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Abstract:   

Background: Reactive and anticipatory postural activity has been described in single discrete 

perturbations in youth with cerebral palsy (CP) but not in continuous perturbation situations.  

Research Question: We sought to determine how the ability to control postural responses (as 

reflected in the number of steps taken, postural muscle activity, and marker-pair trajectory 

cross-correlations) compares between typically developing (TD) youth and age-matched 

youth with CP when exposed to various frequencies of continuous platform oscillation. We 

also sought to determine if youth with CP could further modify postural activity based on 

knowledge of platform movement. 

Methods: Eleven youth with CP and sixteen TD youth aged 7-17 years stood with eyes open 

on a movable platform progressively translated antero-posteriorly through four speeds in 

experimenter-triggered and self-triggered perturbations. Postural muscle activity and 3D 

kinematics were recorded. The Anchoring Index and marker-pair trajectories were used to 

quantify body stabilization strategies. Transition states and steady states were analysed. Mann 

Whitney-U tests analysed between-group differences at each frequency.  

Results: At lower frequencies (0.1 and 0.25 Hz) youth with CP behaved like age-matched TD 

controls. At higher frequencies (0.5 and 0.61 Hz), youth with CP, took a greater number of 

steps, had a preference for stabilizing their head on the trunk, had low marker-pair 

correlations with high temporal lag, and showed increased tonic activity compared to their 

TD peers. 

Significance: Higher frequency platform movements proved more difficult for youth with CP, 

however, like TD youth, they shifted from reactive to anticipatory mechanisms when the 



Postural control in CP youth 

2 
 

platform frequency remained constant by taking advantage of knowledge of platform 

movement. When given control over perturbation onset, further evidence of anticipatory 

mechanisms was observed following the transition to a new oscillation frequency.  

Keywords: postural control, anchoring index, reactive and anticipatory balance mechanisms, 

cerebral palsy 
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Introduction 

Appropriate use of postural control strategies is required to stabilize balance and 

prevent falls. Typically, when faced with a small perturbation, balance is maintained through 

modulation of joint torques about the ankle. If a postural disturbance is larger, the center of 

mass must be kept within the confines of the base of support using larger movements about 

the hip. A large enough perturbation may require a step to avoid falling [1]. Having 

knowledge or previous experience of an upcoming perturbation, allows preparation for the 

postural disturbance by using anticipatory postural mechanisms [2–4]. 

 

Cerebral palsy (CP) is a non-progressive lesion in the central nervous system that 

results in heterogeneous motor disability and developmental delays. It is the most common 

physical disability in children [5] with individuals demonstrating motor [6] and sensory [7] 

deficits.  These deficits contribute to impaired functional mobility and are associated with 

disruptions in postural control [8]. Youth with CP show increased risk of falls and their 

movement abilities are strongly predictive of participation in activities outside of the home 

[9]. 

 

Research suggests postural control plays an important role in the functional 

performance of children and adolescents with CP [10]. As efficient postural control is 

important for the performance of voluntary skills, postural abnormalities likely contribute to 

the delays and impairments observed in the motor skills of children with CP [11]. 

Anticipatory and reactive postural mechanisms have been identified as significant 

components necessary to maintain balance during both discrete and continuous perturbations 

[12,13]. These mechanisms develop gradually, but anticipatory processes are mastered much 
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later than reactive mechanisms [14]. For example, in unloading tasks (discrete perturbation), 

younger typically developing children used anticipatory mechanisms to control their posture 

in preparation for the unloading perturbation, and older subjects were much more efficient in 

their use of anticipatory mechanisms. Furthermore, results from forward leg raising 

experiments in children 8-12 years of age confirm that expression of anticipatory mechanisms 

is still developing during mid-childhood, while full development of anticipatory strategy 

doesn’t occur until approximately 12 years of age [15]. 

 

In addition to timing of postural responses, relationships between kinematic 

parameters of movement can illustrate how balance is maintained. Research demonstrates 

that cross-correlation values of the ankle, hip and head trajectories provide information on 

how tightly coupled (i.e., stable) segments of the body are [16], and are an indication of 

balance control. Since the head contains the visual and vestibular sensory systems which 

contribute to identifying a frame of reference, head stabilization is crucial to balance control. 

