

Please cite the Published Version

Barlow, J, França, F, Gardner, TA, Hicks, CC, Lennox, GD, Berenguer, E, Castello, L, Economo, EP, Ferreira, J, Guénard, B, Gontijo Leal, C, Isaac, V, Lees, Alexander, Parr, CL, Wilson, SK, Young, PJ and Graham, NAJ (2018) The future of hyperdiverse tropical ecosystems. Nature, 559. p. 517. ISSN 0028-0836

DOI: https://doi.org/10.1038/s41586-018-0301-1

Publisher: Springer Nature

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/621350/

Usage rights: C In Copyright

Additional Information: This article was originally published following peer-review in Nature, published by and copyright Springer Nature.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

The future of hyperdiverse tropical ecosystems

- 2 Jos Barlow¹, Filipe França^{1, 2, 3}, Toby A. Gardner⁴, Christina C. Hicks¹, Gareth D. Lennox¹, Erika
- 3 Berenguer^{1,5}, Leandro Castello⁶, Evan P. Economo⁷, Joice Ferreira³, Benoit Guénard⁸, Cecília
- 4 Gontijo Leal⁹, Victoria Isaac¹⁰, Alexander C. Lees¹¹, Catherine L. Parr^{12, 13, 14}, Shaun K. Wilson^{15, 16},
- 5 Paul J. Young¹, Nicholas A. J. Graham¹
- 6 1. Lancaster Environment Centre, Lancaster University, Lancaster, UK
- 7 2. Instituto Federal de Minas Gerais, Bambuí, Brazil
- 8 3. Embrapa Amazônia Oriental, Belém, Brazil
- 9 4. Stockholm Environment Institute, Stockholm, Sweden
- 10 5. Environmental Change Institute, University of Oxford, Oxford, UK
- 11 6. Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, USA
- 12 7. Okinawa Institute of Science and Technology Graduate University, Onna, Japan
- 13 8. School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- 14 9. Museu Paraense Emílio Goeldi, Belém, Brazil
- 15 10. Universidade Federal do Pará, Belém, Brazil
- 16 11. School of Science and Environment, Manchester Metropolitan University, Manchester, UK
- 17 12. School of Environmental Sciences, University of Liverpool, Liverpool, UK
- 18 13. University of Pretoria, Pretoria, South Africa
- 19 14. University of Witwatersrand, Wits, South Africa
- 20 15. Marine Science Program, Department of Biodiversity, Conservation and Attractions,
- 21 Kensington, Australia
- 22 16. Oceans Institute, University of Western Australia, Crawley, Australia
- 23 Preface: The tropics contain the overwhelming majority of Earth's biodiversity: their terrestrial,
- 24 freshwater and marine ecosystems hold over three-quarters of all species, including almost all
- 25 shallow-water corals and >90% of terrestrial birds. Yet, tropical ecosystems are subject to
- 26 pervasive and interacting stressors, such as deforestation, overfishing and climatic change. They
- are also set within a socio-economic context that includes growing pressure from an
- 28 increasingly globalised world, larger and more affluent tropical populations, and the
- 29 continuation of weak governance and limited response capacity. Concerted local, national and
- 30 international actions are urgently required to prevent a collapse of tropical biodiversity.

31 Introduction

- 32 The tropics hold a disproportionate amount of global biological diversity, and are key to meeting
- 33 the international community's aims of socially-just sustainable development and effective
- 34 biodiversity conservation¹. Yet, tropical ecosystems are undergoing rapid environmental, socio-
- 35 economic and demographic change², often driven by forces from extra-tropical, developed
- 36 countries. The scale of these changes is unprecedented, and decisions implemented in the
- 37 coming decades will define the future diversity and sustainability of the tropics.
- 38 Guiding these decisions depends on understanding the diversity and vulnerability of the four
- 39 major tropical ecosystems: the forests and mesic savannas that cover most of the terrestrial
- 40 tropics, the extensive freshwater systems that receive half of the world's rainfall, and the
- 41 shallow-water coral reefs distributed along 150,000 km of coastline (Fig. 1). Here, we quantify
- 42 and review the global importance of tropical biodiversity, evaluate the vulnerability of tropical

1

- 43 ecosystems to proximate stressors, and assess whether global and regional socio-economic
- 44 changes will exacerbate or ameliorate biodiversity loss. We then examine the effectiveness of
- 45 conservation approaches, and highlight the scientific advances required to foster positive
- 46 change and help overcome the challenges arrayed against a sustainable tropical future.

47 The global importance of tropical ecosystems

48 Over evolutionary time, the tropics have acted both as a source and refuge for most extratropical terrestrial and marine species^{3,4}; but just how diverse and irreplaceable are the tropics 49 50 today? The increase in species richness from polar to tropical regions, known as the latitudinal 51 diversity gradient, repeats across a wide range of taxa and biomes. As a result of this gradient, 52 tropical latitudes, which cover just 40% of the Earth's surface, hold a startling proportion of the 53 planet's species: our assessment reveals that almost all shallow-water zooxanthellae corals, 91% 54 of terrestrial birds, and >75% of amphibians, terrestrial mammals, freshwater fish, ants, 55 flowering plants and marine fish have ranges that intersect tropical latitudes (Fig. 2a). For birds, 56 the importance of the tropics extends far beyond 23.5 degrees of latitude, with almost half of all Nearctic species migrating to the Neotropics⁵ and over 2 billion passerine and near-passerines 57 58 crossing the Sahara each autumn⁶. Moreover, a disproportionate number of the world's species 59 are endemic to the tropics. For example, there are 4.5 times more endemic amphibians in the 60 tropics than in temperate regions (Fig 2a). Tropical zones are less important for marine mammals and birds, taxa that peak in diversity at mid-latitudes^{7,8}. Nonetheless, >55% of these 61 62 species use the tropics (Fig. 2a).

- Overall, 78% of species across the ten taxa we assessed occurred within tropical latitudes, but 63 incomplete taxonomic inventories mean that this is almost certainly an underestimate⁹. 64 Between 15,000-19,000 new species are described annually¹⁰, and the majority of recently 65 described terrestrial vertebrates¹¹ or predicted discoveries of invertebrates¹² are from the 66 tropics. Even terrestrial mammals are still being discovered at a rate of c. 25 species a year, with 67 the highest numbers in the Neo- and Afrotropics¹³. Shortfalls in species descriptions for other 68 taxa are often far greater. For example, only 70,000 of an estimated 830,000 multi-cellular 69 plants and animals have been named on coral reefs¹⁴, and the c. 500 spider species described 70 each year represent a tiny fraction of the estimated 150,000 undescribed tropical species¹⁵. 71
- Tropical taxonomic shortfalls are further compounded by a suite of systematic sampling biases. These include undersampling compared with temperate regions¹⁶, the spatial aggregation of sampling effort around coastal areas¹⁷, roads, rivers, urban settlements and high-profile research stations¹⁸, biases in favour of dry-season sampling when many invertebrate taxa are least abundant¹⁹, and the paucity of samples from ecosystems that are harder to access, such as mesophotic and rariphotic reefs²⁰.
- The biological diversity of the tropics is mirrored by many forms of societal diversity²¹. For example, tropical countries contain 40% of the world's population yet 85% of extant languages are spoken within them²². The tropics also provide incalculable benefits to humanity. They house most of the key centres of plant domestication²³ and have been a vital laboratory for the development of science itself – the disciplines of ecology, biogeography and evolutionary

- 83 biology are founded on evidence gleaned from tropical ecosystems. Tropical ecosystems also
- 84 make vital contributions to globally-important ecosystem services: covering just 0.1% of the
- 85 ocean surface, coral reefs provide fish resources for 275 million people that live within 30 km of
- them²⁴ and coastal protection for up to 197 million people²⁵; humid tropical forests cover <12%
- of the world's ice-free land surface but produce 33% of global net primary productivity and
- store 25% of the carbon in the terrestrial biosphere²⁶; while tropical savannas provide a further
- 89 30% of net primary productivity and 15% of carbon storage²⁷. Tropical ecosystems also help
- 90 drive vital atmospheric teleconnections. For instance, 70% of the rainfall in the 3.2M km² *Rio de*
- 91 *la Plata* catchment is estimated to come from evaporation in Amazonia²⁸.

92 Vulnerability of tropical biota and ecosystems

- 93 For all five vertebrate groups with comprehensive IUCN assessments and spatial occurrence data²⁹, globally threatened species are more dependent on the tropics than those classed as 94 Least Concern (Fig. 2b). In addition, 85% of species extinctions from these vertebrate groups 95 have been of species that use the tropics²⁹. Consequently, although extinctions of other groups 96 are less well understood, we can assume that most of the estimated 130,000 modern 97 98 invertebrate extinctions³⁰ will also have been of tropical species. Thus, not only are the tropics 99 vastly more diverse than temperate regions, this diversity is at far greater risk from human impacts³¹. Moreover, given that the tropics have the highest proportion of Data Deficient 100 species and the lowest level of biodiversity-threat assessment¹⁶, information shortfalls mean we 101
- 102 are likely underestimating the vulnerability of the tropical biome. We assessed this vulnerability
- 103 in more depth by examining the effect of local and global stressors, the interactions between
- 104 them, and the resulting changes to tropical ecosystems.

