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Preface: The tropics contain the overwhelming majority of Earth’s biodiversity: their terrestrial, 23 
freshwater and marine ecosystems hold over three-quarters of all species, including almost all 24 
shallow-water corals and >90% of terrestrial birds. Yet, tropical ecosystems are subject to 25 
pervasive and interacting stressors, such as deforestation, overfishing and climatic change. They 26 
are also set within a socio-economic context that includes growing pressure from an 27 
increasingly globalised world, larger and more affluent tropical populations, and the 28 
continuation of weak governance and limited response capacity. Concerted local, national and 29 
international actions are urgently required to prevent a collapse of tropical biodiversity.  30 
 
Introduction 31 

The tropics hold a disproportionate amount of global biological diversity, and are key to meeting 32 
the international community’s aims of socially-just sustainable development and effective 33 
biodiversity conservation1. Yet, tropical ecosystems are undergoing rapid environmental, socio-34 
economic and demographic change2, often driven by forces from extra-tropical, developed 35 
countries. The scale of these changes is unprecedented, and decisions implemented in the 36 
coming decades will define the future diversity and sustainability of the tropics.  37 
 
Guiding these decisions depends on understanding the diversity and vulnerability of the four 38 
major tropical ecosystems: the forests and mesic savannas that cover most of the terrestrial 39 
tropics, the extensive freshwater systems that receive half of the world’s rainfall, and the 40 
shallow-water coral reefs distributed along 150,000 km of coastline (Fig. 1). Here, we quantify 41 
and review the global importance of tropical biodiversity, evaluate the vulnerability of tropical 42 



ecosystems to proximate stressors, and assess whether global and regional socio-economic 43 
changes will exacerbate or ameliorate biodiversity loss. We then examine the effectiveness of 44 
conservation approaches, and highlight the scientific advances required to foster positive 45 
change and help overcome the challenges arrayed against a sustainable tropical future.  46 
 
The global importance of tropical ecosystems 47 

Over evolutionary time, the tropics have acted both as a source and refuge for most extra-48 
tropical terrestrial and marine species3,4; but just how diverse and irreplaceable are the tropics 49 
today? The increase in species richness from polar to tropical regions, known as the latitudinal 50 
diversity gradient, repeats across a wide range of taxa and biomes. As a result of this gradient, 51 
tropical latitudes, which cover just 40% of the Earth’s surface, hold a startling proportion of the 52 
planet’s species: our assessment reveals that almost all shallow-water zooxanthellae corals, 91% 53 
of terrestrial birds, and >75% of amphibians, terrestrial mammals, freshwater fish, ants, 54 
flowering plants and marine fish have ranges that intersect tropical latitudes (Fig. 2a). For birds, 55 
the importance of the tropics extends far beyond 23.5 degrees of latitude, with almost half of all 56 
Nearctic species migrating to the Neotropics5 and over 2 billion passerine and near-passerines 57 
crossing the Sahara each autumn6. Moreover, a disproportionate number of the world’s species 58 
are endemic to the tropics. For example, there are 4.5 times more endemic amphibians in the 59 
tropics than in temperate regions (Fig 2a). Tropical zones are less important for marine 60 
mammals and birds, taxa that peak in diversity at mid-latitudes7,8. Nonetheless, >55% of these 61 
species use the tropics (Fig. 2a).  62 
 
Overall, 78% of species across the ten taxa we assessed occurred within tropical latitudes, but 63 
incomplete taxonomic inventories mean that this is almost certainly an underestimate9. 64 
Between 15,000-19,000 new species are described annually10, and the majority of recently 65 
described terrestrial vertebrates11 or predicted discoveries of invertebrates12 are from the 66 
tropics. Even terrestrial mammals are still being discovered at a rate of c. 25 species a year, with 67 
the highest numbers in the Neo- and Afrotropics13. Shortfalls in species descriptions for other 68 
taxa are often far greater. For example, only 70,000 of an estimated 830,000 multi-cellular 69 
plants and animals have been named on coral reefs14, and the c. 500 spider species described 70 
each year represent a tiny fraction of the estimated 150,000 undescribed tropical species15. 71 
 
Tropical taxonomic shortfalls are further compounded by a suite of systematic sampling biases. 72 
These include undersampling compared with temperate regions16, the spatial aggregation of 73 
sampling effort around coastal areas17, roads, rivers, urban settlements and high-profile 74 
research stations18, biases in favour of dry-season sampling when many invertebrate taxa are 75 
least abundant19, and the paucity of samples from ecosystems that are harder to access, such as 76 
mesophotic and rariphotic reefs20.  77 
 
