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The impact of weather and climate on 
tourist demand:  
The case of Chester Zoo 

Jonathan Aylen1 & Kevin Albertson 2 & Gina Cavan3 

Abstract 
Warmer, drier summer weather brought by global climate change should encourage use of outdoor 

leisure facilities. Yet few studies assess the effect of current weather and climate conditions upon 

visits to leisure attractions. 

Statistical time series models are used to analyse the short-run impact of weather and the long-run 

impact of climate upon visits to Chester Zoo, England. Temperature has a non-linear effect on visit 

levels. Daily visits rise with temperature up to a threshold around 21°C. Thereafter visitor numbers 

drop on hot days. Visits are redistributed over time in accordance with the weather. Visitors 

discouraged by rainy weather one day turn up later when the weather improves. Otherwise, visitor 

behaviour is mainly influenced by the annual rhythm of the year and the pattern of public and school 

holidays. Out-of-sample tests suggest almost 70% of the variation in visit levels can be explained by 

the combination of weather and time of year.  

Climate change is likely to redistribute visitors across the year. But it does not follow that “summer” 

visitor behaviour will transfer to spring and autumn. Day length, existing patterns of human activity 

and availability of leisure time constrain visit levels regardless of better weather. The main 

implication of potential climate change is the need for physical adaptation of the tourist 

environment as temperatures rise and rainfall diminishes in summer. 

1 Introduction 
Warmer, drier summer weather brought by global climate change might be expected to encourage 

use of outdoor leisure facilities. It has long been suggested that weather and climate play a key role 

in both the supply- and demand-side of the tourism system (e.g. Perry 1972; Mathieson and Wall 

1982; de Freitas 2003). Climate is one of the environmental resources on which tourism depends – 

influencing its location, supporting recreational activities, and often an attraction in its own right 

(Gómez Martín 2005). Tourists are affected by weather and climate in their decision-making process, 

including destination choice and selected activity (Giles and Perry 1998). 
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The relationship between key climate parameters and tourism has been researched for over 30 

years (Scott et al. 2008a). Whilst tourists respond to the integrated effects of the atmospheric 

environment, including thermal, physical and aesthetic aspects (de Freitas 2003), many studies 

conclude that temperature is the dominant climate variable for tourism (e.g. Maddison 2001; Lise 

and Tol 2002; Bigano et al. 2006). Several studies have attempted to identify the ideal or optimum 

temperatures for tourism. Lise and Tol (2002) conclude that’ globally, tourists prefer an average daily 

temperature of 21°C, and ideal temperatures for urban sightseeing in Europe have been found at 20-

26°C (Wilson et al. 2008; Rutty and Scott 2010). Higher daily maximum temperatures around 30°C 

are preferred for beach-based recreation (Maddison 2001). 

In reality, such weather thresholds are value judgements made by individuals (Perry 2004), and 

depend on a number of factors including type of activity, clothing worn, age, and cultural 

background. Rainfall (or absence of rain) is also an important weather variable in determining 

participation in activities (Scott et al. 2008b). The timing of rain events is also considered influential. 

Scott and Jones (2007) find that morning rain affects participation levels more than afternoon rain 

for golf. Yu et al. (2009) emphasise that factors such as thunderstorms and showers may be as 

important as temperature when making travel choices. Weather parameters such as cloud cover 

also affect aesthetics and perceptions of a tourist destination (e.g. Morgan and Williams 1999). 

Few attempts have been made to assess systematically the effect of weather upon daily visitor 

activity at the destination level. Yet we need to know the impact of weather on tourist activity 

before we can establish the potential impact of climate change on tourist numbers. Despite this, 

much recent research on climate and tourism relationships focuses on predicting tourist demand 

and flows for both domestic (e.g. Rosselló-Nadal et al. 2011) and international tourists (e.g. Lise and 

Tol 2002; Hamilton et al. 2005; Bigano et al. 2006) and the impact of global climate change on the 

demand for destinations (Scott et al. 2004; Amelung and Viner 2006). 