105 Local stressors

- 106 The tropics are subject to some of the highest rates of land-use change and degradation. While 107 the spatial coverage of temperate forests has increased since 1990, tropical deforestation rates 108 exceed 5M ha/yr³². Additional impacts stem from the expansion of large infrastructure projects 109 (e.g. dams) and the growing demand for agricultural commodities, biofuels, timber, fuelwood 110 and other natural resources³³. These all result in severe biotic responses. Even with mitigation, 111 dams present a near-impassable barrier for river fish³⁴, while deforestation replaces a species-
- rich pool of forest-specialists with a smaller pool of common open-area species³⁵. The influence
- of land-use change also extends far into remaining natural areas through isolation and edge
- effects³⁶, additional anthropogenic disturbances³⁷ and altered climatic conditions³⁸. Edge effects
- suppress the abundance of threatened vertebrates up to 200-400 m into tropical forests³⁶,
- 116 leaving almost no core forest refugia in the Brazilian Atlantic Forest where >80% is within 500 m
- of an edge³⁹. Even low levels of landscape modification have significant effects on range-
- restricted species³⁷, and time lags mean that some of the most deleterious effects are observed
 decades after landscape modification⁴⁰.
- 120 Pollution presents a diverse set of threats to tropical ecosystems. Inputs of sediments and
- 121 nutrients from land-use change are well-established drivers of biodiversity loss across
- 122 freshwater⁴¹ and coastal systems, including coral reefs⁴². Pesticide use is increasing across the
- 123 tropics, reflecting rapid intensification of farming practices⁴³ and high pest pressures on tropical

124 crops⁴⁴. Tropical Asian rivers are a major source of the 1.2-2.4 million tonnes of plastic that 125 enters the world's oceans each year⁴⁵, with micro-plastics entering into coral diets⁴⁶ and larger 126 debris increasing rates of coral disease⁴⁷. These examples of chronic pollution are exacerbated 127 by extreme events, such as of the *Fundão* Dam collapse, which released c. 50M m³ of waste into 128 a 600 km stretch of river in south-east Brazil, causing a 7,000 km² toxic plume in the Atlantic

129 Ocean⁴⁸.

130 Overexploitation is also pervasive across the tropics. Fishing has reduced fish biomass by over 75% across a third of coral reefs⁴⁹ and is shrinking the mean body size of exploited freshwater 131 taxa⁵⁰. Hunting contributed to the loss of charismatic mega-herbivores, extirpating African 132 elephants, rhinos and large predators from most of their original ranges^{51,52}. The world's tropical 133 forests are affected by extensive over-harvesting of wildlife³¹, with estimates of the annual 134 harvests of highly-trafficked animals such as pangolins reaching into the millions of individuals⁵³. 135 Moreover, the growth in non-food uses of wildlife means that even small-bodied songbirds are 136 137 at risk of global extinction⁵⁴. Overexploitation also extends beyond fauna and is driving economically valuable tropical trees to extinction⁵⁵. 138

139 Invasive species have been the second most important extinction driver of vertebrates since 1500 CE⁵⁶. Within terrestrial ecosystems, invasive species have exerted the strongest influence 140 on islands and coastal mainlands⁵⁷, having driven thousands of species extinctions and altered 141 trophic structures⁵⁸. On continents, they currently have a greater impact on economically 142 143 developed and extra-tropical regions, but tropical ecosystems are predicted to become 144 increasingly vulnerable to invasion in the 21^{st} century⁵⁹. Despite a deficit of research in the tropics⁶⁰, two prominent examples highlight the scope and magnitude of species invasions into 145 146 terrestrial tropical ecosystems: there has been an 84% increase of alien species detections between 2003 and 2010 in Singapore⁶¹, while invasive African grasses could threaten up to 147 380,000 km² of Australia's savannas by promoting landscape flammability⁶². In aquatic 148 ecosystems, invasive predatory fishes, such as the Indo-Pacific lionfish in Caribbean coral reefs⁶³ 149 and the Nile perch in African lakes⁶⁴, have contributed to the loss of native species. Marine 150 151 invasions are also facilitated by the mass transport of species in ship ballast water, resulting in 152 widespread biotic homogenisation⁶⁵.

153 Global climatic change

154 While many of the "local" stressors described above are promoted by globalised drivers, climate 155 change is truly global. Increases in atmospheric CO₂ concentrations to levels >400 ppm has 156 important implications for tropical terrestrial and aquatic ecosystems. Ocean acidification from 157 dissolved CO₂ is changing ocean chemistry to the extent that declining coral calcification has already been detected⁶⁶. Conditions for reef accretion and growth may be mostly absent 158 159 throughout the tropics by 2100 under business-as-usual emission scenarios⁶⁷. Within savannas, elevated CO₂ levels favour the growth of woody plants over grasses, contributing to woody 160 encroachment and the potential for a switch in biome state 68,69 . CO₂ fertilisation may have also 161 162 contributed to enhanced tree productivity and mortality rates observed in humid tropical 163 forests⁷⁰.

164 Global warming does not proceed at the same rate across the planet. Although the greatest 165 absolute temperature increases are occurring at higher latitudes, the tropics are already some of the hottest places on the planet and have the lowest inter-annual temperature variability 71,72 . 166 Consequently, they will be the first areas to experience significantly warmer climates than the 167 present day⁷² and will endure climatic conditions without present-day equivalents⁷¹. In addition, 168 some of the most important climate oscillations, including El Niño and the Indian Ocean Dipole, 169 170 take place within, and have their greatest influence on, tropical regions. It is unclear if these 171 oscillations will change in a warming world, but extremes of their phases have the potential to 172 exacerbate or ameliorate the overall warming trend. One outcome of increasing temperatures is the poleward shifts of species ranges or movement to higher altitudes or deeper depths⁷³. For 173 example, corals in southern Japan are extending northwards at c. 14 km/yr⁷⁴, and temperate 174 macroalgal communities are being replaced with corals and other tropical species along large 175 stretches of Australian coastline⁷⁵. Latitudinal shifts in terrestrial and freshwater tropical species 176 distributions are less certain because of the many natural and anthropogenic barriers, and the 177 178 low dispersal capacity of many tropical species⁷⁶. Furthermore, the responses of terrestrial species are defined by changes in rainfall as well as temperature⁷⁷. 179

180 If movement is not an option, tropical species must adapt or face extinction. Unfortunately, 181 there is evidence that some species are either approaching their physiological limits or are unable to adapt to the rate of environmental change 78 . Increasing ocean temperature extremes 182 183 are driving mass bleaching events and mortality of reef-forming corals, with the time between 184 bleaching events declining by 76-80% since the early 1980s⁷⁹. Higher temperatures also affect tropical vertebrates, causing, for example, an extreme female bias in the sex ratio of green 185 turtles in the warmer regions of the Great Barrier Reef⁸⁰ and a reduction in the reproductive 186 success of African wild dogs⁸¹. Altered rainfall is also critical. Droughts are drying up biologically 187 diverse small streams⁸², while even modest changes in dry-season length increase tropical tree 188 mortality⁷⁰ and modify tropical forest bird community structure⁸³. 189

- 190 Stressor interactions and indirect effects
- Stressors affecting tropical species can interact in myriad ways⁸⁴. We demonstrate this by
 compiling data from six case studies within a co-tolerance framework that allows species
 responses to two dominant stressors to be examined⁸⁵. Only a small subset of species or genera
 (8-32%) showed no or positive responses when both stressors were combined (Fig. 3), and up to
 55% fell within the "double jeopardy" quadrant, indicating a negative response to both
 stressors. While our summary does not quantify the magnitude of effects, it clearly
 demonstrates that stressors can act together to reduce the abundance or occupancy of tropical
- 198 species. Moreover, these co-tolerance analyses simplify the reality facing tropical ecosystems
- 199 because most are affected by more than two stressors at any given location and time⁸⁴.
- 200 Many changes to tropical ecosystems result from indirect consequences of single or multiple
- 201 stressors. On coral reefs, nutrient inputs from land may increase susceptibility to coral
- 202 bleaching, disease, and outbreaks of pests⁸⁶, while poleward reef expansion is supported by
- 203 feedbacks from range-shifting tropical herbivorous fish⁷⁵. Overexploitation can result in
- 204 surprising changes in tropical ecosystem properties through trophic cascades. For instance, the

- 205 extirpation of a single detritivore fish species in the Orinoco basin reduced downstream organic-
- 206 carbon transport, increasing net primary productivity and respiration⁸⁷. On reefs, overfishing of
- 207 keystone predators has repercussions for benthic structure⁸⁸, while removal of herbivores can
- 208 limit coral recovery from mass-mortality events⁸⁹. In mesic savannas, changes to herbivore
- 209 numbers alter ecosystem functions and structure via their interactions with wildfire regimes⁹⁰.
- 210 Invasive species are also frequently linked to other stressors: the introduction of the Nile perch
- 211 played a major role in the decline of endemic fish species in Lake Victoria, but its effects were
- 212 likely catalyzed by a combination of other drivers including soil erosion, eutrophication and
- 213 overfishing⁶⁴.

214 Ecosystems in transition

215 Interactions between multiple anthropogenic stressors are causing pervasive changes in the

tropics, such that alternate states are emerging across all major tropical ecosystems (Box 1).

217 Perhaps counter-intuitively, trees are encroaching on savannas while grasses are invading

- 218 disturbed tropical forests but in both cases, changes are from species-rich to species-poor
- 219 systems^{68,91}.
- 220 These drastic ecosystem transitions are accompanied by widespread modification of species
- 221 composition. For example, the relative abundance of coral species has been altered on reefs
- that maintain coral dominance⁹²; extirpation of native fish has followed species introductions in
- 223 lakes⁶⁴; liana biomass has increased in otherwise undisturbed Neotropical forests⁹³; and
- 224 patterns of plant regeneration in humid forests have been altered by the overharvesting of
- seed-dispersing vertebrates^{31,94}. Altered species composition is a cause for concern because it
- 226 could signal the onset of more severe modification, especially if dominant species are
- vulnerable or if there are cascading implications for ecosystem functioning. The collapse of
- 228 Jamaican coral reefs provides one of the starkest examples. First, chronic overfishing depleted
- herbivorous fish populations, leaving the system over-reliant on sea urchins for grazing algae.
- 230 Then Hurricane Allen impacted the system in 1980, creating a substantial amount of dead
- substrate. Although corals began recovering after the hurricane, the subsequent mass mortality
- of sea urchins due to disease, combined with the already low abundance of herbivorous fish, led
- to a phase shift from coral to macroalgal dominance 95,96 .

