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A case for using both direct and indirect benchmarking to compare 

university performance metrics 

W. E. Harris, A. M. Langan, N. Barrett, K. Jack, C. Wibberley and C. Hamshire 

 
Abstract 
Benchmarking is used in higher education as a means to improve and compare performance. 
Comparative metric benchmarks may take two forms, based on direct standardization (DS) or 
indirect standardization (IS). DS can be used to measure variation in performance between 
institutions, controlling for intrinsic differences at each institution (e.g. controlling for differences in 
student typologies). IS can be used to measure variation in performance between institutions, 
compared to average performance overall. Typically, IS has been used to moderate educational 
output metrics, such as student qualification and satisfaction. We contrast the two approaches with 
an example dataset for three years of nursing student completion rates from nine institutions. 
Profiles of benchmarks and actual performance indicated that both approaches provide valuable 
and different perspectives to comparisons of institutional performance. We discuss the potential 
merits to stakeholders of each approach and conclude that decision-making can be best informed 
using both benchmark methods. 
 
 

 
 

Background 

Performance metrics are an established approach for evaluating and comparing institutional per- 

formance in higher education (HE), at local, national and international  levels  (Hazelkorn  2015;  

Chinta, Kebritchi, and Elias 2016). This has become increasingly important both from an institutional 

perspective (e.g. by informing quality and performance management) and for other HE stakeholders, 

such as funding bodies and prospective students (Hazelkorn 2007). Public classifications of edu- 

cationally derived output metrics, for example in the form of league tables, have high impact on insti- 

tutional reputation on a global scale (Dill and Soo 2005). Despite the widespread use of  output 

metrics, there is a lack of consensus for standard calculation methods and many competing 

approaches have been described (e.g. Tam 2001; Chinta, Kebritchi, and Elias 2016). Direct quantitative 

comparison of institutions is hampered by failing to account for the impact of variation in student 

typologies on performance measures. This exacerbates concerns over the acceptance of simple, 

ranked approaches as measures of ‘academic quality’, and the associated pressure to increase absol- 
ute and rank measures per se, as opposed to increasing quality (Bowden 2000). 

An additional layer of HE quality and performance measures is the use of metric benchmarking. 

Metric benchmarking has an advantage  over  dissemination  of simple  ranking  of  absolute  metrics  

in that it provides a weighted measure of performance that is directly comparable to performance      

in other institutions. Benchmarking is an established practice in business performance management 



(Kumar and Chandra 2001) and has resulted in an array of benchmarking definitions and approaches 

(Zairi 1998; Kyrö 2003). There is evidence for the usefulness of metric benchmarking in HE (Agasisti 

and Bonomi 2014); however, potential benefits are subject to the challenges of effectively imple- 

menting benchmarking, or other performance metrics, as a quality enhancement tool (Hazelkorn 

2015). 

Jackson (2001) outlines the history of benchmarking in HE, beginning in North America in the  

1980s, where it was used as a management tool for non-academic services  in  HE.  The  practice 

spread and broadened in scope to become a prominent way to manage academic quality and  

focussed on HE accountability and international competitiveness. Benchmarking has proliferated 

across the sector and transformed HE management globally (Hazelkorn 2015, 42). Many approaches  

to benchmarking have been documented and the literature provides a history of nuanced definitions 

surrounding  different applications (e.g. Jackson and Lund 2000). A key challenge of benchmarking is  

to devise metrics to directly compare ‘processes with outcomes’, usually amongst institutional enti- 
ties with comparable goals. However, there remains ongoing debate about the processes, compara- 

tive metrics and data that should be used (e.g. Tee 2016). This is possibly because there are many  

ways to categorize benchmarking approaches, and JISC (2012) provides  a  distinction  between 

‘metric’ and ‘process’ benchmarking in education and research. Metric benchmarking provides infor- 
mation to identify significant performance gaps, whereas process benchmarking uses metric bench- 

marks as a basis for understanding performance gaps through examination and comparison of 

processes. Ultimately, the method  of calculation  of the  underpinning  metric  benchmark is  critical  

to inform subsequent processes and decision-making. 