Tourists respond differently to weather and climate. Whilst decision-making for tourism (destination 

and time period selection) is dependent on climate information, recreationists and day visitors are 

more weather-dependent, as their decision to travel is often made at short notice and plans can be 

adjusted according to short-term forecasts (McEvoy et al. 2006). Survey data from the hot summer 

of 1995 in the UK confirms the spontaneity of recreation decisions, since 52% of respondents took 

more day trips, 33% took more weekend/short breaks and less than 15% changed their main 

vacation plans (Agnew and Palutikof 2001). Brandenburg and Arnberger (2001) argue that further 

data is required to analyse the relationship between recreation and weather. Long runs of daily data 

are seldom available for outdoor leisure facilities. 

So, from a UK perspective, whilst weather and climate may not be the primary motivation for taking 

a long domestic holiday, good weather is a significant factor in deciding to take a short break or day 

trip. Climate change projections for northwest England suggest hotter, drier summers and warmer, 

wetter winters (Murphy et al. 2009). By the end of the 21st Century, annual mean temperatures are 

projected to rise by between 2·5 and 5·7°C (10 and 90% probability levels, under the IPCC A1FI 

scenario), with more frequent occurrences of extreme temperatures in summer (UK Climate 

Projections 2009). Projections for annual mean rainfall show little change, but an enhanced seasonal 

distribution, with summer rainfall projected to decrease by between 2% and 51%, and winter rainfall 

projected to increase by between 9% and 50% (10 and 90% probability levels, under the IPCC A1FI 



scenario). In principle, warmer, drier summers and milder – if wetter – winters should benefit 

tourism and outdoor recreation. However, this is not guaranteed, and even in the short-run, it is not 

clear how potential visitors might respond to weather. While warm, dry days should encourage 

visits, hotter weather may drive potential visitors to cooler seaside destinations and participation in 

water-related activities (Smith 1993). 

Weather-proofing tourist resources may also have an impact on visit levels. European tourist 

destinations market their attractions as robust to inclement weather. The zoo at Münster in 

Germany calls itself “Allwetterzoo”. Analysis of weather and climate on visit rates for a particular 

attraction can help to establish its weather sensitivity and so improve management decisions at 

recreational sites (e.g. Changnon et al. 2002).  

The impact of better weather is an empirical question. Here we examine the effect of daily weather 

on visits to a largely open-air zoo. Visits to outdoor sites are highly seasonal, so particular attention 

is paid to modelling of seasonality in the data. 

2 Explaining Visits to Chester Zoo 
Located in Northwest England (53°13′36′N, 2°53′3′W), Chester Zoo opened in 1931 and is the UK’s 

number one wildlife attraction, with around 8000 animals set within 45 ha of zoological gardens. The 

zoo receives around one million visits a year, an average of around 3,000 per day. Visits to Chester 

Zoo peak in August with fine weather and school holidays. 

Our sample of visitors is drawn from Chester Zoo and covers 33 years of daily admissions data from 

1st January 1978 through to 31st December 2010. The zoo is typically closed to the public only on 

Christmas Day. Weather data includes daily rainfall and temperature data, obtained from local UK 

Met Office weather stations at Hawarden and Ness Gardens. We use the first 27 years of data to 

develop the model and leave the remaining six years as a holdout period to test the robustness of 

our model predictions.  

The seasonal nature of visits to a countryside recreation facility is complex. Visit levels vary across 

the year due to seasonal variations in weather and the rhythm of holidays (Fig. 1). Weekly 

fluctuations reflect the pattern of the working week and the school week. Bank holidays further 

complicate the picture. These are statutory holidays in the UK, generally given on a Monday in the 

spring and summer. The date of Easter holidays varies between March and April. Our initial 

approach is to specify a model based on monthly data to describe the long-run effects of climate 

trends over the whole 27 year period. We go on to analyse daily data to establish precise weather 

effects and time of week effects. 

The zoo was closed for 41 days during the foot-and-mouth epidemic of 2001. This natural 

experiment allows us to make inferences about the robustness of visitor intentions. After the period 

of closure, there was a recovery back to usual visit levels. The equivalent of 28 days’ worth of visits 

was permanently lost, suggesting there was only a slight compensating “bounce-back” for visits 

missed during closure. The temporary but distinct impact of foot-and-mouth closure suggests it is a 

reasonable hypothesis that recreation visits to the zoo are not a random walk. (That is to say, a 

process in which the rational forecast for tomorrow’s data is the same as the actual data observed 

today.) Perhaps the decision to visit a zoo is planned within the family ahead of time. This is 



consistent with evidence below and suggests the timing of zoo visits may be postponed if the 

weather is inclement on the chosen day, for up to two weeks, but not for much longer.  