234 Socio-economic context and response capacity

- 235 The interacting proximate stressors causing tropical environmental change are underpinned by
- broader changes in socio-economic and political factors. We examined the trajectories of four
- 237 types of underlying distal drivers, including demography (Fig. 4a-b), socio-political factors (Fig.
- 4c-d), markets (Fig. 4e-f) and technology (Fig. 4g-h)⁹⁷ to explore how tropical countries are
- changing relative to the rest of the world and to evaluate the relative influence of local and
- 240 global drivers. We also examined how the capacity of tropical countries to reduce or cope with
- 241 proximate stressors compares to non-tropical countries based on underlying governance (Fig.
- 242 4i-j) and research capacity (Fig. 4k-l).
- 243 The immense biodiversity of the tropics exists in the context of rapid demographic and
- economic growth (Fig. 4a-b). Human population is growing at a faster rate in the tropics than

elsewhere (Fig. 4a) and by 2050 half of the world's population will live in the tropics². These 245 246 demographic changes are accompanied by steady GDP growth, linked, in part, to the rapid 247 expansion of agricultural and extractive industries. However, tropical per capita GDP – an important measure of human well-being – remains far lower than the non-tropical average (Fig. 248 249 4b), and the rates of change suggest little closing of the inequality gap between global south and north⁹⁸. Although the relationship between development and natural resource conservation 250 does not have to be negative^{99,100}, measures reflecting higher social performance are almost 251 always associated with higher resource use¹⁰⁰. A larger and more affluent tropical population 252 253 will increase demands for timber, water, food, energy, and land, all of which are strongly linked 254 with environmental degradation.

These internal changes will be exacerbated by economic growth in non-tropical countries, and 255 the continued displacement of environmental impacts to less-developed areas¹⁰¹. Indeed, 256 despite high levels of tropical cultural diversity^{21,22}, external socio-political influences (Fig. 4c-d) 257 258 suggest that tropical countries have become increasingly susceptible to globalisation. For 259 example, the proportion of imported food crops (Fig. 4c) and foreign-land acquisitions are far higher in the tropics than elsewhere (Fig. 4d) and are associated with extensive road building¹⁰² 260 and agricultural investment¹⁰³. These trends towards increasing tropical globalisation are 261 262 reinforced by changes in market integration (Fig. 4e-f) and technological development (Fig. 4g-263 h). For example, agricultural exports (Fig. 4e) are steadily increasing, albeit from a far lower 264 baseline than the rest of the world. Moreover, given comparatively low levels of adoption of 265 technological developments, such as industrial fishing techniques (Fig. 4g) or fertilizers (Fig. 4h), there is enormous risk that the rate of natural resource extraction in many tropical countries 266 will increase further, supplying both domestic and export markets^{104,105}. Taken together, these 267 examples highlight the crucial role that external markets will play in determining the fate of 268 269 tropical ecosystems.

Effective environmental governance (Fig. 4i-j) is a necessary condition for improved 270 sustainability outcomes¹⁰⁶, particularly when domestic (Fig. 4a-d) and global (Fig. 4c-f) distal 271 272 drivers are expected to exert increasing and unsustainable pressure on tropical ecosystems^{2,103}. 273 However, the World Bank's national-level assessments of governance effectiveness from the 274 tropics sit in stark contrast to measures from extra-tropical countries, with no sign of 275 improvement (Fig. 4i). External support for environmental governance may help where local 276 governance is weak (Fig. 4). Yet, despite greater OECD (Organisation for Economic Cooperation 277 and Development) environmental aid in the tropics than elsewhere (Fig. 4j), these investments 278 are dwarfed by the value of domestic resource extraction (e.g. agricultural exports; Fig. 4e), the 279 value of which is two orders of magnitude greater than overseas environmental aid. 280 Furthermore, OECD environmental aid has been declining in recent years and seems unlikely to 281 increase in the short term¹⁰⁷.

Low governance capacity in the tropics is further exacerbated by insufficient research and

283 development investment (Fig. 4k) and low levels of scientific output (Fig. 4l). Research

284 investment is critical for driving innovation and the development of evidenced-based solutions

to environmental degradation¹⁰⁸. Despite some notable centres of excellence, the vast majority

of biodiversity-related data and research is concentrated in wealthy, non-tropical countries¹⁷

- and manuscripts submitted by authors from low-income countries are less than half as likely to
- 288 be published as those from high-income countries¹⁰⁹. These trends highlight an alarming
- 289 disconnect between the global scientific process and the people that are most capable of
- 290 engaging with decision makers, who have the best understanding of local context and, arguably,
- 291 have the strongest incentive to achieve positive impacts through their research.

292 Diverse solutions for diverse systems

293 Tropical ecosystems – and therefore at least 78% of the world's biodiversity (Fig. 2a) – are at a critical juncture. Multiple interacting local and global stressors (Fig. 3) that are driving species 294 extinctions and potentially irreversible ecosystem transitions^{92,110} (Box 1) are set within a 295 296 changing socio-economic context (Fig. 4). This changing context is characterised by growing and 297 more affluent populations, an increasingly globalised world, and weak governance and research capacity - all of which threatens to increase environmental degradation, conflict and 298 inequality¹⁰³. Countering these threats requires major improvements in local and global 299 300 governance capacity and a step-change in how environmental objectives are integrated into broader development goals¹¹¹. We review the opportunities and limitations presented by three 301 well-established and non-mutually exclusive approaches to conservation, before highlighting 302 303 priorities for research.

304 *Conservation approaches*

305 A fundamental element of tropical conservation relies on protected areas to limit demographic 306 pressures and the impact of local stressors. These are supported by a wealth of scientific evidence outlining the pervasive impact of local stressors across tropical ecosystems^{37,49} (Fig. 3) combined 307 with an eco-centric philosophy that emphasizes the intrinsic rights of nature¹¹². Yet, despite 308 significant expansion of protected-area coverage in the marine and forested tropics¹¹³, the 309 current network remains poorly designed, has very limited coverage of tropical freshwaters and 310 grasslands, and is inadequately resourced¹¹⁴. Moreover, a strategy focused solely on protected 311 areas will not foster environmental conservation outside of reserves¹¹⁵ and fails to engage with 312 313 the distal drivers of biodiversity loss (Fig. 4) that can undermine the effectiveness of protected 314 areas themselves¹¹⁶.

315 A second set of approaches for tropical conservation is based on the notion that people need to 316 perceive the benefits of nature to justify conservation. These emphasize the need to pursue 317 conservation objectives in human-dominated landscapes, the provision of ecosystem services, and the involvement of private-sector actors. In the tropics, they are epitomised by the growth 318 in market-based conservation payment mechanisms, such as REDD+¹¹⁷, investments in the "blue 319 economy"¹¹⁸ and a step change in the number of companies making sustainability 320 commitments¹¹⁹. These approaches have strengthened the conservation toolkit, especially 321 322 where strict regulatory approaches have failed. Encouraging examples range from the positive effects of commodity certification (e.g. palm oil¹²⁰) to payment for ecosystem service schemes 323 (e.g. watershed protection¹²¹). However, such approaches also attract significant criticism with 324 implementation often lagging commitments¹¹⁹, persistent concerns around the social legitimacy 325 of compensation schemes¹²², and the misalignment of market-based mechanisms with local 326 needs and perceptions of environmental values¹²³. 327

328 A third and more diverse set of approaches is based on recognition of the interdependencies between people and nature, the coevolution of ecological and socio-economic systems at local, 329 regional and global scales¹²⁴, and perspectives about the co-existence of people and nature. This 330 set of more "systems-based" approaches includes: (1) an appreciation of the importance of 331 bottom-up, community-based conservation approaches in human-dominated land- and 332 seascapes (e.g. small-scale fisheries¹²⁵ and community-managed forests¹²⁶); (2) recognition of 333 the role of indigenous people as environmental stewards, and shifts towards an appreciation of 334 more collective relationships with nature (e.g. the Ecuadorian constitution¹²⁷); (3) landscape-335 and ecosystem-wide approaches that attempt to bridge the role of actors working at different 336 scales and in different sectors (e.g. jurisdictional approaches to curb deforestation¹²⁸); and (4) a 337 338 more explicit accounting of multi-scale feedbacks, including the role of distant market actors and distal drivers¹²⁴. These broad, multi-layered "people and nature" approaches hold 339 considerable appeal, but the inherent complexity of local contexts can make them challenging 340 to conceptualize, implement and measure in joined-up and consistent ways¹²⁹. 341

342 Acting together and acting now

343 The three broad approaches to the conservation and governance of tropical ecosystems 344 outlined above are often associated with alternative researcher and practitioner 345 worldviews^{130,131}. But the inherent ecological diversity (Fig. 2a), vulnerability (Figs. 2b & 3) and socio-economic complexity (Fig. 4) of the tropics highlights the importance of pluralism¹³² and 346 the need to adopt a variety of what are often complementary and synergistic approaches¹³¹. For 347 348 all their limitations, protected areas are indispensable to limit the impact of local stressors, and it will be impossible to avoid further biodiversity loss unless they are strengthened and 349 expanded¹³³. However, conservation strategies must also address the underlying drivers of 350 environmental change (Fig. 4) and avoid exacerbating deeply rooted inequalities¹¹⁵. Practice is 351 always messier than theory, and the adoption of more sustainable management systems is 352 353 usually only possible with the support of a range of actors, as can be seen in the recent 354 successes of some hybrid governance approaches, with government, the private sector, and civil society organizations all playing vital roles¹³⁴. 355

- 356 Another clear message is that conservation efforts need to operate at local, regional and global scales to be effective. Many distal drivers are disconnected from sites of impact in both space 357 358 and time, and the engagement of external actors, including in distant markets and governance 359 processes, is often essential to ensure that local efforts are effective. These include more strategic integration of environmental policy with development goals¹³⁵, the need for 360 multinational environmental governance approaches, especially for aquatic systems⁸², and 361 362 recognition of the importance of tackling demand for unsustainable products from downstream buyers and investors¹¹⁹. The capstone of such efforts lies in the urgent need to deliver on the 363 Paris Agreement, without which climate change will undercut or even negate hard-won local 364 conservation successes, whether in coral reefs⁹² or tropical forests¹¹⁰. 365
- Finally, we need to act now to address the pressing environmental challenges facing the tropics.
 This means being adaptive, learning by doing and embracing innovation. The last decades have
 seen a boom in proposals, innovations, and insights about the governance and management of

- tropical ecosystems, ranging from more technocentric proposals to facilitate the evolution of
- 370 climate-tolerant corals¹³⁶; ecological engineering to recover lost trophic interactions by species
- 371 re-introductions, ecological replacements and rewilding¹³⁷; to radical new legal frameworks such
- 372 as France's "Loi de vigilance" (2017-399) that places an unprecedented due diligence obligation
- on major companies to assess social and environmental risks in their supply chains beyond
- 374 French borders. While these innovations serve different purposes and are varyingly scalable,
- they illustrate the potential of solutions-based science and conservation. Of course, acting now
- does not mean ignoring the existing evidence base or making uninformed decisions. Rather, it is
- 377 vital that researchers and decision makers are vigilant to opportunities and risks and are willing
- 378 to learn lessons.