Measurement of performance or efficiency in HE often relies on data relating to the outputs of 

degree courses, such as qualification rates, student employment outcomes and levels of student sat- 

isfaction. While these are metrics that students and HE academics and managers are interested in, 

some metrics (and other factors associated with  them  that  could  aid  interpretation)  can  be  

difficult to obtain reliably and consistently for comparison between institutions (Williams and de Ras- 

senfosse 2016). The biggest advantage of metric benchmarks over absolute metrics or simple ranking 

schemes is that they can account for variation in the student population, including social and econ- 

omic factors, when comparing institutional performance. This overcomes the significant challenge of 

accounting for diversity when considering institutional performance, not only in HE but also in other 

education and employment sectors (Pitts 2005). 

Equitability in HE benchmarking systems that compare institutions requires adjusted outcomes to 

account  for inherent differences of the institutions, which may include heterogeneity of students,  

staff and programmes of the study (e.g. see HESA  2011).  Any  adjustments  to  absolute  values  

should be made transparent by practitioners or managers, and context should be provided for 

interpretation. However, many stakeholders may be unaware of the wider context of benchmarks      

or the different approaches available for their calculation. There are  two  broad  approaches  to  

metric benchmarking, called ‘direct’ and ‘indirect’ standardization (Draper and Gittoes 2004; see 

below), and while both approaches can use the same institutional data, they are different in 

implementation and interpretation. 

The basis of benchmarking in HE relies on the identification of characteristics for comparison 

between institutions. This could be represented by a variety of  features,  such  as  performance  

within and between programme subjects,  or, as we highlight here,  social  or demographic  features  

of the student cohort represented at different institutions that can be associated with performance 

measures, such as satisfaction or qualification. An initial challenge is the identification of data repre- 

senting constituent typologies (of students) represented in institutions (Asif and Raouf 2013). This 

information must be readily available and comparable  for  all  institutions  to  be  benchmarked,  

which is true of the basic  demographic  information  used  across  international  HE  institutions.  

Direct standardization (DS) benchmarking weighs the overall performance of student  groupings  

across institutions and estimates the performance anticipated were this aggregate student popu- 

lation to attend each individual participating institution (Figure 1(a)). The expected DS benchmark 



 
 

Figure 1. Conceptual explanation of direct and indirect benchmarking. Each symbol represents a different student demographic 
segment, with the number of each individual symbol representing the proportion of the student segment in that particular popu- 
lation. For example, if the variable’s age and gender are considered, the triangles might represent the subset of ‘young’ AND 
‘female’ students, the pentagonal symbols might represent ‘mature’ AND ‘female’, etc., with the other symbols representing 
different demographic groupings, respectively. A typical benchmark analysis would include many such groupings, the number 
of which would depend on the number of grouping variables and the number of combinations of levels explicitly considered 
in the benchmark. For simplicity, here we show only three different groupings by way of example. (a) Direct standardization 
approximates the expected performance of the aggregate student demographic segments at individual universities. (b) Indirect 
standardization approximates the performance of separate cohorts of students based on expected average performance. 



performance can then be compared to the actual performance of the cohort of students, and their 

varying demographic representation,  at the individual  institutions. Here,  the benchmark per se is   

the difference between the actual performance of the aggregate student cohort at that institution 

relative to the performance of the actual local student cohort. 