The biological diversity of the tropics is mirrored by many forms of societal diversity21. For 78 
example, tropical countries contain 40% of the world’s population yet 85% of extant languages 79 
are spoken within them22. The tropics also provide incalculable benefits to humanity. They 80 
house most of the key centres of plant domestication23 and have been a vital laboratory for the 81 
development of science itself – the disciplines of ecology, biogeography and evolutionary 82 



biology are founded on evidence gleaned from tropical ecosystems. Tropical ecosystems also 83 
make vital contributions to globally-important ecosystem services: covering just 0.1% of the 84 
ocean surface, coral reefs provide fish resources for 275 million people that live within 30 km of 85 
them24 and coastal protection for up to 197 million people25; humid tropical forests cover <12% 86 
of the world’s ice-free land surface but produce 33% of global net primary productivity and 87 
store 25% of the carbon in the terrestrial biosphere26; while tropical savannas provide a further 88 
30% of net primary productivity and 15% of carbon storage27. Tropical ecosystems also help 89 
drive vital atmospheric teleconnections. For instance, 70% of the rainfall in the 3.2M km2 Rio de 90 
la Plata catchment is estimated to come from evaporation in Amazonia28.  91 
 
Vulnerability of tropical biota and ecosystems  92 

For all five vertebrate groups with comprehensive IUCN assessments and spatial occurrence 93 
data29, globally threatened species are more dependent on the tropics than those classed as 94 
Least Concern (Fig. 2b). In addition, 85% of species extinctions from these vertebrate groups 95 
have been of species that use the tropics29. Consequently, although extinctions of other groups 96 
are less well understood, we can assume that most of the estimated 130,000 modern 97 
invertebrate extinctions30 will also have been of tropical species. Thus, not only are the tropics 98 
vastly more diverse than temperate regions, this diversity is at far greater risk from human 99 
impacts31. Moreover, given that the tropics have the highest proportion of Data Deficient 100 
species and the lowest level of biodiversity-threat assessment16, information shortfalls mean we 101 
are likely underestimating the vulnerability of the tropical biome. We assessed this vulnerability 102 
in more depth by examining the effect of local and global stressors, the interactions between 103 
them, and the resulting changes to tropical ecosystems.  104 
 
Local stressors 105 

The tropics are subject to some of the highest rates of land-use change and degradation. While 106 
the spatial coverage of temperate forests has increased since 1990, tropical deforestation rates 107 
exceed 5M ha/yr32. Additional impacts stem from the expansion of large infrastructure projects 108 
(e.g. dams) and the growing demand for agricultural commodities, biofuels, timber, fuelwood 109 
and other natural resources33. These all result in severe biotic responses. Even with mitigation, 110 
dams present a near-impassable barrier for river fish34, while deforestation replaces a species-111 
rich pool of forest-specialists with a smaller pool of common open-area species35. The influence 112 
of land-use change also extends far into remaining natural areas through isolation and edge 113 
effects36, additional anthropogenic disturbances37 and altered climatic conditions38. Edge effects 114 
suppress the abundance of threatened vertebrates up to 200-400 m into tropical forests36, 115 
leaving almost no core forest refugia in the Brazilian Atlantic Forest where >80% is within 500 m 116 
of an edge39. Even low levels of landscape modification have significant effects on range-117 
restricted species37, and time lags mean that some of the most deleterious effects are observed 118 
decades after landscape modification40.  119 
 
Pollution presents a diverse set of threats to tropical ecosystems. Inputs of sediments and 120 
nutrients from land-use change are well-established drivers of biodiversity loss across 121 
freshwater41 and coastal systems, including coral reefs42 . Pesticide use is increasing across the 122 
tropics, reflecting rapid intensification of farming practices43 and high pest pressures on tropical 123 



crops44. Tropical Asian rivers are a major source of the 1.2-2.4 million tonnes of plastic that 124 
enters the world’s oceans each year45, with micro-plastics entering into coral diets46 and larger 125 
debris increasing rates of coral disease47. These examples of chronic pollution are exacerbated 126 
by extreme events, such as of the Fundão Dam collapse, which released c. 50M m3 of waste into 127 
a 600 km stretch of river in south-east Brazil, causing a 7,000 km2 toxic plume in the Atlantic 128 
Ocean48.  129 
 
Overexploitation is also pervasive across the tropics. Fishing has reduced fish biomass by over 130 
75% across a third of coral reefs49 and is shrinking the mean body size of exploited freshwater 131 
taxa50. Hunting contributed to the loss of charismatic mega-herbivores, extirpating African 132 
elephants, rhinos and large predators from most of their original ranges51,52. The world’s tropical 133 
forests are affected by extensive over-harvesting of wildlife31, with estimates of the annual 134 
harvests of highly-trafficked animals such as pangolins reaching into the millions of individuals53. 135 
Moreover, the growth in non-food uses of wildlife means that even small-bodied songbirds are 136 
at risk of global extinction54. Overexploitation also extends beyond fauna and is driving 137 
economically valuable tropical trees to extinction55. 138 
 
Invasive species have been the second most important extinction driver of vertebrates since 139 
1500 CE56. Within terrestrial ecosystems, invasive species have exerted the strongest influence 140 
on islands and coastal mainlands57, having driven thousands of species extinctions and altered 141 
trophic structures58. On continents, they currently have a greater impact on economically 142 
developed and extra-tropical regions, but tropical ecosystems are predicted to become 143 
increasingly vulnerable to invasion in the 21st century59. Despite a deficit of research in the 144 
tropics60, two prominent examples highlight the scope and magnitude of species invasions into 145 
terrestrial tropical ecosystems: there has been an 84% increase of alien species detections 146 
between 2003 and 2010 in Singapore61, while invasive African grasses could threaten up to 147 
380,000 km2 of Australia’s savannas by promoting landscape flammability62. In aquatic 148 
ecosystems, invasive predatory fishes, such as the Indo-Pacific lionfish in Caribbean coral reefs63 149 
and the Nile perch in African lakes64, have contributed to the loss of native species. Marine 150 
invasions are also facilitated by the mass transport of species in ship ballast water, resulting in 151 
widespread biotic homogenisation65.  152 
 