379 Keeping pace with the Anthropocene

All approaches to governing tropical ecosystems will be more effective if they have legitimate local support and are based on strong scientific evidence that ensures, for example, that protected areas are located where they are most needed, ecosystem services are accurately quantified, extractive activities such as fishing and logging are managed sustainably, and underlying drivers of environmental degradation are identified and understood. Whilst these

- challenges are common to all conservation and sustainability science, they are magnified in the
- tropics due to their unique diversity, high vulnerability and the low research capacity of most
- tropical countries. Here, we examine four areas where research effort can be more closely
- aligned with some of the priorities highlighted by this review.

389 Addressing key knowledge shortfalls

390 Our understanding of tropical biodiversity is limited by significant knowledge shortfalls in taxonomy and species distributions¹³⁸. Overcoming these shortfalls will require targeting 391 392 resources towards the information "black holes" that cover large regions of the tropics¹⁸. At the ecosystem level, there is a need for increased study of structurally and functionally distinct 393 systems, particularly tropical grassy biomes⁶⁸, dry forests¹³⁹ and low-order stream systems¹⁴⁰. 394 395 Progress in these areas will likely be aided by significant advances in DNA sequencing and 396 informatics, which have the potential to invigorate taxonomic discovery, and reaching across 397 cultural divides to incorporate national, regional and local knowledge that often remains ignored because it is not in English¹⁴¹, included in standard databases¹⁴², or recognised by 398 conventional science¹⁴³. 399

400 Understanding vulnerability

Our growing knowledge of the role of individual stressors, such as landscape configuration or
 overexploitation, needs to be complemented by research on the impact of multiple stressors⁸⁴,

- 403 which could help predict and mitigate complex biotic responses when climate and local
- 404 stressors act in concert (Fig. 3). Other harder-to-study but important phenomena include the
- 405 role of time lags or extinction debts⁴⁰, trophic cascades³¹, or trajectories of ecosystem
- 406 degradation and recovery in the face of unprecedented environmental change¹⁴⁴. Revealing
- 407 these more complex forms of vulnerability will often demand longer-term and larger multi-scale
- sampling and monitoring programs. New approaches are also needed to overcome one of the

409 more intractable challenges of tropical ecology: we often know least about the rarest and most410 vulnerable species or taxonomic groups.

411 Understanding distal drivers

412 Conservation does not occur in a vacuum, and localised interventions are likely to be much 413 more effective if they are guided by a closer understanding of underlying distal drivers of 414 biodiversity loss and environmental change – including identifying the actors behind such 415 drivers, helping to determine potential trigger points and identifying more effective policy responses⁹⁷. Unpicking the role of distal drivers is essential to understand how distant 416 interactions between social and environmental systems shape local environmental outcomes¹⁴⁵. 417 418 Careful study has revealed many surprising interactions, such as links between the 419 intensification of commercial fishing and increased bushmeat exploitation in west Africa¹⁴⁶, the role of warfare in driving African mammal declines¹⁴⁷, or the role of exchange rates in driving 420 deforestation¹⁴⁸. Achieving this deeper understanding requires greater integration of the natural 421 422 and social sciences, with interdisciplinarity included as a core element of tropical-conservation research¹⁴⁹. 423

424 From research to impact

- 425 Achieving positive impacts from conservation research relies on building a stronger science-
- 426 society interface that challenges the oversimplified assumption of a linear flow from knowledge
- 427 to action¹⁵⁰. Engendering positive changes will require closer participation of practitioners in the
- 428 research process and investments in outreach activities and professional capacity building¹⁵⁰.
- 429 These will be supported by studying the knowledge exchange process itself, including the critical
- 430 role played by knowledge brokers and boundary organizations^{151–153}. Part of this process will
- 431 involve a focus on success stories, or "bright spots", enabling the social, institutional, and
- 432 environmental conditions that create positive outcomes to be identified and replicated¹⁵². The
- 433 positive social and ecological outcomes from innovative restoration and rewilding programmes
- 434 in Costa Rica and Mozambique demonstrate the potential for positive action¹⁵⁴.
- Local managers and scientists have a vital role to play in designing and implementing research
- 436 that can inform regionally-appropriate conservation actions¹⁵⁵ at present, our knowledge of
- 437 hyperdiverse ecosystems is over reliant on inferences gleaned from distant research stations or
- 438 inappropriate temperate theoretical constructs^{18,156}. Research is also more likely to have an
- 439 impact if the spatial scale of studies is more closely matched to the administrative scale at which
- 440 resource decisions are taken¹⁵⁷. Sustaining research programmes and learning networks in study
- 441 landscapes can also help build the vital relationships between researchers, local knowledge
- 442 holders and decision makers¹⁵⁵.
- Achieving these changes requires building on trends in the technological, disciplinary and
- 444 cultural dimensions of research practice. In the technological domain, opportunities for data
- 445 collection have been revolutionised by developments in remote sensing and drones¹⁵⁸, the
- 446 plummeting costs of DNA technologies¹⁵⁹, and the step changes in bioinformatics that have
- allowed big data to be stored and retrieved in open-access platforms¹⁶⁰. In the disciplinary
- 448 domain, the last decade has seen a marked uptick in inter- and transdisciplinary research, with a

- 449 greater though still insufficient integration of natural and social sciences. This has resulted in
- 450 an increasing openness of researchers towards methodological pluralism and mixed-method
- 451 approaches¹⁵⁰ and growing recognition of the contribution that can be made by local people,
- 452 citizen- and para-scientists in biodiversity research¹⁶¹. Changes in research culture include the
- 453 greater internationalisation of ecological science and closer approximation with society¹⁵⁰, both
- of which can help foster a more fertile ground for knowledge exchange and capacity building.
- 455 Notable advances include the development of multi-disciplinary and multinational learning
- 456 networks¹⁶², exponential growth in author teams¹⁶³, and major syntheses such as the
- 457 Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES).
- 458 Recent years have seen a new awakening of environmental consciousness and calls for decisive
- 459 action, manifest, for example, in the Paris Agreement, the Sustainable Development Goals, and
- 460 voluntary Zero Deforestation Commitments. Tropical and non-tropical scientists can inform
- 461 these endeavours by developing a reliable knowledge base and innovative management
- 462 interventions. Overcoming the remaining research challenges is far from trivial and will require
- 463 a massive investment of resources to develop scientific infrastructure and capacity within
- 464 tropical nations, as well as profound changes to ways of working and the relationship between
- the research process and society at large. But a failure to act decisively and to act now will
- greatly increase the risk of unprecedented and irrevocable biodiversity loss in the hyperdiversetropics.

468 Acknowledgements

- 469 For providing data, we thank Birdlife, International Union for Conservation of Nature, Ocean
- 470 Biogeographic Information System, Charlie Veron for zooxanthellate corals, the Large-Scale
- 471 Biosphere-Atmosphere Program (LBA) and National Environment Research Council grant
- 472 NE/P004512/1 for forest birds, John Fell Fund for savanna birds, Pew Marine Fellows Program of
- 473 The Pew Charitable Trusts for freshwater fish, and Brazilian Council for Scientific and
- 474 Technological Development (CNPq) (PELD 441659/2016-0). Individual funding was provided by
- 475 National Environment Research Council NE/K016431/1; NE/P004512/1; NE/L000016/1;
- 476 European Research Council 759457; NASA's Interdisciplinary Research in Earth Sciences
- 477 program (NNX14AD29G); OIST and JSPS KAKENHI (JP17K15180); CNPq scientific productivity
- 478 grant (307788/2017-2); CNPq Programa de Capacitação Institucional (300231/2016-4); and
- 479 Royal Society (UF140691).

480 Author contributions

481 JB developed the review with input from NAJG, TAG, CH, ACL and JF. FF and GDL analysed the

data, supported by JB, TAG, CH, EB, LC, EPE, BG, CGL, VI, ACL, CLP, SW, PJY and NAJG. JB, TAG,
CH, NAJG, LC, ACL, CLP, FF and GDL wrote the manuscript with input from all authors.

- 484 Reprints and permissions information is available at www.nature.com/reprints.
- 485 The authors declare no competing interests.
- 486 Correspondence and requests for materials should be addressed to josbarlow@gmail.com

- 487 Supplementary Information is linked to the online version of the paper at
- 488 www.nature.com/nature

489 Figure legends

- 490 **Figure 1 | The tropical biosphere**. **a**, Tropical terrestrial and marine biomes. The tropical
- 491 terrestrial biome (green) was defined as all tropical mesic ecoregions¹⁶⁴. These ecoregions span
- 492 82% of the 50 million km² of land between 23.5° N and 23.5° S, but extend into the subtropics in
- 493 some areas. The tropical marine biome was defined by the 1988-2018 mean minimum monthly
- 494 18 °C sea-surface isotherm. This isotherm bounds the latitudinal extent of shallow-water coral-
- 495 forming ecoregions (blue)¹⁶⁵. **b**, The Intertropical Convergence Zone (ITCZ). The ITCZ was defined
- 496 by 1979-2017 mid-summer (January turquoise colour gradient and July red colour
- 497 gradient) mean monthly total rainfall >20 cm (where both January and July had rainfall >20 cm,
- 498 we show that with the largest total). The ITCZ is a strong predictor of the distribution of tropical
- 499 ecoregions (a). Data sources are presented in Extended Data Table 1.

500 Figure 2 | Tropical hyperdiversity. a, The proportion of species found within tropical latitudes 501 for ten taxonomic groups. Bars are colour-coded to show the percentage of species ranges that 502 overlap the tropics. n gives the total number of species analysed in each group. Black boxes 503 around each bar show the proportion of all species that are endemic to the tropics. Only birds, 504 amphibians and mammals have been comprehensively sampled. Numbers at the end of the bars 505 give the precise percentage of species whose ranges overlap tropical latitudes, as shown in the 506 bars. b, The difference in the proportion of threatened (Critically Endangered, Endangered, and 507 Vulnerable) and non-threatened (Least Concern) species found exclusively within tropical 508 latitudes for the five comprehensively sampled groups. Data from: Birdlife International for birds, the IUCN²⁹ for amphibians and mammals, the Ocean Biogeographic Information System 509 for marine fish, Charlie Veron for shallow-water zooxanthellate corals, Tedesco et al.¹⁶⁶ for 510 511 freshwater fish, and the Global Biodiversity Information Facility for angiosperms. Data sources 512 are presented in Extended Data Table 1.

