratory regression analysis  

An exploratory regression analysis was carried out on each of the included variables 

listed in table 4.3 where malaria prevalence is the dependent variable. This type of 

analysis highlights the most important contributing factors to a dependent variable. 

Similar to stepwise regression, the exploratory regression is linear and assumes 

small amounts of co-linearity between variables. However, unlike stepwise 

regression, exploratory regression tests a range of models and will only pass 

models which meet all of the criteria required for an ordinary least squares 
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regression, thus providing the best possible model combination. It is important to 

note that it is recognised that variables included in this analysis will inherently have 

a degree of collinearity and are further related to other processes, for example 

aspect is included due to the potential impact of evaporation which is not included 

here. Thus, the results will be used as a guide but are interpreted and used with 

discretion.  

Data was segmented for the regression using a random points selection tool in 

ArcGIS for each environmental variable and the prevalence dataset across 

Tanzania. Total number of points selected to be included was 10% of the total area 

of Tanzania, which was calculated to be 94508 data points. A buffer was also 

included for no points to be within 1.45km of each other to avoid diagonal overlap 

considering the maximum dataset resolution of 1km. The constraints applied 

resulted in a total of 86140 points being eligible for selection to avoid overlap. The 

data was further corrected for the removal of “null” or water based data pixels, which 

reduced the regression dataset to 78381 useable data points. The results are 

presented in section 4.4.2. 

4.3.2.3 Model weightings 

Once files were re-classified to match the suitability assignment weighting they were 

multiplied by the weighting factors displayed in table 4.4 which were created through 

a combination of examination of the literature and sensitivity analysis presented in 

section 4.3.2.1.  
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Table 4.4 - Model weighting factors applied to each included variable. 

Variable Assigned Weight Percentage Equivalent 

Precipitation 0.22 22% 

Temperature 0.18 18% 

Vegetation Coverage 0.16 16% 

Relative Humidity 0.12 12% 

Elevation 0.11 11% 

Water Bodies 0.07 7% 

Soil Drainage 0.06 6% 

Slope 0.05 5% 

Aspect 0.03 3% 

Total:  1.00 100% 
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4.3.3 Model process 

A flow diagram of model preparation and development steps can be found in figure 

4.18.  

4.3.3.1. Pearson product moment correlation coefficient 

In order to reaffirm and further develop model quality and performance a Pearson 

product moment correlation coefficient was run using Whitebox GAT (Lindsay, 

2016). Following the results from this analysis, the model was carefully assessed to 

consider where changes could be made to improve performance. The model that 

resulted in the strongest correlation between model outputs and observed malaria 

prevalence was chosen as final model setup. Reults of the Pearson product moment 

correlation coefficient on the final model are presented in section 4.4.3.  

4.3.3.2. Bivariate linear regression 

Upon completion of the final version of the model, a bivariate linear regression was 

run with a view to further assessing the relationship between the model outputs and 

observed malaria prevalence, as well as extracting a relationship equation for the 

final model. These results are presented in section 4.4.3. 



214 
 

 
Figure 4.18 - Stages of model development and implementation.
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4.3.4 Identifying high risk populations 

Tanzania’s current population is estimated to be approximately between 48,775,576 

as reported by the Tanzanian National Bureau of Statistics (2016) and 

approximately 53,470,000 as estimated by the UNPD (Melorose et al., 2015). 

Considering the data used in this analysis, the UNPD estimations were used as the 

current population figure considering that the WorldPop 2015 dataset is adjusted to 

their estimates (Linard et al., 2012). 

Once all model runs had been completed, the model outputs were used to identify 

the total population at high risk of catching malaria at present, and for the two most 

extreme RCP pathways, 2.6 and 8.5 for both 2050 and 2070. The extreme pathways 

were examined to show the potential variation in population at risk under the best 

case and worst-case scenarios. Figure 4.7 outlines the method used to calculate 

future populations at risk through percentage change.  

 

 

Figure 4.19 - Flow diagram depicting methodology for identifying high risk populations. 
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4.4 Results 

4.4.1 Sensitivity analysis 

Starting raw pixel values used in the OAT sensitivity analysis are presented in table 

4.5. Percentage changes to raw pixel values are also shown. Table 4.6 

demonstrates the baseline model value post-classification for suitability weighting 

alongside the suitability classes for each sensitivity category where the suitability 

scale is 0-1 as presented in section 4.3.1.11. Tables 4.7 to 4.9 demonstrate the 

sensitivity matrix for each variable and compares individual values for each 

percentage category to that of the baseline model. This analysis concludes that the 

model is not highly sensitive thus; natural climatic and environmental variation 

should not affect the model hugely but demonstrate enough sensitivity to reflect 

changes which will impact upon disease distribution based on the suitability 

categories.  

Table 4.5 - Raw pixel values used in sensitivity test and percentage change values. 

Factor Baseline Values 20% 50% 80% 

Precipitation (mm) 44 52.8 66 79.2 

Temperature (°C) 19 22.8 28.5 34.2 

Vegetation 
Coverage 

0.58 0.696 0.87 1.044 

Relative Humidity 
(%) 

72.4 86.88 108.6 130.32 

Elevation (m) 1319 1582.8 1978.5 2374.2 

Slope (°) 2.6 3.12 3.9 4.68 
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Table 4.6 - Baseline suitability weightings and resulting weightings due to percentage 
change in raw values. 

Factor Baseline 
Values 

20% 50% 80% 

Precipitation 0 0.33 0.33 0.33 

Temperature 0.33 0.66 0.66 0.33 

Vegetation Coverage 0.66 0.66 1 1 

Relative Humidity 0.66 1 1 1 

Elevation 1 0 0 0 

Slope 1 1 1 1 

Baseline Model Value: 3.65 
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Table 4.7 - Sensitivity matrix for 20% change, showing resulting model output and difference from original. 

 Precipitation Temperature Vegetation Cover Relative 
Humidity 

Elevation Slope 

Precipitation 0.33 0 0 0 0 0 

Temperature 0.33 0.66 0.33 0.33 0.33 0.33 

Vegetation Cover 0.66 0.66 0.66 0.66 0.66 0.66 

Relative Humidity 0.66 0.66 0.66 1 0.66 0.66 

Elevation 1 1 1 1 0 1 

Slope 1 1 1 1 1 1 

Model Output 3.98 3.98 3.65 3.99 2.65 3.65 

Difference 0.33 0.33 0 0.34 -1 0 
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Table 4.8 - Sensitivity matrix for 50% change, showing resulting model output and difference from original. 

 Precipitation Temperature Vegetation Cover Relative 
Humidity 

Elevation Slope 

Precipitation 0.33 0 0 0 0 0 

Temperature 0.33 0.66 0.33 0.33 0.33 0.33 

Vegetation Cover 0.66 0.66 1 0.66 0.66 0.66 

Relative Humidity 0.66 0.66 0.66 1 0.66 0.66 

Elevation 1 1 1 1 0 1 

Slope 1 1 1 1 1 1 

Model Output 3.98 3.98 3.99 3.99 2.65 3.65 

Difference 0.33 0.33 0.34 0.34 -1 0 

 

  



220 
 

 

 

 

Table 4.9 - Sensitivity matrix for 80% change, showing resulting model output and difference from original. 

 Precipitation Temperature Vegetation Cover Relative 
Humidity 

Elevation Slope 

Precipitation 0.33 0 0 0 0 0 

Temperature 0.33 0.33 0.33 0.33 0.33 0.33 

Vegetation Cover 0.66 0.66 1 0.66 0.66 0.66 

Relative Humidity 0.66 0.66 0.66 1 0.66 0.66 

Elevation 1 1 1 1 0 1 

Slope 1 1 1 1 1 1 

Model Output 3.98 3.65 3.99 3.99 2.65 3.65 

Difference 0.33 0 0.34 0.34 -1 0 
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4.4.2 Exploratory regression results 

Exploratory regression results for the best resulting model demonstrate R = 0.47 

where p < 0.01, thus, the null hypothesis is rejected and it is concluded that the 

factors included in the model are representative of prevalence distribution. A 

summary of variable significance can be found in table 4.10, where proximity to 

water bodies, temperature and NDVI are highlighted as the most significantly 

impacting variables and aspect as the least with less than 1%. Despite aspect being 

highlighted as having low significance this was kept as a low weighted factor within 

the model due to its still relatively unexplored relationship to evaporation and 

sunlight exposure as detailed in section 4.3.1.6. Similarly, the water bodies’ results 

demonstrate a negative effect with malaria prevalence which conflicts with the 

literature. However, this is likely due to the absence presence nature of the dataset, 

where absence outweighs presence in the 10% of the randomly selected test data.  

 

Table 4.11 reports the maximum variance inflation factors for each individual 

variable. All variables demonstrate moderate correlation (1 < VIF < 5) with 

temperature and elevation demonstrating the highest variance values. This is to be 

expected due to adiabatic cooling processes as temperatures decrease with 

elevation (Chabot-Couture et al., 2014; Detsch et al., 2016). A spatial 

autocorrelation was also conducted as part of the analysis returning P value < 0.01 

and Z value of 1218.28 indicating that there is significant spatial clustering where 

there is a less than 1% likelihood that it has occurred by chance
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Table 4.10 - Summary of Variable Significance 

Variable % Significant % Negative % Positive 

Water Bodies 100.00 100.00 0.00 

Temperature 100.00 0.00 100.00 

NDVI 100.00 0.00 100.00 

Humidity 98.44 14.06 85.94 

Precipitation 97.66 68.75 31.25 

Elevation 95.31 65.62 34.38 

Slope 94.53 82.03 17,97 

Soil Drainage 93.75 11.72 88.28 

Aspect 0.78 98.44 1.56 
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Table 4.11 - Summary of Multicollinearity 

Variable VIF Violations 

Water Bodies 1.05 0 

Temperature 4.11 0 

NDVI 1.19 0 

Humidity 2.29 0 

Precipitation 1.89 0 

Elevation 4.40 0 

Slope 1.14 0 

Soil Drainage 1.17 0 

Aspect 1.00 0 
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4.4.3 Model comparison to current malaria distribution 

The model results shown in figure 4.20 demonstrate a similarity in the spatial 

distribution of disease when compared to that of malaria prevalence for the year 

2000 (figure 4.21). This is validated through use of two methods. Firstly, the Pearson 

product-moment correlation between the two datasets which demonstrates a strong 

positive linear correlation (r = 0.8401, p < 0.05) between the two modelled malaria 

risk and malaria prevalence. Secondly, a bivariate linear regression which 

demonstrates r2 = 0.706 where p < 0.01, with a relationship equation of: 

ModelOutput = 1.043 × ModelOutput + 0.100. This supports the conclusion that the 

model accurately depicts key high risk areas within Tanzania using environmental 

variables.  

Key differences in spatial distribution can be identified and attributed to a number of 

factors discussed in detail in section 4.5.2.  
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Figure 4.20 - Modelled current peak malaria risk based on values used for the month of 
May.  
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Figure 4.21 - Malaria prevalence for the year 2000. Data provided by MAP (Bhatt et al., 
2015). 
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4.4.4 Malaria risk projections for 2050  

Figure 4.22 a) to 4.22 d) shows percentage change in malaria risk model outputs 

for 2050 and the four assessed RCP pathways when compared to the baseline 

model outputs (figure 4.20). Spatially, all of the RCP pathways show similar 

distributions of change, where the largest percentage decreases occur along the 

coastline. Whereas, the central Tanzanian plateau and mountainous regions 

demonstrate the highest percentage increases. Areas of no change vary in location 

across each RCP, as does the intensity of the percentage change (low to high). As 

expected based on the pathway descriptions, RCP 2.6 shows the overall smallest 

amount of extreme percentage increase or decrease, with RCP 8.5 demonstrating 

the most spatial area experiencing very high or very low percentage decrease in 

risk.  

Despite overall large spatial similarities between model outputs, there are key 

differences in area changes between each model when examined closely. Table 

4.12 depicts the overall average percentage change between each RCP when 

compared to baseline conditions. RCPs 2.6, 4.5 and 6.0 all show an average 

percentage increase in risk of 3% or more where RCP 8.5 shows a decline of almost 

5% in malaria risk. These changes occur in spatially differing locations for each 

RCP.  For example, for RCP 2.6, two cluster areas of no change are situated close 

to Dar es Salaam and around the town of Tabora in the west. Within the other three 

model outputs these areas all depict notable percentage change. However, for 

Dodoma, change is only observed under RCP 2.6 where risk is modelled to 

increase. For Dodoma under RCPs 4.5, 6.0 and 8.5 no change is depicted. These 

differences in the change in risk can be predominantly attributed to the changing 

distribution and values of temperature, rainfall and humidity between each RCP 

scenario.  
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Figure 4.22 - Percentage change in malaria risk for 2050 for a) RCP 2.6 b) RCP 4.5 c) 
RCP 6.0 d) RCP 8.5. 

  

a) b) 

c) d) 
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Table 4.12 - 2050 Mean percentage change per RCP when compared to baseline. 

 

4.4.5 Malaria risk projections for 2070  

Figure 4.23 a) to 4.23 d) shows percentage change in malaria risk model outputs 

for 2070 and the four assessed RCPs when compared to the current model outputs 

(figure 4.20). These have a similar spatial pattern to the RCP outputs for 2050, 

where an increase in malaria risk can be seen across the Tanzanian plateau and 

by 2070, risk extends more notably into the southern and northern mountainous 

regions of Tanzania. Instances of extreme change, either positive or negative are 

more prominent throughout 2070 when compared to 2050. Table 4.14 highlights 

this variance between 2050 and baseline conditions by highlighting mean 

percentage change from the baseline. RCP 4.5, 6.0 and 8.5 all show an average 

increase in risk of above 5%, peaking at almost 9% increase in risk under RCP 8.5. 

A stark contrast to the results seen from 2050. RCP 2.6 demonstrates a decrease 

in baseline risk of less than 1%, suggesting similar malaria risk conditions to 

present.  

Between all 8 models for 2050 and 2070 some areas can be identified as currently 

at a threshold of environmental suitability for malaria transmission given the 

markedly different distributions of change between each model. The area south of 



230 
 

Lake Victoria shows that this area in differing models can experience high 

percentage decrease in some models and either no change or low to medium 

increases in others. Similarly, the south-eastern coastline below Dar es Salaam can 

demonstrate similar variations in percentage change across the model depending 

on the RCP. Areas defined as experiencing high percentage change appear mostly 

in the elevated plateau region with every model showing a high percentage increase 

for the major towns of Sumbawanga near the shores of Lake Rukwa, and Singida 

in the central plateau region, near the capital Dodoma. Areas of predicted highest 

decrease are notably in the Ngorongoro region to the north and the coastal areas 

which are at present, high risk zones.  
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Figure 4.23 - Percentage change in malaria risk for 2070 for a) RCP 2.6 b) RCP 4.5 c) 
RCP 6.0 d) RCP 8.5.  

 

  

a) b) 

c) d) 
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Table 4.13 - 2070 Mean RCP percentage change from baseline. 

 

4.4.6 Population at risk   

Figure 4.24 presents population currently living in high risk malaria areas. Figure 

4.25 shows the resulting population at risk for RCP 2.6 and 8.5 for 2050 and 2070. 

For both 2050 and 2070, RCP 2.6 (figure 4.25a and 4.25c) demonstrates the highest 

number of the population at risk, figures of 267,723 and 440,490 people 

respectively. These figures are between 30,000 and 35,000 higher than predicted 

population at risk for RCP 8.5 for both years. These results indicate that in terms of 

population risk, RCP 2.6 results in higher populations at risk, despite being the best-

case scenario for reducing the impacts of long term climate change.  
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Figure 4.24 - Current population currently living in areas with high risk of malaria 

  

12) 
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Figure 4.25 - Future populations living in high risk areas a) RCP 2.6, 2050. b) RCP 8.5, 
2050. c) RCP 2.5, 2070. d) RCP 8.5, 2070.     
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4.4.7 Summary of results   

The experiments conducted here aimed to develop and apply a predictive 

environmental risk model to produce a risk map for malaria. A weighted sum model 

has successfully been developed and validated for the month of May, which has 

produced an environmental malaria risk map for current conditions, and each of the 

RCPs for 2050 and 2070. Population distribution within these high risk areas has 

also been examined and mapped.  