Global climatic change 153 

While many of the “local” stressors described above are promoted by globalised drivers, climate 154 
change is truly global. Increases in atmospheric CO2 concentrations to levels >400 ppm has 155 
important implications for tropical terrestrial and aquatic ecosystems. Ocean acidification from 156 
dissolved CO2 is changing ocean chemistry to the extent that declining coral calcification has 157 
already been detected66. Conditions for reef accretion and growth may be mostly absent 158 
throughout the tropics by 2100 under business-as-usual emission scenarios67. Within savannas, 159 
elevated CO2 levels favour the growth of woody plants over grasses, contributing to woody 160 
encroachment and the potential for a switch in biome state68,69. CO2 fertilisation may have also 161 
contributed to enhanced tree productivity and mortality rates observed in humid tropical 162 
forests70. 163 
 



Global warming does not proceed at the same rate across the planet. Although the greatest 164 
absolute temperature increases are occurring at higher latitudes, the tropics are already some 165 
of the hottest places on the planet and have the lowest inter-annual temperature variability71,72. 166 
Consequently, they will be the first areas to experience significantly warmer climates than the 167 
present day72 and will endure climatic conditions without present-day equivalents71,. In addition, 168 
some of the most important climate oscillations, including El Niño and the Indian Ocean Dipole, 169 
take place within, and have their greatest influence on, tropical regions. It is unclear if these 170 
oscillations will change in a warming world, but extremes of their phases have the potential to 171 
exacerbate or ameliorate the overall warming trend. One outcome of increasing temperatures is 172 
the poleward shifts of species ranges or movement to higher altitudes or deeper depths73. For 173 
example, corals in southern Japan are extending northwards at c. 14 km/yr74, and temperate 174 
macroalgal communities are being replaced with corals and other tropical species along large 175 
stretches of Australian coastline75. Latitudinal shifts in terrestrial and freshwater tropical species 176 
distributions are less certain because of the many natural and anthropogenic barriers, and the 177 
low dispersal capacity of many tropical species76. Furthermore, the responses of terrestrial 178 
species are defined by changes in rainfall as well as temperature77.  179 
 
If movement is not an option, tropical species must adapt or face extinction. Unfortunately, 180 
there is evidence that some species are either approaching their physiological limits or are 181 
unable to adapt to the rate of environmental change78. Increasing ocean temperature extremes 182 
are driving mass bleaching events and mortality of reef-forming corals, with the time between 183 
bleaching events declining by 76-80% since the early 1980s79. Higher temperatures also affect 184 
tropical vertebrates, causing, for example, an extreme female bias in the sex ratio of green 185 
turtles in the warmer regions of the Great Barrier Reef80 and a reduction in the reproductive 186 
success of African wild dogs81. Altered rainfall is also critical.  Droughts are drying up biologically 187 
diverse small streams82, while even modest changes in dry-season length increase tropical tree 188 
mortality70 and modify tropical forest bird community structure83. 189 
 
Stressor interactions and indirect effects 190 

Stressors affecting tropical species can interact in myriad ways84. We demonstrate this by 191 
compiling data from six case studies within a co-tolerance framework that allows species 192 
responses to two dominant stressors to be examined85. Only a small subset of species or genera 193 
(8-32%) showed no or positive responses when both stressors were combined (Fig. 3), and up to 194 
55% fell within the “double jeopardy” quadrant, indicating a negative response to both 195 
stressors. While our summary does not quantify the magnitude of effects, it clearly 196 
demonstrates that stressors can act together to reduce the abundance or occupancy of tropical 197 
species. Moreover, these co-tolerance analyses simplify the reality facing tropical ecosystems 198 
because most are affected by more than two stressors at any given location and time84. 199 
 
Many changes to tropical ecosystems result from indirect consequences of single or multiple 200 
stressors. On coral reefs, nutrient inputs from land may increase susceptibility to coral 201 
bleaching, disease, and outbreaks of pests86, while poleward reef expansion is supported by 202 
feedbacks from range-shifting tropical herbivorous fish75. Overexploitation can result in 203 
surprising changes in tropical ecosystem properties through trophic cascades. For instance, the 204 



extirpation of a single detritivore fish species in the Orinoco basin reduced downstream organic-205 
carbon transport, increasing net primary productivity and respiration87. On reefs, overfishing of 206 
keystone predators has repercussions for benthic structure88, while removal of herbivores can 207 
limit coral recovery from mass-mortality events89. In mesic savannas, changes to herbivore 208 
numbers alter ecosystem functions and structure via their interactions with wildfire regimes90. 209 
Invasive species are also frequently linked to other stressors: the introduction of the Nile perch 210 
played a major role in the decline of endemic fish species in Lake Victoria, but its effects were 211 
likely catalyzed by a combination of other drivers including soil erosion, eutrophication and 212 
overfishing64. 213 
 