- 513 Figure 3 | Vulnerability of tropical biota to local and climatic stressors. Species co-tolerance to a local and climate-associated stressor⁸⁵. The x-axis shows responses to fishing for corals (a) and 514 515 reef (b) and freshwater fish (c); land-use change/deforestation for small-stemmed trees ($2 \leq$ 516 DBH <10 cm; (d)) and forest birds (e); and fire suppression for savanna birds (f). The y-axis 517 represents longitudinal responses to climate-associated events: the 2015-16 and 1997-98 coral 518 bleaching events in the Seychelles for, respectively, corals (a) and reef fish (b); the 1997-98 El 519 Niño-induced drought for lower Amazonian freshwater fish (c); Amazonian fires during the 520 2015-16 El Niño for small-stemmed trees (d) and forest birds (e); and shrub encroachment 521 between 1998-2008 in South Africa for savanna birds (f). Species relative density is represented 522 from low (dark blue) to high (light green). The four quadrants represent the location of 523 "Survivor" species tolerant to both stressors (green), species only susceptible to local stressors 524 (yellow), species only vulnerable to climate-associated stressors (blue) and "double-jeopardy" 525 species susceptible to both stressors (red). Numbers show the percentage of species that fall 526 into the quadrant. n gives the total number of species – or genera for corals. Data sources are 527 presented in Extended Data Table 1.
- Figure 4 | Socio-economic drivers of biodiversity loss and societal response capacities. Green
 lines represent countries with >50% of their area within tropical latitudes; purple dashed-lines

531 within tropical countries. a, Global population (1960-2016). b, Gross domestic product (GDP) per capita (2011 \$US based on purchasing power parity; 2000-2016). c, Foreign food crops (1961-532 533 2009). d, Cumulative overseas land ownership (2001-2017). e, Domestic and international 534 airline passengers (1970-2016). f, Agricultural and forestry commodities export value (2001-535 2016). g, Bottom and pelagic trawler catch tonnages (1960-2014). h, Total fertilizer (nitrogen, 536 potash, and phosphate) consumption relative to crop area (2002-2013). i, Government 537 effectiveness index (2000-2016). j, Environmental protection aid (2000-2016). k, Public and 538 private sector research and development expenditure (% GDP) (2000-2015). I, Scientific and 539 technical journal articles per million people in the fields of physics, biology, chemistry, 540 mathematics, clinical medicine, biomedical research, engineering and technology, and Earth and

represent all other countries; grey-shaded areas represent the proportion of the global total

541 space sciences (2003-2016). Data sources are presented in Extended Data Table 1.

542 Box

530

BOX 1 Ecosystems in transition

macroalgae, sponges, or succession towards closed-canopy forests^{91,168}. These sediment-laden turf algae domination^{88,95}. During the 1998 wildfires result from the global coral-bleaching event, combination of local actions (e.g. >90% of live coral died in the agriculture practices, logging) and inner Seychelles and nearly half of the reefs transitioned to fleshy climate change that has increased wildfire-promoting weather¹⁶⁹. macroalgal regimes⁸⁹.

altered system functioning68 Causes are mixed: regime shifts to forest-associated ecosystems have been attributed to fire suppression policies (e.g. Brazilian Cerrado [c] to Forest [d] ¹⁶⁹), changes in herbivory and

increasing atmospheric CO269.

The boom inhydropower-dam

construction is affecting large tropical river basins¹³⁵. The transformation of lotic to lentic conditions reduces access to riparian and floodplain habitats that are nursery areas and feeding grounds for much of the higher biota, leading to major shifts in species composition and ecosystem function⁸².

Images from Jos Barlow (a), Nick Graham (b); Giselda Durigan (c-d), and Cecília Gontijo Leal (e); used with permission

543 Box text

- 544 Box 1. Tropical ecosystems in transition.
- Forests (a): Wildfires in historically fire-free humid tropical forests¹⁶⁷ can lead to the dominance 545
- of grassy vegetation that impedes succession towards closed-canopy forests^{91,168}. These 546
- 547 wildfires result from the combination of local actions (e.g. agricultural practices, logging) and
- 548 climate change that has increased wildfire-promoting weather¹⁶⁹.
- Corals (b): Chronic local stressors and acute climatic stressors can lead to coral cover being 549
- replaced by macroalgae, sponges, or sediment-laden turf algae^{89,95}. During the 1998 global 550
- 551 coral-bleaching event, >90% of live coral died in the inner Seychelles and nearly half of the reefs
- 552 transitioned to fleshy macroalgal regimes⁸⁹.
- Savannas (c-d): Woody encroachment is occurring in many savannas⁶⁹, causing biodiversity loss 553
- and altered system functioning⁶⁸. Causes are mixed: regime shifts to forest-associated 554
- 555 ecosystems have been attributed to fire suppression policies (e.g. Brazilian Cerrado [C] to Forest
- $[D]^{170}$), changes in herbivory and increasing atmospheric CO₂⁶⁹. 556

- 557 <u>Freshwater (e):</u> The boom in hydropower-dam construction is affecting large tropical river
- basins¹³⁵. The transformation from lotic to lentic conditions reduces access to riparian and
- floodplain habitats that are nursery areas and feeding grounds for much of the higher biota,
- 560 leading to major shifts in species composition and ecosystem function⁸².

561	Refei	rences
562	1.	SDG. Sustainable Development Goals. (2018). Available at:
563		https://sustainabledevelopment.un.org/sdgs. (Accessed: 20th January 2018)
564	2.	Edelman, A. et al. State of the Tropics: 2014 Report. (2014).
565	3.	Moreau, C. S. & Bell, C. D. Testing The Museum Versus Cradle Tropical Biological Diversity
566		Hypothesis: Phylogeny, Diversification, And Ancestral Biogeographic Range Evolution Of
567		The Ants. <i>Evolution (N. Y)</i> . 67, 2240–2257 (2013).
568	4.	Jablonski, D. et al. Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity
569		Gradient. Science (80). 314, 102–106 (2006).
570	5.	DeGraaf, R. M. & Rappole, J. H. Neotropical Migratory Birds: natural history, distribution,
571	_	and population change. (Cornell University Press, 1995).
572	6.	Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa - 2.1 billion
573	_	birds on migration. <i>Oikos</i> 118, 624–626 (2009).
574	7.	Tittensor, D. P. <i>et al.</i> Global patterns and predictors of marine biodiversity across taxa.
575	0	<i>Nature</i> 466, 1098–1101 (2010).
576	8.	Chown, S. L., Gaston, K. J. & Williams, P. H. Global patterns in species richness of pelagic
577	0	seabirds: the Procellariiformes. <i>Ecography (Cop.).</i> 21 , 342–350 (1998).
578 579	9.	Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How Many Species Are There on Earth and in the Ocean? <i>PLoS Biol.</i> 9 , e1001127 (2011). Develops a new
579		method to quantify the completeness of taxonomic inventories.
581	10.	Tancoigne, E. & Dubois, A. Taxonomy: no decline, but inertia. <i>Cladistics</i> 29, 567–570
582	10.	(2013).
583	11.	Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity
584		and conservation. <i>Proc. Natl. Acad. Sci.</i> 110, E2602–E2610 (2013).
585	12.	Guenard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions
586		where new discoveries are most likely are under disproportionate deforestation threat.
587		Proc. Natl. Acad. Sci. 109, 7368–7373 (2012). Identifies "hotspots of discovery" for ant
588		species.
589	13.	Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are
590		there? J. Mammal. 99, 1–14 (2018). Shows that the Neo- and Afrotropics contain the
591		highest number of newly recognised mammal species.
592	14.	Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global
593		estimates. <i>Curr. Biol.</i> 25, 500–505 (2015).
594	15.	Agnarsson, I., Coddington, J. A. & Kuntner, M. in Spider research in the 21st century:
595		trends and perspectives (ed. Penney, D.) 58–111 (Siri Scientific Press, 2013).
596	16.	Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: Addressing
597	47	disparity in global monitoring. <i>Trop. Conserv. Sci.</i> 1, 75–88 (2008).
598	17.	Fisher, R. <i>et al.</i> Global mismatch between research effort and conservation needs of
599 600	10	tropical coral reefs. <i>Conserv. Lett.</i> 4 , 64–72 (2011).
600 601	18.	Gardner, T. A. <i>et al.</i> Prospects for tropical forest biodiversity in a human-modified world. <i>Ecol. Lett.</i> 12 , 561–582 (2009).
601	19.	Barlow, J., Overal, W. L., Araujo, I. S., Gardner, T. A. & Peres, C. A. The value of primary,
603	19.	secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J.
604		Appl. Ecol. 44, 1001–1012 (2007).
605	20.	Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the Mesophotic. <i>Sci. Rep.</i> 8 , 4920
606	_0.	(2018).
607	21.	Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent
608		human cultural diversity: Do humans follow biogeographical rules? <i>Evol. Ecol. Res.</i> 4 ,
609		371–383 (2002).
610	22.	Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World. <i>Twenty-first edition.</i>
611		Dallas, Texas: SIL International. (2018). Available at: http://www.ethnologue.com.