The Anchoring Index (AI) quantifies how the head is stabilized on the trunk during 

movement: a low AI suggests a head stabilization on trunk strategy (HSTS), whereas a high 

AI is suggestive of a preference for a head stabilization in space strategy (HSSS) [17]. During 

locomotion, typically developing (TD) children start to depend on HSSS, which benefits 

visual input to balance, around the age of 7 years. We have previously characterized the AI 

strategies in TD youth when exposed to repeated, predictable perturbations [12]. However, it 

is unclear how youth with CP stabilize their head in this situation and whether the AI is 

related to inferior body segment coordination.  
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While reactive and anticipatory mechanisms of postural control have been described 

in single discrete perturbations in youth with CP (perturbation via limb movement [10] and 

platform movement [1]), they have not been characterized in continuous (i.e. repeated) 

perturbation situations. The oscillating platform paradigm is an experimental approach 

whereby both reactive and anticipatory postural control mechanisms are generated in order to 

deal with the same perturbation. Specifically, the initial perturbation elicits a reactive 

response mechanism and as the platform continues to oscillate, the participant can switch to 

an anticipatory mechanism [12,3]. Adaptations to the predictable oscillations can occur 

within just a few cycles of sinusoidal platform translations [18,3]. Sudden changes in the 

frequency of platform oscillation results in a new perturbation and the participant must use a 

reactive mechanism to respond to this change before switching again to the anticipatory 

mechanism once stabilized. Furthermore, when given control over when a change in 

frequency occurs, it is possible to make the appropriate changes to balance through the use of 

anticipatory postural control mechanisms prior to the onset of perturbation [12,3]. However, 

it remains unclear how postural impairments in youth with CP impact their ability to maintain 

balance and their ability to shift from one mechanism to the other.  

 

The primary aim of this study was to determine how the ability to control postural 

responses (as reflected in the number of steps taken, postural muscle activity, and marker-pair 

trajectory cross-correlations) differs between TD youth and age-matched youth with CP when 

exposed to various frequencies of continuous platform oscillation. Secondary aims were to 

determine if youth with CP were able to 1) take advantage of knowledge of platform 

movement in order to modify postural responses, and 2) further modify their postural 

responses when given control of when the perturbation occurs. We hypothesized that youth 
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with CP would be less able to shift from reactive to anticipatory mechanisms 1) as compared 

to their TD counterparts and 2) both after having been exposed to the platform oscillation, 

and when given control of the timing of platform perturbation. 

 

Methods 

Participants 

Eleven youth (N=11; 6 boys and 5 girls), aged 7-17 years with confirmed diagnosis of 

CP Gross Motor Function Classification System (GMFCS) levels I or II [19] participated in 

this study (full participant demographics available in the table accessible in the 

supplementary online material). Two participants were diagnosed as right hemiplegic, three 

were left hemiplegic, and six were spastic diplegic. All participants and/or parents provided 

written informed consent. Ethical approval was granted through the University of Ottawa 

research ethics board. Exclusion criteria were visual, cognitive or auditory impairment that 

would interfere with understanding of and/or ability to carry out instructions, and lower limb 

orthopedic surgery or Botox injections in the previous twelve months. 

 

Experimental Protocol 

The experimental paradigm is described in detail in [3,12]. Briefly, participants stood 

barefoot (no ankle foot orthoses) with eyes open and feet shoulder-width apart on a platform 

that translated in the anterior/posterior direction with an amplitude of 20cm peak-to-peak. 

They were told to maintain their balance while avoiding taking steps. Participants performed 

two trials in each of two test conditions: experimenter-triggered (ETP) and self-triggered 

(STP) increases in oscillation frequency. A minimum number of cycles at each frequency 

(10, 20, 40, and 50 cycles at 0.1 Hz, 0.25 Hz, 0.5 Hz, and 0.61 Hz, respectively) was required 
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before advancing to the next frequency. Frequencies were presented in order from lowest to 

highest (0.1 Hz to 0.61 Hz). 