Exploratory regression results conclude that the most influential variables on 

malaria risk distribution are NDVI, temperature and precipitation, with six other 

variables included in the model which have been identified to be influential or 

potentially influential and requiring further research (section 4.4.2). Current 

distribution of high environmental risk is located in predominantly low elevated 

regions, and areas with increased water presence via rivers or lakes such as Lake 

Victoria (section 4.4.3). These areas coincide with densely populated regions 

including Dar es Salaam and Arusha, with a total of 161,173 people residing in the 

high environmental risk areas (section 4.4.6).   

Projection results demonstrate that for both 2050 and 2070 there is a percentage 

increase in areas of high environmental risk, occurring mostly across the Tanzanian 

plateau which is predominantly low risk at present. The highest increase of 

environmental risk is observed for RCP 8.5 under 2070, resulting in a total 

population of 407,397 living in high risk areas (section 4.4.6). Comparatively, RCP 

8.5 for 2050 demonstrates a percentage decrease in risk of 4.72% and increases 

under all other RCPs. Overall, population growth in high risk areas results in 

237,437 living in high risk areas for RCP 8.5 in 2050. 
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4.5 Discussion 

This work has developed a malaria risk model to simulate current and predicted 

peak risk (during the MAM season), for Tanzania based upon environmental 

variables. In addition, an examination of populations living in high risk areas has 

also been conducted to provide an indication of how many people may be living in 

high risk areas in future. This chapter addresses research objective two.  

4.5.1 Variable suitability, sensitivity and weighted sum.  

It has been demonstrated that multiple environmental variables influence the spatial 

distribution and severity of malaria risk. Using the suitability criteria extracted from 

the existing literature and new experimentation (section 4.3.1), environmental 

parameters were weighted on a normalised scale based on risk, and a sensitivity 

analysis was performed. Results from the sensitivity analysis demonstrate that 

temperature is the most sensitive to change within the suitability model, with 

differing model results compared to the baseline across all sensitivity thresholds 

examined. NDVI, precipitation, humidity and elevation also demonstrate consistent 

change from the baseline model results. It is important to note that this method does 

not account for strongly correlated variables, so these results are interpreted with 

caution as some of the included variables are dependent on differing (nominal, 

ordinal or categorical) scales, an area which is still being developed in statistical 

analysis (Finch, 2016; Poyil et al., 2016).  

Despite sensitivity analysis results suggesting temperature to be the most sensitive 

variable and whilst it is recognised an important factor, multiple studies conclude 

NDVI and precipitation to be the most important variables with regards to malaria 

distribution (Gwitira et al., 2015; Ryan et al., 2015; Kabaria et al., 2016). All of these 

factors were considered during black box development of the model alongside 

improvements made after model implementations. NDVI was initially weighted 
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higher than temperature due to an increasing number of studies finding NDVI to be 

a highly influential factor, particularly in the proximity of water bodies. However, 

higher weightings for precipitation and temperature were shown to increase the 

Pearson product-moment correlation coefficient which is likely due to the higher 

resolution of the temperature and precipitation datasets. This factor was also 

considered for future forecasts where a proxy NDVI dataset had to be created, thus 

reducing the reliability of the dataset when compared to temperature and 

precipitation for future predictions.  

4.5.2 Current and future malaria risk 

The resulting model depicts peak environmental risk of contracting malaria in 

Tanzania (figure 4.20). The Pearson product-moment correlation demonstrated that 

the developed environmental risk model is strongly correlated (r = 0.8401, p < 0.05) 

with the observed distribution of malaria prevalence for the year 2000, indicating 

good model performance. Reductions in model accuracy can be attributed to a 

number of factors. Firstly, some areas in the malaria prevalence data have recorded 

a zero-malaria prevalence due to missing data. The majority of these areas correlate 

with low population, high elevation areas particularly around the Ngoronogoro 

crater, Lake Manyara, Mt. Kilimanjaro and Mt Rungwe regions (figure 4.21). The 

absence of data in these areas could potentially be attributed to the absence of local 

data points upon which the dataset was developed (Bhatt et al., 2015) and could 

also be due to a number of unsuitable environmental and socio-economic factors.  

Alternatively, areas demonstrating differences in projected risk and prevalence are 

most notably located north of Lake Malawi, lower slope regions around Mt. 

Kilimanjaro and the north-west and north-east of Lake Victoria. Despite being 

highlighted by the model as environmentally suitable for transmission, the 

prevalence data depicts low malaria presence. Although efforts have been made to 
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reduce the potential impact of population variation through the use of prevalence 

data and reducing the impact of malaria control programmes through choosing a 

dataset prior to the country-wide introduction of prevention schemes in Tanzania 

(including bed-nets and indoor residual spraying) in order to examine purely 

environmental risk; it could be argued that socio-economic factors could still be 

influencing the prevalence data in a number of ways as presented in chapters two 

and seven. 

Variations between modelled outputs and observations may also be a result of 

inherent accuracies and limitations within the model itself. Firstly, the model could 

be over-estimating risk in some areas. Whilst the model demonstrates peak risk 

experienced following the MAM rainfall season based on the most suitable 

environmental conditions, this will not be able to reflect the impact of reduced 

environmental suitability on total annual malaria prevalence, which is the only data 

available for comparison at present as monthly data prevalence was not available. 

This would be particularly influential in areas which experience a more significant 

degree of environmental change over an annual period. Whilst efforts have been 

made to ensure that the model can perform as accurately as possible based on 

peak environmental risk, expanding the model to operate on monthly timescales 

and combined to assess annual risk would be of benefit with increased time and 

resources.   

Low data resolution of some influential datasets such as NDVI and water bodies 

could also be contributing to over and under estimation. It is acknowledged that the 

spatial resolution of regularly used NDVI sensors is too coarse to capture details 

about vector habitats, particularly when on average, NDVI datasets are 

approximately 1km and above (Wayant et al., 2010). For instance, it has been 

documented that both water bodies and NDVI can impact malaria presence on 
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scales as little as 0-500m, where datasets of 1km resolution and above would not 

be able to capture this variance and lead to increased homogeneity of pixel values 

(Sun et al., 2012). This resolution of data is too fine to capture in a national scale 

model and would be more suited to local fine scale modelling where ground truthing 

data was also available to ensure accuracy.  

Alongside this, the role of environmental parameters in association with disease risk 

remains poorly understood, hence in part the purpose of this study. Remaining gaps 

in knowledge contribute to uncertainty in the developed environmental weightings, 

although good model performance is still observed, it could be improved with further 

examination of these parameters. As discussed in section 4.5.1, malaria presence 

is becoming increasingly attributed to vegetation coverage, however data quality at 

the time of study is not comparable to that of temperature and precipitation and thus 

less reliable for a high resolution study at present due to reasons commented on 

previously. This is similar for other datasets included in the study, particularly 

proximity to water bodies (section 4.3.1.9).  

Alternatively it is important to consider other impacting factors. Herd immunity could 

be playing a role in reducing and preventing instances of malaria despite areas 

being environmentally suitable. Herd immunity is defined as a natural protection 

against infectious diseases, occurring when a large percentage of a population has 

become immune to an infection and are providing protection for members in the 

community who are not naturally immune (Fine, 1993). Considering malaria has 

been present in Tanzania for an extended period of time and these communities 

are highlighted by the environmental model as being high risk, it is plausible that 

these communities have developed a strong herd immunity, thus reducing the 

prevalence of malaria in areas of long exposure (Moore, 1992).  
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Varying socio-economic factors could also be influencing malaria prevalence. It is 

becoming increasingly documented that socio-economic factors play a key role in 

determining disease presence and transmission, however it is difficult to quantify 

and include in predictive studies due to lack of available, good quality data and the 

range of variants involved, alongside comparatively small study areas at present 

(Mlozi et al., 2015; Shayo et al., 2015).  Despite this, it is important to note that these 

factors will contribute to variance in spatial distribution and model accuracy to 

varying extents in different locations, considering that only environmental variables 

are being examined here.  

Percentage change in risk for RCPs 2.6, 4.5, 6.0 and 8.5 for 2050 and 2070 using 

HadGEM-ES predictions are presented in figures 4.10(a-d) and 4.11(a-d) 

respectively. The results presented here support conclusions reached through other 

studies. Whilst in some areas, climate change is anticipated to increase the 

likelihood of malaria prevalence, it is also expected that in some areas transmission 

will reduce due to a combination of pathogen and vector thresholds becoming 

increasingly unsuitable (Altizer et al., 2013). This increase and reduction in 

environmental suitability for malaria can be seen across all RCPs for each year, to 

varying degrees. Overall, the Tanzanian plateau demonstrates the greatest 

increase in disease risk, where low-lying coastal areas exhibit an overall reduction 

in environmental suitability. This is likely to be due to a combination of increasing 

temperatures at higher elevations combined with changing rainfall regimes under 

various climate scenarios (Cioffi et al., 2016). The extent of change can be observed 

to differ under varying RCPs and also by year.  

It is important to consider that the future predictions have been achieved through 

incorporating proxy datasets created for NDVI and relative humidity. These 

processes inherently increase uncertainty when compared to the performance of 



241 
 

the current and validated simulation model, a factor which at present is unavoidable 

in predictive modelling of certain environmental factors. However, it is currently a 

growing subject of interest with an increasing amount of studies attempting to 

solidify statistical relationships to climate-dependent environmental factors such as 

land cover, land use and NDVI (Poyil et al., 2016). As techniques and algorithms to 

better predict NDVI develop it will offer significant improvements to environmental 

based predictive models, particularly for diseases such as malaria where NDVI has 

been identified to be a key parameter predicting malaria risk (Ryan et al., 2015; 

Kabaria et al., 2016).  
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4.5.3 Future population at risk  

Estimated figures for populations living in environmentally high risk areas for RCP 

2.6 and RCP 8.5 for 2050 and 2070 are shown in section 4.5.4.2. The results for 

both 2050 and 2070 demonstrate that what is widely considered the “best case 

scenario” with regards to long-term climate change is arguably the worst-case 

scenario with regards to populations at risk of contracting malaria for both 2050 and 

2070.  

Furthermore, what is notable is that whilst 267,723 and 440,490 people are 

predicted to be living in environmentally high risk areas for 2050 and 2070. This 

figure is considerably reduced by the exclusion of the majority of Dar es Salaam, 

one of the most densely populated areas in Tanzania with 3,133 people per square 

kilometre, not being considered high risk (figure 4.26) (NBS, 2013a). This model 

supports the concluded findings of Kabaria et al. (2016) in that densely urban areas 

with little vegetation reduce the suitability of malaria transmission, thus supporting 

the results of the predictive outputs of the developed environmental risk model.  
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Figure 4.26 - Area of high risk located around Dar es Salaam.  
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4.6 Conclusion 

This study has led to the development of a new weighted high-resolution predictive 

environmental risk model of peak malaria risk in Tanzania. The model has been 

validated and is able to accurately simulate present malaria risk based on 

environmental parameters only and in turn has been applied to four RCPs using 

CMIP5 HadGEM-ES model outputs to predict future environmental risk under 

changing climate conditions. Results demonstrate that environmental parameters 

strongly correlate with current malaria distribution and can be used to predict 

changes in future distribution. Furthermore, despite RCP 2.6 being the best-case 

scenario for climate changes in the long term, the short-term impacts on health and 

malaria risk will be greater than RCP 8.5 as this pathway crosses boundaries into 

greater environmental unsuitability for malaria.   

It has been identified that further work is needed in understanding the role of 

environmental parameters and the interconnected role they have on disease 

distribution and risk. Particularly regarding less well considered parameters such as 

aspect and slope where independent experiments had to be conducted despite the 

scientific community being aware of the relevance of these factors to disease 

(Chabot-Couture et al., 2014; Hagenlocher et al., 2014; Ryan et al., 2015). 

Alongside this, as data availability, resolution and analytical methods continue to 

improve, this will allow for more detailed and increasingly accurate models where 

some of these aspects are still not achievable at present, particularly for co-

dependent environmental datasets such as NDVI (Poyil et al., 2016). However, this 

would also require increases in resource availability with regards to computational 

power, time and storage. With regards to predicting population distribution and 

settlement growth, finer scale modelling would need to be adopted with an inclusion 
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of ground based examinations to establish potential human movement and 

interaction. This would be unachievable on a national level.  

In future, the environmentally weighted model developed and presented here could 

be expanded to perform monthly simulations, examining changes in risk over an 

annual period. This would rely on the availability and suitability of necessary 

datasets, such as the spatial distribution of malaria prevalence, which is required 

for model validation. Furthermore, as data resolution becomes increasingly refined, 

the suitability categories could be re-assessed to be more reflective of ground 

habitats and impacting conditions, something which is not achievable at present. 

With regards to assessing populations at risk, this would be dependent on the 

development of spatial population prediction models. Overall, the model presented 

contributes to environmental modelling of disease providing scope for 

improvements in the future. 
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Chapter 5 : Examining changing malaria 

epidemiology by 2070s under the worst-case 

emissions scenario (RCP 8.5) for Tanzania.   

5.1 Introduction  

Decision makers are increasingly seeking validated malaria epidemic prediction 

models to aid with planning interventions and prevent known health risks which 

often accompany epidemic outbreaks (Teklehaimanot et al., 2004; Githeko et al., 

2014). A range of methods exist to address this. One of these such methods have 

been explored in chapter four through geographic distribution modelling. This 

chapter will examine a second method, the performance of an increasingly complex 

dynamic mathematical-biological based epidemiology model.  

Biological malaria records such as the entomological inoculation rate, are poorly 

documented and understudied for Tanzania which can be attributed to a number of 

factors including data availability and local political decisions (Weed, 2002; 

Hagenlocher et al., 2014). Whilst there is an increase in the implementation and 

development of these complex models, their use remains sparse, particularly when 

considering the extensive use of West African countries in comparison to those in 

East Africa (Ermert et al., 2011). It is cautioned that models run in regions where 

climate connections to malaria epidemics are not well understood are likely to result 

in unreliable forecasting (Mabaso and Ndlovu, 2012). However, as knowledge 

increases it is imperative to begin using these models to examine epidemiological 

conditions and to further understand and refine models.  
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5.1.1 Aims and objectives 

The aim of this chapter is to establish how and to what extent key epidemic 

indicators are predicted to change under the worst-case climate scenario (RCP 8.5) 

for 2070 (representative of a 20-year period, 2061-2080) in Tanzania using a 

dynamic mathematical-biological model (Hijmans et al., 2005; IPCC, 2014). The 

focus of this study will be upon the March, April, May (MAM) rainfall season, which 

accounts for 70% of annual rainfall in Tanzania and will cover key populated districts 

within the seven uniquely identified climatological zones (Oesterholt et al., 2006; 

TMA, 2014). Section 5.2 provides an overview of the epidemiological measures to 

be assessed in this study and their importance in the biology of malaria 

transmission, before presenting a sensitivity analysis on the malaria model used in 

this study and resulting percentage changes in values between current conditions 

(represented by an 11-year period from 2006 to 2016) and 2070 (RCP 8.5).   

A comprehensive review of biological epidemic markers has not yet been 

undertaken for differing climatic zones in Tanzania for both present and future. Thus 

it is hoped that this study will offer unique insight into the complexities of climate, 

environment and mosquito relationships, and subsequently contribute to 

understanding malaria transmission in Tanzania.  