Indirect standardization (IS) benchmarking, in contrast to DS, has been used widely in HE (Draper 

and Gittoes 2004), for example to compare student evaluation quality across institutions in the UK 

National Student Survey (Fielding, Dunleavy,  and  Langan  2010).  Here,  weighted  averages  of  

output metrics are calculated to account for  the  different  compositions  of  student  typologies  

across different student groupings, such as subject or degree programme. This can be used to evalu- 

ate achievement of students from different backgrounds (e.g. socio-economic, ethnicity, age), which 

may be heterogeneously represented across institutions, and may reveal different levels of achieve- 

ment on a national level exhibited by different student populations. The general approach for IS is to 

weigh the aggregate performance of individual student groupings based on identified demographic 

parameters on a ‘per institution’ basis, relative to the aggregate performance of the same groupings 

across all institutions. Conceptually, this can be described as an ‘aggregate university’ (Figure 1(b)). 
For example, if national data are used this could be conceptualized as comparing individual aggrega- 

tions of students at their respective institutions to the performance of the aggregate student popu- 

lation at a ‘national university’. The goal is that benchmarking, in this sense, ‘levels the playing field’ to 

allow more meaningful comparisons between institutions. The expected IS performance may then be 

compared to the actual local performance measures to explore whether courses, or institutions, over- 

or underperform based on their student composition. 

While there is some literature describing these different benchmarking approaches in HE (Draper 

and Gittoes 2004), there is a paucity of literature surrounding the application and interpretation of the 

two approaches. The education and health sectors have been particularly subjected to an increase in 

the use of performance measures as an indicator of quality (Northcott and Llewellyn 2005; Shober 

2013), and previous work has demonstrated and  highlighted  the  importance  of  factor  selection  

and differences in performances of indirectly standardized benchmarks of regional nursing courses 

(Langan et al. 2016). We suggest that there  is  an  imperative  to  clarify  the  comparative  benefits 

and interpretation of the two benchmarking approaches, both for stakeholders and for practitioners. 

In this study, we use three years of student completion data from nursing courses at nine universities 

in the UK. Our aim was to compare performance of individual institutions using both DS and IS bench- 

marking techniques and provide guidance on the interpretation of the outcomes. 

 
 

Methods 

Dataset 

The dataset used encompassed over 36,000 students in allied healthcare training programmes begin- 

ning their degree in the academic years 2008–2011 and who would have become qualified in the 

field of study by 2014 at the earliest. Nine participating institutions located in the north of 

England were included, and the data were anonymized according to guidelines imposed  by 

Health Education England (formerly Health Education North West). The dependent variable was 

binary, indicating whether or not students achieved a qualification in their field of training sub- 

sequent to graduation. A number of descriptor variables were available to analyze that contained 

information associated with individual students, including factors such as age, gender, ethnicity, dis- 

ability status and whether or not the student had suspended their studies. The anonymized baseline 

dataset contained information associated with individual students routinely recorded as part of the 

Professional Education Training Database. Further socio-economic information was associated with 

the student home postcode, such as youth and adult participation in further and HE arising from 

the Higher Education Funding Council for England dataset (i.e. HEFCE POLAR data; see Harrison 

and Hatt 2010). 



Even for large datasets, benchmarking is constrained to use a relatively small number of explana- 

tory factors to create different data groupings for the analysis (Hall and Holmes 2003). The factors 

selected for inclusion are important both for the information content of any  benchmarking model  

and also for interpretation of results (Draper and Gittoes 2004; Langan et al. 2016). Here, one  or  

more variables can be thought of as representing different demographic ‘segments’ of the student 

population. The baseline dataset contained  52 explanatory  variables, from  which five were chosen  

to represent student demographic segments: age, gender, ethnicity, disability status and youth par- 

ticipation in HE associated with home postcode. The selection criteria for these variables for this 

dataset have previously been described (Langan et al. 2016). 

A machine learning method (Random Forest analysis) was used to select the most important 

variables to explain variation in the dependent variable, in this case student qualification (Breiman 

2001; Hapfelmeier and Ulm, 2013). Random forest is a popular and efficient algorithm for large data- 

sets suited to classification and regression analyses (Genuer, Poggi, and Tuleau 2010). The criterion 

used for ranking importance was a  weighted  average  of  those  with  the  highest  standardized  

mean for node purity (how much qualification classification changes when a target variable is  

excluded from analysis), and the percentage of variation explained in  the  dependent  variable.  