 

Motion analysis software (Vicon, Oxford, UK) recorded full body kinematics (100 

Hz). Bilateral surface electromyography (EMG; Delsys Inc., Natick, USA) was recorded for 

tibialis anterior (TA), gastrocnemius (G), quadriceps (Q), and hamstring (H) muscles, with 

the reference electrode placed on the iliac crest. The EMG signals were pre-amplified and 

sampled at 1000 Hz.  

 

The first three to five consecutive cycles without stepping at each frequency were 

considered ‘transition-state’ (TS) and were analyzed separately [12,3]. In the last half of each 

frequency following TS, a period of 3 to 5 consecutive cycles without stepping at 0.1 Hz and 

a period of 8 to 10 consecutive cycles without stepping at the remaining frequencies were 

considered ‘steady-state’ (SS) during which the movement of the platform has been shown to 

be predictable [3]. 

 

Place figure 1 (methodology figure) near here 

Outcome Measures  

The number of steps taken was counted for each frequency. The anchoring index (AI) 

was used to determine the stabilization of the head with respect to both external space and the 

trunk [12, 20] and was calculated as follows: 

AI = [σ2
r  -  σ

2
a  ] / [ σ

2
a  +  σ2

r  ] 

where σa is the angular dispersion of the head with respect to the absolute (external space), 

and σr is the angular dispersion of the head relative to the trunk.  
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In addition to the AI, kinematic information illustrates maintenance of balance using 

cross-correlations between joint markers [21,22]. Cross-correlations (CC) of anterior-

posterior linear displacements of the ankle-head, hip-head, and ankle-hip marker pairs were 

calculated by shifting one signal relative the other to find maximum correlation (CCmax). The 

time at which the CCmax occurred (CClag/lead) was also recorded. As absolute cycle duration 

varied with each frequency, the timing of each CCmax was determined for up to one half cycle 

time (±50% time shift of one cycle): a positive value indicates the second segment is leading, 

while a negative value indicates the second segment is lagging.  

 

Raw electromyography signals were full-wave rectified. Bursts were identified as 

activity greater than two standard deviations above the raw baseline lasting for at least 50 ms. 

Postural muscle burst frequencies were expressed as a percentage of cycles in which bursts 

occurred. Tonic activity levels were expressed as percentage of baseline tonic activity at ETP 

SS 0.1 Hz. 

 

Statistical Analysis 

We did not undertake power analyses for this study since our aim was to initially 

characterize these outcome measures in the CP population for subsequent studies. CP 

participant demographics and stepping data were summarized using descriptive analyses. 

Trials where participants continued to step throughout all cycles of a frequency were not 

analyzed as periods consisting of the required number of step-free cycles were needed to 

calculate the AI and cross-correlations for TS and SS periods. Dependent variables were 
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averaged between the two trials, and all outcome measures were compared to TD youth 

values obtained from a previous study [12]. 

 

Statistical analysis was performed using SPSS v 23.0.0.2 (IBM Corp.). The data were 

determined to be non-normal through inspection of skewness and kurtosis, histograms, and 

Shapiro-Wilk tests of normality. Non-parametric inferential testing using the Mann Whitney-

U test for between group (TD vs CP) differences was undertaken. These tests were performed 

for stepping, AI, CCmax and CClag/lead, and EMG tonic and bursting activity outcome measures 

at each frequency with an adjusted (Bonferroni) accepted significance level of p < 0.0125. 