5.2 Dynamical epidemiological models for malaria 

Mathematically driven models have been used in representing malaria dynamics 

and predicting malaria outbreaks for over 100 years (Mandal et al., 2011). As 

understanding of the interactions between the host, parasite and environment has 

improved, epidemiological models have become increasingly accurate and complex 

in comparison to the initially simplistic “Ross model” (Chabot-Couture et al., 2014; 

Finley et al., 2014). Increased understanding of parasite-host-environment 

interactions has driven the increased complexity and accuracy of these models. 
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This has resulted in a divergence in prediction approach, with geographic 

distribution models, seasonal forecast models and dynamic mathematical-biology 

models all being routinely used and all at least using climate variables (temperature 

and precipitation) as the underpinnings of their prediction (Kelly Letcher et al., 2013; 

Chabot-Couture et al., 2014).  

Sir Ronald Ross was a pioneer in malarial biological relationships and processes, 

beginning his work in 1890. Ross determined the life-cycle of the parasite within the 

mosquito, now commonly referred to as the sporogonic cycle (figure 5.1) and further 

establishing the underpinning mathematical equations, allowing sophisticated 

modelling to develop (Mandal et al., 2011; Smith et al., 2014; Finley et al., 2014). 

This discovery spurred further examination of malaria parasitic and vector behaviour 

leading to current understanding of biological malaria process represented in figure 

5.1. It is understood that climate plays a vital role at varying stages of biological 

development and transmission allowing for more detailed analysis of climate 

impacts on malaria transmission than seasonal and geographic distribution models. 
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Figure 5.1 - Malaria life cycle diagram (CDC, 2017b) 

5.2.1 Modelled biological features of malaria 

Key mathematically predictable biological features of mosquito and parasite 

development include the sporogonic and gonotrophic cycle, both of which are 

quantifiable and often examined in epidemiological studies as potential indicators of 

future epidemic outbreaks. The sporogonic cycle represented by section C in figure 

5.1 is defined as the rate of development of the parasite within the mosquito 

(Hoshen and Morse, 2004; Jones et al., 2010). This aspect of the malaria cycle is 

heavily determined by temperature (measured in degree days) and is a critical factor 

in transmission determination (Teklehaimanot et al., 2004; Emami et al., 2017). The 

gonotrophic cycle (figure 5.2) is defined as the duration of time between two 

ovipositions, i.e. site-seeking and egg laying between blood meals (Petrić et al., 

2014). The gonotrophic cycle is also heavily controlled by temperature and 

measured in degree days (Murdock et al., 2016).  
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Figure 5.2 - The feeding (gonotrophic) cycle of the female mosquito (Chitnis et al., 2008). 

These parasitic and vector life-cycles are key biological factors contributing to 

determining transmission potential through impacting vector capacity in association 

with climatic and environmental changes (Lardeux et al., 2008). Whilst rainfall is an 

important factor in providing habitats for breeding and supporting the gonotrophic 

cycle, temperature is the main driver allowing for rapid parasitic and larval 

development provided other conditions are suitable. Teklehaimanot et al., (2004) 

demonstrated the impact of temperature on the sporogonic cycle presented in table 

5.1. Conditions which allow rapid sporogonic development, e.g. higher 

temperatures, are crucial to monitor and model due to the known significant impact 

on the occurrence of malaria and subsequent indication malaria epidemics 

(Teklehaimanot et al., 2004; Githeko et al., 2014).  
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Table 5.1 - The effect of mean temperature on the duration of a mosquito life cycle and sporogonic cycle and its effect on the amount of lead time from the 
availability of breeding sites to the occurrence of malaria cases (Teklehaimanot et al., 2004). 

 
Availability of breeding sites ******************> malaria   

Mean temperature 
(Rainfall temperature 

Mosquitoes life cycle Sporogony Incubation period in human host  

 
Larva *****> Adult (days) 

Adult first bite *****> Infectious bite 
(days)  

16 °C 47 111 (10 to 16 days) 

17°C 37 56 

18 °C 31 28 

20 °C 23 19 

22 °C 18 7.9 

30 °C 10 5.8 

35 °C 7.9 4.8 

39 °C 6.7 4.8 

40 °C 6.5 4.8 
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The completion of the sporogonic and gonotrophic cycles, enabling malaria 

transmission, is particularly vulnerable to the daily survival probability of the vector, 

due to the necessity for the mosquito to complete both gonotrophic and sporogonic 

cycles before transmission of the parasite to hosts is available (Smith et al., 2014; 

Christiansen-Jucht et al., 2015). Mosquito survival probability is calculated as the 

proportion of mosquitoes which are likely to survive each blood meal and in turn, 

completes the gonotrophic cycle, the longevity of which is determined by 

temperature and further influenced by humidity due to the poikilothermic nature of 

mosquitoes (Martens et al., 1995; Kristan et al., 2008). Consensus on optimal to 

survivable daily temperatures vary within the literature although is generally 

accepted to be between 20°C and 25°C, where exceedance of absolute maximum 

and minimum thresholds result in vector desiccation (Martens et al., 1995; Mordecai 

et al., 2013).  

Where conditions are met to allow the above cycles to take place, transmission of 

the malaria parasite between vector and host occurs via a blood meal (Jones et al., 

2007; Chitnis et al., 2008). Transmission potential, severity and overall presence of 

malaria spread is often mathematically expressed via the basic reproduction rate, 

entomological inoculation rate and malaria prevalence. The basic reproduction rate, 

R0, is defined as the number of new cases of a disease that will arise from one case 

in a non-immune host population during a single transmission cycle (Dietz, 1993; 

Patz et al., 2001; Finley et al., 2014). In highland areas, the R0 of malaria is typically 

below one during non-endemic periods, and above one signifies potential 

endemicity. This varies from location to location as vectoral capacity (in the form of 

survivability and other indicators) play a crucial role, hence it is recommended to 

assess multiple factors when examining malarial endemicity (Kristan et al., 2008; 

Finley et al., 2014).  
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Entomological inoculation rate (EIR) is defined as the number of bites per person 

per time unit and is empirically derived from the density of human-biting mosquitoes, 

their sporozoite rate and the human blood index (human biting rate), providing an 

indication of transmission intensity (Drakeley et al., 2005; Gu and Novak, 2005; 

Smith et al., 2014). EIR is an increasingly used metric, though comparatively 

understudied for sub-Saharan Africa, as it is considered to be a more direct measure 

of transmission than incidence of prevalence, however, questions remain 

surrounding the validity of EIR due to non-standardisation of methods, datasets and 

techniques (Kelly-Hope and McKenzie, 2009; Finley et al., 2014). Despite this, 

studies are encouraged to examine climatological impacts on entomological 

parameters whilst universal techniques become more defined (Drakeley et al., 

2005; Finley et al., 2014).  

Prevalence is the proportion of persons in a population who have malaria (or the 

disease of interest) at a specified point in time or over a specified period of time 

(CDC, 2017a). Prevalence is commonly used as a measure of morbidity and 

preferred over the use of incidence because the population who already have the 

disease are accounted for, which is useful in areas where malaria is endemic and 

constant background transmission occurs (Kelly-Hope and McKenzie, 2009). 

Malaria prevalence is highly sensitive not only to climatic changes, but also changes 

in surveillance, resistance and behavioural changes of both humans and vectors, 

thus it is important to consider these when interpreting prevalence results (Parham 

and Michael, 2010). For this reason, it is argued that prevalence is less reliable than 

EIR which is presented in detail in section 5.6.  

5.3 Data and methods  

The Liverpool Disease Model Cradle (DMC) was recommended (Caminade Pers. 

Comm., 2016) and has been downloaded to act as an interface to the Liverpool 
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Malaria Model version 1.3.1 (LMM2004) developed by Hoshen and Morse in 2004 

and further modified by Ermert et al. (2011) to become LMM2010. The LMM2010 was 

initially developed and further updated and validated to perform well in West Africa 

and has not yet knowingly been executed in detail for East African countries such 

as Tanzania (Morse, 2013). Due to the nature of epidemiological modelling, daily 

data is required to input into the model. The latest version LMM2010 will be used in 

this chapter and is referred to as LMM throughout.  

ERA Interim daily rainfall and temperature data with a timestamp of 12:00 (mid-day) 

was downloaded from the ECMWF MARS retriever for the 11-year period between 

01-01-2006 to 31-12-2016 at a resolution of 0.75 x 0.75 degrees. Justification for 

the use of an 11 year period can be found in chapter three. Inputs for the DMC 

require specific data formatting per 0.75 x 0.75 degree grid which was achieved via 

tailored R code and a mask was also created for Tanzania. More information on the 

Liverpool DMC and formatting can be found in the Disease Model Cradle practical 

document and QWECI documents (Hoshen and Morse, 2004; Ermert et al., 2011; 

Morse, 2013). Current and 2070 RCP 8.5 temperature and precipitation conditions 

from HadGEM2-ES were obtained from WorldClim for use in forecasting future 

conditions, which is further explained in section 5.3.1. RCP 8.5 only was chosen 

due to the modelled heightened risk of malaria (and population) for this RCP in 2070 

from chapter four (figure 5.3). It is suggested that future work could explore the full 

range of RCPs, as discussed in section 5.6.3.  
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Figure 5.3 - Percentage difference in malaria risk in Tanzania from current conditions by 
2070 across RCPs. Results taken from risk model in chapter four. 

5.3.1 Methods 

Prior to importing data into the LMM, data was formatted to the specific input 

requirements for the DMC interface using bespoke R script. Temperature and 

precipitation values were converted to represent the units of degrees Celsius (°C) 

and mm respectively. Raw ERA Interim data time is represented in hours since 01-

01-1900 and as such was re-formatted to represent the Gregorian calendar date-

time for use in separating monthly values at a later stage. Following this, 

temperature and precipitation data for each grid-square was separated by unique 

longitude and latitude combinations and formatted with a header line containing 

longitude, latitude, number of records contained in the file followed by daily variable 

values for the 11-year period. Separate node files were created for temperature and 

precipitation for import into the DMC.  

Functions of the LMM using the DMC interface are limited and data was presented 

annually per grid-square for the season of interest, where an 11-year mean output 

was desired. Considering the specific aims and objectives of this chapter, seven 
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districts, contained in seven grid squares were chosen and the annual raw output 

data from the DMC further modified using bespoke R script to obtain an 11-year 

mean for the MAM season (table 5.2 and figure 5.4). The seven districts were 

chosen to represent the most populated settlements within each of the seven 

climatological zones in Tanzania (NBS, 2013a; TMA, 2014). Raw numerical output 

data for each of the grid-squares was exported and tailored using R script. An 11-

year mean was calculated per factor of interest for the MAM rainfall season only 

which has previously been highlighted in chapter four.  

Table 5.2 - Grid latitudes and longitudes for export from the LMM/DMC for each residential 
district of interest with district elevation and population density figures (NBS, 2013a). 

District Elevation 

(m) 

ERA Grid-

Latitude 

(°) 

ERA Grid-

Longitude 

(°) 

Population density 

2012 (Pop/km2) 

Arusha 1387 -3.00 36.00 45 

Dar es Salaam 55 -6.75 39.00 3113 

Dodoma  1120 -6.00 35.25 50 

Mbeya 1704 -8.25 33.00 45 

Mtwara 31 -9.75 39.75 76 

Mwanza 1140 -2.25 32.25 293 

Songea 

(Ruvuma 

Region) 

1147 -10.5 35.25 22 
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Figure 5.4 - 0.75° x 0.75° grid squares of data downloaded from ERA interim overlaying 
Tanzania districts included in the study and elevation. 
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As 2070 RCP 8.5 estimated daily data is not available, mean annual temperatures 

and precipitation values for RCP 8.5 in 2070 was calculated using current 

HadGEM2-ES outputs and 2070 RCP 8.5 projections provided via WorldClim 

version 1.4. The annual mean (rather than seasonal mean) was calculated due to 

data requiring input into the DMC in annual format. This percentage change in 

respective variables was then applied to the current data (2006 – 2016), input into 

the LMM via the DMC and mean values calculated for 2070. The mean of the 11-

year representative dataset was calculated to represent the year 2070, and the 

MAM season values extracted for each grid-square and epidemiological factor 

being examined in this study. A method flow diagram of this process can be found 

in figure 5.5.  
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Figure 5.5 - Workflow of methodology for calculating current and future temperature and 
precipitation and the subsequent epidemiological output factors using the LMM DMC for 
Tanzania.  
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5.3.1.1 Sensitivity analysis 

A one-factor-at-a-time (OAT) sensitivity analysis was conducted where temperature 

and precipitation were changed one at a time to assess the impact on malaria 

prevalence (Saltelli et al., 2010). This was conducted in order to better assess the 

role of temperature and precipitation within LMM and to further consider whether 

the model adequately reflects the known impacts of temperature and precipitation 

on malaria prevalence. This particular approach was recommended in Hoshen and 

Morse (2004) and has been used in other studies as an effective preliminary 

approach, providing an insight into model sensitivity (van Griensven et al., 2006).  

The data used to assess sensitivity is the mean daily temperature and precipitation 

value for all seven districts included in the study (table 5.2) for the 11-year period 

from 2006 to 2016. Seven districts were included to provide a comprehensive 

sensitivity analysis covering all climate zones in Tanzania. The full 11-year period 

was assessed to enable assessment of potential impacts seen during El Niño years 

which are present in the dataset. Each individual factor was adjusted by 25%, 50% 

and 75% step changes in both positive and negative directions resulting in 6 

sensitivity profiles for each temperature and precipitation. These intervals were 

chosen to represent an even coverage of percentage change ranging from plausible 

to extreme in order to clearly highlight potential model limitations.   

5.3.1.2 Epidemiological output factors  

The indicative biological factors introduced in section 5.2 will be modelled by the 

LMM. Table 5.3 provides a brief summary of each factor with accompanying 

description and units for reference. Degree days (or growing degree days) are 

defined as a measurement of heat unit over time which is considered accurate for 

mosquitoes due to a predictable development pattern based on heat accumulation 

(Murray, 2008).  
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Figure 5.6 - Workflow of methodology for examining LMM sensitivity. 
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Table 5.3 - Summary of epidemiological output factors examined in this study (Jones et al., 2010; Finley et al., 2014; CDC, 2017a). 

Output factor Description Units 

Sporogonic cycle Cycle (and rate) of development of the malaria parasite within the 
mosquito.  

Degree days 

Gonotrophic cycle The biting-laying cycle of the mosquito, which is governed by the rate 
at which eggs can be produced.  

Degree days 

Mosquito daily survival probability Proportion of mosquitoes which survive each blood meal.  Percentage (%) 

Basic reproduction rate (R0)   Number of secondary infections originating from a primary case in 
the absence of immunity. 

See description 

Entomological inoculation rate Number of infective bites per person per time unit  See description  

Malaria prevalence Proportion of persons in a population who have malaria at either: 
a) a specified point in time 

b) over a specified period of time. 

Number of cases per specified 
population.  
 
E.g. per 10,000 or 100,000 
people.  



263 
 

5.4 Results for model sensitivity 

This section of work has examined the sensitivity of the LMM in Tanzania through 

exploring the mean percentage change in prevalence from 2006 to 2016 as a result 

of changing temperature and precipitation values by pre-defined thresholds. Results 

are presented in section 5.4.1 and 5.4.2.   

5.4.1 Temperature sensitivity results 

Sensitivity results for temperature (figure 5.7) demonstrate good model sensitivity 

for each threshold examined, with both increases and decreases in temperature 

resulting in reductions in prevalence which arguably highlights the niche 

temperature range within which malaria transmission operates, and is further 

discussed in section 5.6. Increasing temperature thresholds (+25%, +50%, +75%) 

demonstrate the greatest impact on prevalence, and results in decline of in malaria 

prevalence. Temperature decrease thresholds (-25%, -50%, -75%) demonstrate 

prevalence decline to a lesser extent than temperature increases. The 25% 

increase threshold results in (on average) an approximate 20% reduction in 

prevalence, where alternatively, a 75% temperature increase results in 

approximately a 95% reduction in prevalence, almost eradicating malaria.  

Whilst increased thresholds for temperature appear to reflect expected annual 

seasonality, decreased temperature thresholds demonstrate a more arbitrary sine 

curve, with a notable reversed seasonality, as would be expected with decreased 

temperatures, which is amplified as the threshold increases. It is not clear why this 

appears to be the case for decreased temperature thresholds. Further analysis 

would need to be conducted to explain potential model artefacts and climatic 

response.  
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Figure 5.7 - Percentage difference from current prevalence for pre-defined temperature 
thresholds to assess LMM sensitivity. 