3 Analysis of Seasonal Data 

3·1 Time Series Properties and Stationarity 
A surprising feature of our data on visits to the zoo is its long-run stability (Fig. 2). Taking monthly 

data, both visit levels and weather appear stationary over the 27 year period used for estimation. 

That is to say neither the average or the variance in the level of visits, temperature and precipitation 

alters systematically over the long run. The statistical property of stationarity is important because if 

the mean or variance were changing systematically, forecasts of future visits would need to take this 

into account. The weather at Chester Zoo arguably appears to have got warmer over time – at least 

since 1987 – but this is not a statistically significant trend. These findings are consistent with Perry 

(2006) who also finds no trend in mean temperatures before 1987, and no significant changes in 

annual precipitation, and Thompson (1999) who finds no particular trend to precipitation in the 

British Isles over the last 150 years, although there have been substantial variations from year to 

year as well as significant seasonal changes (Perry 2006).  

Assessing shifts in weather is controversial (Woodward and Gray 1995; Mills 2010). Long-run climate 

trends may be difficult to identify statistically because of the effect of variations in day-to-day 

weather. There is no apparent long-run change in weather patterns in our data. Similar findings are 

reported by Kallache et al. (2005) in the context of flood behaviour and Albertson et al. (2009) 

assessing UK wildfire incidence. However, Mills (2010, 424) cautions that well specified univariate 

time series models adapt very quickly to short-run movements in temperature and so do not predict 

longer run increases in temperature. In sum, a gentle long run trend is difficult to describe because 

of short-run fluctuations. 

Stationarity of our 27 year data set is confirmed by visual inspection of the autocorrelation functions 

of visitor numbers, “seasonally adjusted” using auxiliary regression equations in the conventional 

way. The presence of seasonal heteroscedasticity in the data (see 3·2 below) invalidates a 

conventional unit root test for stationarity (e.g. an Augmented Dickey Fuller test, or Hylleberg, Engle, 

Granger and Yoo test). 

This technical result offers a key insight into visitor behaviour. There is no evidence of a change in 

overall attitudes towards either zoos or climate over time. Stationarity implies short-run decisions on 

visits are consistent with long-run behaviour. Seasonality is problematic in dynamic regression 

models: it is difficult to allocate observed seasonal effects between short-run variations across 

seasons within each year and slowly changing seasonal responses as visitor habits alter over time 

(Harvey and Scott 1994). Yet, we find visitor habits barely change over time. The crucial result is that 

the potential impact of climate change is no more than the sum of short-run responses to weather. 

3·2 Seasonality in the Mean and Seasonal Heteroscedasticity 
Seasonality can take various forms in time series models (Franses 1996). The simplest form is 

deterministic seasonality where a dummy variable is used to capture the shift in mean from month 

to month. Stochastic seasonality is ruled out by the absence of a seasonal unit root in the monthly 



data. We also consider the possibility of a seasonal pattern in the variance of the data. If such a 

pattern exists, ordinary least squares inference is not valid. 

We test for heteroscedasticity using a likelihood ratio test (Albertson and Aylen 1996). We reject the 

null-hypothesis of homoscedasticity, finding heteroscedasticity in the residual errors. This takes the 

form of severe seasonal heteroscedasticity by month, as well as some evidence of a change in 

variability of visit levels over time. There is a greater variability at the beginning and the end of the 

series and more consistent behaviour over the mid-period 1987 to 1995 (Table 1 and Fig. 2). During 

the late-1970s and early 1980s there was more extreme variation between peak and off-peak visit 

levels. More recently, special events at the zoo have increased off-peak visitor numbers, for instance 

a 10-km run in the quiet month of November. Precipitation also exhibits seasonal heteroscedasticity, 

reflecting changes in the mid-latitude westerly circulation (Mayes 1996). The heteroscedasticity 

problem is resolved by using White’s heteroscedasticity-consistent covariance estimator – “White’s 

method” (White 1980). We modify our hypothesis testing accordingly. 