Ecosystems in transition 214 

Interactions between multiple anthropogenic stressors are causing pervasive changes in the 215 
tropics, such that alternate states are emerging across all major tropical ecosystems (Box 1). 216 
Perhaps counter-intuitively, trees are encroaching on savannas while grasses are invading 217 
disturbed tropical forests – but in both cases, changes are from species-rich to species-poor 218 
systems68,91. 219 
 
These drastic ecosystem transitions are accompanied by widespread modification of species 220 
composition. For example, the relative abundance of coral species has been altered on reefs 221 
that maintain coral dominance92; extirpation of native fish has followed species introductions in 222 
lakes64; liana biomass has increased in otherwise undisturbed Neotropical forests93; and 223 
patterns of plant regeneration in humid forests have been altered by the overharvesting of 224 
seed-dispersing vertebrates31,94. Altered species composition is a cause for concern because it 225 
could signal the onset of more severe modification, especially if dominant species are 226 
vulnerable or if there are cascading implications for ecosystem functioning. The collapse of 227 
Jamaican coral reefs provides one of the starkest examples. First, chronic overfishing depleted 228 
herbivorous fish populations, leaving the system over-reliant on sea urchins for grazing algae. 229 
Then Hurricane Allen impacted the system in 1980, creating a substantial amount of dead 230 
substrate. Although corals began recovering after the hurricane, the subsequent mass mortality 231 
of sea urchins due to disease, combined with the already low abundance of herbivorous fish, led 232 
to a phase shift from coral to macroalgal dominance95,96. 233 
 
Socio-economic context and response capacity 234 

The interacting proximate stressors causing tropical environmental change are underpinned by 235 
broader changes in socio-economic and political factors. We examined the trajectories of four 236 
types of underlying distal drivers, including demography (Fig. 4a-b), socio-political factors (Fig. 237 
4c-d), markets (Fig. 4e-f) and technology (Fig. 4g-h)97 to explore how tropical countries are 238 
changing relative to the rest of the world and to evaluate the relative influence of local and 239 
global drivers. We also examined how the capacity of tropical countries to reduce or cope with 240 
proximate stressors compares to non-tropical countries based on underlying governance (Fig. 241 
4i-j) and research capacity (Fig. 4k-l).  242 
 
The immense biodiversity of the tropics exists in the context of rapid demographic and 243 
economic growth (Fig. 4a-b). Human population is growing at a faster rate in the tropics than 244 



elsewhere (Fig. 4a) and by 2050 half of the world’s population will live in the tropics2. These 245 
demographic changes are accompanied by steady GDP growth, linked, in part, to the rapid 246 
expansion of agricultural and extractive industries. However, tropical per capita GDP – an 247 
important measure of human well-being – remains far lower than the non-tropical average (Fig. 248 
4b), and the rates of change suggest little closing of the inequality gap between global south 249 
and north98. Although the relationship between development and natural resource conservation 250 
does not have to be negative99,100, measures reflecting higher social performance are almost 251 
always associated with higher resource use100. A larger and more affluent tropical population 252 
will increase demands for timber, water, food, energy, and land, all of which are strongly linked 253 
with environmental degradation. 254 
 
These internal changes will be exacerbated by economic growth in non-tropical countries, and 255 
the continued displacement of environmental impacts to less-developed areas101. Indeed, 256 
despite high levels of tropical cultural diversity21,22, external socio-political influences (Fig. 4c-d) 257 
suggest that tropical countries have become increasingly susceptible to globalisation. For 258 
example, the proportion of imported food crops (Fig. 4c) and foreign-land acquisitions are far 259 
higher in the tropics than elsewhere (Fig. 4d) and are associated with extensive road building102 260 
and agricultural investment103. These trends towards increasing tropical globalisation are 261 
reinforced by changes in market integration (Fig. 4e-f) and technological development (Fig. 4g-262 
h). For example, agricultural exports (Fig. 4e) are steadily increasing, albeit from a far lower 263 
baseline than the rest of the world. Moreover, given comparatively low levels of adoption of 264 
technological developments, such as industrial fishing techniques (Fig. 4g) or fertilizers (Fig. 4h), 265 
there is enormous risk that the rate of natural resource extraction in many tropical countries 266 
will increase further, supplying both domestic and export markets104,105. Taken together, these 267 
examples highlight the crucial role that external markets will play in determining the fate of 268 
tropical ecosystems. 269 
 