5.4.2 Precipitation sensitivity results 

Sensitivity results for precipitation demonstrate good model sensitivity, in-keeping 

with current knowledge with regards to malaria dependence on precipitation, 

discussed further in section 5.6. Results demonstrate that malaria prevalence is less 

sensitive to changes in rainfall than changes in temperature. Increases in rainfall 

between the 25% and 75% threshold show overall, limited increase in prevalence, 

peaking at a 10% increase between 2015 and 2016, a known El Niño year which 

explains this exacerbated peak in the data for this year at the 75% threshold. 

Overall, at present, sensitivity analysis suggests that rainfall in Tanzania is close to 

the overall optimum amount required for malaria transmission, which is supported 

by Bayoh and Lindsay (2004), thus suggesting that the model performs well with 

regards to rainfall. 
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A decrease in rainfall demonstrates a more dramatic response, however does not 

completely reduce prevalence in the same way that is observed in the temperature 

results. Rainfall decreases of up to 75% demonstrates at the lowest point, a 32% 

reduction in prevalence, further suggesting that with minimal amounts of rainfall 

malaria transmission is still viable and that temperature is the more dominant factor.  

 

Figure 5.8 - Percentage change from current prevalence for pre-defined precipitation 
thresholds to assess LMM sensitivity. 
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5.5 Results for relative percentage change in biological indicators  

This section examined the percentage change in six biological indicators (outlined 

in section 5.3.2.1) for malaria during the MAM rainfall season under RCP 8.5 by 

2070 using the LMM. Results are presented for seven distinct climatological zones 

in Tanzania, each with densely populated regional townships. Results are further 

split by rainfall regime, either unimodal or bimodal, for context and comparison. 

Graphs are plotted by five-day running mean throughout the MAM season in order 

to reduce the impact of any potentially erroneous outputs.  

5.5.1 Gonotrophic cycle length 

Graphed results for percentage change in gonotrophic cycle length (the duration of 

time between two ovipositions) between current conditions and 2070 RCP 8.5 for 

all districts within each rainfall regime for the MAM rainfall season are presented in 

figures 5.9 and 5.10 with total percentage change over the 3 months presented in 

tables 5.4 and 5.5.  

5.5.1.1 Bimodal 

Gonotrophic cycles are overall modelled to reduce by 2070 under the RCP 8.5 

pathway for the MAM season (figure 5.9). This equates to shorter time periods 

between female ovipositions, thus theoretically increasing the amount of eggs a 

female could lay in their lifetime as well as over a shorter period of time. The greatest 

decreases are observed in Mwanza and Arusha, two areas of high altitude in the 

bimodal regime (figure 5.9). Mwanza marginally demonstrates the greatest 

decrease across the season of -15% (table 5.4) reducing throughout May as the 

rainfall season nears an end and as temperatures decrease. Arusha demonstrates 

a differing profile, increasing to reach peak reduction in cycle length during April, 

before decreasing in cycle length again throughout May, with a seasonal average 

reduction of -15%. Dar es Salaam also demonstrates a shortening of cycle length, 
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consistently ranging between 13% and 14% with reductions beginning to fluctuate 

towards the end of May.  

 

Figure 5.9 - Percentage change in mean (5 day running mean) gonotrophic cycle length 
from current conditions in bimodal districts (2006-2016) by 2070 under RCP 8.5. 

Over the three-month period, the greatest average reduction in gonotrophic cycle 

length is seen in Mwanza, followed by Arusha and Dar es Salaam (table 5.4). 

Overall there is 1.67% range in the overall reduction of gonotrophic cycle length.  

Conditions improve towards optimum gonotrophic suitability, where no thresholds 

towards unsuitability have been crossed.  

Table 5.4 - Mean monthly percentage changes in gonotrophic cycle length over the MAM 
season for each bimodal regime district. 

 Arusha Dar es Salaam Mwanza 

Average % 

Change 

-14.95 -13.75 -15.42 
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5.5.1.2 Unimodal 

Similar to trends seen in the bimodal regimes, Songea and Mbeya, the two highest 

altitudinal locations included in the unimodal regime, demonstrated the highest 

percentage reduction in gonotrophic cycle length with Songea by -16% in early 

March, and -14% and -15% towards the end of May. Mbeya follows a similar trend 

although shows slightly more fluctuations indicating variable conditions (figure 

5.10). Dodoma and Mtwara demonstrate slightly smaller reductions in the range of 

-13% to -15%, with both showing fluctuations of up to 4% from mid-April onwards.  

 

Figure 5.10 - Percentage change in mean gonotrophic cycle length from current conditions 
in unimodal districts (2006-2016) by 2070 under RCP 8.5. 

Over the three month season the greatest average reduction in gonotrophic cycle 

length is seen in Songea, followed by Mbeya, Mtwara and Dodoma (table 5.5). 

There is a 1% difference between each reduction in location gonotrophic cycle 

length suggesting that, similarly to the bimodal regime, conditions are likely to 
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become universally more suitable for the gonotrophic cycle length of the malaria life 

cycle.  

Table 5.5 - Mean monthly percentage changes in gonotrophic cycle length over the MAM 
season for each unimodal regime district. 

 Dodoma Mbeya Mtwara Songea 

Average % 

Change 

-13.97 -14.46 -13.68 -15.12 

 

5.5.2 Sporogonic cycle length 

5.5.2.1 Bimodal 

Sporogonic cycle lengths exhibit a drastic reduction in length throughout the MAM 

season in 2070 for RCP 8.5, indicating a shortening of the time needed for parasitic 

reproduction, enabling a mosquito (once the parasite is ingested through a blood 

meal) to become infectious with malaria quicker. Arusha and Mwanza demonstrate 

the most varying and overall greatest mean reduction over the season, averaging -

37% over the course of the season (figure 5.11, table 5.6). Arusha surpasses -50% 

in cycle time in the earlier half (March – April) of the season, when temperatures 

are generally warmer. Dar es Salaam by comparison shows a more modest 

decrease in cycle length averaging -29% reduction in cycle time over the MAM 

season.  
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Figure 5.11 - Percentage change in mean sporogonic cycle length from current conditions 
in bimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.6 - Mean monthly percentage changes in sporogonic cycle length over the MAM 
season for each bimodal regime district. 

 Arusha Dar es Salaam Mwanza 

Average % 

Change 

-36.77 -29.22 -36.78 
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Mbeya and Dodoma show similar patterns of cycles slightly lengthening throughout 

April. Mtwara displays a profile similar to that of Dar es Salaam, remaining fairly 

constant in sporogonic cycle length throughout the season (figure 5.12, table 5.7).  

 

Figure 5.12 - Percentage change in mean sporogonic cycle length from current conditions 
in unimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.7 - Mean monthly percentage changes in sporogonic cycle length over the MAM 
season for each unimodal regime district. 

 Dodoma Mbeya Mtwara Songea 

Average % 

Change 

-30.52 -32.14 -29.11 -35.56 
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5.5.3 Basic reproduction rate 

5.5.3.1 Bimodal 

Mwanza demonstrates the highest mean percentage increase in R0, indicating an 

increased number of secondary infections in the absence of immunity. Averaging 

82% over the MAM season, the majority of this increase is observed in the earlier 

half of the season in March and April and reducing towards the end of May. Arusha 

demonstrates an opposing profile, averaging an overall seasonal increase of 61%, 

the majority of this is accounted for later in the season from mid-April to late May 

where fluctuations in reproduction rates become greater towards the end of May 

suggesting highly changeable conditions. Dar es Salaam contrasts the results 

presented in Mwanza and Arusha, demonstrating an average seasonal reduction in 

reproduction rate of -32%, suggesting climate conditions have become increasingly 

unfavourable for reproduction. Fluctuations are less evident in the Dar es Salaam 

profile suggesting consistent climatological conditions (figure 5.13, table 5.8).  
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Figure 5.13 - Percentage change in mean reproduction rate from current conditions in 
bimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.8 - Mean monthly percentage changes in reproduction rate over the MAM season 
for each bimodal regime district. 

 Arusha Dar es Salaam Mwanza 

Average % 

Change 

+61.47 -32.30 +81.86 

5.5.3.2 Unimodal 

Songea demonstrates the highest seasonal average increase of R0 in the unimodal 

area of 87% higher than current conditions, occurring mostly towards the end of the 

season. This is followed by Mbeya, which shows a fairly consistent increase across 

the MAM season, with an average increase of 50% in R0. Dodoma presents 

interesting results, showing in parts, increases and decreases in secondary 

infectious cases throughout the season, with an average increase of 1%. However, 

the profile suggests that climatological suitability in Dodoma is approaching a 

threshold towards unsuitability for infectious disease spread. Mtwara displays a 
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reduction in R0, averaging -27% throughout the season, showing no major 

fluctuations in profile suggesting that conditions become consistently less suitable 

(figure 5.14, table 5.9).  

 

Figure 5.14 - Percentage change in mean reproduction rate from current conditions in 
unimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.9 - Mean monthly percentage changes in reproduction rate over the MAM season 
for each unimodal regime district. 

 Dodoma Mbeya Mtwara Songea 

Average % 

Change 

+1.33 +49.67 -27.43 +86.50 

 

5.5.4 Survival probability 

5.5.4.1 Bimodal 

Overall survival probability, i.e. the likelihood of a mosquito surviving each blood 

meal and completing the gonotrophic cycle, reduces in all districts under the bimodal 
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regime. This indicates that fewer mosquitoes are likely to survive to contribute to 

malaria transmission. The greatest reduction in survival probability is seen in Dar 

es Salaam where up to 14% of mosquitoes may be able to survive in early March. 

Across the MAM season as a whole, Dar es Salaam experiences an average 

reduction of -4% in survival probability. Arusha and Mwanza exhibit slight reductions 

in survival probability, averaging -3% and -1% respectively (figure 5.15, table 5.10).  

 

Figure 5.15 - Percentage change in mean survival probability from current conditions in 
bimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.10 - Mean monthly percentage changes in survival probability over the MAM 
season for each bimodal regime district. 

 Arusha Dar es Salaam Mwanza 

Average % 

Change 

-2.65 -4.91 -1.46 
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5.5.4.2 Unimodal 

Survival probability in the unimodal regime reduces overall. Dodoma demonstrates 

the largest average season reduction totalling -5%, peaking at over -8% in May. 

Mtwara experiences the second highest average seasonal reduction at -5%, 

followed by Mbeya and Songea at -3% and -2% respectively. All profiles show 

similar trends where survival probabilities increasingly reduce from mid-April 

onwards with the exception of Songea which maintains a steady profile indicating 

conditions are maintained in relation to survival probability (figure 5.16, table 5.11).  

 

Figure 5.16 - Percentage change in mean survival probability from current conditions in 
unimodal districts (2006-2016) by 2070 under RCP 8.5. 
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Table 5.11 - Mean monthly percentage changes in survival probability over the MAM 
season for each unimodal regime district. 

 Dodoma Mbeya Mtwara Songea 

Average % 

Change 

-4.80 -2.79 -4.57 -1.54 

5.5.5 Entomological inoculation rates 

5.5.5.1 Bimodal 

Entomological inoculation rate percentage change profiles fluctuate between 

increases and decreases in percentage change in the bimodal regime, particularly 

for Arusha which has notable high peaks of up to +150% increase in infectious bites 

per person per day (based on mid-day daily data used) towards the end of May. 

Overall, it is difficult to distinguish patterns of change from the profiles presented in 

figure 5.17. On average over the season, Arusha is the only area to experience an 

increase in infective bites per person per day at +10% modelled increase. Mwanza 

experiences an overall reduction in infective bites of -4% where Dar es Salaam 

experiences the greatest reduction of -14% (table 5.12).  
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Figure 5.17 - Percentage change in mean entomological inoculation rate (five day rolling 
average) from current conditions in bimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.12 - Mean monthly percentage changes in entomological inoculation rates over the 
MAM season for each bimodal regime district. 

 Arusha Dar es Salaam Mwanza 

Average % 

Change 

+9.56 -13.89 -4.39 

 

5.5.5.2 Unimodal 

Similarly to the bimodal regime, EIR values fluctuate in percentage change 

throughout the MAM season for unimodal regime districts to a degree where no 

discernible pattern is observed. Songea demonstrates the highest peaks, reaching 

up to a +340% increase in infectious bites per person per day towards the end of 

May. Overall more districts in the unimodal regime see an average increase in 

infective bites compared to districts in the bimodal regime. Songea experiences an 

average increase of +24%, followed by Mbeya at +14% and Dodoma at +2%, further 
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indicating that Dodoma is potentially approaching climatological thresholds for 

transmission suitability. Mtwara is the only district to demonstrate a reduction in 

infective bites of -11% (figure 5.18, table 5.13).  

 

Figure 5.18 - Percentage change in mean entomological inoculation rate from current 
conditions in unimodal districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.13 - Mean monthly percentage changes in entomological inoculation rates over the 
MAM season for each unimodal regime district. 

 Dodoma Mbeya Mtwara Songea 

Average % 

Change 

+2.12 +14.39 -10.98 +24.27 

5.5.6 Prevalence 

5.5.6.1 Bimodal 

Modelled percentage change in prevalence (proportion of the human population 

which is infectious) indicates that the greatest percentage increase will be observed 

in Mwanza, increasing by an average of +9% over the MAM season, with the profile 

suggesting overall prevalence will increase throughout the season. Arusha 

-40

-20

0

20

40

60

80

0
5
-M

a
r

1
0
-M

a
r

1
5
-M

a
r

2
0
-M

a
r

2
5
-M

a
r

3
0
-M

a
r

0
4
-A

p
r

0
9
-A

p
r

1
4
-A

p
r

1
9
-A

p
r

2
4
-A

p
r

2
9
-A

p
r

0
4
-M

a
y

0
9
-M

a
y

1
4
-M

a
y

1
9
-M

a
y

2
4
-M

a
y

2
9
-M

a
y

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e
 f

ro
m

 c
u

rr
e

n
t 

(%
)

MAM Season

Dodoma Mbeya Mtwara Songea



280 
 

demonstrates almost no overall change in prevalence at 1% increase with a 

reduction in the middle of the season (April). Dar es Salaam experiences a reduction 

in malaria prevalence of -24% (figure 5.19, table 5.14). 

  

Figure 5.19 - Percentage change in mean prevalence from current conditions in bimodal 
districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.14 - Mean monthly percentage changes in prevalence over the MAM season for 
each bimodal regime district. 

 Arusha Dar es Salaam Mwanza 

Average % 

Change 

+0.58 -23.85 +8.88 

 

5.5.7.2 Unimodal 

Prevalence in the unimodal regime by region overall shows a reduction with the 

exception of Songea which demonstrates an average seasonal increase of +3%, 

which has an increasing trend throughout the season, starting at approximately 

current values at the beginning of March. Mtwara demonstrates the greatest 
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decrease in prevalence at -17% which is observed to be consistent throughout the 

season. Dodoma shows the second greatest reduction of -13% followed by Mbeya 

with -2% where the profile demonstrates an increase to almost current prevalence 

levels by the end of the season in May (figure 5.20, table 5.15).  

 

Figure 5.20 - Percentage change in mean prevalence from current conditions in unimodal 
districts (2006-2016) by 2070 under RCP 8.5. 

Table 5.15 - Mean monthly percentage changes in prevalence over the MAM season for 
each unimodal regime district. 

 Dodoma Mbeya Mtwara Songea 

Average % 

Change 

-12.59 -2.36 -16.63 3.21 
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5.5.7 Summary of results  

The LMM demonstrates a level of sensitivity to both temperature and precipitation 

which is accurately reflective of malaria prevalence (section 6.4.1 and 6.4.2). 

Results indicate greater sensitivity to temperature, based on the thresholds applied. 