Briefly, this analysis reduced the dataset by identifying a subset of the most useful variables for 

benchmarking based on objective  criteria.  This method is also considered  robust to the  inclusion     

of heterogeneous data, such as student demographic information (Verikas, Gelzinis, and Bacauskiene 

2011). This resulted in five variables being identified as having large explanatory power for our 

dependent variable, student qualification. The same demographic variables were used for both 

benchmarking models in order to facilitate direct comparison of results. All machine learning analysis 

for factor selection was performed in the statistical package ‘R’ (R Core Team 2017) using the 

approach described by Liaw and Wiener (2002). 

 
Benchmarking 

DS and IS benchmarks were calculated according to the general approach described by Draper and 

Gittoes (2004). For both benchmarking approaches, this entails the calculation of a weighted mean of 

the student qualification rate within and between the student demographic segments described 

above. For the DS benchmarking approach, we calculated the mean qualification rate for demo- 

graphic segments in aggregate across participating institutions. We then weighted the segment- 

specific mean qualification rate by the representation of those demographic segments for each indi- 

vidual institution, based on the actual performance of those demographic segments at each respect- 

ive institution. For the IS benchmarking approach, we calculated the performance of the student 

demographic segments averaged across the individual institutions. For both these methods, the stan- 

dardized expected performance was then compared to the actual qualification performance for each 

anonymized institution. 

Factor number, factor order and the evenness of distribution of students across the different 

demographic segments all can have a strong effect on the  outcome  of  benchmarking,  and  thus  

were explicitly considered. Our approach for factor order and number was to perform sensitivity 

analysis on different possible combinations of factor order and factor number to include in our  

models. The details of the sensitivity analysis have been described previously for the IS benchmarks 

(see Langan et al. 2016), but are briefly reported here for context. All possible combinations for order 

of inclusion of the five factors were considered in competing benchmark models. In comparing 

benchmark outcomes based on the different factor orders for an IS model, no qualitative  difference   

in benchmarking outcomes relative to actual performance was found. However, there was a small 

effect of factor order on the variation in benchmarking outcomes (i.e. some institutions exhibited 

relatively smaller or larger variance in benchmark estimates; see Langan et al. 2016). 

We manipulated the number of factors included in competing benchmarking models. This is an 

important consideration, especially when data across combinations of factors do not contain a 



similar number of observations. We calculated competing benchmarks for all possible numbers of 

factors (i.e. 5, 4, 3, 2 or 1). Since factor order could interact with  factor  number,  within  each  

number of factors tested we compared all possible orders of factors as well. In comparing benchmark- 

ing outcomes based on factor number, no qualitative difference was found. However, as with the 

effect of factor order for five factors, there was a small effect of factor number on variation in bench- 

marking outcomes. The effects of factor order and factor number were arbitrary with respect to the 

qualitative outcome and all five candidate variables were included and the factor order we used for 

further analysis was based on age, gender, ethnicity, registered disability and youth participation rate 

in HE based on home post code. To facilitate direct comparison with IS benchmarks, the DS bench- 

marks we report here were calculated using exactly the same factor number and order as the IS 

benchmarks previously reported (Langan et al. 2016). 

The deviation between benchmarks and actual performance for both DS and IS methods were cal- 

culated and the overall mean and standard deviation were used for comparative purposes. We com- 

pared our results to the criterion of a 0.03 difference between actual and benchmark performance to 

indicate significance as ‘a rule of thumb’. We adopted this threshold as it has been used as a standard 
to indicate significant differences in previous HE benchmark studies (HEFCE 1999; Draper and Gittoes 

2004). 