4 Modelling the Pattern of Visits 
Our strategy is separately to explain monthly visit levels and daily visit levels using linear regression 

analysis. Modelling monthly visit levels allows us readily to capture seasonal changes in visit levels 

and to consider the long-run effects of climate trends over the whole 27 year period. Daily data 

enables us to establish precise weather effects and time of week effects. 

Hypotheses are tested using a “general to specific” approach to model evaluation advocated by 

Hendry (e.g. Davidson et al. 1978; Gilbert 1986). This involves estimation of a very general model for 

visit levels, encompassing a wide range of weather and visitor related explanatory variables, and 

testing successive restrictions on these variables using specification tests. The resulting model 

should be consistent with knowledge about physical processes and human behaviour as well as 

accounting for the underlying statistical properties of the data set. Our initial general model for the 

monthly data is reported, given that our concern is hypothesis testing about weather. The final form 

of the forecasting model is reported in the case of daily data, showing how temperature and rainfall 

influence visitors from day-to-day. 

4·1 Monthly Data 
The level of visits to Chester Zoo is modelled using an autoregressive distributed lag model (ADL), 

with temperature, rainfall, lagged visits, holidays and special events as explanatory variables. This 

takes the general form:  
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where, in month t: yt is the monthly average number of visitors, Ds,t takes the value unity if 

observation t is in month s and zero otherwise, xt is a vector of explanatory variables and t is a 

serially independent, normally distributed random element: the s, s and s are parameters to be 

estimated. 

The most striking feature of our model is the pattern of habitual behaviour revealed by the 

estimation. Results show for a general model (Table 2) that lagged visit levels over the past twelve 



months are a key explanatory variable, with significant coefficients on monthly lags up to one year 

ago. The persistence of visit levels can be explained by annual membership and by animal adoption 

schemes. The “Adopt an Animal” scheme lasts for a year, brings complimentary tickets and a timely 

reminder the adoption is due for renewal, which might well spark a repeat visit. Season tickets also 

allow members free admission for one year. There is a programme of regular talks and events. 

Typically, there are 25,000 members who visit eight times a year on average. Repeat visits account 

for at least one-fifth of the annual total of visits. A desire to make the most of the annual season 

ticket explains the strength of the eleventh and twelfth lag in the monthly model as members 

squeeze in a final visit before the expiry date. There are small but marginally significant 

autocorrelation lags in the function of visit levels at the twelfth, 24th and 26th months. The same 

echo shows up below in the analysis of daily data where there is evidence of repeat visits at six 

monthly and annual intervals. These econometric results confirm zoo membership is a powerful 

marketing tool. The loyalty of members accords with a similar finding for the UK that National Trust 

members are willing to travel significantly further to Trust-owned historic properties (where they 

enjoy free admission) than non-members (Aylen 1978). 

Some months of the year perform better than might be expected given the weather and the 

presence of school holidays and bank holidays. Visit levels for May, July and August are higher than 

predicted. Monthly data is not powerful enough to distinguish the effect of days of the week. 

October and November see far more visits than might be expected, holding other factors constant, 

possibly because zoo members are keen to realise the full value of their subscription before expiry, 

which usually falls at the end of the calendar year. 

The impact of weather is only transitory in the monthly model. Judging by monthly data, a 1°C rise in 

average mean monthly temperatures generates an extra five visitors per day and a 1 mm decrease in 

average monthly precipitation prompts an extra ten visitors per day. However, neither of these 

results are statistically robust. There is no evidence it is anything but the relative effects of weather, 

rather than absolute temperature and rainfall that influence tourists’ decisions. What matters is if 

the weather is more (or less) clement than recent months. Changes in the weather merely shift visit 

timings around. 

Crucially, both temperature and rainfall enter the equation with coefficients on the first lag variables 

that are virtually the arithmetic inverse of the coefficient on the contemporaneous variable. That is 

to say, last month’s rainfall has the same absolute coefficient as this month’s rainfall, but with the 

opposite sign. A Wald test on the twin restrictions that “the coefficients of temperature and 

precipitation; and lagged temperature and precipitation respectively, have the same absolute values 

but opposite signs” shows a statistic (χ2
2 under the null) of 0·1520 (probability value of 0·93) 

suggesting we may accept the null. This implies change in temperature and change in rainfall across 

the months motivate visit levels. There is no long-run effect of climate over time. However, the 

short-run effect of rainfall and temperature is confirmed by analysis of the daily data, to which we 

now turn. 