This suggests that temperature is perhaps the greater limiting factor over rainfall in 

terms of model balance in calculating prevalence. Threshold decreases 

demonstrate a more arbitrary relationship than threshold increases, which retain 

seasonal peaks and troughs. Overall, the model demonstrates appropriate 

sensitivity considering the dataset being used in this analysis. This is discussed 

further in section 5.6.1.  

Six biological indicators were examined for malaria during the MAM rainfall season 

under RCP 8.5 (2070). Results indicate that malaria EIR and prevalence 

demonstrate varied percentage change by location, and in cases opposing direction 

of change. EIR indicates the largest percentage increase in malaria will occur at 

Songea, with the largest percentage decrease being at Dar es Salaam. Prevalence 

indicates the largest percentage increase will occur at Mwanza with the largest 

percentage reduction occurring at Dar es Salaam. When compared to results from 

chapter four, the EIR results closely match the results from the developed malaria 

risk model. This is discussed further in section 5.6.2.  

The largest contributing factors to changes in prevalence and EIR are unanimous 

percentage decreases in the time required to complete the sporogonic and 

gonotrophic cycles (table 6.16). The largest decreases occur for the sporogonic 

cycle, peaking at a 36.78% reduction in time for Mwanza and also Arusha. Peak 

reduction in gonotrophic cycle length also occurs in Mwanza, with a 15.42% of time 

taken. These results indicate increasingly optimum climate conditions for both 

gonotrophic and sporogonic process across Tanzania.  
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R0 results indicate that the largest increases in new cases arising from a single case 

in a non-immune host population will occur in Songea (86.50%), Mwanza (81.86%) 

and Arusha (61.74%). Dodoma will experience a marginal increase (1.33%) where 

Dar es Salaam and Mtwara will experience reductions of -32.30% and -27.43% 

respectively. Survival probability reduces across all locations, with the greatest 

reduction observed in Dar es Salaam (-4.91%). This is likely due to temperature and 

rainfall conditions reducing in suitability for vector survival and transmission.  

All percentage change results obtained for each epidemiological factor over the 3-

month rainy season (MAM) are summarised in table 5.16. Malaria risk for each 

district highlighted in chapter four is also included and discussed in section 5.6. 

However, it is important to consider that the model operates on differing spatial 

scales to the ERA grids used here.  
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Table 5.16 - Summary of total percentage change (%) values and malaria risk obtained for chapter four over the MAM season for each district and factor by 
2070 (RCP 8.5). 

 Arusha Dar es 

Salaam 

Dodoma Mbeya Mwanza Mtwara Songea 

Gonotrophic Cycle 

Length 

-14.95 -13.75 -13.97 -14.46 -15.42 -13.68 -15.12 

Sporogonic Cycle 

Length 

-36.77 -29.22 -30.52 -32.14 -36.78 -29.11 -35.56 

Basic Reproduction Rate 61.74 -32.30 1.33 49.67 81.86 -27.43 86.50 

Survival Probability -2.65 -4.91 -4.80 -2.79 -1.46 -4.57 -1.54 

Entomological 

Inoculation Rate 

9.56 -13.89 2.12 14.39 -4.93 -10.98 24.27 

Prevalence 0.58 -23.85 -12.59 -2.36 8.88 -16.63 3.21 

Chapter 4 environmental 

model: malaria risk 

High Increase High 

decrease 

Medium 

increase 

High 

increase 

No change High 

decrease 

High increase 
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5.6 Discussion 

Results presented in sections 5.4 and 5.5 are discussed within the wider body of 

literature and further work suggested.  

5.6.1 Environmental predictors in epidemiological modelling   

Model sensitivity to temperature and precipitation and the subsequent impacts on 

prevalence demonstrate realistic results when considered within the wider literature. 

It is well established that malaria presence and transmission is dependent on 

appropriate climatic conditions, where temperature plays a key role in development 

and survival stages (Mordecai et al., 2013; Drake and Beier, 2014). Sporogonic, 

gonotrophic and survival probability all possess varying temperature niches within 

which optimum development and vector survival takes place, factors of which are 

presented in table 5.4 and chapter two (Teklehaimanot et al., 2004; Emami et al., 

2017). Studies have found a complex and non-linear relationship between rainfall 

and malaria, which is arguably reflected in the LMM sensitivity results (Jones et al., 

2007). 

Whilst the sensitivity of the model to temperature performs well, an interesting 

contrast in the profile between percentage increase and percentage decrease is 

observed. Increases in temperature appear to demonstrate a more reactive and 

emphasised response to peaks and troughs in the profiles, as mathematically 

expected. Although in areas, peaks and troughs in data are unusually matched and 

at the 75% decreased threshold an almost uniform sine wave is observed with 

almost none of the annual variability characteristics observed in the increased 

profile present. There is no obvious cause of this within the data, and as a result, it 

is speculated that perhaps there is a process within the LMM which means 

temperatures below malaria thresholds are treated in a default manner for such sine 
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waves to form. This would require further investigation outside the scope of this 

study.  

The LMM treats rainfall as an accumulation of the last ten days, as this is more 

important in relation to puddling and mosquito habitat provision (Hoshen and Morse, 

2004). Sensitivity profiles shown in figure 5.8 suggest consistency with current 

knowledge with regards to rainfall, where percentage increase exhibits a maximum 

of 10% increase in prevalence, and reductions peaking at 25% reduction in 

prevalence. This is reflective of malaria transmission where an accumulated 10 day 

minimum of 10mm is able to sustain transmission in contrast to the previously 

applied 80mm (Tanser et al., 2003; Zhou et al., 2005; Usher, 2010). In comparison, 

there is no identified maximum threshold, although extremely heavy rainfall could 

impact larvae growth through washing away eggs, supporting limited observed 

improvement (Ermert et al., 2011, 2013).  

5.6.2 Examining transmission potential and intensity 

When examining overall changes in transmission intensity (EIR and prevalence) by 

2070 (RCP 8.5), differing and inconsistent conclusions per district are drawn from 

the results obtained in this study, correlating with inconsistent conclusions from a 

malaria study conducted in West Africa which also examined EIR and prevalence 

changes (Yamana and Eltahir, 2013). It is important to consider that EIR is broadly 

considered a more direct measure of transmission intensity than the more 

traditionally adopted use of prevalence, although prevalence is more routinely used 

due to standardisation of procedure and reporting (Onori and Grab, 1980; Kelly-

Hope and McKenzie, 2009). Furthermore, it is important to note that both of these 

factors and model do not account for changes in social policy, response and human 

behaviour and as such these results are purely based on environmental changes 
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and are capable of reflecting future changes in malaria (Koella and Antia, 2003; 

Ermert et al., 2011).  

Considering the above, EIR results for Tanzania suggest that Arusha will see a 

respective increase in transmission (10%) in EIR, whereas Mwanza will experience 

decrease in transmission (-4%) in EIR for 2070 (RCP 8.5) within the bimodal rainfall 

regime districts. Prevalence results, which also indicates transmission, demonstrate 

that for the same areas, Arusha shows little change (1%) whereas Mwanza will 

increase (9%). Both indicate Dar es Salaam will decrease by differing percentages. 

Similar instances of contrast can be seen in the unimodal regime districts where 

EIR for Dodoma, Mbeya and Songea increase by 2%, 14% and 24% respectively, 

compared to prevalence transmission changes of -13%, -2% and 3% respectively. 

Both indicate Mtwara will decrease by differing percentages. Interestingly, both 

prevalence and EIR indicate reductions in transmission for Dar es Salaam and 

Mtwara which are low elevation, coastal settlements in differing climate zones.  

Prevalence and EIR results from the LMM provide the clearest indications that for 

low-lying, currently optimal locations, particularly for urban locations such as Dar es 

Salaam and Mtwara, transmission will reduce overall due to unfavourable 

environmental conditions (Caldas de Castro et al., 2004; Kabaria et al., 2016). 

Similarly, both anticipate a rise in transmission for the elevated district of Songea. 

Both support conclusions drawn for those areas from the risk model developed in 

chapter four (table 5.16). Dodoma, Mbeya and Mwanza demonstrate contrasting 

results due to the way in which each parameter evaluates transmission potential. 

EIR includes the vectoral capacity, which may be the key factor causing differing 

results in simulated transmission intensity. This is an aspect which could benefit 

from increased uniformity in EIR measures, as this conflicting information between 

two widely applied measures would not be beneficial for policy makers.  



288 
 

5.6.2.1. Contributory factors to changing transmission 

The results presented in section 5.5 highlight the importance of monitoring multiple 

epidemiological variables enabling further consideration of changes in malaria 

transmission, where transmission indicators such as prevalence and EIR remain 

inconclusive or contradictory. Results for R0, Sporogonic cycle length, Gonotrophic 

cycle length and survival probability are presented in table 5.16.  

The greatest contributing factors to increasing malaria transmission are identified 

as the basic reproduction rate (R0) and the sporogonic cycle length, both of which 

are observed to increase for all stations over the MAM season. High increases in 

sporogonic cycle rate are likely results of increasingly suitable temperature 

conditions where temperature thresholds for sporogony development are crossed 

by 2070 for RCP 8.5 (table 5.4), indicating faster parasite development 

(Teklehaimanot et al., 2004). This is associated with increasing R0 where the 

number of secondary cases generated per infected human introduced to an 

otherwise susceptible population (Smith et al., 2007; Parham and Michael, 2010). 

Sporogony and R0 are intrinsically related (figure 5.21), thus increases in both are 

likely to be related. Reductions observed for R0 are more likely to be correlated with 

unsuitable temperature conditions for malaria vectors (Mordecai et al., 2013; Ryan 

et al., 2015).  
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Figure 5.21 - The life cycle model and R0. For further information see Smith et al. (2007). 

 

Gonotrophic cycle length demonstrates unanimous percentage reductions, ranging 

from -13% to -16%. Causes of reduction are linked to those for sporogony, where 

temperatures are increasingly suitable for rapid development of mosquito eggs 

(Lardeux et al., 2008; Mordecai et al., 2013; Christiansen-Jucht et al., 2014). 

Precipitation plays an increasingly important role in the gonotrophic cycle compared 

to the sporogonic cycle, due to ovipositions (egg-laying) requiring bodies of water 

of approximately 0.5mm in depth (City Medical Office of Health (CMOH), 2005). 

Gonotrophic results indicate that water provision from rainfall is likely to be the 

limiting factor in gonotrophic percentage change, due to the profiles presented in 

figure 5.10 reducing towards the end of the MAM season, which is increasingly 

notable in the unimodal regime districts (WHO 2013c; Petrić et al., 2014).   

Survival probability is modelled to unanimously reduce across all districts by 2070 

(RCP 8.5) (table 5.16, figures 5.15 and 5.16). Malaria transmission is sensitive to 

changes in mosquito survival probability due to the requirement of the vector to 

survive long enough to complete both sporogonic and gonotrophic cycles in order 
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for transmission to take place (Scott, 2002; Christiansen-Jucht et al., 2014). The 

observed results indicate that increased temperatures are likely to shorten 

survivability of mosquitoes (Patz et al., 1998; Kolivras, 2006). Despite survival 

probability reducing, the percentage reductions are comparatively minor when put 

into context with the observed reduction in both sporogonic and gonotrophic cycle 

length, which is further highlighted by increases in R0 (Glass et al., 2000; Smith et 

al., 2007).   

5.6.3 Future work  

The RCP 8.5 pathway was highlighted for Tanzania as the most crucial to examine 

(section 5.3), and thus was investigated in this chapter. It would be beneficial for 

future research to examine the biological response to malaria factors under all RCP 

pathways to determine the degree of difference in impact between each RCP. 

Furthermore, this evidence could be used to support development of appropriate 

long term strategies to minimise the impact of malaria before potential modelled 

conditions for 2070 are observed. In addition, a more comprehensive comparison 

of these models compared to static risk models and seasonal forecasting models 

could prove beneficial in understanding the most crucial elements required for 

malaria simulation and modelling. 

In addition to the recommendations above, it would be beneficial to further tailor and 

validate the LMM settings to better represent Tanzanian rainfall distribution and 

topography, with a view to examining key driving differences between East Africa 

and West Africa. Tailoring the LMM in this way would provide invaluable insight into 

the degree of difference (if any) in the way malaria operates in West Africa and East 

Africa, allowing for more accurate simulations and informing the development of 

other mathematical-biological models such as the VECTRI model and in turn more 
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accurate simulations for East African countries (Tompkins and Ermert, 2013; 

Tompkins et al., 2015). 

5.8 Conclusions 

There is a clear case for continued use and improvement of mathematical-biological 

epidemiology models, where improvements in monitoring on the ground and 

recording of malaria epidemiological parameters for validation in countries such as 

Tanzania is paramount in developing models to be more reflective for East Africa. 

It is recognised that uniformity in standardisation of methods such as EIR could go 

a long way to improving the interpretation and use of epidemiological factors for 

decision making. Alongside this, there are a number of social, political and 

intervening factors impacting upon the development and accuracy of mathematical-

biological models which are not currently incorporated (Koella and Antia, 2003). 

Despite these factors, the LMM arguably performs well in Tanzania.     

Research conducted in this chapter has demonstrated using the LMM that malaria 

transmission during the MAM rainfall season in 2070 (RCP 8.5) for Tanzania is 

simulated to increase predominantly in elevated regions such as Arusha, Mwanza 

and Songea whilst coastal communities (Dar es Salaam, Mtwara) will see a 

reduction. Although results vary by epidemiological output used. Results further 

demonstrate that this reduction occurs at various stages in the malaria transmission 

cycle, where sporogonic and gonotrophic cycles contribute considerably to this 

notable reduction in time, further supporting R0 (secondary transmission) leading to 

increased malaria transmission. Overall, rises in temperature would benefit malaria 

transmission in Tanzania, wth some offset occurring due to increased rates of 

mosquito desiccation in relation to temperature (2070, RCP 8.5). 

 



292 
 

Chapter 6 : Experimental Conclusions 

This section concludes the main empirical findings, before presenting the wider 

implications for environmental disease modelling and considerations for policy 

inclusion discussed in chapter seven.  

6.1 Addressing the overarching aims and objectives 

This thesis set out to research the overarching aim which was: to develop a 

validated framework for the integration of environmental and biophysical 

information, to support health and disease decision making and risk-modelling, 

resulting from short and long-term climate change. This encompassed five research 

objectives:  

1. Identify key climatic characteristics and features of Tanzania, including 

assessing sensitivity to El Niño events. 

2. Develop an environmental malaria risk model to model current and future 

malaria risk in Tanzania.  

3. Establish the performance and predictions of a climatologically driven, 

dynamic mathematical-model for Tanzania.  

4. Assess the validity, accuracy and usefulness for prediction of change in 

disease distribution and transmission for Tanzania.  

5. Discuss the potential impact of socioeconomic, cultural behaviours and 

malaria policies on environmental model predictions.  

Table 6.1 illustrates the chapters within which each of these research objectives 

were met.  
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Table 6.1 – Chapters in the thesis where the research objectives were met.  

Research Objective Chapters 

Identify key climatic characteristics and features of Tanzania, 

including assessing sensitivity to El Niño events. 

2, 3 

Develop an environmental malaria risk model to model 

current and future malaria risk in Tanzania.  

2, 4 

Establish the performance and predictions of a 

climatologically driven, dynamic mathematical-model for 

Tanzania.  

2, 4, 5 

Assess the validity, accuracy and usefulness for prediction of 

change in disease distribution and transmission for Tanzania.  

4, 5, 7 

Discuss the potential impact of socioeconomic, cultural 

behaviours and malaria policies on environmental model 

predictions.  

2, 7 

Chapter two: Literature Review 

Chapter three: Examining baseline climatological conditions and the effect on El 

Niño events on climate conditions in Tanzania.  

Chapter four: Current and projected environmental risk mapping of malaria.  

Chapter five: Examining changing malaria epidemiology by 2070s under the 

worst-case climate scenario (RCP 8.5) for Tanzania.  

Chapter six: Provide an overview of conclusions drawn from empirical research 

presented in chapters three, four and five.  