 

Results 

 All TD participants were able to complete all frequencies in both trials for ETP and 

STP conditions. In contrast, youth with CP had difficulty completing higher frequencies. One 

participant with hemiplegia (JS04) would not attempt 0.5 Hz and 0.61 Hz for both trials in the 

ETP condition, and declined to complete any STP trials. Three participants with spastic 

diplegia (JS08, JS10, and JS11) attempted but could not complete the 0.5 Hz and 0.61 Hz in 

ETP or STP without continuous stepping; JS09 was GMFCS level II and could only complete 

0.1 Hz in either condition. JS10 also declined any STP trials.   

 

Stepping Responses 

The number of steps taken by CP participants was compared to the TD average at 

each frequency in ETP and STP conditions. Although statistical testing did not reveal any 

significant differences between groups, the children with CP tended to step more frequently 

and/or were unable to complete trials without stepping throughout. Generally, the lowest 
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frequencies (0.1 Hz and 0.25 Hz) did not elicit stepping responses from either group. The 

highest frequencies (0.5 Hz and 0.61 Hz) tended to result in stepping responses in the 

majority of CP participants and more steps were elicited in ETP than in STP. Specifically, 

four of the eight children with CP who attempted trials at the higher frequencies used a 

stepping response for a total 78 steps at 0.5 Hz in ETP (not including trials that were 

attempted, but unable to complete without stepping). This is compared to only four (of 7) 

who stepped for a total of 19 steps at the same frequency in STP (again, not including trials 

that were attempted, but unable to complete without stepping). While all TD youth were able 

to complete the attempted trials without major stepping responses, five of the eleven youth 

with CP were unable to complete trials without stepping at 0.5 Hz and 0.61 Hz in ETP, and 

0.5 Hz in STP, and four were unable at 0.61 Hz in STP. Full stepping response data can be 

found in the supplementary material online.  

 

Anchoring Index 

Typically developing youth had a tendency to adopt a higher AI (HSSS), compared to 

similarly aged participants with CP. Group differences were significant in the ETP condition 

at the higher frequencies (TS at 0.61 Hz: U = 12, p = 0.012; SS approached significance at 

0.61 Hz: U = 13, p =0.015). There were no significant differences between groups in STP at 

any frequencies.   

 

Place figure 2 (anchoring index) near here 

 

Cross Correlations 
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No significant differences were found between groups in the cross-correlation 

comparisons for ankle-head and ankle-hip trajectories. Time-lag comparisons for the ankle-

hip revealed the CP group had a greater hip lag during TS at 0.25 Hz in the ETP condition (U 

= 31.5, p = 0.009). During TS at the higher frequencies, the TD group tended to have a 

greater hip lag than the CP group. This approached significance at 0.5 Hz in the ETP 

condition (U = 29.5, p =0.032) and at 0.61 Hz in the STP condition (U = 24, p = 0.047). 

 

Place figure 3 (ETP/STP ankle-head kinematics) near here 

 

The TD group tended to have a greater correlation between hip-head marker 

trajectories during TS in ETP at 0.5 Hz (approached significance, U = 28, p = 0.027), 

however no differences were found at any other period or frequency in either condition. No 

significant differences were detected for hip-head time lag.  

 

EMG Tonic and Bursting Activity 

In the ETP condition, TA tonic activity levels were higher in the CP group during TS 

at 0.25 Hz (U = 24.5, p = 0.002), while the G tonic activity approached significantly higher 

levels in TS at 0.61 Hz (U = 17, p = 0.021). The TA also had approached significantly higher 

tonic activity levels in the CP group during TS in the STP condition, especially at the higher 

frequencies (0.25 Hz: U = 27, p = 0.034; 0.5 Hz: U = 17, p = 0.029; and 0.61 Hz: U = 18, p = 

0.036). No significant differences were found between groups in Q and H muscles.  

 

Briefly, the gastrocnemius muscle was consistently activated more often in the TD 

group than in the CP group across all frequencies and conditions except for in STP TS at 0.25 
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Hz.  Similarly, the hamstrings were found to be more active in the TD group at the higher 

frequencies (0.5 Hz and 0.61 Hz) for both conditions. No significant differences were found 

between groups for TA and Q at any frequency or condition. Summary information are 

presented in Table 1. 

 

Place Table 1 (test summary) near here 

 

Place figures 4 (tonic activity) and 5 (burst activity) near here 

 

Discussion 

This is the first study to characterize postural strategies in response to and in 

anticipation of oscillatory platform movement in children and adolescents with cerebral 

palsy. 