4·2 Daily Data 
Daily observations allow us to focus on the immediate impact of the weather on visits. Again, we use 

an ADL model to capture dynamic effects as visitors respond to changes in temperature, rainfall and 

days of the week. We also test for threshold effects of hot, dry weather. The data is heteroscedastic, 



so we use robust covariance estimation to establish our final model (Table 3). General to specific 

modelling eliminates a large number of lags and moving averages included in the initial model. 

Analysis of daily data shows both rainfall and temperature influence visits to the zoo in a non-linear 

way. Evidence suggests people prefer to visit when it is neither too cold nor too hot. When there is 

no rainfall, the optimum temperature is around 21°C on, say, a spring bank holiday (Fig. 3). The 

shape of the forecast function suggests people are slightly more responsive to temperatures above 

this optimum than below. This supports anecdotal evidence that potential visitors to the zoo head 

for waterside destinations on hot days. 

Fixed effects are far more important than weather, although variables such as individual months 

may be picking up visitors’ views about the weather at that time of year. In terms of partial R2, most 

of the variation in visit levels is explained by the autoregressive part of the model. For instance, the 

lag on visitor numbers for one or three days suggests the persistence of “spells” of clement or 

inclement weather. This is consistent with the fourth lag on daily visitor numbers being negative as 

changes in weather set in. Potential visitors postpone visits by up to four days in the face of rain. 

Rainfall in the British Isles is episodic and rain continues, often for three days – but no more than this 

(Chandler and Wheater 1998). So there is a rebound four days later. Rainfall reallocates visits over 

time as zoo visitors wait for drier weather. But the evidence of visitor response to prolonged closure 

during a foot and mouth epidemic implies visits are not deferred indefinitely. 

There are strong day of the week effects, partly due to the pattern of school parties during the week. 

School trips are not distinguished separately in the data, but account for around one tenth of all 

visitors, mostly during mid-week school days between March and June. Both Mondays and Fridays 

are quiet and Saturdays see fewer visits than Sundays, which is consistent with anecdotal evidence 

from other zoos. 

5 Validating the Model with Out of Sample Predictions 
To assess the validity of our model, we use actual daily weather data for the six years 2005 to 2010 

to predict visit levels at Chester Zoo. Hawarden Bridge weather station closed at the end of 2004, 

and data for a nearby weather station Hawarden Airport is incomplete. So we use weather 

observations from Ness Gardens on the Wirral to impute missing data for Hawarden Bridge. The two 

stations are nine miles apart, with the Gardens 33 m higher. Due to local effects, precipitation at the 

two stations show different seasonal patterns during an eleven year overlap period 1994 to 2004, 

but maximum temperatures do not differ significantly. We estimate a well specified deterministic 

seasonal transfer model to infer what rainfall and temperature would have been at Hawarden 

Bridge. 

Using this set of explanatory data on temperature and precipitation we create out of sample 

forecasts for daily visit levels at Chester Zoo for the period 2005-2010 (Fig. 4) which are compared to 

the actual numbers reported by the Zoo. Weather and other seasonal variables explain almost 70% 

of the daily variation in observed visits over the six years. There is less volatility in the forecast visit 

numbers due to omission of special events. 



6 Explaining Observed Patterns of Visitor Behaviour 
There is clear statistical evidence that warmer temperatures encourage visits, but only up to a 

threshold level around 21°C, which strikingly echoes an insight of Lise and Tol (2002). In practice, 

temperature and rainfall have a relatively minor effect on visits to this outdoor attraction 

(Richardson and Loomis, 2004). These findings are subject to a caveat from Scott et al. (2008b) that 

perceived optimum climatic conditions vary across temperate tourism environments. De Freitas et 

al. (2008) suggest visitation levels or occupancy rates may not be suitable for establishing 

relationships between climate and tourism, since they are not necessarily a measure of satisfaction. 

So it may be wrong to generalise this result. The main finding is the importance of seasonal visit 

patterns. Zoo visits are characterised by habitual behaviour and a high level of repeat visitors. Visits 

seem to be postponed if the weather is inclement on the initial, chosen visit date. 