Effective environmental governance (Fig. 4i-j) is a necessary condition for improved 270 
sustainability outcomes106, particularly when domestic (Fig. 4a-d) and global (Fig. 4c-f) distal 271 
drivers are expected to exert increasing and unsustainable pressure on tropical ecosystems2,103. 272 
However, the World Bank’s national-level assessments of governance effectiveness from the 273 
tropics sit in stark contrast to measures from extra-tropical countries, with no sign of 274 
improvement (Fig. 4i). External support for environmental governance may help where local 275 
governance is weak (Fig. 4j). Yet, despite greater OECD (Organisation for Economic Cooperation 276 
and Development) environmental aid in the tropics than elsewhere (Fig. 4j), these investments 277 
are dwarfed by the value of domestic resource extraction (e.g. agricultural exports; Fig. 4e), the 278 
value of which is two orders of magnitude greater than overseas environmental aid. 279 
Furthermore, OECD environmental aid has been declining in recent years and seems unlikely to 280 
increase in the short term107.  281 
 
Low governance capacity in the tropics is further exacerbated by insufficient research and 282 
development investment (Fig. 4k) and low levels of scientific output (Fig. 4l). Research 283 
investment is critical for driving innovation and the development of evidenced-based solutions 284 
to environmental degradation108. Despite some notable centres of excellence, the vast majority 285 
of biodiversity-related data and research is concentrated in wealthy, non-tropical countries17 286 



and manuscripts submitted by authors from low-income countries are less than half as likely to 287 
be published as those from high-income countries109. These trends highlight an alarming 288 
disconnect between the global scientific process and the people that are most capable of 289 
engaging with decision makers, who have the best understanding of local context and, arguably, 290 
have the strongest incentive to achieve positive impacts through their research.  291 
 
Diverse solutions for diverse systems 292 

Tropical ecosystems – and therefore at least 78% of the world´s biodiversity (Fig. 2a) – are at a 293 
critical juncture. Multiple interacting local and global stressors (Fig. 3) that are driving species 294 
extinctions and potentially irreversible ecosystem transitions92,110 (Box 1) are set within a 295 
changing socio-economic context (Fig. 4). This changing context is characterised by growing and 296 
more affluent populations, an increasingly globalised world, and weak governance and research 297 
capacity – all of which threatens to increase environmental degradation, conflict and 298 
inequality103. Countering these threats requires major improvements in local and global 299 
governance capacity and a step-change in how environmental objectives are integrated into 300 
broader development goals111. We review the opportunities and limitations presented by three 301 
well-established and non-mutually exclusive approaches to conservation, before highlighting 302 
priorities for research. 303 
 
Conservation approaches 304 

A fundamental element of tropical conservation relies on protected areas to limit demographic 305 
pressures and the impact of local stressors. These are supported by a wealth of scientific evidence 306 
outlining the pervasive impact of local stressors across tropical ecosystems37,49 (Fig. 3) combined 307 
with an eco-centric philosophy that emphasizes the intrinsic rights of nature112. Yet, despite 308 
significant expansion of protected-area coverage in the marine and forested tropics113, the 309 
current network remains poorly designed, has very limited coverage of tropical freshwaters and 310 
grasslands, and is inadequately resourced114. Moreover, a strategy focused solely on protected 311 
areas will not foster environmental conservation outside of reserves115 and fails to engage with 312 
the distal drivers of biodiversity loss (Fig. 4) that can undermine the effectiveness of protected 313 
areas themselves116.  314 
 
A second set of approaches for tropical conservation is based on the notion that people need to 315 
perceive the benefits of nature to justify conservation. These emphasize the need to pursue 316 
conservation objectives in human-dominated landscapes, the provision of ecosystem services, 317 
and the involvement of private-sector actors. In the tropics, they are epitomised by the growth 318 
in market-based conservation payment mechanisms, such as REDD+117, investments in the “blue 319 
economy”118 and a step change in the number of companies making sustainability 320 
commitments119. These approaches have strengthened the conservation toolkit, especially 321 
where strict regulatory approaches have failed. Encouraging examples range from the positive 322 
effects of commodity certification (e.g. palm oil120) to payment for ecosystem service schemes 323 
(e.g. watershed protection121). However, such approaches also attract significant criticism with 324 
implementation often lagging commitments119, persistent concerns around the social legitimacy 325 
of compensation schemes122, and the misalignment of market-based mechanisms with local 326 
needs and perceptions of environmental values123.  327 



A third and more diverse set of approaches is based on recognition of the interdependencies 328 
between people and nature, the coevolution of ecological and socio-economic systems at local, 329 
regional and global scales124, and perspectives about the co-existence of people and nature. This 330 
set of more “systems-based” approaches includes: (1) an appreciation of the importance of 331 
bottom-up, community-based conservation approaches in human-dominated land- and 332 
seascapes (e.g. small-scale fisheries125 and community-managed forests126); (2) recognition of 333 
the role of indigenous people as environmental stewards, and shifts towards an appreciation of 334 
more collective relationships with nature (e.g. the Ecuadorian constitution127); (3) landscape- 335 
and ecosystem-wide approaches that attempt to bridge the role of actors working at different 336 
scales and in different sectors (e.g. jurisdictional approaches to curb deforestation128); and (4) a 337 
more explicit accounting of multi-scale feedbacks, including the role of distant market actors 338 
and distal drivers124. These broad, multi-layered “people and nature” approaches hold 339 
considerable appeal, but the inherent complexity of local contexts can make them challenging 340 
to conceptualize, implement and measure in joined-up and consistent ways129.  341 
 