 

1. Youth with CP are less able to maintain balance at high oscillation frequencies 

Youth with CP were most similar to TD youth at low frequencies and differed most at higher 

frequencies. The increase in number of steps recorded in both groups at the higher 

frequencies reflects the large increase in difficulty in the task and the CP group were clearly 

unable to maintain balance at this stage. This is consistent with reported findings for older 

adults [3,23,24] and adults with Parkinson’s disease [25].  In these adult groups, the foot-in-

place response was inadequate to compensate for the increased risk of falling resulting in a 

stepping response strategy to control movement of the centre of mass. While at the lower 

frequencies both groups made use of the ‘ride’ pattern [26] (i.e., standing straight), the youth 

with CP were unable to switch to ‘head fixed’ (i.e., allowing the lower body to pass under 
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trunk/head) with the increased platform velocity. This may function as an attempt to remain 

stiff (evidenced by HSTS, increased muscle tone) resulting in segment temporal lag, an 

inability to disconnect the upper and lower segments to absorb the platform movement, and 

ultimately, more stepping responses. The higher level of baseline tonic activity exhibited by 

the CP group compared to the TD group is to be expected as a function of the hypertonia 

associated with spastic CP [11]. With the increasing frequency of the platform movement, 

and thus the increased duration of each trial, the increased tonic activity could be due to the 

prolonged activation due to spasticity [27].  

 

2. Youth with CP are able to modify strategy with experience 

Like the TD group, the CP group demonstrated evidence of a shift in postural 

response strategy from reactive mechanisms during TS to anticipatory mechanisms in SS. 

This is evidenced in a shift towards HSSS and reduced segmental temporal lags, and was 

exhibited in both ETP and STP conditions. This modification corresponds to previous studies 

in which it has been shown there is a period of postural adaptation to meet the requirements 

of a new motor task [2,18]. One possible explanation is Bernstein’s motor equivalence 

problem in which the body’s degrees of freedom are ‘frozen’ to reduce redundancy when 

learning a new motor task [28,29]. This allows for initially keeping a rigid system with stiff 

joints, which can then be re-integrated with experience of the task, allowing the optimization 

of movement through the use of all available degrees of freedom [30]. The higher levels of 

tonic activity during TS in both groups can be interpreted as a functional method of joint 

stiffening [31] which is then decreased, as evidenced through lower tonic activity levels and 

reduced segmental temporal lag in SS. The reduction in temporal lag indicates an ability to 

shift from the previously mentioned inability to effectively use the ‘ride’ strategy, to the more 
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effective ‘head fixed’ strategy. This is further supported by the shift to no preference for 

either HSTS or HSSS in the AI at the higher frequencies. 

 

3. Youth with CP make better use of anticipatory mechanisms in self-triggered perturbations  

The third aim of our study was to determine if youth with CP were able to modify 

their postural responses when given control over a change in frequency. Similar to other 

studies [10,13], our data suggest that youth with CP have the ability to use directionally 

specific anticipatory mechanisms of postural control when faced with continuous 

perturbation. We have previously documented [12] the ability of TD youth to make use of 

anticipatory control mechanisms when given control over a change in oscillation frequency. 

In this study, we compared the CP youth with the TD youth in the various conditions: like the 

TD youth in [12], youth with CP are able to take advantage of the knowledge/cueing of the 

upcoming change in frequency when given control over perturbation onset. The most 

compelling difference observed in the CP group between the ETP and STP conditions was 

the reduction in total number of steps taken, especially at the higher frequencies. This ability 

to take advantage of the knowledge of frequency change is further supported by a large 

reduction in tonic activity in G, specifically in TS, less temporal lag between marker-pair 

trajectories, and a shift to preference for HSSS in the AI.  