These observed visitor patterns at Chester Zoo are consistent with time-budget studies over the last 

30 years which show people are becoming more specialised in their use of time (Warde et al., 2004). 

Compared with earlier years, people now focus more time and money on their chosen leisure 

activity, but with fewer participants in each activity. In the case of excursions to the countryside, 

fewer choose to spend time in this way, but adherents are willing to devote more time to visits. 

There may now be fewer zoo enthusiasts, but those who are keen on animals are willing to spend 

more time seeking them out and travel further to see them more frequently. Visitors to zoos fall into 

the cultural class of “family day trippers” (Sturgis and Jackson 2003) on the basis of the UK 2000 

Time Use Survey. Family day trippers tend to be younger adults and have higher educational 

qualifications than others in the Survey. This suggests zoo visitors are now better informed, more 

sophisticated about conservation issues and more committed to learning than casual visitors in the 

past. Enthusiasm may diminish their sensitivity to the weather. 

7 Conclusions and Implications 
This paper reports development of statistical time series models to analyse both the short-run 

impact of weather and the long-run impact of climate upon visitors to Chester Zoo in northwest 

England. Warmer, drier summers brought by global climate change have been suggested as an 

opportunity to promote zoo visits. 

The paper uses a comprehensive data set on daily visits to Chester Zoo covering a 33 year period. A 

statistical time series model is used to analyse both the short-run impact of weather (specifically, 

temperature and precipitation) and the longer-run impacts of climate trends upon visitor activity. 

Dynamic autoregressive distributed lag (ADL) models are developed to show how visit levels and 

weather interact both from month-to-month and day-by-day. An ADL model uses lagged values of 

the dependent variable as explanatory variables. Past visit levels are a key explanatory factor. Other 

causal variables such as weather also appear with such lags as testing suggests appropriate. It is 

possible to establish how far trips to the zoo are postponed rather than cancelled altogether due to 

inclement weather. 

Visitor behaviour is mainly influenced by the annual rhythm of the year and the pattern of school 

holidays and bank holidays. There is evidence that visits are redistributed over short periods of time 

in accordance with the weather: Visitors, frustrated by rainy weather one day, turn up later when 



the weather improves. Warmer temperatures encourage visits, but only up to a threshold level 

around 21°C. There is no evidence of a long-run shift in behaviour due to climate trends, just an 

immediate response to each day’s weather. Visitors wait for drier days and avoid scorching sunshine 

– or at least, “scorching” by English standards. 

Visits are dominated by habit in a way that is consistent with long-run changes in use of leisure time 

in the UK. The evidence is consistent with fewer but more enthusiastic visitors who come more often 

and, perhaps, stay longer. At Chester Zoo, development of annual membership and animal adoption 

encourage a high level of repeat visits. The loyalty of these visitors accords with the finding that 

leisure participants in the UK are becoming more specialised in their choice of activity. 

We hesitate to generalise these results. The pattern of zoo visits may be atypical because of loyalty 

of visitors. Comparisons with a coastal attraction would test anecdotal evidence of visitors shifting to 

the coast as temperatures increase. The impact of climate change on tourism is likely to be complex 

as warmer, drier weather first encourages and then deters visits, at least until people get 

acclimatised to hotter, more clement weather. 

8 Data Appendix 
Data on visits is courtesy of Chester Zoo. Weather data is from Hawarden Bridge, 10 km from 

Chester Zoo (NGR SJ 3314E 3694 N), from the Met Office Land Surface Observation Station, provided 

through the British Atmospheric Data Centre. This weather station closed at the end of 2004. 

Subsequent data is inferred from Ness Gardens (NGR SJ 3303E 3755 N) with missing observations 

interpolated on the basis of evidence from Hawarden Airport (NGR SJ 3341E 3646 N). Precipitation is 

in mm and temperatures in degrees Celsius, unless stated. School holiday dates are for the City of 

Salford, one of many school districts in the visitor catchment area. 
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Fig. 1 Monthly visits to Chester Zoo.  

(Monthly average of daily visits 1978-2006) 
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Fig. 2 Trends in visit levels to Chester Zoo.  