Acting together and acting now 342 

The three broad approaches to the conservation and governance of tropical ecosystems 343 
outlined above are often associated with alternative researcher and practitioner 344 
worldviews130,131. But the inherent ecological diversity (Fig. 2a), vulnerability (Figs. 2b & 3) and 345 
socio-economic complexity (Fig. 4) of the tropics highlights the importance of pluralism132 and 346 
the need to adopt a variety of what are often complementary and synergistic approaches131. For 347 
all their limitations, protected areas are indispensable to limit the impact of local stressors, and 348 
it will be impossible to avoid further biodiversity loss unless they are strengthened and 349 
expanded133. However, conservation strategies must also address the underlying drivers of 350 
environmental change (Fig. 4) and avoid exacerbating deeply rooted inequalities115. Practice is 351 
always messier than theory, and the adoption of more sustainable management systems is 352 
usually only possible with the support of a range of actors, as can be seen in the recent 353 
successes of some hybrid governance approaches, with government, the private sector, and civil 354 
society organizations all playing vital roles134. 355 
 
Another clear message is that conservation efforts need to operate at local, regional and global 356 
scales to be effective. Many distal drivers are disconnected from sites of impact in both space 357 
and time, and the engagement of external actors, including in distant markets and governance 358 
processes, is often essential to ensure that local efforts are effective. These include more 359 
strategic integration of environmental policy with development goals135, the need for 360 
multinational environmental governance approaches, especially for aquatic systems82, and 361 
recognition of the importance of tackling demand for unsustainable products from downstream 362 
buyers and investors119. The capstone of such efforts lies in the urgent need to deliver on the 363 
Paris Agreement, without which climate change will undercut or even negate hard-won local 364 
conservation successes, whether in coral reefs92 or tropical forests110. 365 
 
Finally, we need to act now to address the pressing environmental challenges facing the tropics. 366 
This means being adaptive, learning by doing and embracing innovation. The last decades have 367 
seen a boom in proposals, innovations, and insights about the governance  and management of 368 



tropical ecosystems, ranging from more technocentric proposals to facilitate the evolution of 369 
climate-tolerant corals136; ecological engineering to recover lost trophic interactions by species 370 
re-introductions, ecological replacements and rewilding137; to radical new legal frameworks such 371 
as France’s “Loi de vigilance” (2017-399) that places an unprecedented due diligence obligation 372 
on major companies to assess social and environmental risks in their supply chains beyond 373 
French borders. While these innovations serve different purposes and are varyingly scalable, 374 
they illustrate the potential of solutions-based science and conservation. Of course, acting now 375 
does not mean ignoring the existing evidence base or making uninformed decisions. Rather, it is 376 
vital that researchers and decision makers are vigilant to opportunities and risks and are willing 377 
to learn lessons.  378 
 
Keeping pace with the Anthropocene 379 

All approaches to governing tropical ecosystems will be more effective if they have legitimate 380 
local support and are based on strong scientific evidence that ensures, for example, that 381 
protected areas are located where they are most needed, ecosystem services are accurately 382 
quantified, extractive activities such as fishing and logging are managed sustainably, and 383 
underlying drivers of environmental degradation are identified and understood. Whilst these 384 
challenges are common to all conservation and sustainability science, they are magnified in the 385 
tropics due to their unique diversity, high vulnerability and the low research capacity of most 386 
tropical countries. Here, we examine four areas where research effort can be more closely 387 
aligned with some of the priorities highlighted by this review.  388 
 
Addressing key knowledge shortfalls 389 

Our understanding of tropical biodiversity is limited by significant knowledge shortfalls in 390 
taxonomy and species distributions138. Overcoming these shortfalls will require targeting 391 
resources towards the information “black holes” that cover large regions of the tropics18. At the 392 
ecosystem level, there is a need for increased study of structurally and functionally distinct 393 
systems, particularly tropical grassy biomes68, dry forests139 and low-order stream systems140. 394 
Progress in these areas will likely be aided by significant advances in DNA sequencing and 395 
informatics, which have the potential to invigorate taxonomic discovery, and reaching across 396 
cultural divides to incorporate national, regional and local knowledge that often remains 397 
ignored because it is not in English141, included in standard databases142, or recognised by 398 
conventional science143.  399 
 
Understanding vulnerability 400 

Our growing knowledge of the role of individual stressors, such as landscape configuration or 401 
overexploitation, needs to be complemented by research on the impact of multiple stressors84, 402 
which could help predict and mitigate complex biotic responses when climate and local 403 
stressors act in concert (Fig. 3). Other harder-to-study but important phenomena include the 404 
role of time lags or extinction debts40, trophic cascades31, or trajectories of ecosystem 405 
degradation and recovery in the face of unprecedented environmental change144. Revealing 406 
these more complex forms of vulnerability will often demand longer-term and larger multi-scale 407 
sampling and monitoring programs. New approaches are also needed to overcome one of the 408 



more intractable challenges of tropical ecology: we often know least about the rarest and most 409 
vulnerable species or taxonomic groups. 410 
 