 

While able to make the shift to anticipatory mechanisms at lower frequencies, youth 

with CP still struggled to maintain their balance during higher frequency perturbations when 

compared to TD youth. At the higher frequencies, the youth with CP may not have been able 

to overcome the difficulty of the platform translation and instead relied on reactive 

mechanisms, suggesting an inability to generate the appropriate muscle activity, whereas the 
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TD youth were able to make the shift to anticipatory mechanisms. This was evidenced in the 

CP youth having lower percentages of postural muscle bursting activity in the posterior 

muscles. While there were no differences observed in the tibialis anterior and quadriceps 

between CP and TD groups, this may be a result of leaning forward to counteract the 

movement of the platform and allow the inertia of the body to return the center of mass to a 

stable position [20]. Previous research has also established youth with CP to have poorly 

organized muscle activation [11,32]. Together with our data, this suggests that 

physiotherapists could target muscle weakness and appropriate muscle order activation and 

timing to deal with larger perturbations. Future studies should make smaller increments in the 

platform oscillation to determine at which velocity youth with CP cease to shift to 

anticipatory mechanisms. Because of the relatively small sample sizes and natural variability 

of youth with CP, future studies should also aim to include more participants.  

 

In summary, the data from the present study demonstrated that when subjected to a 

continuous platform perturbation, mildly impaired youth with CP behave like age-matched 

TD controls at low frequencies. Higher frequency perturbations proved to be more difficult 

for the CP group, as evidenced through a greater number of steps taken, a preference for 

HSTS, low marker-pair correlations with high temporal lag, and increased tonic activity. Like 

the TD group, however, CP participants were able to take advantage of the knowledge of 

platform movement during SS, and while able to make appropriate postural changes when 

given control of the perturbation, continued to struggle with large perturbations. The results 

from this study suggest targeting muscle timing and weakness, and inappropriate muscle 

activation in mildly impaired youth with CP (GMFCS levels I/II) by practicing muscle 
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sequencing and reactive/anticipatory postural response activities within intervention 

programs focused on improving postural control.  
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Table 1 – Results of Mann-Whitney U comparisons between typically developing and cerebral palsy groups for muscle bursting activity 

      Frequency 

   
 

0.1Hz 0.2Hz 0.5Hz 0.61Hz 

   
 

MWU Z p r MWU Z p r MWU Z p r MWU Z p r 

ET
P

 

TS 

TA 83.5 -0.24 0.827 -0.05 61 -0.961 0.363 -0.19 42.5 -0.409 0.693 -0.09 47 -0.075 0.971 -0.02 

GAS 38.5 -2.535 0.013 -0.49 38.5 -2.204 0.027 -0.43 25 -1.71 0.098 -0.36 31 -1.272 0.231 -0.27 

Q 55 -2.24 0.11 -0.43 44 -2.003 0.06 -0.39 41.5 -0.486 0.641 -0.10 29 -1.419 0.178 -0.30 

HAM 77.5 -0.672 0.61 -0.13 66 -0.843 0.484 -0.17 16.5 -2.339 0.017 -0.50 11 -2.769 0.005 -0.59 

                          

SS 

TA 86 -0.118 0.942 -0.02 54 -1.381 0.182 -0.27 37.5 -0.777 0.449 -0.17 40 -0.593 0.59 -0.13 

GAS 33 -2.829 0.006 -0.54 37.5 -2.246 0.023 -0.44 15.5 -2.412 0.013 -0.51 22 -1.922 0.059 -0.41 

Q 56 -2.555 0.121 -0.49 48 -1.877 0.097 -0.37 44 -0.3 0.802 -0.06 31 -1.26 0.231 -0.27 

HAM 72 -0.979 0.451 -0.19 74.5 -0.305 0.776 -0.06 7 -3.038 0.001 -0.65 7.5 -2.998 0.001 -0.64 

   
 

                      

   
 

                      

ST
P

 

TS 

TA 56.5 -0.783 0.519 -0.16 54.5 -0.365 0.728 -0.08 33 -0.942 0.381 -0.35 44 -0.078 0.97 -0.02 

GAS 16 -3.134 0.001 -0.64 13.5 -3.026 0.001 -0.63 16.5 -2.252 0.023 -0.49 19.5 -2.005 0.045 -0.44 

Q 61.5 -0.551 0.726 -0.11 37.5 -2.48 0.149 -0.52 44.5 -0.039 0.97 -0.01 44.5 -0.04 0.97 -0.01 

HAM 63.5 -0.367 0.815 -0.07 54 -0.428 0.728 -0.09 10 -2.755 0.005 -0.60 9.5 -2.78 0.003 -0.61 

                          