612		(Accessed: 20th February 2018)
613	23.	Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication.
614		Nature 457, 843–848 (2009).
615	24.	Burke, L., Reytar, K., Spalding, M. & Perry, A. <i>Reefs at risk revisited</i> . (2011).
616	25.	Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and
617		adaptation. <i>Nat. Commun.</i> 5, 1–9 (2014).
618	26.	Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of
619		forests. Science (80). 320, 1444–1449 (2008).
620	27.	Grace, J. et al. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–
621		400 (2006).
622	28.	Van Der Ent, R. J., Savenije, H. H. G. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate
623		of atmospheric moisture over continents. Water Resour. Res. 46, 1–12 (2010). Shows the
624		importance of tropical forests for precipitation in extra-tropical regions.
625	29.	IUCN. IUCN Spatial Data. (2018). Available at: http://www.iucnredlist.org/technical-
626		documents/spatial-data.
627	30.	Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. 112, 7761–
628		7766 (2015).
629	31.	Dirzo, R. <i>et al.</i> Defaunation in the Anthropocene. <i>Science (80).</i> 401, 401–406 (2014).
630	32.	Keenan, R. J. <i>et al.</i> Dynamics of global forest area: Results from the FAO Global Forest
631	-	Resources Assessment 2015. For. Ecol. Manage. 352 , 9–20 (2015).
632	33.	IUCN. Threats Classification Scheme (Version 3.2). (2012).
633	34.	Pelicice, F. M., Pompeu, P. S. & Agostinho, A. A. Large reservoirs as ecological barriers to
634	-	downstream movements of Neotropical migratory fish. <i>Fish Fish</i> . 16 , 697–715 (2015).
635	35.	Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and
636	001	sustaining biodiversity in tropical agricultural landscapes. <i>Proc. Natl. Acad. Sci.</i> 113 ,
637		14544–14551 (2016).
		14344-14331 (2010).
	36.	
638	36.	Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates.
638 639		Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551 , 187–191 (2017).
638 639 640	36. 37.	Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551 , 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss
638 639	37.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016).
638 639 640 641		Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551 , 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss
638 639 640 641 642	37.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015).
638 639 640 641 642 643	37. 38.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon
638 639 640 641 642 643 644	37. 38.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015).
638 639 640 641 642 643 644 645	37. 38. 39.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after
638 639 640 641 642 643 644 645 646 647	37. 38. 39. 40.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013).
638 639 640 641 642 643 644 645 646	37. 38. 39.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after
638 639 640 641 642 643 644 645 645 646 647 648 649	 37. 38. 39. 40. 41. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006).
638 639 640 641 642 643 644 645 646 647 648 649 650	37. 38. 39. 40.	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl.</i>
638 639 640 641 642 643 644 645 646 647 648 649 650 651	 37. 38. 39. 40. 41. 42. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017).
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652	 37. 38. 39. 40. 41. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653	 37. 38. 39. 40. 41. 42. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food</i>
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654	 37. 38. 39. 40. 41. 42. 43. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science</i> (80). 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016).
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655	 37. 38. 39. 40. 41. 42. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science</i> (80). 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016). Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens.
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656	 37. 38. 39. 40. 41. 42. 43. 44. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016). Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. <i>Glob. Ecol. Biogeogr.</i> 23, 1398–1407 (2014).
638 639 640 641 642 643 644 645 646 647 648 647 648 650 651 652 653 654 655 656 657	 37. 38. 39. 40. 41. 42. 43. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science</i> (80). 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016). Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens.
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656	 37. 38. 39. 40. 41. 42. 43. 44. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016). Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. <i>Glob. Ecol. Biogeogr.</i> 23, 1398–1407 (2014). Lebreton, L. C. M. <i>et al.</i> River plastic emissions to the world's oceans. <i>Nat. Commun.</i> 8, 15611 (2017).
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658	 37. 38. 39. 40. 41. 42. 43. 44. 45. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science</i> (80). 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016). Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. <i>Glob. Ecol. Biogeogr.</i> 23, 1398–1407 (2014). Lebreton, L. C. M. <i>et al.</i> River plastic emissions to the world's oceans. <i>Nat. Commun.</i> 8,
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659	 37. 38. 39. 40. 41. 42. 43. 44. 45. 	 Pfeifer, M. <i>et al.</i> Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> 551, 187–191 (2017). Barlow, J. <i>et al.</i> Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. <i>Nature</i> 535, 144–147 (2016). Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. <i>Geophys. Res. Lett.</i> 42, 9546–9552 (2015). Haddad, N. M. <i>et al.</i> Habitat fragmentation and its lasting impact on Earth's ecosystems. <i>Sci. Adv.</i> 1, e1500052–e1500052 (2015). Gibson, L. <i>et al.</i> Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. <i>Science (80).</i> 341, 1508–1510 (2013). Dudgeon, D. <i>et al.</i> Freshwater biodiversity: importance, threats, status and conservation challenges. <i>Biol. Rev.</i> 81, 163 (2006). Altieri, A. H. <i>et al.</i> Tropical dead zones and mass mortalities on coral reefs. <i>Proc. Natl. Acad. Sci.</i> 114, 3660–3665 (2017). Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. <i>J. Agric. Food Chem.</i> 64, 3917–3924 (2016). Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. <i>Glob. Ecol. Biogeogr.</i> 23, 1398–1407 (2014). Lebreton, L. C. M. <i>et al.</i> River plastic emissions to the world's oceans. <i>Nat. Commun.</i> 8, 15611 (2017). Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by

662	40	Carrie I. C. Dibaire D. D. de Oliveire Danue F. Ochas Ovintare I.M. & Jaurence W. F.
663	48.	Garcia, L. C., Ribeiro, D. B., de Oliveira Roque, F., Ochoa-Quintero, J. M. & Laurance, W. F.
664		Brazil's worst mining disaster: Corporations must be compelled to pay the actual
665 665	40	environmental costs. <i>Ecol. Appl.</i> 27 , 5–9 (2017).
666	49.	MacNeil, M. A. <i>et al.</i> Recovery potential of the world's coral reef fishes. <i>Nature</i> 520 , 341–
667 668	50	344 (2015).
668	50.	Castello, L. <i>et al.</i> The vulnerability of Amazon freshwater ecosystems. <i>Conserv. Lett.</i> 6, 217, 220 (2012)
669	F 4	217–229 (2013). Dianta W. J. et al. Callance of the world's largest horbitance. Sai Adv. 1, e1400102
670	51.	Ripple, W. J. <i>et al.</i> Collapse of the world's largest herbivores. <i>Sci. Adv.</i> 1 , e1400103–
671	52	e1400103 (2015).
672	52.	Ripple, W. J. <i>et al.</i> Status and Ecological Effects of the World's Largest Carnivores. <i>Science</i>
673	50	(80). 343, 1241484–1241484 (2014).
674	53.	Ingram, D. J. <i>et al.</i> Assessing Africa-Wide Pangolin Exploitation by Scaling Local Data.
675	F 4	Conserv. Lett. 0 , 1–9 (2017).
676	54.	Eaton, J. A. <i>et al.</i> Trade-driven extinctions and near-extinctions of avian taxa in Sundaic
677		Indonesia. Forktail 31 , 1–12 (2015).
678	55.	Barrett, M. A., Brown, J. L., Morikawa, M. K., Labat, JN. & Yoder, A. D. CITES Designation
679	50	for Endangered Rosewood in Madagascar. <i>Science (80).</i> 328, 1109–1110 (2010).
680	56.	Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions.
681		<i>Biol. Lett.</i> 12, 20150623 (2016).
682	57.	Dawson, W. <i>et al.</i> Global hotspots and correlates of alien species richness across
683	FO	taxonomic groups. <i>Nat. Ecol. Evol.</i> 1, 186 (2017).
684	58.	Simberloff, D. <i>et al.</i> Impacts of biological invasions: what's what and the way forward.
685	50	<i>Trends Ecol. Evol.</i> 28, 58–66 (2013).
686	59.	Early, R. <i>et al.</i> Global threats from invasive alien species in the twenty-first century and
687 687	60	national response capacities. <i>Nat. Commun.</i> 7 , 12485 (2016).
688	60.	Pyšek, P. <i>et al.</i> Geographical and taxonomic biases in invasion ecology. <i>Trends Ecol. Evol.</i>
689 600	C1	23, 237–244 (2008).
690	61.	Nghiem, L. T. P. <i>et al.</i> Economic and Environmental Impacts of Harmful Non-Indigenous
691	62	Species in Southeast Asia. <i>PLoS One</i> 8 , e71255 (2013).
692 693	62.	Setterfield, S. A., Rossiter-Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J.
694		Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. <i>Divers. Distrib.</i> 16, 854–861 (2010).
	62	
695 696	63.	Albins, M. A. & Hixon, M. A. Worst case scenario: potential long-term effects of invasive
696 697		predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. <i>Environ. Biol. Fishes</i> 96, 1151–1157 (2013).
698	64.	Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R. & Kling, G. W. Multiple stressors
699	04.	cause rapid ecosystem change in Lake Victoria. <i>Freshw. Biol.</i> 55 , 19–42 (2010).
700	65.	Drake, J. M. & Lodge, D. M. Global hot spots of biological invasions: evaluating options
701	05.	for ballast-water management. Proc. R. Soc. B Biol. Sci. 271, 575–580 (2004).
701	66.	Albright, R. <i>et al.</i> Reversal of ocean acidification enhances net coral reef calcification.
702	00.	Nature 531, 362–365 (2016).
704	67.	Doney, S. C. <i>et al.</i> Climate Change Impacts on Marine Ecosystems. <i>Ann. Rev. Mar. Sci.</i> 4 ,
705	07.	11–37 (2012).
706	68.	Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical
707	00.	grassy biomes: Misunderstood, neglected, and under threat. <i>Trends Ecol. Evol.</i> 29, 205–
708		213 (2014). Highlights the importance of grassy tropical ecosystems.
709	69.	Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody
710	55.	encroachment is widespread across three continents. <i>Glob. Chang. Biol.</i> 23 , 235–244
711		(2017).
712	70.	McDowell, N. <i>et al.</i> Drivers and mechanisms of tree mortality in moist tropical forests.
713		New Phytol. (2018). doi:10.1111/nph.15027
0		- ,, (,,,,,,