Understanding distal drivers  411 

Conservation does not occur in a vacuum, and localised interventions are likely to be much 412 
more effective if they are guided by a closer understanding of underlying distal drivers of 413 
biodiversity loss and environmental change – including identifying the actors behind such 414 
drivers, helping to determine potential trigger points and identifying more effective policy 415 
responses97. Unpicking the role of distal drivers is essential to understand how distant 416 
interactions between social and environmental systems shape local environmental outcomes145. 417 
Careful study has revealed many surprising interactions, such as links between the 418 
intensification of commercial fishing and increased bushmeat exploitation in west Africa146, the 419 
role of warfare in driving African mammal declines147, or the role of exchange rates in driving 420 
deforestation148. Achieving this deeper understanding requires greater integration of the natural 421 
and social sciences, with interdisciplinarity included as a core element of tropical-conservation 422 
research149. 423 
 
From research to impact  424 

Achieving positive impacts from conservation research relies on building a stronger science-425 
society interface that challenges the oversimplified assumption of a linear flow from knowledge 426 
to action150. Engendering positive changes will require closer participation of practitioners in the 427 
research process and investments in outreach activities and professional capacity building150. 428 
These will be supported by studying the knowledge exchange process itself, including the critical 429 
role played by knowledge brokers and boundary organizations151–153. Part of this process will 430 
involve a focus on success stories, or ”bright spots”, enabling the social, institutional, and 431 
environmental conditions that create positive outcomes to be identified and replicated152. The 432 
positive social and ecological outcomes from innovative restoration and rewilding programmes 433 
in Costa Rica and Mozambique demonstrate the potential for positive action154. 434 
 
Local managers and scientists have a vital role to play in designing and implementing research 435 
that can inform regionally-appropriate conservation actions155 – at present, our knowledge of 436 
hyperdiverse ecosystems is over reliant on inferences gleaned from distant research stations or 437 
inappropriate temperate theoretical constructs18,156. Research is also more likely to have an 438 
impact if the spatial scale of studies is more closely matched to the administrative scale at which 439 
resource decisions are taken157. Sustaining research programmes and learning networks in study 440 
landscapes can also help build the vital relationships between researchers, local knowledge 441 
holders and decision makers155.  442 
 
Achieving these changes requires building on trends in the technological, disciplinary and 443 
cultural dimensions of research practice. In the technological domain, opportunities for data 444 
collection have been revolutionised by developments in remote sensing and drones158, the 445 
plummeting costs of DNA technologies159, and the step changes in bioinformatics that have 446 
allowed big data to be stored and retrieved in open-access platforms160. In the disciplinary 447 
domain, the last decade has seen a marked uptick in inter- and transdisciplinary research, with a 448 



greater – though still insufficient – integration of natural and social sciences. This has resulted in 449 
an increasing openness of researchers towards methodological pluralism and mixed-method 450 
approaches150 and growing recognition of the contribution that can be made by local people, 451 
citizen- and para-scientists in biodiversity research161. Changes in research culture include the 452 
greater internationalisation of ecological science and closer approximation with society150, both 453 
of which can help foster a more fertile ground for knowledge exchange and capacity building. 454 
Notable advances include the development of multi-disciplinary and multinational learning 455 
networks162, exponential growth in author teams163, and major syntheses such as the 456 
Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES).  457 
 
Recent years have seen a new awakening of environmental consciousness and calls for decisive 458 
action, manifest, for example, in the Paris Agreement, the Sustainable Development Goals, and 459 
voluntary Zero Deforestation Commitments. Tropical and non-tropical scientists can inform 460 
these endeavours by developing a reliable knowledge base and innovative management 461 
interventions. Overcoming the remaining research challenges is far from trivial and will require 462 
a massive investment of resources to develop scientific infrastructure and capacity within 463 
tropical nations, as well as profound changes to ways of working and the relationship between 464 
the research process and society at large. But a failure to act decisively and to act now will 465 
greatly increase the risk of unprecedented and irrevocable biodiversity loss in the hyperdiverse 466 
tropics.  467 
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Figure legends 489 

Figure 1 | The tropical biosphere. a, Tropical terrestrial and marine biomes. The tropical 490 
terrestrial biome (green) was defined as all tropical mesic ecoregions164. These ecoregions span 491 
82% of the 50 million km2 of land between 23.5° N and 23.5° S, but extend into the subtropics in 492 
some areas. The tropical marine biome was defined by the 1988-2018 mean minimum monthly 493 
18 °C sea-surface isotherm. This isotherm bounds the latitudinal extent of shallow-water coral-494 
forming ecoregions (blue)165. b, The Intertropical Convergence Zone (ITCZ). The ITCZ was defined 495 
by 1979-2017 mid-summer (January – turquoise colour gradient – and July – red colour 496 
gradient) mean monthly total rainfall >20 cm (where both January and July had rainfall >20 cm, 497 
we show that with the largest total). The ITCZ is a strong predictor of the distribution of tropical 498 
ecoregions (a). Data sources are presented in Extended Data Table 1. 499 
 