SS 

TA 66.5 -0.071 0.953 -0.01 53.5 -0.431 0.681 -0.09 24.5 -1.6 0.112 -0.02 24 -1.643 0.112 -0.36 

GAS 13 -3.342 0.001 -0.68 7 -3.447 0 -0.72 7 -2.971 0.002 -0.65 10.5 -2.696 0.005 -0.59 

Q 61.5 -0.551 0.726 -0.11 51 -0.662 0.591 -0.14 36 -0.706 0.519 -0.15 39.5 -0.43 0.677 -0.09 

HAM 63.5 -0.367 0.815 -0.07 53.5 -0.445 0.681 -0.09 6 -3.052 0.001 -0.67 8 -2.89 0.002 -0.63 

 

NOTE: Tibialis anterior (TA), gastrocnemius (GAS), quadriceps (Q) and hamstring (HAM); Transition State (TS); Steady State (SS); externally-

triggered (ETP); self-triggered (STP). N for ETP = 27, 26, 22, 22, for 0.1Hz, 025Hz, 0.5Hz, 0.61Hz respectively. N for STP = 24, 23, 21, 21, for 

0.1Hz, 025Hz, 0.5Hz, 0.61Hz respectively; Significant results represented by bold table values.  
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Figure captions 

Figure 1 - Perturbation protocol depicting platform oscillation and corresponding EMG signals (a) 

from tibialis anterior (TA), gastrocnemius (G), quadriceps (Q), and hamstring (H) muscles during 

the transition and steady state periods at 0.5Hz. Panel (b) depicts a participant’s posture during 

backward platform displacement at 0.5Hz in transition (left) and steady (right) states. Expanded 

head-neck stick figure shows an example of a shift from Head Stabilized on Trunk (AI = -0.1) to 

Head Stabilization in Space Strategy (AI = 0.3). Panel (c) A participant with markers and EMG 

electrodes. (Adapted with permission from [12]) 

 

Figure 2 - Anchoring Index (mean +/- SD) obtained from typically developing (TD) youth and 

youth with cerebral palsy (CP). Transition State (TS) and Steady State (SS) periods across four 

frequencies are presented in Externally (left) and Self-triggered (right) perturbations. Positive 

values indicate a preference for a Head Stabilization in Space Strategy (HSSS), while negative 

values indicate a preference for a Head Strapped to Trunk Strategy (HSTS). Values around 0 

indicate no preference for either strategy. Values are offset horizontally for clarity purposes. 

 

Figure 3 - Mean cross-correlation function peak values (CCmax – left panels) and time lags 

(CClag/lead – right panels) in typically developing (TD) and cerebral palsy (CP) youth. Values 

are offset horizontally for clarity purposes. The ankle-head correlations are presented for 

transition (TS) and steady (SS) states in Externally- (top panels) and Self- (bottom panels) 

Triggered conditions. Error bars indicate standard deviations. 

 

 

Figure 4 – Tonic activity (mean +/- SD) for (top to bottom panels) tibialis anterior (TA), 

gastrocnemius (G), quadriceps (Q), and hamstring (H) muscles in ETP (left side) and STP (right 

side) conditions. Comparisons were made to baseline tonic activity of each muscle in the steady 

state period at 0.1Hz in ETP. Transition (TS) and steady (SS) states presented for typically 

developing (TD) and cerebral palsy (CP) youth. Values are offset horizontally for clarity purposes.  

 

Figure 5 – Muscle bursting activity (mean +/- SD) for (top to bottom panels) tibialis anterior (TA), 

gastrocnemius (G), quadriceps (Q), and hamstring (H) muscles in Externally- (left panels) and 

Self- (right panels) triggered perturbation conditions. Transition (TS) and steady (SS) states 

presented for typically developing (TD) and cerebral palsy (CP) youth. Values are offset 

horizontally for clarity purposes.  

 

 

 

 