714	71.	Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and
715		disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738–5742 (2007).
716	72.	Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local
717		warming in low latitude countries. Environ. Res. Lett. 6, 34009 (2011).
718	73.	Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J. & Biodiversity redistribution under
719		climate change: Impacts on ecosystems and human well-being. Science (80). 355,
720		eaai9214 (2017).
721	74.	Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef
722		corals in response to rising sea surface temperatures. <i>Geophys. Res. Lett.</i> 38 , 1–6 (2011).
723	75.	Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science
724		<i>(80).</i> 353, 169–172 (2016).
725	76.	Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for
726		extreme dispersal limitation in tropical forest birds. <i>Ecol. Lett.</i> 11 , 960–968 (2008).
727	77.	Vanderwal, J. <i>et al.</i> Focus on poleward shifts in species' distribution underestimates the
728		fingerprint of climate change. <i>Nat. Clim. Chang.</i> 3 , 239–243 (2013).
729	78.	Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. <i>Nature</i> 470 ,
730	70.	479–485 (2011).
731	79.	Hughes, T. P. <i>et al.</i> Spatial and temporal patterns of mass bleaching of corals in the
732	75.	Anthropocene. <i>Science (80).</i> 359, 80–83 (2018).
733	80.	Jensen, M. P. <i>et al.</i> Environmental Warming and Feminization of One of the Largest Sea
734	00.	Turtle Populations in the World. <i>Curr. Biol.</i> 28 , 154–159.e4 (2018).
735	81.	Woodroffe, R., Groom, R. & McNutt, J. W. Hot dogs: High ambient temperatures impact
736	01.	reproductive success in a tropical carnivore. J. Anim. Ecol. 86 , 1329–1338 (2017).
737	82.	Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater
738	02.	ecosystems. Glob. Chang. Biol. 22, 990–1007 (2016).
739	83.	Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing
	05.	
740	04	rainfall regime on the demography of tropical birds. <i>Nat. Clim. Chang.</i> 7 , 133–136 (2017).
741	84.	Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their
742		importance in conservation. <i>Proc. R. Soc. B Biol. Sci.</i> 283, 20152592 (2016). Outlines the
743	05	importance of interactions between different stressors.
744	85.	Vinebrooke, R. D. <i>et al.</i> Impacts of multiple stressors on biodiversity and ecosystem
745	0.6	functioning: The role of species co-tolerance. <i>Oikos</i> 104 , 451–457 (2004).
746	86.	Vega-Thurber, R. L. <i>et al.</i> Chronic nutrient enrichment increases prevalence and severity
747	~-	of coral disease and bleaching. <i>Glob. Chang. Biol.</i> 20, 544–554 (2014).
748	87.	Taylor, B. W., Flecker, A. S. & Hall-Jr., R. O. Loss of a Harvested Fish Species Disrupts
749		Carbon Flow in a Diverse Tropical River. <i>Science (80).</i> 313, 833–836 (2006).
750	88.	McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based
751		management of coral reef fisheries. Proc. Natl. Acad. Sci. 108, 17230–17233 (2011).
752	89.	Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting
753		climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97
754		(2015).
755	90.	Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological Engineering by a Mega-Grazer:
756		White Rhino Impacts on a South African Savanna. <i>Ecosystems</i> 11 , 101–112 (2008).
757	91.	Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural
758		savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin.
759		Biol. Conserv. 144, 1419–1429 (2011).
760	92.	Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
761	93.	Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature
762		418, 770–774 (2002).
763	94.	Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol.
764		<i>Lett.</i> 16, 687–694 (2013).

705	05	Unches T. D. Cotostantes a short shifts and lance code descedation of a Covibbary court
765 766	95.	Hughes, T. P. Catastophes, phase shifts and large-scale degradation of a Caribbean coral
766 767	06	reef. <i>Science (80).</i> 265, 1547–1551 (1994). Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean
767	96.	coral reefs. <i>Nature</i> 450 , 98–101 (2007).
769	97.	Hicks, C. C., Crowder, L. B., Graham, N. A. J., Kittinger, J. N. & Le Cornu, E. Social drivers
770	57.	forewarn of marine regime shifts. <i>Front. Ecol. Environ.</i> 14 , 252–260 (2016).
771	98.	Milanovic, B. Global Inequality: A New Approach for the Age of Globalization.
772	50.	Panoeconomicus 63 , 493501 (2016).
773	99.	Cinner, J. E. <i>et al.</i> Linking Social and Ecological Systems to Sustain Coral Reef Fisheries.
774		<i>Curr. Biol.</i> 19 , 206–212 (2009).
775	100.	O'Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within
776		planetary boundaries. Nat. Sustain. 1, 88–95 (2018). Outlines the sustainability
777		challenges of current development trajectories.
778	101.	Stern, D. I., Common, M. S. & Barbier, E. B. Economic growth and environmental
779		degradation: The environmental Kuznets curve and sustainable development. World Dev.
780		24, 1151–1160 (1996).
781	102.	Alamgir, M. et al. Economic, Socio-Political and Environmental Risks of Road
782		Development in the Tropics. Curr. Biol. 27, R1130–R1140 (2017).
783	103.	Deininger, K. & Byerlee, D. Rising Global Interest in Farmland. (The World Bank, 2011).
784		doi:10.1596/978-0-8213-8591-3
785	104.	Laurance, Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical
786		nature. Trends Ecol. Evol. 29, 107–116 (2014).
787	105.	Pauly, D. On Malthusian overfishing. <i>Naga, the ICLARM Quarterly</i> 13, 3–4 (1990).
788	106.	Rands, M. R. W. et al. Biodiversity Conservation: Challenges Beyond 2010. Science (80).
789		329 , 1298–1303 (2010). Shows that effective environmental governance is a necessary
790		condition for improved sustainability outcomes.
791	107.	Blasiak, R. & Wabnitz, C. C. C. Aligning fisheries aid with international development
792		targets and goals. <i>Mar. Policy</i> 88 , 86–92 (2018).
793	108.	Mora, C. et al. Management Effectiveness of the World's Marine Fisheries. PLoS Biol. 7,
794		e1000131 (2009).
795	109.	Mammides, C. <i>et al.</i> Increasing geographic diversity in the international conservation
796		literature: A stalled process? Biol. Conserv. 198, 78–83 (2016). Reveals that authors from
797		low-income countries are less than half as likely to be published as those from high-
798	110	income countries.
799	110.	Lovejoy, T. E. & Nobre, C. Amazon Tipping Point. <i>Sci. Adv.</i> 4 , eaat2340 (2018).
800	111.	Nilsson, M. Important interactions among the Sustainable Development Goals under
801 802	117	review at the High-Level Political Forum 2017. (2017).
802 802	112.	Kopnina, H., Washington, H., Gray, J. & Taylor, B. 'The "future of conservation" debate: Defending ecocentrism and the Nature Needs Half movement'. <i>Biol. Conserv.</i> 217 , 140–
803 804		148 (2018).
804 805	113.	ProtectedPlanet. World Database on Protected Areas (WDPA). (2018). Available at:
805	115.	https://www.protectedplanet.net/c/world-database-on-protected-areas. (Accessed:
800 807		23rd February 2018)
808	114.	Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential
809	114.	of protected areas. Nature 515, 67–73 (2014).
810	115.	Büscher, B. <i>et al.</i> Half-Earth or Whole Earth? Radical ideas for conservation, and their
810	±±J.	implications. Oryx 51, 407–410 (2017).
812	116.	Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas?
813	110.	Factors influencing protected area downgrading, downsizing and degazettement in the
814		tropics and subtropics. <i>Glob. Chang. Biol.</i> 22, 656–665 (2016).
815	117.	Agrawal, A., Nepstad, D. & Chhatre, A. Reducing Emissions from Deforestation and Forest
-		

816	110	Degradation. Annu. Rev. Environ. Resour. 36, 373–396 (2011).
817	118.	Winder, G. M. & Le Heron, R. Assembling a Blue Economy moment? Geographic
818		engagement with globalizing biological-economic relations in multi-use marine
819		environments. <i>Dialogues Hum. Geogr.</i> 7 , 3–26 (2017).
820	119.	Lambin, E. F. <i>et al.</i> The role of supply-chain initiatives in reducing deforestation. <i>Nat.</i>
821		Clim. Chang. 8, 109–116 (2018). Highlights the importance of tackling demand for
822		unsustainable products from downstream buyers and investors.
823	120.	Carlson, K. M. <i>et al.</i> Effect of oil palm sustainability certification on deforestation and fire
824	4.2.4	in Indonesia. Proc. Natl. Acad. Sci. 115, 201704728 (2017).
825	121.	Richards, R. C. <i>et al.</i> Governing a pioneer program on payment for watershed services:
826		Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of
827	422	Brazil. <i>Ecosyst. Serv.</i> 16, 23–32 (2015).
828	122.	Kosoy, N. & Corbera, E. Payments for ecosystem services as commodity fetishism. <i>Ecol.</i>
829	4.2.2	<i>Econ.</i> 69 , 1228–1236 (2010).
830	123.	Corbera, E. & Schroeder, H. REDD+ crossroads post Paris: Politics, lessons and interplays.
831		Forests 8 , 1–11 (2017).
832	124.	Liu, J. <i>et al.</i> Systems integration for global sustainability. <i>Science (80).</i> 347, 1258832–
833	105	1258832 (2015).
834	125.	Cinner, J. E. <i>et al.</i> Comanagement of coral reef social-ecological systems. <i>Proc. Natl.</i>
835	4.20	Acad. Sci. 109, 5219–5222 (2012).
836	126.	Porter-Bolland, L. <i>et al.</i> Community managed forests and forest protected areas: An
837		assessment of their conservation effectiveness across the tropics. <i>For. Ecol. Manage.</i>
838	107	268, 6–17 (2012).
839	127. 128.	Gudynas, E. Buen Vivir: Today's tomorrow. <i>Development</i> 54 , 441–447 (2011).
840 841	128.	Seymour, F. & Busch, J. Why Forests? Why Now?: The Science, Economics, and Politics of Tropical Forests and Climate Change. (Center for Global Development, 2016).
841 842	129.	Mace, G. M. Whose conservation? <i>Science (80).</i> 345, 1558–1560 (2014).
843	129. 130.	Soulé, M. The 'new conservation'. <i>Keep. Wild Against Domest. Earth</i> 27, 66–80 (2014).
844	130.	Holmes, G., Sandbrook, C. & Fisher, J. A. Understanding conservationists' perspectives on
845	151.	the new-conservation debate. <i>Conserv. Biol.</i> 31 , 353–363 (2017).
846	132.	Matulis, B. S. & Moyer, J. R. Beyond Inclusive Conservation: The Value of Pluralism, the
847	192.	Need for Agonism, and the Case for Social Instrumentalism. <i>Conserv. Lett.</i> 10 , 279–287
848		(2017). Highlights the importance of pluralism in conservation approaches.
849	133.	Pouzols, F. M. <i>et al.</i> Global protected area expansion is compromised by projected land-
850	100.	use and parochialism. <i>Nature</i> 516 , 383–386 (2014).
851	134.	Larsen, R. K. <i>et al.</i> Hybrid governance in agricultural commodity chains: Insights from
852	2011	implementation of 'No Deforestation, No Peat, No Exploitation' (NDPE) policies in the oil
853		palm industry. J. Clean. Prod. 183, 544–554 (2018).
854	135.	Winemiller, K. O. <i>et al.</i> Balancing hydropower and biodiversity in the Amazon, Congo,
855		and Mekong. Science (80). 351 , 128–129 (2016).
856	136.	van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef
857		resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307–2313 (2015).
858	137.	Svenning, JC. <i>et al.</i> Science for a wilder Anthropocene: Synthesis and future directions
859		for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).
860	138.	Hortal, J. et al. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annu.
861		Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
862	139.	DRYFLOR et al. Plant diversity patterns in neotropical dry forests and their conservation
863		implications. Science (80). 353, 1383–1387 (2016).
864	140.	Leal, C. G. et al. Is environmental legislation conserving tropical stream faunas? A large-
865		scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J.
866		Appl. Ecol. 1–15 (2017). doi:10.1111/1365-2664.13028