Figure 2 | Tropical hyperdiversity. a, The proportion of species found within tropical latitudes 500 
for ten taxonomic groups. Bars are colour-coded to show the percentage of species ranges that 501 
overlap the tropics. n gives the total number of species analysed in each group. Black boxes 502 
around each bar show the proportion of all species that are endemic to the tropics. Only birds, 503 
amphibians and mammals have been comprehensively sampled. Numbers at the end of the bars 504 
give the precise percentage of species whose ranges overlap tropical latitudes, as shown in the 505 
bars. b, The difference in the proportion of threatened (Critically Endangered, Endangered, and 506 
Vulnerable) and non-threatened (Least Concern) species found exclusively within tropical 507 
latitudes for the five comprehensively sampled groups. Data from: Birdlife International for 508 
birds, the IUCN29 for amphibians and mammals, the Ocean Biogeographic Information System 509 
for marine fish, Charlie Veron for shallow-water zooxanthellate corals, Tedesco et al.166 for 510 
freshwater fish, and the Global Biodiversity Information Facility for angiosperms. Data sources 511 
are presented in Extended Data Table 1. 512 
 
Figure 3 | Vulnerability of tropical biota to local and climatic stressors. Species co-tolerance to 513 
a local and climate-associated stressor85. The x-axis shows responses to fishing for corals (a) and 514 
reef (b) and freshwater fish (c); land-use change/deforestation for small-stemmed trees (2 ≤ 515 
DBH <10 cm; (d)) and forest birds (e); and fire suppression for savanna birds (f). The y-axis 516 
represents longitudinal responses to climate-associated events: the 2015-16 and 1997-98 coral 517 
bleaching events in the Seychelles for, respectively, corals (a) and reef fish (b); the 1997-98 El 518 
Niño-induced drought for lower Amazonian freshwater fish (c); Amazonian fires during the 519 
2015-16 El Niño for small-stemmed trees (d) and forest birds (e); and shrub encroachment 520 
between 1998-2008 in South Africa for savanna birds (f). Species relative density is represented 521 
from low (dark blue) to high (light green). The four quadrants represent the location of 522 
“Survivor” species tolerant to both stressors (green), species only susceptible to local stressors 523 
(yellow), species only vulnerable to climate-associated stressors (blue) and “double-jeopardy” 524 
species susceptible to both stressors (red). Numbers show the percentage of species that fall 525 
into the quadrant. n gives the total number of species – or genera for corals. Data sources are 526 
presented in Extended Data Table 1. 527 
 
Figure 4 | Socio-economic drivers of biodiversity loss and societal response capacities. Green 528 
lines represent countries with >50% of their area within tropical latitudes; purple dashed-lines 529 



represent all other countries; grey-shaded areas represent the proportion of the global total 530 
within tropical countries. a, Global population (1960-2016). b, Gross domestic product (GDP) per 531 
capita (2011 $US based on purchasing power parity; 2000-2016). c, Foreign food crops (1961-532 
2009). d, Cumulative overseas land ownership (2001-2017). e, Domestic and international 533 
airline passengers (1970-2016). f, Agricultural and forestry commodities export value (2001-534 
2016). g, Bottom and pelagic trawler catch tonnages (1960-2014). h, Total fertilizer (nitrogen, 535 
potash, and phosphate) consumption relative to crop area (2002-2013). i, Government 536 
effectiveness index (2000-2016). j, Environmental protection aid (2000-2016). k, Public and 537 
private sector research and development expenditure (% GDP) (2000-2015). l, Scientific and 538 
technical journal articles per million people in the fields of physics, biology, chemistry, 539 
mathematics, clinical medicine, biomedical research, engineering and technology, and Earth and 540 
space sciences (2003-2016). Data sources are presented in Extended Data Table 1. 541 
 
Box 542 
 

 
 
Box text 543 

Box 1. Tropical ecosystems in transition. 544 
Forests (a): Wildfires in historically fire-free humid tropical forests167 can lead to the dominance 545 
of grassy vegetation that impedes succession towards closed-canopy forests91,168. These 546 
wildfires result from the combination of local actions (e.g. agricultural practices, logging) and 547 
climate change that has increased wildfire-promoting weather169. 548 
Corals (b): Chronic local stressors and acute climatic stressors can lead to coral cover being 549 
replaced by macroalgae, sponges, or sediment-laden turf algae89,95. During the 1998 global 550 
coral-bleaching event, >90% of live coral died in the inner Seychelles and nearly half of the reefs 551 
transitioned to fleshy macroalgal regimes89. 552 
Savannas (c-d): Woody encroachment is occurring in many savannas69, causing biodiversity loss 553 
and altered system functioning68. Causes are mixed: regime shifts to forest-associated 554 
ecosystems have been attributed to fire suppression policies (e.g. Brazilian Cerrado [C] to Forest 555 
[D]170), changes in herbivory and increasing atmospheric CO2 

69.  556 



Freshwater (e): The boom in hydropower-dam construction is affecting large tropical river 557 
basins135. The transformation from lotic to lentic conditions reduces access to riparian and 558 
floodplain habitats that are nursery areas and feeding grounds for much of the higher biota, 559 
leading to major shifts in species composition and ecosystem function82. 560 
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