 
Findings 

DS benchmark results are shown in Figure 2(a). Overall, mean DS results differed from actual student 
qualification results by 1.44% (standard deviation ±1.81). In our sample of nine universities, three 

institutions had DS benchmark values higher than actual performance,  five  had  DS  benchmark  

values lower than actual performance, and one exhibited no difference between the DS benchmark 

and actual performance. Only one institution differed by more than the rule of thumb threshold for 

significance of 0.03; however, three universities had DS benchmark performance that varied by  

greater than one standard deviation from actual performance (‘D’,  Figure  2(a)).  IS  results  are  
shown in Figure 2(b). Mean IS differed from actual performance by 5.78% (standard deviation 

±8.10). In our sample, four universities had higher IS benchmark performance than actual perform- 

ance, with three greater than one standard deviation. Three universities had lower IS than actual per- 

formance (two greater than one standard deviation lower), and two universities had benchmark 

performance that did not differ from actual performance. Here, five universities had indirect bench- 

mark performance that differed significantly according to our criterion of 0.03. 

We found inconsistency between benchmark methods in the deviations in performance  for  

specific institutions. Only one institution (‘D’, Figure 2(a,b)) had large deviations in both direct  

(greater  than one standard  deviation) and indirect  (greater than 3%) benchmarks. Six institutions  

(‘A’, ‘B’, ‘C’, ‘E’, ‘F’, ‘H’, and ‘I’) have large deviations from actual performance in at least one benchmark 

measure, with the remaining institutions (‘E’ and ‘G’) showing only small deviation from actual 

performance.  There  was  no  correlation  between  IS  and  DS  benchmark  differences  (Spearman’s  

ρ = −0.12, df = 8, P = .76). There also was no correlation  between relative  actual performance and  

the DS benchmark (Spearman’s ρ = −0.23, df = 8, P = .55); however, we found a significant negative 

correlation  between  relative  actual  performance  and  the  IS  benchmark  (Spearman’s  ρ = −0.83,  

df = 8, P = .0058). 

 
Interpretation 

This section is intended to provide an explicit example comparing the two benchmarking methods 

based on the relative performance of specific institutions. We found contrasting outcomes for insti- 

tutions when benchmarked by DS and IS methods, compared to actual performance. There was no 

correlation between the two benchmark results, suggesting differences in the information each 

benchmark provides. While IS benchmarks and actual performance were strongly correlated, DS 



 
 

Figure 2. Results of benchmarking analysis for nine institutions. The Y axis measure of relative performance is the actual average 
achievement of students minus the expected benchmark achievement for each benchmarking method, respectively. (a) Shows 
results for direct standardization performance. (b) Shows results for indirect standardization performance. The solid lines indicate 
the mean benchmark performance across all institutions. The dashed line indicates 1 standard deviation of mean benchmark per- 
formance across all institutions. 

 
 

benchmarks showed no evidence of a relationship between the benchmark and actual performance.  

In simple terms, outperforming an IS benchmark indicates that more students are successfully com- 

pleting their studies at a particular institution than would be expected on average at all other univer- 

sities combined (i.e. the hypothetical ‘aggregate’ university). For DS, the interpretation is suggested to 

be more nuanced. Thus, an institution with a graduation rate that is higher than their DS benchmark 

suggests that the wider, aggregate student population would be expected to be more successful at  

the benchmarked institution than the student population that actually studied there. Compared to 

benchmarking practices in the business sector, the use of benchmarking in  HE  is  in  its  infancy.  

While there are established frameworks for benchmarking practices in business research (Rolstadas 



2013), the use and interpretation of benchmarking in HE has been comparatively limited (Chinta, Keb- 

ritchi, and Elias 2016). The main benchmarking approach used in HE has been IS, and its merits have 

been strongly argued (Draper and Gittoes 2004; Asif and Raouf 2013). Our results suggest that novel, 

complementary information might be gleaned from simultaneously considering DS benchmarking 

results, while not adding significantly to the complexity of the underpinning analysis. There is an 

accompanying need for a framework for interpretation of both DS and IS results for different stake- 

holders. Here, we propose a simple, generalized approach for interpreting results of benchmarking in 

HE for both IS and DS benchmarks,  enabling stakeholders to distinguish  unique characteristics of  

each approach. 