Chapter seven: Identifying social, economic and ecosystem components for 

improved health and disease management in Tanzania. 
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6.2 Overarching summary and contribution to knowledge 

Through addressing the research objectives presented in chapter one and recapped 

in section 6.1, this thesis has addressed gaps in knowledge which are highlighted 

in the systematic literature review presented in chapter two. Understanding in 

multidisciplinary theory across epidemiological modelling; climate and 

environmental relationships, disease dynamics and socioeconomic factors is 

contributed throughout. Contributions to epidemiological practice are made through 

the development of a uniquely weighted GIS based malaria risk model. Advances 

to malaria modelling are made through the inclusion of environmental variables not 

previously assessed in an epidemiological model. This further highlights the lack of 

knowledge surrounding the role of some environmental variables and climate 

dynamics, particularly for Tanzania, factors which have not been explicitly assessed 

before.  

Research conducted in chapter three concludes that El Niño events cause 

statistically significant changes to local temperature, rainfall and absolute humidity 

throughout Tanzania. Changes vary across the country and by season and event. 

Results depict conditions suitable to alter malaria and vector based dynamics and 

seasonality during El Niño events, supporting conclusions from the literature 

identified in chapter two. Further to exploration of changes, an examination of 

current absolute humidity indicates that areas of south Tanzania (e.g. Mbeya) are 

theoretically suitable to sustain the transmission of bacterial meningitis from June 

through to October. Bacterial meningitis has only been recorded in the north of 

Tanzania to date. Suggested further research based on these results are presented 

in section 6.4. These results address research objective one.  

Chapter four presents the development of a GIS weighted sum environmental risk 

malaria model for May, addressing research objectives two and four. The 
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development of the model presents nine environmental variables which contribute 

to malaria risk. A hierarchy of the importance of environmental variables is 

presented; where vegetation, rainfall and temperature are identified as the most 

contributing factors with the remaining variables contributing to model accuracy. A 

hierarchy of environmental variable importance remains under debate within the 

literature. The developed model is accurately capable of simulating malaria 

prevalence throughout Tanzania for May (r=0.8401, p<0.05; r2=0.706, p<0.01). 

Analysis of changing risk under climate scenarios concludes that overall, malaria 

risk will increase throughout Tanzania under most RCP scenarios with the exception 

of RCP 8.5 for 2050 and RCP 2.6 for 2070. The total population living in high risk 

areas also increases under all scenarios.  

Chapter five examines changes in key biological components of malaria 

transmission under RCP 8.5 for 2070 using the LMM. This addresses research 

objectives three and four. Results conclude that for study locations used throughout 

Tanzania the greatest contributing factor to changing malaria dynamics are 

decreases in the time required to complete the sporogonic and gonotrophic cycles 

as a result of increasing temperatures. This does not equate to unanimous 

increases in malaria EIR and prevalence, and in places the two malaria indicators 

infer opposing change. EIR is still debated in the literature as the most reliable 

malaria transmission indicator and is a variable which the results from chapter four 

match the closest with regards to changes in malaria risk.  

Chapter seven addresses research objective five through critically assessing the 

key impacts of socioeconomic, cultural and policy factors upon the epidemiological 

triangle. Results conclude that a number of socioeconomic and cultural factors in 

Tanzania at present contribute to the persisted prevalence of malaria. These factors 

are not captured in spatial epidemiological methods at present, largely due to an 
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absence of data and difficulties with quantification of some parameters with regards 

to impact. Whilst policy support tools, e.g. MDAST have been developed for 

Tanzania, they lack the inclusion of environmental parameters and thus, faces a 

number of operational barriers. A considerable barrier to the development and 

widespread use of developed tools is the lack of a communication framework to 

translate scientific results into information to support policy and practice. The 

methodological inclusion of socioeconomic, cultural and policy data within a 

spatially explicit model is considered and further commented upon in section 6.4.  

The results and theoretical considerations presented here were conducted with a 

view to addressing the overarching research aim: To develop a validated framework 

for the integration of environmental and biophysical information to support health 

and disease decision-making and risk modelling resulting from short and long-term 

climate change. This has been achieved through a combination of validated 

methods in analytical research, systematic research and environmental prediction 

modelling and has overall addressed gaps in the literature highlighted in chapter 

two. Addressing these gaps has provided new information upon which decision 

makers are able to further develop and apply prevention and risk management 

policy. 

6.3 Limitations of the research 

The use of climate and environmental modelling, statistical methods, GIS based 

techniques and use of geospatial data introduce inherent limitations. Data quality, 

where quality is defined as the degree of excellence, is a key aspect in modelling, 

whereby the quality of the data used in a model can have a profound impact on the 

output (Khormi and Kumar, 2015). This was addressed to some extent by sourcing 

data from reputable sources (e.g. Met Office, ECMWF) which use standardised 

methods and techniques of data collection and quality control. However, there are 
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still some limitations in the quality of these datasets. With regards to meteorological 

data from the MIDAS project, removal of data outside of statistical bounds (4 x 

standard deviation) was applied to further ensure good quality data (Met Office, 

2016a). In addition, data availability limited the inclusion of what is a standardised 

baseline climatology (30 years) which resulted in the use of a 10-year period to 

represent the baseline climate of Tanzania.  

Assessing data at different spatial resolutions also introduces errors, for example 

comparing maps with finer detail to that of coarser detail can lead to invalid results 

(Dungan et al., 2002). This aspect influences chapter four, where spatial scales 

were different. This was addressed using a GIS method of nearest neighbour 

resampling to ensure the same spatial scale was attained for each dataset included 

in the study. The nearest neighbour method does have its own associated 

limitations but is a recognised method of resampling (Levine and Domany, 2000; 

Prashanth et al., 2009). Results should therefore be interpreted with awareness of 

the limitations of the processes involved. However, the value of the outputs out-

weigh the limitations presented.  

Mathematical assumptions and linear representation of non-linear processes 

introduce further limitations. Prediction of NDVI was based on a linear increase 

based upon NDVI change over a period of time, as presented in chapter four. This 

may be a simplistic and overestimated representation of potential NDVI change 

from current conditions to 2050 and 2070. Whilst there is no standardised method 

of representing NDVI change in association with climate change, this is being 

researched (Zhu et al., 2012; Clinton et al., 2014). However, the application of these 

methods would have required further work outside the scope of this research. Thus, 

to predict future risk using NDVI, the simplified method was applied.  
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6.4 Recommendations for further research  

This section presents key recommendations for further research drawn from both 

empirical and systematic conclusions. Overall, it is recommended that 

interdisciplinary research in environment and health continues to be supported, 

particularly within the overarching relationships addressed within this thesis. 

Successful application of climate and environmental based epidemiological models 

in health policy requires an understanding of climate change, environment, disease 

biology and socio-economic interactions. A key aspect of this is to improve 

communication of information between the sectors, something which this thesis 

strongly recommends.   

6.4.1 Recommendations for environmental epidemiological modelling 

Tanzania’s baseline climate variables such as rainfall, temperature and humidity is 

comparatively poorly examined within the scientific literature and requires further 

examination with regards to driving features and the impacts this has on local 

climates and environments. In addition, the impacts of El Niño on the global climate 

could also benefit from further analysis. Particularly considering that results 

presented in chapter three and section 6.2 demonstrate statistically significant 

changes as a result of El Niño events. However, no discernible relationship has yet 

been identified to aid policy makers. This is of increasing importance considering 

the role of extreme events in altering disease dynamics, particularly with regards to 

changing spatial distributions which results suggest could also impact bacterial 

meningitis and thus, should be explored.  

It is highly recommended that analysis of climate and environmental variables 

beyond temperature and rainfall continue to be explored. Considering results 

presented in this thesis, variables such as NDVI, humidity and soil drainage remain 
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poorly understood and underrepresented in epidemiological modelling despite 

demonstrable influence on the dynamics of malaria transmission. NDVI is 

increasingly influential as this aids in providing habitats and regulation for 

transmission vectors, which is further underpinned by soil drainage which controls 

the pooling of water for reproductive habitats. Humidity impacts on mosquito flight, 

however the relationship is not currently clear. Thus, these factors require further 

exploration despite the contributions made in this thesis.  

Contributions to the advancement in understanding the role of environmental 

variables can be achieved through extending the scope and operation of the 

weighted GIS model developed in chapter four. Extending the model to annual 

operation and through extreme event years (e.g. El Niño) would contribute further 

understanding of the role and relationship of environmental variables in malaria risk 

and how this may change under climate change scenarios.  

A key factor in the limitations of research (identified in 6.3) is the availability of data. 

It is recommended that improvements in the recording of clinical malaria data is a 

focus of collective bodies throughout developing countries. This data could provide 

valuable verification information for dynamic mathematical-biological models such 

as the LMM. Furthermore, it is recommended that this model be applied to a wider 

range of RCP scenarios to provide further indication of biological changes under 

differing climate scenarios.  
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6.4.2 Recommendations for socioeconomic, cultural and policy 

consideration 

Initiatives to improve the quality and systematic collection of social data in 

developing countries are strongly recommended. The consistent and coherent 

collection of social and health data could lead to this information being included in 

spatially explicit epidemiological model as discussed in section 7.2.6. This 

incorporation of social and health data would allow for a more in depth analysis of 

relationships between environmental disease dynamics and social elements of 

disease dynamics which are introduced in section 7.2. An analysis of this nature 

would further benefit vulnerable populations through increased efficiency and 

reduction of costs with increasingly targeted campaigns based on model outputs.  

The development of a global communications framework between policymakers, 

health professionals and researchers is also strongly recommended. Whilst 

frameworks currently exist as introduced in section 1.2.3 these do not appear to be 

implemented in all cases. Based on examination of the MDAST project (section 

7.2.5), stakeholders play a considerable role in the development of policy and 

decision making tools, with concern that they are overly influential in the policy 

development process. Developing a framework to allow for a more moderated 

evidence to stakeholder ratio in policy development would benefit developed 

models, their implementation and subsequent decisions.  
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Chapter 7 : Identifying social, economic and 

ecosystem components for improved health and 

disease management in Tanzania.  

7.1 Introduction 

Malaria remains a major public health concern for Tanzania, where 100% of the 

population (50,400,000) live in what is classified by the WHO as high malaria 

transmission areas, although malaria prevalence varies by region and district (NBS, 

2011; MoHSW, 2015; WHO, 2015c). A total of 678,207 malaria Plasmodium 

falciparum cases were reported in 2015, resulting in 5368 deaths, placing Tanzania 

as one of the top countries accounting for the global malaria burden (figure 7.1) 

(WHO, 2015c). When 2015 health statistics are placed in the context of recent 

survey trends (2000-2014, figure 7.2) the complexities of tackling and quantifying 

malaria in Tanzania become increasingly apparent. In particular, the misreporting 

of data and changes in health service accessibility and diagnostic testing have 

impacted upon official recordings, disrupting signals from socioeconomic variables 

and implemented policy changes (NBS, 2011; WHO, 2015c).   



302 
 

 

Figure 7.1 - Estimated proportion, and cumulative proportion of the global number of (a) 
malaria cases and (b) malaria deaths in 2015 for countries accounting for the highest share 
of the malaria disease burden (WHO, 2015c). 

 

 

Figure 7.2 - a) Confirmed malaria cases per 1000 and ABER (treatment) since 2000 for 
United Republic of Tanzania (Mainland b) malaria admissions and deaths (per 1,000,0000) 
(WHO, 2015c). 

  

a) 

b) 
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Inconsistencies in reporting throughout Tanzania can be attributed to complex 

socioeconomic, political and major policy changes since 2000. This includes 

modernising national guidelines for malaria diagnosis and treatment, changes in 

distributed malaria drugs as a result of malaria resistance, distribution of insecticide 

treated nets (ITNs) from 2004 onwards, as well as targeted voucher schemes for 

long-lasting insecticidal nets (LLINs) (MoHSW, 2006; Kramer et al., 2017). This 

initiative was launched in 2009, the impacts of which could be the cause of a 

reduction in malaria admissions from 2010 onwards (figure 7.2b). Furthermore, 

these policies have faced, and continue to face challenges from largely 

unpredictable countrywide socioeconomic and sociocultural conditions (Oberlander 

and Elverdan, 2000; Mtenga et al., 2016; Suk, 2016). Whilst the implemented 

changes have overall led to an apparent decline in malaria, it continues to 

undermine local health and the socio-economic development, particularly in rural 

communities, highlighting the need to strengthen intervention, data collection, 

surveillance and malaria prediction efforts going forward (Mutero et al., 2014; Mlozi 

et al., 2015; Shayo et al., 2015).  

7.1.1 Aims and objectives  

This chapter addresses research objectives four and five. Firstly, the role of non-

physical socioeconomic and population determinants of disease, presented in 

chapter two, will be discussed in the context of how these individual behaviours and 

circumstances further modify the relationships observed within the epidemiological 

triangle, introduced in chapter one. Secondly, planned changes in using 

socioeconomic data to further guide policy development and considerations 

surrounding the non-physical elements of epidemiology, alongside projected social 

and demographic changes will be discussed. This will be reinforced using a case 

study, the Malaria Decision Analysis Support Tool (MDAST). Finally, conclusions 
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drawn from this chapter will be presented. Overall contributions to knowledge and 

recommendations are presented in sections 6.2 and 6.4.  

7.2 The impact of socio-economic, demographic and policy 

determinants impacting epidemiology 

Current socio-economic, demographic and policy determinants impacting malaria 

prevalence were presented in chapter two. The impact of each of these 

determinants has a complex relationship with the epidemiological triangle, and thus 

environmental models, a key focus of this thesis, introduced in chapter one. 

Considering the complex relationships between socioeconomic, policy and 

environment presented in chapter two, a diagram has been created and presented 

in figures 7.3 and figure 7.4 to frame the interrelationships between these variables 

and epidemiology. This outlines whether a policy or social conditions has a positive, 

negative or dependent (circumstantial) impact on key variables within the 

epidemiological triangle. Changes within these individual impacts and the influence 

on interpreting environmental model results will be presented here, and discussed 

within the context of this diagram, where changes in circumstance or policy 

approach could yield positive or negative impacts.  
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Figure 7.3 - Interactions between socioeconomic, cultural, policy and malaria prevention variables and the epidemiological triangle. 
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Figure 7.4 - Legend for figure 7.3. 

7.2.1 Projected changes in social, economic and population factors 

This section will discuss the likely direction of change and impact upon the 

epidemiological triangle from the socio-economic, demographic and cultural factors, 

coupled with malaria treatment and diagnosis outlined in figure 7.3, providing an 

indication of whether changes will have positive or negative impacts. Not all 

potential scenarios are discussed, however, the most significant will be addressed.  

7.2.1.1 Population growth and distribution  

Population location and density play an important role in malaria dynamics and 

funding decisions for malaria treatment and prevention (Hagenlocher and Castro, 

2015). The Tanzanian population has grown considerably since initial censuses 

were carried out in 1967, recording a population of 12.3 million at the time (NBS, 

2011). As of 2015, population is estimated to be 48.8 million by the NBS, although 

UNDEP estimates are slightly higher at 53.8 million (UNDEP, 2017). Population 

projections estimate that by 2050, Tanzania is predicted to be the 14th largest 

population globally with 137 million people, and 6th largest by 2100 with 299 million 

people (Melorose et al., 2015).  
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This level of population growth will be accompanied by considerable urban growth 

alongside increasing population density in key townships. Dar es Salaam was once 

a small township, but went through a period of rapid expansion due to economic 

growth, becoming the most densely populated region in Tanzania to date (3,133 

people per sq. km) (Barke and Sowden, 1992; Briggs, 1993; NBS, 2013b). Other 

localities within Tanzania have also begun to follow this same route such as Arusha, 

Mtwara and Mwanza, where change is driven by a number of factors including local 

resources, connectivity and economic growth (Linard et al., 2012). 