(Monthly average of daily visits) 
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Fig. 3 visitor numbers and temperature. 

Predicted visitor numbers: a “dry” (i.e. no precipitation) Spring Bank Holiday (end of May) 
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Fig. 4 Predicted versus actual visits to Chester Zoo, 2005 to 2010 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Jan 05 Jan 06 Jan 07 Jan 08 Dec 08 Dec 09 Dec 10

V
is

it
o

r 
N

u
m

b
er

s

Actual Fit
 

 

 



Table 1 Preliminary Tests on Heteroscedasticity of Monthly Visit Data 

Likelihood Ratio test (monthly data) 

 seasonal heteroscedasticity sub-sample heteroscedasticity 
 Pr(χ2

11 > 19·68) = 5% 
Pr(χ2

11 >  24·73) = 1% 
Pr(χ2

2 > 5·99) = 5% 
Pr (χ2

2 > 9·21) = 1% 
Visit numbers 890 6·56 
Maximum temperature 765 4·25 
Daily precipitation 42 4·24 
(all monthly averages)   

 

 

 

 

 

 

 



Table 2 Monthly Visits to Chester Zoo. Initial ADL model of monthly visits to Chester Zoo, 

estimated in levels. 

Sample period 1979 month 1 to 2004 month 10. 310 observations. Estimated using monthly data. 

Ordinary least squares estimation using White’s heteroscedasticity adjusted standard errors 

Explanatory Variable Estimate Standard error t-Ratio [Prob] 

Visitors (L1) 0·221 0·053 4·19 [·000] 
Visitors (L2) 0·082 0·048 1·7 [·090] 
Visitors (L3) -0·073 0·04 -1·84 [·067] 
Visitors (L4) -0·06 0·041 -1·46 [·145] 
Visitors (L5) 0·049 0·043 1·15 [·250] 
Visitors (L6) 0·082 0·036 2·25 [·026] 
Visitors (L7) -0·01 0·037 -0·277 [·782] 
Visitors (L8) 0·007 0·04 0·184 [·854] 
Visitors (L9) -0·003 0·037 -0·075 [·940] 
Visitors (L10) 0·095 0·041 2·33 [·021] 
Visitors (L11) 0·106 0·039 2·72 [·007] 
Visitors (L12) 0·303 0·063 4·79 [·000] 
Tmax 58·8 16·1 3·65 [·000] 
Tmax (L1) -54·2 18·3 -2·96 [·003] 
Precipita -86 22·5 -3·82 [·000] 
Precipita (L1) 76 24·2 3·14 [·002] 
Share of Saturday -477 1640 -0·291 [·772] 
Share of Sunday 1290 1720 0·747 [·456] 
Share of Bank Hols 6930 2330 2·98 [·003] 
Share School Hols 1850 359 5·16 [·000] 
Share Other Hols 8710 3160 2·75 [·006] 
Constant -1540 513 -3 [·003] 
Trend 0·858 0·326 2·63 [·009] 
January 179 329 0·546 [·586] 
February 285 403 0·708 [·479] 
March 616 396 1·55 [·121] 
April 779 429 1·81 [·071] 
May 1070 521 2·05 [·041] 
June 804 491 1·64 [·103] 
July 2110 527 4·01 [·000] 
August 2250 590 3·82 [·000] 
September 797 429 1·86 [·064] 
October 965 377 2·56 [·011] 
November 1500 306 4·89 [·000] 
Event 4170 3580 1·16 [·246] 
Closed -1490 197 -7·55 [·000] 
Fuel Shortage -2070 470 -4·4 [·000] 

R2 = 0·9614, adjusted R2 = 0·9564 

LM test of residual serial correlation 16·195 (χ2
12 under the null of serial independence) 

Base month is December; L = monthly lag 



Table 2 contd. Variable list (monthly data) 

Dependent Variable 

Visitors dependent variable is average daily visit levels for that month 

Explanatory Variables 

Visitors (L1) &c. visitors lagged by the number of months, e.g. Visitors (L12) is visits in the same 

month last year 

Tmax  average daily maximum temperatures for the month in o Celsius 

Tmax (L1)  average daily maximum temperatures for the previous month 

Precipita average daily precipitation in mm 

Precipita (L1)  average daily precipitation for the previous month 

No. of Sat, Sun  ratio of Saturdays, Sundays to days in the month 

Bank Hols  ratio of Bank Holiday Mondays in the month 

School Hols  ratio of school holidays in the month, including weekends 

other hols  ratio of other holidays (e.g. royal weddings, Boxing Day) 