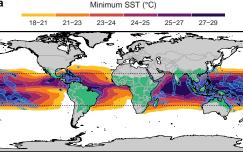
967	1 / 1	Ditmon N.C.A. Azáldogui M.D.C.L. Solos K. Vigo C.T. 8 Lutz D.A. Writton Accounts
867 868	141.	Pitman, N. C. A., Azáldegui, M. D. C. L., Salas, K., Vigo, G. T. & Lutz, D. A. Written Accounts of an Amazonian Landscape Over the Last 450 Years. <i>Conserv. Biol.</i> 21, 253–262 (2007).
869	142.	Feeley, K. Are We Filling the Data Void? An Assessment of the Amount and Extent of
870	142.	Plant Collection Records and Census Data Available for Tropical South America. <i>PLoS One</i>
871		10, e0125629 (2015).
871	143.	Sutherland, W. J., Gardner, T. A., Haider, L. J. & Dicks, L. V. How can local and traditional
873	145.	knowledge be effectively incorporated into international assessments? <i>Oryx</i> 48, 1–2
873 874		(2014).
874	144.	Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: A
875	144.	multiscale conceptual framework. Annu. Rev. Environ. Resour. 42 , 161–188 (2017).
870	145.	Liu, J. <i>et al.</i> Framing Sustainability in a Telecoupled World. <i>Ecol. Soc.</i> 18 , art26 (2013).
878	145. 146.	Brashares, J. S. Bushmeat hunting, wildlife declines, and fish supply in West Africa.
879	140.	<i>Science (80).</i> 306, 1180–1183 (2004).
880	147.	Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa's protected areas.
880 881	147.	Nature 553, 328–332 (2018).
882	148.	Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean
883	140.	supply response, and deforestation in South America. <i>Glob. Environ. Chang.</i> 22 , 454–462
884		(2012).
885	149.	Hicks, C. C. <i>et al.</i> Engage key social concepts for sustainability. <i>Science (80).</i> 352, 38–40
886	149.	(2016).
880 887	150.	Fischer, J. <i>et al.</i> Advancing sustainability through mainstreaming a social–ecological
888	150.	systems perspective. <i>Curr. Opin. Environ. Sustain.</i> 14 , 144–149 (2015). Examines how the
889		concept of social-ecological systems can improve sustainability.
890	151.	Cvitanovic, C. <i>et al.</i> Improving knowledge exchange among scientists and decision-
891	191.	makers to facilitate the adaptive governance of marine resources: A review of knowledge
892		and research needs. Ocean Coast. Manag. 112 , 25–35 (2015).
893	152.	Cinner, J. E. <i>et al.</i> Bright spots among the world's coral reefs. <i>Nature</i> 535 , 416–419
894	152.	(2016). Shows how the "brightspots" approach can identify better than expected
895		environmental situations.
896	153.	Bennett, E. M. <i>et al.</i> Bright spots: seeds of a good Anthropocene. <i>Front. Ecol. Environ.</i> 14 ,
897	155.	441–448 (2016).
898	154.	Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. <i>Nature</i> 546 , 91–
899	10	99 (2017).
900	155.	Balvanera, P. <i>et al.</i> Key features for more successful place-based sustainability research
901	155.	on social-ecological systems: a Programme on Ecosystem Change and Society (PECS)
902		perspective. Ecol. Soc. 22, 45 (2017).
903	156.	Clarke, D. A., York, P. H., Rasheed, M. A. & Northfield, T. D. Does biodiversity–ecosystem
904	100.	function literature neglect tropical ecosystems? <i>Trends Ecol. Evol.</i> 32 , 320–323 (2017).
905	157.	Gardner, T. A. <i>et al.</i> A social and ecological assessment of tropical land uses at multiple
906	2071	scales: the Sustainable Amazon Network. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 368 ,
907		20120166–20120166 (2013).
908	158.	Rose, R. A. <i>et al.</i> Ten ways remote sensing can contribute to conservation. <i>Conserv. Biol.</i>
909		29 , 350–359 (2015).
910	159.	Thomsen, P. F. & Willerslev, E. Environmental DNA - An emerging tool in conservation for
911		monitoring past and present biodiversity. <i>Biol. Conserv.</i> 183 , 4–18 (2015).
912	160.	Gardner, T. A. <i>et al.</i> Transparency and sustainability in global commodity supply chains.
913		World Dev.
914	161.	Basset, Y. <i>et al.</i> Conservation and biological monitoring of tropical forests: the role of
915		parataxonomists. <i>J. Appl. Ecol.</i> 41, 163–174 (2004).
916	162.	Barlow, J. <i>et al.</i> Using learning networks to understand complex systems: A case study of
917		biological, geophysical and social research in the Amazon. <i>Biol. Rev.</i> 86, 457–474 (2011).

- 918 163. Barlow, J. *et al.* On the extinction of the single-authored paper: The causes and
 919 consequences of increasingly collaborative applied ecological research. *J. Appl. Ecol.* 55,
 920 1–4 (2018).
- 921 164. Dinerstein, E. *et al.* An ecoregion-based approach to protecting half the terrestrial realm.
 922 *Bioscience* 67, 534–545 (2017).
- 165. Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental Limits to Coral Reef
 Development: Where Do We Draw the Line? *Am. Zool.* **39**, 146–159 (1999).
- 166. Tedesco, P. A. *et al.* A global database on freshwater fish species occurrence in drainage
 basins. *Sci. Data* 4, 170141 (2017).
- 927 167. Cochrane, M. A. Fire science for rainforests. *Nature* **421**, 913–919 (2003).
- Flores, B. M., Fagoaga, R., Nelson, B. W. & Holmgren, M. Repeated fires trap Amazonian
 blackwater floodplains in an open vegetation state. *J. Appl. Ecol.* 53, 1597–1603 (2016).
- Jolly, W. M. *et al.* Climate-induced variations in global wildfire danger from 1979 to 2013. *Nat. Commun.* 6, 1–11 (2015).
- 932 170. Durigan, G. & Ratter, J. A. The need for a consistent fire policy for Cerrado conservation.
 933 *J. Appl. Ecol.* 53, 11–15 (2016).

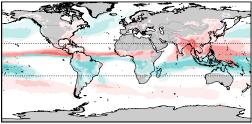
934

Ecosystems in transition

Wildfires in historically fire-free humid tropical forests¹⁶⁷ can lead to the dominance of grassy vegetation that impedes succession towards closedcanopy forests^{91,168}. These wildfires result from the combination of local actions (e.g. agriculture practices, logging) and climate change that has increased wildfire-promoting weather¹⁶⁹.

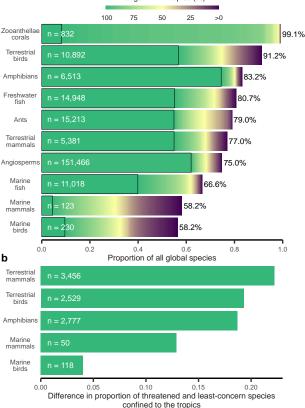


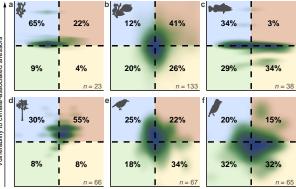
Woody encroachment is occurring in many savannas⁶⁹, causing biodiversity loss and altered system functioning⁶⁸. Causes are mixed: regime shifts to forest-associated ecosystems have been attributed to fire suppression policies (e.g. Brazilian Cerrado [c] to Forest [d] ¹⁶⁹), changes in herbivory and increasing atmospheric CO₂⁶⁹.



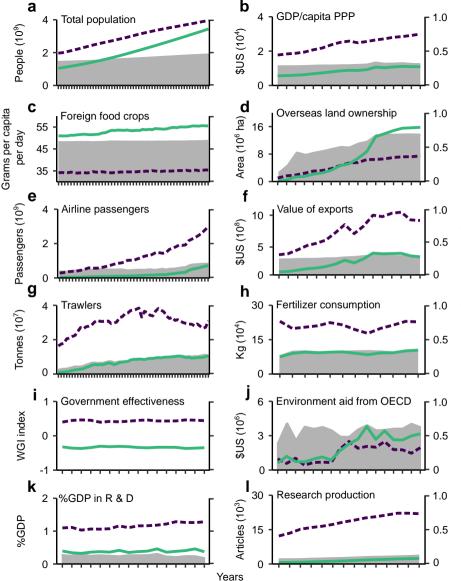
The boom inhydropower-dam construction is affecting large tropical river basins¹³⁵. The transformation of lotic to lentic conditions reduces access to riparian and floodplain habitats that are nursery areas and feeding grounds for much of the higher biota, leading to major shifts in species composition and ecosystem function⁸².

Images from Jos Barlow (a), Nick Graham (b); Giselda Durigan (c-d), and Cecília Gontijo Leal (e); used with permission.





а


Range within tropics (%)

Vulnerability to local stressors

Vulnerability to climate-associated stressors

Proportion within tropical countries