Areas of high population density are associated with dense urban structures which 

have been demonstrated to reduce habitat suitability for malaria transmission 

vectors through reduction of breeding sites (Caldas de Castro et al., 2004; Kabaria 

et al., 2016). This is further supported through experimental work conducted in 

chapter four. Thus, based on current knowledge township expansion would grow in 

accordance with projected population growth, resulting in a change in land use 

which is unsuitable for supporting the mosquito lifecycle, overall reducing the 

likelihood of malaria transmission, and having a positive impact on the health of the 

human host (Gwitira et al., 2015; Wilson et al., 2015).  

In contrast, if population growth occurred via an expansion of peri-urban areas 

rather than through the growth of dense urban areas, then malaria transmission is 

likely to persist, as peri-urban areas are defined as transitional zones between 

urban and rural, with heightened transmission compared to dense urban areas 

(Caldas de Castro et al., 2004). This is supported by model results presented in 

chapter four, as well as Kabaria et al., (2016) and Wilson et al., (2015). This is 

something town planners and health officials must consider in accordance with 

population growth, although increasing research is needed on neighbourhood 

scales and urban to peri-urban transitions (Wilson et al., 2015).  
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At present, health facility distribution is calculated based upon population density 

and locality. How this will alter with future population growth will be addressed in 

section 7.2.1.3 where access to healthcare is discussed.  

Key impacts on the epidemiological triangle from population growth and distribution 

include: 

● Expansion of dense urban area with population growth would aid in reducing 

transmission (negative impact on vector).  

● Expansion of peri-urban area would support continued malaria transmission 

(positive impact on epidemiological triangle: environment)  

● Population growth would support continued malaria transmission through 

increased provision of host (positive impact on epidemiological triangle: host) 

● Growth of rural villages into townships would see sustained malaria 

transmission until their density is high enough to have a negative impact upon 

malaria transmission.  
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7.2.1.2 Economic growth and occupation  

Economics play a key role in shaping population distribution, occupation and 

family/individual wealth, which further impacts on access to healthcare (discussed 

in section 7.2.1.3) and plays a role in impacting epidemiology as indicated in figure 

7.3. Economic growth is largely responsible for the expansion of Dar es Salaam, 

attracting many who once lived in rural communities, becoming the present day 

international hub for Tanzania and connecting towns (Paavola, 2008).  

Current indicators of poverty (food poverty line and basic needs poverty line, shown 

in table 7.1) indicate that conditions improved between 2007 and 2012 in Tanzania, 

although a high percentage of residents remain below the basic needs poverty line, 

predominantly in rural areas (NBS, 2016). Based on current rates of reduction, it 

would take approximately 23 years to reduce the total percentage of population 

below the basic needs poverty line down to zero percent at a sustained pace.  
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Table 7.1 - Changes in poverty indicators between 2007 and 2011/12 (NBS, 2016).  

Year Region % of Population below Food 

Poverty line.  

% of Population below 

Basic Needs Poverty line 

% of Female Headed 

Households 

2007 Dar es Salaam 

Other Urban 

Rural 

Total 

3.2 

8.9 

13.5 

11.8 

14.1 

22.7 

39.4 

34.4 

24.4 

30.1 

23.0 

24.5 

2011/12 Dar es Salaam 

Other Urban 

Rural 

Total 

1.0 

8.7 

11.3 

9.7 

4.1 

21.7 

33.3 

28.2 

22.5 

27.6 

24.3 

24.7 
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Tanzania is appearing to enter a phase of industrial and economic development 

whereby tertiary activities (e.g. trade, information, communication and others) have 

overtaken primary activities (agriculture and mining) as the largest contributor to 

GDP (figure 7.5) (NBS, 2016). However, the largest employer within the country is 

the agriculture and industrialisation sectors, employing 65% of people (Agwanda 

and Amani, 2014; Deloitte, 2017). This sector has one of the lowest minimum wages 

of non-government minimum wages in Tanzania (100,000 TZS), manufacturing 

wages are not reported (NBS, 2016). The industrialisation of Tanzania is centred 

on processing of agricultural foods, where by 2050, Tanzania aims to have at least 

40% of the GDP contributed by the manufacturing sector, which is already being 

seen in recent surveys (Ministry of Energy and Minerals, 2009; Deloitte, 2017).  

 

Figure 7.5 - Percentage share of GDP at current prices for Tanzania Mainland, 2015. 
Primary activity involves Agriculture and Mining. Secondary activity involves manufacturing, 
electricity, gas and water. Tertiary activity includes services like wholesale trade, retail 
trade, information, communication and others. 

 



312 
 

Considering the information presented within this section and projected population 

growth; manufacturing and the agricultural sector will retain importance for the 

foreseeable future, prompting populations to stay in agriculture and thus, high 

transmission rural locations. This will sustain presence of the working-poor, which 

is common amongst farming communities, contributing to the continued spread of 

malaria through surrounding habitat, occupation and inaccessibility to healthcare 

which was outlined in chapter two (Mboera et al., 2010; Mayala et al., 2015). Further 

instability to farming communities is predicted through the impacts of climate 

change on crop growth, leading to poor harvests across areas of sub-Saharan 

Africa. This will add further instability to farming communities and exacerbate the 

spread of diseases, with increasing influence on the epidemiological triangle and 

persons in high risk demographics (Putterman and Island, 2000; Ahmed et al., 2011; 

Shayo et al., 2015).  

Models centred around examining the impact of climate change on agriculture do 

not currently reach a consensus on the future of Tanzania. Some models suggest 

improvements in rural conditions, reducing poverty; where some extreme scenarios 

indicate that as many as 90,000 more people could enter into economic poverty 

(Ahmed et al., 2011; Agwanda and Amani, 2014). In contrast, economic migrants 

who move to peri-urban and urban locations for higher paying tertiary roles are likely 

to experience an overall reduction in malaria risk, which is to some extent offset by 

healthcare affordability and less impacted by climate change than agricultural 

sectors. This is largely dependent on the improvements of malaria control and 

habitat provision in peri-urban areas and the occupations of residents.  

In addition, Tanzania is heavily reliant on support from external countries (Deloitte, 

2017). Should this support cease, with Tanzania having no way to replace these 

funds, there may be an overall negative impact on health and malaria transmission.  
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Key impacts on the epidemiological triangle from economy and occupation:  

● Increased wealth from tertiary sectors would have a negative impact on the 

epidemiological triangle. Thus, reducing malaria through increasing 

affordability of healthcare.  

● Sustained mass agricultural work would have a positive impact on the 

epidemiological triangle, where host provision would remain high in high 

transmission locations.  

● Economic migrants will have a dependant response, based on the location 

where residents seek work (see section 7.2.1.1) and occupation.  

7.2.1.3 Access to healthcare, and malaria prevention and treatment 

Whilst there have been significant improvements in tackling malaria, it remains the 

leading cause of morbidity and mortality in women and children under five in 

Tanzania, highlighting the need for continued efforts (MoHSW, 2013b). The 

MoHSW recognises Tanzania needs to move away from only implementing malaria 

control and into a pre-elimination phase, placing increased emphasis on improving 

malaria surveillance (MoHSW, 2013b). The aim for the current national malaria five 

year strategic plan (2014-2020) is to reduce malaria prevalence to 1% by 2020 

(MoHSW, 2013b). This is to be achieved by building upon previous multi-

stakeholder successes, focusing on strategic malaria control phases and strategies 

(figure 7.6a and b) and over-arching strategic objectives listed below (MoHSW, 

2013b): 

● Scaling up and maintaining efficient vector control. 

● Promote universal access to appropriate early diagnosis and prompt 

treatment.  
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● Create an enabling environment where individuals and household members 

are empowered to minimize their own malaria risk and seek treatment if and 

when needed. 

● Provide timely and relevant information to assess progress towards the set 

global and national targets.  

● Ensure effective programmatic and financial management of malaria control 

interventions at all levels.  

 

Figure 7.6 - a) malaria control phases and timelines in Tanzania b) Overview of malaria 
strategies (MoHSW, 2013b). 

a) 

b) 
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Assuming the Tanzanian malaria programme achieves its aims and objectives, this 

would result in an overall negative effect on the epidemiological triangle through 

health interventions, as shown in figure 7.3, by reducing the ability for the vector to 

transmit the parasite to the host (human), resulting in a positive impact on the host. 

However, population growth and expansion will need to be accounted for. At 

present, healthcare facility distribution is based predominantly on population density 

and distribution, as presented in chapter two. As populations grow Tanzania must 

allocate enough resources to continue to fund growing surveillance and prevention 

programmes alongside providing healthcare facilities to administer malaria 

treatment. If this is not managed properly, there will be spatial gaps in treatment 

coverage which will have a positive effect on the epidemiological triangle and will 

continue to support malaria transmission. Should this occur, gaps are likely to be in 

rural regions, where malaria risk is high and health facility coverage is low.  

The requirement for increased health facilities could lead to an increase in private 

clinics to meet healthcare facility needs where government spending cannot afford 

cover. Should increases in private clinics locate in expanding rural districts due to 

population growth, this could lead to an imbalance of high-cost treatments in low-

wage locations, which would reduce access to healthcare for high risk patients and 

support malaria spread, having an overall positive effect on the epidemiological 

triangle. This strongly links to economic and population growth, covered in sections 

7.2.1.1 and 7.2.1.2, which further highlights the complexities of socio-economic 

interactions. 

Key impacts on the epidemiological triangle from population growth and distribution 

include: 

● Increases in private clinics in rural locations will have a positive effect on the 

epidemiological triangle, increasing malaria prevalence. 
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● Increases in current policy coverage (and introduction of new policy, e.g. 

vaccines) will have a negative effect on the epidemiological triangle, reducing 

malaria prevalence.   

● Increases in surveillance methods would have a negative effect on the 

epidemiological triangle, reducing malaria prevalence.  

7.2.1.4 Education, Age and Gender issues 

Chapter two highlighted the biological vulnerability of women and children to 

mosquitoes and the subsequent malaria parasite.  It is important to emphasise that 

this factor will remain constant for the foreseeable future, unless genetically 

modified mosquitoes are developed with a view to reducing this biological 

behaviour. This presents a danger in impacting ecological balances which is not 

discussed further here (Beisel and Boete, 2013; Alphey, 2014). Overall, this has a 

positive effect on the epidemiological triangle.   

Low education attainment has been linked to lower levels of malaria knowledge, 

contributing to heightened risk of contracting malaria (Hagenlocher and Castro, 

2015). Initiatives being implemented at present aim to increase access to education 

for both male and females, alongside increasing malaria awareness initiatives 

(Williams and Jones, 2004; NBS, 2011). Increases in education surrounding malaria 

dynamics coupled with education on prevention methods and guidance to access 

treatment, will have an overall negative impact on the epidemiological triangle 

through increased awareness and thus preventative measures being taken to avoid 

being bitten by transmission vectors.  

Women currently face major disadvantages stemming from historic culture in 

Tanzania. Gender equality is becoming increasingly supported within Tanzania as 

presented in chapter two. As gender equality grows, this in theory, should eliminate 

some of the barriers faced by women in terms of access to healthcare and malaria 
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prevention methods and treatments, particularly when pregnant. As these barriers 

are reduced, and healthcare and education accessibility increased, this will have a 

negative impact on the epidemiological triangle and reduce malaria transmission 

through increased protection and knowledge of the factors contributing to malaria 

transmission.  

Key impacts on the epidemiological triangle from population growth and distribution 

include: 

● Increased education for both males and females would have a negative 

impact on the epidemiological triangle, reducing malaria prevalence. 

● Women and children would remain biologically vulnerable to malaria, 

sustaining malaria prevalence.  

● Increases in gender equality would have a negative impact on the 

epidemiological triangle, reducing malaria prevalence.  

7.2.3 Developments in malaria treatment: Vaccinations 

New methods for treatment of malaria will play a role in the changing shape of 

malaria distribution in future. Vaccination for malaria treatment and prevention has 

been researched for the past 50 years, although the complexity of Plasmodium 

falciparum has provided an unprecedented challenge in vaccine development 

(Halloran et al., 1989, 1991; Lyke, 2017). A variety of stages within the malaria 

lifecycle have been targeted by vaccination developers outlined in table 7.2 and 

figure 7.7. The most successful vaccination to date, reaching phase 3 of medical 

trials, is the RTS,S/AS01E vaccination. Trials indicate initial success in offering 

malaria protection, however results were offset by rebound in areas with higher than 

average exposure to malaria parasites, a factor which was identified in early 1990’s 

vaccine models, to which solutions are being actively explored (Halloran et al., 1989; 

Olotu et al., 2016; Penny et al., 2016).  



318 
 

Increased likelihood for a pre-erythrocytic malaria vaccine within the next decade 

has prompted examination of introducing RTS,S/AS01E into Tanzanian policy, 

alongside further modelling of the demographic impact and cost-effectiveness of 

RTS,S/AS01E (Penny et al., 2016; Romore et al., 2016; Lyke, 2017). Modelled 

impacts indicate a significant public health impact and high cost effectiveness of the 

RTS,S/AS01 vaccine across a range of prevalence settings, provided that 

appropriate policy can be delivered and crucially, that finance and the capacity 

within the health system to deliver the vaccine is available (Halloran et al., 1991; 

Penny et al., 2016). Malaria policy adoption in Tanzania often takes years, Romore 

et al. (2016) has developed a potential policy framework, reducing the time needed 

to introduce vaccination into Tanzanian policy. Further limitations include the 

necessity of consistent, low temperature storage to keep vaccines active and 

useable (Hunter, 1989). Rural Tanzania has mixed access to electricity which may 

cause problems for rural dispensaries although electricity provision is improving with 

the introduction of electricity co-operatives (Ilskog et al., 2005).  
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Figure 7.7 - The malaria life cycle broken down by potential vaccine stages (Lyke, 2017).  
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Table 7.2 - Clinical stage candidate malaria vaccines broken down by stages (Lyke, 2017) 

Candidate vaccine 

Phase 

achieved Sponsor  

Preerythrocytic vaccines   

RTS,S/AS01E Phase 3 GlaxoSmithKline, Belgium 

RTS,S/AS01E delayed fractional 

third dose Phase 2a GlaxoSmithKline, Belgium 

ChAd63 / MVA ME-TRAP Phase 2b University of Oxford (UK) 

ChAd63 / MVA ME-TRAP / Matrix M Phase 1a University of Oxford (UK) 

PfSPZ vaccine Phase 2b  Sanaria Inc.  

PfCelTOS FMP013 Phase 1a Office of the Surgeon 

General, Department of the 

Army USAMRMC 

CSVAC Phase 1a University of Oxford (UK) 

R21 / AS01B Phase 1a University of Oxford (UK) 

R21 / Matrix-M1 Phase 1b University of Oxford (UK) 

Adjuv R21 (RTS,S-biosimilar) + 

ChAd/MVA ME-TRAP Phase 1a University of Oxford (UK) 

Blood-stage vaccines   

GMZ2 (GLURP+MSP3) / Alhydrogel Phase 2b European Vaccine Initiative, 

AMANET, Statens Serum 

Institude 

PfAMA1-DiCo/GLA-SE or 

Alhydrogel Phase 1b Inserm (France) 

P27A/GLA-SE or Alhydrogel Phase 1b 

Centre Hospitalier 

Universitaire Vaudois 

(CHUV)  

MSP3/Alhydrogel Phase 2b 

Europena Vaccine Initiative, 

AMANET 

SE36/AIOH Phase 1b Research Foundation for 

Microbial Diseases of Osaka 

University, Japan 

PfPEBS/AIOH  Phase 1b Vac4All 

ChAd63 RH5 +/- MVA RH5 Phase 1a University of Oxford (UK) 
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PRIMVAC/GLA-SE or Alhydrogel  Phase 1b Inserm (France) 

PAMVAC/GLA-SE, GLA-LSQ or 

Alhydrogel Phase 1b 

University Hospital 

Tuebeingen (Germany) 

Sexual stage   

Pfs25 VLP/Alhydrogel  Phase 1a Fraunhofer USA 

Pfs25-EPA/Alhydrogel  Phase 1a NIAID/NIH (USA) 

Pfs230D1N-EPA / Alhydrogel and/or 

Pfs25-EPA/Alhydrogel Phase 1a NIAID/NIH (USA) 

Pfs230D1N-EPA / Alhydrogel and/or 

Pfs25-EPA/AS01 Phase 1b NIAID/NIH (USA) 

ChAd63 Pfs25-IMX313/MVA Pfs25-

IMX313 Phase 1a University of Oxford (UK) 

P. vivax vaccines   

ChAd63/MVA PvDBP  Phase 1a University of Oxford (UK) 

 

7.2.3.1 The potential impact of vaccinations on malaria distribution  

Vaccines have been successfully implemented to treat numerous global diseases 

which have had positive influences on reducing and eliminating disease. A large-

scale vaccination programme was applied in several countries in Africa following 

the introduction of a meningococcal conjugate (bacterial meningitis) vaccine 

(Moore, 1992; Jodar et al., 2003; Djingarey et al., 2012). The challenges faced 

during the rollout of the meningococcal conjugate vaccine are likely to be similar to 

those faced during the introduction of a malaria vaccine in Tanzania, for which 

advisories and a framework for the poorest countries can be drawn (Jodar et al., 

2003; Sow et al., 2011; Trotter et al., 2017). This summary will assume that vaccine 

safety has already been assessed (Sow et al., 2011; Amarasinghe et al., 2013).  