Trend  linear trend 

January &c.  dummy variable for that month 

Event  ratio of one-off events in the month, such as 10 km run, Christmas lunches 

Closed  rare occasions when the zoo is closed, principally the foot-and-mouth outbreak of 

26th February 2001 to 6th April 2001. Includes Christmas Day and royal funerals, 

expressed as a ratio of days in the month 

Fuel Shortage  ratios of periods of fuel shortage, 10th September 2000 to 17th September 2000 

 

 

 



Table 3 Final ADL model of daily visits to Chester Zoo, estimated in levels. 

Sample period: 1 Jan 1978 to 1 Nov 2004, 9410 observations; estimated using daily data. Ordinary 

least squares estimation using White’s heteroscedasticity adjusted standard errors. 

Explanatory Variable Estimate Standard error t-Ratio [Prob] 

Tmaxf2 0·552 0·1062 5·2 [0·000] 
Tmaxf3 -0·005 0·0011 -4·75 [0·000] 
Prec -122·650 11·0498 -11·1 [0·000] 
Prec2 8·254 1·1294 7·31 [0·000] 
Prec3 -0·153 0·0253 -6·03 [0·000] 
Vnum_L1 0·385 0·0216 17·85 [0·000] 
Vnum_L3 0·092 0·0132 7·02 [0·000] 
Vnum_L4 -0·058 0·0101 -5·78 [0·000] 
Vnum_L7 0·064 0·0098 6·46 [0·000] 
Vnum28a_3 0·063 0·0115 5·5 [0·000] 
Vnum28a_4 0·078 0·0128 6·08 [0·000] 
Vnum28a_5 -0·113 0·0159 -7·07 [0·000] 
Vnum28a_7 0·072 0·011 6·59 [0·000] 
Vnum28a_9 0·107 0·0169 6·34 [0·000] 
Vnum28a_10 -0·130 0·0195 -6·65 [0·000] 
Vnum28a_12 0·114 0·0129 8·87 [0·000] 
Vnum28a_13 0·169 0·0193 8·74 [0·000] 
Vnum28a_14 0·094 0·0187 5·04 [0·000] 
Monday -535·290 55·415 -9·66 [0·000] 
Friday -189·274 35·5752 -5·32 [0·000] 
Saturday 225·057 42·1331 5·34 [0·000] 
Sunday 1368·081 51·2293 26·71 [0·000] 
May 836·875 115·7244 7·23 [0·000] 
July 447·658 71·7702 6·24 [0·000] 
August 1266·754 98·7293 12·83 [0·000] 
Schohol 568·767 49·2012 11·56 [0·000] 
Holiday 4986·142 292·2761 17·06 [0·000] 
Closed -1006·205 113·1579 -8·89 [0·000] 
Constant -1132·344 161·7187 -7·00 [0·000] 
Tmaxf2 0·552 0·1062 5·2 [0·000] 
Tmaxf3 -0·005 0·0011 -4·75 [0·000] 

R2 = 0·7553; adjusted R2 = 0·7546. Wednesday is the base day, and November is the base month;  



Table 3 cont. Variable List (daily data):  

Dependent Variable:  

Vnum number of visitors to Chester Zoo that day 

Explanatory Variables:  

Tmaxf daily maximum temperature, estimated in degrees farenheit (to circumvent the 

problem of negative temperatures) 

Tmaxf2 The square of Tmaxf 

Tmaxf3 The cube of Tmaxf 

Prec daily precipitation in mm 

Prec 2 The square of Prec 

Prec 3 The cube of Prec 

Vnum LX visitor numbers lagged X days (e.g. Vnum L1 is one day lag) 

Vnum28a_X twenty eight day rolling average visitor numbers lagged by X × twenty eight days 

Monday &c. dummy variable for that day 

May &c. dummy variable for that month 

Schohol dummy for school holiday day 

Holiday dummy for all holidays 

Closed dummy for daily closure 

 

 

 

 

 

 

 

 