For an immunisation programme to be successful, vaccines need to be stored 

continually in conditions at low temperatures, specific temperatures of which vary 

by vaccination (Hunter, 1989). This must be persisted when moving vaccines from 
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one location to another, thus requiring cold storage transport facilities alongside 

cold-room storage (Djingarey et al., 2012). Tanzanian dispensaries are unlikely to 

have this facility and fitting them would be costly, immediately putting rural residents 

at a disadvantage when vaccination treatments become available (MoHSW, 

2013a). Thus, the introduction of a malaria vaccine is more likely to be available in 

larger urban and peri-urban facilities (clinics and hospitals) which are more likely to 

have suitable vaccine storage facilities. This will have little impact on overall malaria 

risk due to urban locations already being at lower risk than rural residents (Kabaria 

et al., 2016).  

Alongside storage, vaccination programmes produce hazardous waste which 

requires incineration disposal. It is important to handle waste in a safe manner in 

order to prevent disease spread from vaccination waste (Djingarey et al., 2012). 

With similar logistical problems to storage, waste would have further to travel from 

rural locations which would require safe and effective transport, alongside 

prompting further costs for disposal transport and facilities. This was documented 

as a factor which was not appropriately addressed in the case study of Burkina Faso 

and the meningitis vaccine (Djingarey et al., 2012).  

Vaccination programmes are expensive to implement and maintain (table 7.3), 

which often sees low to middle income governments opt out of supporting 

vaccination programmes despite being a proven cost-effective health intervention 

(Glassman et al., 2013; Ozawa et al., 2016). This is due to high costs associated 

with various stages and requirements of vaccination, particularly in cases where 

external funding is unavailable or not enough to cover a substantial amount of 

vaccination costs (Amarasinghe et al., 2013; Glassman et al., 2013). Table 7.4 

provides an example breakdown of costs associated with the meningitis vaccination 

programme implemented in Burkina Faso (Djingarey et al., 2012). Malaria is a Gavi 
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(vaccine alliance) supported vaccine, which will attempt to ensure equal access to 

new drugs for children living in the poorest countries (Ozawa et al., 2016).  
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Table 7.3 – Financial components to be addressed within a vaccine programme.  

Components Vaccines with Gavi support 
(Financed by Gavi, government & 
other development partners. 

Vaccines without Gavi support (Financed 
by government & other development 
partners) 

Routine 

Vaccine 

● Vaccine incl. freight 
● Injection equipment and safety boxes 

 
Supply chain 

● Immunization-specific transportation 
● Storage 
● Labour 

 
Service delivery  

● Immunisation-specific personnel 
● Shared personnel 
● Non-personnel incl. raining, surveillance, program 

management, social mobilization 

 

DTP-HepB-Hib, HPV, IPV, JE, 
Malaria, Measles 2nd, MR, MenA, 
PCV, Rotavirus, Typhoid, YF 

 

BCG, DTP, HepB, Measles 1st, MMR, OPV 

SIA 

Vaccine 

● Vaccine incl. freight 
● Injection equipment and safety boxes 
 

 

JE, Malaria, Measles, MR, MenA, 
Typhoid, YF 

 

MMR, OPV 
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Operational support 

● Personnel 
● Other operational costs including training, 

transportation, and social mobilization 
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Table 7.4 – Funding for the Burkina Faso meningococcal vaccine campaign (Djingarey et al., 2012).  

Costs and donors Amount (US$) Activities 

Campaign budget 

Vaccine, syringes, needles, safety boxes 

Operational costs 

Total cost 

Donor resources 

GAVI contribution through UNICEF Supply Division 

Dell Foundation through WHO 

Dell Foundation through WHO and PATH 

 

GAVI through UNICEF Program Division 

Burkina Faso national budget 

West African Health Organisation (WAHO) 

Lions Club (Italy) 

Total resources mobilised  

Financial gap on December 6th 2010 

 

10,295,059 

3,338,019 

13,633,078 

 

4,089,442 

2,558,208 

3,908,676 

 

865,179 

703,898 

106,382 

77,767 

12,309,556 

1,323,522 

 

Purchase of vaccine, needles, syringes and safety boxes 

Vaccine, needles, syringes, and safety boxes 

Material (cold chain support, waste disposal, and vaccination cards); and 
operational costs  

Communication and operational costs 

Operational costs 

Operational costs 

Operational costs 



327 
 

A further consideration of cost, is the price of vaccination for Tanzanian residents. 

The Developing Countries Vaccine Manufacturers Network (DCVMN) is a model of 

international alliance which aims to reduce the cost of vaccines, to allow universal 

access to treatment (Amarasinghe et al., 2013; Pagliusi et al., 2013). Despite this, 

private-for-profit clinics, are likely to inflate pricing for profit as is the case in other 

localities (Glazner et al., 2004). These clinics make up the majority of health facilities 

in Dar es Salaam, hence this factor should be monitored with regards to access to 

healthcare (MoHSW, 2013a).  

7.2.4 Impacts of socioeconomics, culture and policies on the use of 

epidemiological models in decision making 

Section 7.2.3 has demonstrated the role that social and policy variables play in 

influencing malaria (and wider disease) epidemiology in the context of the 

epidemiological triangle, further highlighting the complexities and cross-variable 

interactions summarised in table 7.5. These variables and key relationships are all 

unquantifiable and unincorporated within the context of environmental models at 

present, despite knowledge of their influence on malaria transmission. Furthermore, 

the combination and degree of negative and positive impacts are poorly understood. 

Although many of the discussed factors are directly unquantifiable, there are certain 

indirect numerical aspects of social data (e.g. household income, population 

distribution) which could contribute to epidemiological modelling as discussed in 

section 7.2.6.  

Whilst there are significant complexities in assessing the relationships and impacts 

of these relationships discussed thus far in this chapter, the WHO has attempted, 

in collaboration with stakeholders from Kenya, Uganda and Tanzania, to create a 

decision analysis support tool built upon the foundation of social data presented in 
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section 7.2.5. It is important to note that this tool is not spatially explicit, a factor 

which will be discussed further in section 7.2.5. 
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Table 7.5 – Summary of key socioeconomic, demographic and policy interactions with the epidemiological triangle. (Table continues on next page)  

Factor Key interactions with environmental epidemiology 

Population 

growth and 

distribution.  

 Expansion of dense urban area with population growth would aid in reducing transmission (negative impact on vector).  

 Expansion of peri-urban area would support continued malaria transmission (positive impact on epidemiological triangle: 

environment)  

 Population growth would support continued malaria transmission through increased provision of host (positive impact on 

epidemiological triangle: host) 

 Growth of rural villages into townships would see sustained malaria transmission in these locations until a density great 

enough to have a negative impact upon malaria transmission is reached.  

 

Economic 

growth and 

occupation 

development.  

 Increased wealth from tertiary sectors would have a negative impact on the epidemiological triangle. Thus, reducing malaria 

through increasing affordability of healthcare.  

 Sustained mass agricultural work would have a positive impact on the epidemiological triangle, where host provision would 

remain high in high transmission locations.  

 Economic migrants will have a dependant response, based on the location where residents seek work (see section 7.2.1.1) 

and occupation.  
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Access to 

healthcare, 

malaria 

prevention 

and treatment 

(including 

vaccination). 

 Increases in private clinics in rural locations will have a positive effect on the epidemiological triangle. Increasing malaria 

prevalence. 

 Increases in current policy coverage (and introduction of new policy, e.g. vaccines) will have a negative effect on the 

epidemiological triangle. Reducing malaria prevalence.   

 Increase in surveillance methods would have a negative effect on the epidemiological triangle. Reducing malaria prevalence.  

 

Education, 

Age and 

Gender.  

 Increased education for both males and females would have a negative impact on the epidemiological triangle. Reducing 

malaria prevalence. 

 Women and children would remain biologically vulnerable to malaria. Sustaining malaria prevalence.  

 Increases in gender equality would have a negative impact on the epidemiological triangle. Reducing malaria prevalence.  
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7.2.5 Challenges of using social data in malaria modelling: The Malaria 

Decision Analysis Support Tool (MDAST) 

Surveillance is highlighted as being of increasing importance in upcoming malaria 

intervention in Tanzania (figure 7.5a and b), requiring the underpinnings of malaria 

models such as those presented in chapters four and five. Current environmental 

malaria surveillance and prediction models do not incorporate health or social data 

and rely solely on environmental predictions. MDAST, a malaria decision analysis 

support tool, is currently being developed and improved for Kenya, Tanzania and 

Uganda by UNEP and GEF with a view to jointly incorporating health, social and 

environmental priorities for malaria control (WHO, 2013a; USAID, 2015).  It aims to 

form an intersectoral approach to allow policy makers to weigh the health, 

environmental and economic trade-offs of different combinations of malaria 

intervention strategies using evidence based methods (Brown et al., 2012; Mboera 

et al., 2013).  

MDAST has been developed based upon stakeholder identification of the key risks 

which contribute to determining the effectiveness of different policies, and have not 

been previously combined in a flexible tool (Brown et al., 2012). Features ranged 

from contextual factors, such as malaria prevalence, to environmental conditions, 

for example rainfall. However, there are limitations introduced by the aim of the 

project to be user friendly and as such, only simple environmental relationships are 

included, centred on rainfall and temperature only (Brown et al., 2012; WHO et al., 

2013). During the development of MDAST, multiple issues arose in the challenges 

to better incorporate environmental modelling, health, and social data into malaria 

decision making. In particular, it was discovered that donor preferences and 

agendas are exerting too much influence on malaria policies in the countries at 

present (Mutero et al., 2014). 
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The MDAST project was completed in 2013, however there has been no report on 

its use and progress of malaria surveillance in Tanzania thus far. This could 

potentially be related to numerous factors raised by Tanzanian officials presented 

in figure 7.8, the greatest concerns of which for Tanzania are limitations of relevant 

scientific research and data, alongside the application to real life scenarios (WHO 

et al., 2013). The MoHSW identify that malaria surveillance for the 2014-2020 period 

will use operational findings for regular assessment and evaluation of the 

intervention and the evidence generated will be used to further help policy makers 

to make appropriate, informed decisions (MoHSW, 2013b). It remains unclear 

whether this will be using the specifically developed MDAST system which the 

MoHSW has actively contributed to.   
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7.8 - Expert consultation responses to the question "please indicate how critical each of the 
following barriers is to full implementation (or dissemination) of the tool for decision-
making?" (WHO et al., 2013). 

7.2.5.1 Conclusions drawn from MDAST  

Overall, the lack of uptake and reporting on use of MDAST in Tanzania is likely to 

be associated with barriers highlighted in figure 7.8, where Tanzania highlighted all 

factors presented as moderately critical to highly critical in implementing the MDAST 

tool. These barriers are arguably reflective of the overall difficulty in implementing 

decision support models within a policy framework. This thesis does contribute to 

some of the barriers presented, particularly the limitations of relevant scientific 

research and further highlights areas of weakness for Tanzania.    
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Overall, MDAST appears to be a supported framework in theory, although key 

environmental variables are notably lacking, an aspect which stakeholders voiced 

concerns over (WHO et al., 2013). Furthermore, the results presented in this thesis 

further highlight the importance of environmental data within malaria assessment. 

Considering this, approaches which could incorporate both social data and 

environmental data are discussed in section 7.2.6.  

7.2.6 The future of socioeconomic data in epidemiological modelling  

Section 7.2 discussed the key socioeconomic, cultural and policy impacts on the 

epidemiological triangle. An example of addressing social data in a non-spatial 

malaria decision analysis support tool has also been presented, demonstrating the 

desire and need for inclusion of socioeconomic data for the purposes of policy 

development. This section will highlight how socioeconomic data could potentially 

be included within a spatially explicit framework to support environmental 

epidemiological modelling, such as that developed and presented within chapter 

four of this thesis. 

Geographically weighted models allow for components to be added and reweighted 

as new or updated data sources become available (Khormi and Kumar, 2015). As 

census data increases in quality and resolution for Tanzania; multiple numerically 

derived social variables could be incorporated into GIS based environmental 

epidemiological models to both assess the spatial relationship with disease (on a 

district level), and then incorporate this within a GIS based epidemiological model 

to examine risk (Khormi and Kumar, 2011; Houngbedji et al., 2016).  

A way of refining epidemiological modelling could be built upon the methodology 

presented by Khormi and Kumar (2011) who examined dengue fever risk based on 

socioeconomic parameters using predominantly age groups, housing and 

population density. This could be further modified to include district level records of 
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percentage of residents below the basic needs poverty line (introduced in section 

7.2.1.2). This would represent the level of district poverty, and provide an indication 

of the percentage of the district which could feasibly afford malaria prevention tools 

and treatment. This factor could also be coupled with distance to a health-care 

facility within the district. For example, if the nearest health care facility is located in 

the next district, this would impact malaria treatment seeking behaviour due to 

distance, which could be assigned a weighting within a GIS.  

7.3.6.2 Recommendations drawn from socioeconomic and cultural determinants 

A general recommendation is for the improvement of a communication framework 

between researchers and policy developers. Whilst outlines currently exist, in 

practice this is not always met and results do not necessarily get translated into 

policy as effectively as they could be. Improving communication between science 

and policy would benefit vulnerable populations and further help through related 

variables such as reduced cost and increased efficiency with targeted campaigns 

based on model results.  

Initiatives to improve the quality and systematic collection of social data in Tanzania 

is recommended. Following this, it is recommended that this improved social data 

is used within an epidemiological modelling system as presented in section 7.2.6. 

Numerically recorded social data on a district level could be incorporated into a GIS 

epidemiological model to allow inclusion and examination of socioeconomic data 

with respect to disease risk, which would further build upon current models.  
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7.3 Concluding remarks 

The main aim of this thesis was to develop a framework for the integration of 

environmental and biophysical information, to support health and disease decision-

making and risk modelling, resulting from short and long-term climate change.  

Understanding the extent and likely development of disease dynamics with climate 

change aids policymakers to implement prevention methods and strategies to 

mitigate against disease outbreaks as a result of change. Whilst models provide 

invaluable support with this, they currently cannot capture the complexity of 

socioeconomic interactions which further modify disease distribution and behaviour. 

The multi-method approach adopted in this thesis coupled with systematic literature 

examination has contributed to the evidence that Tanzania is at risk of changing 

disease distribution as a result of climate and environmental change, where its 

population and socioeconomic status at present, serves to exacerbate this.  
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Appendix: Code Developed for PhD by Author 

Bespoke R script was coded to achieve the following functions:  

● Data sorting 

● Statistical analysis 

● Extraction of data 

● Data merging 

● Conversion of “hours since 01-01-1990” to Gregorian calendar date 

● Re-arrangement of data from Matrix to stack 

● Reading of NetCDF files. 
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