First, we provide a conceptual model of benchmarking outcomes (Figure 3), showing how all 

benchmarks are interpreted relative to actual performance. To interpret deviations between bench- 

mark and actual performance, there must be explicit consideration of both the possible outcomes,  

and also the meaning of specific deviation from actual performance for each respective benchmark 

approach. The latter is particularly important if, as in our results, there is no correlation between com- 

peting benchmarking outcomes. The dashed line in Figure 3 represents a baseline of actual perform- 

ance relative to benchmarking outcomes. Three possible outcomes  of benchmarked  performances 

are shown as below, above or about the same as actual performance. Secondly, we need to revisit   

the threshold for the decision  as to whether the  benchmarked institution  differs sufficiently  from  

the actual performance. A difference of 0.03 (3%) has been previously suggested as a criterion for 

significance in IS benchmarking (Draper and Gittoes 2004). However, the arbitrary choice of a 3% 

difference may not be appropriate for DS benchmarks or for any benchmark with low variation. 

 

 

 

Figure 3. Scenarios for actual and benchmark performance outcomes for direct standardization (performance of the aggregate 
student demographic cohort at an individual institution) and indirect standardization (performance of the student cohort from 
an individual institution at the ‘average national institution’). Three outcomes are possible: (1) Scenario A occurs when benchmark 
and actual performance are the same or negligibly different. The outcome in this case is the same (negligible effect represented by 
‘0’) for both direct and indirect benchmark methods. (2) Scenario B is when benchmark performance is significantly above that of 
actual performance. For direct benchmarking this is a positive outcome (‘+’), where the average student would be expected to 
perform  higher,  relative  to  actual  performance.  For  indirect  benchmarking,  this  is  a  negative  outcome  (‘−’),  where  students 
would be expected to perform better at the average national institution, compared to their own institution. (3) Scenario C is 
when benchmark performance is significantly lower than actual performance. For direct benchmarking, this is a negative 
outcome (‘−’), where students from the average student cohort would be expected to perform less well at the target institution. 
For indirect benchmarking, this is a positive outcome (‘+’), where students from the target institution would be expected to 
perform less well at the average national institution than at their own institution. 



Here, we suggest a convenient measure is one standard deviation of the mean difference between 

actual and benchmark performance. When there is no significant difference from actual performance, 

this indicates no effect of the factor subdivisions on benchmark performance. This outcome is the 

same for both DS and IS. For DS benchmarks, the interpretation of no difference between the bench- 

mark and the actual performance would be that the aggregate student population is expected to 

perform ‘about the same’ as the actual student performance at the benchmarked institution. For       
IS benchmarking, the student population from an individual institution would be  expected  to  

perform about the same as if they had attended the aggregate university. 

We suggest that interpretation is different for the two benchmarking approaches, and as a con- 

sequence may be of different value to different stakeholders. For IS, when an institution outperforms 

its IS benchmark (top box in Figure 3), this can be interpreted as a ‘good’ outcome. Here, expected 
performance of the institution-specific cohort would be expected to fare less well elsewhere (on 

average). For the particular metric under scrutiny (in our case study, qualification rates), the demo- 

graphic segments represented by the  benchmark  sample can be suggested to be ‘well-suited’ to    

the systems in place at that institution (such as the teaching and learning approaches). From the per- 

spective of a student applying to this university, this can be interpreted as a positive expectation of 

outcome if choosing to attend the institution. However, this interpretation from the student perspec- 

tive may be practically limited because the actual benchmark performance is only expected  relative  

to the cohort of students that attended that university when the benchmark was calculated (Depart- 

ment for Education 2018). From a management or planning perspective, IS benchmarking could for 

example be used to explore and improve demographic segments that perform relatively less well 

locally compared to other institutions and inform a targeted management to improve performance 

within a particular student grouping. We also found that our IS benchmarks were significantly corre- 

lated with actual performance measures. This is because the more successful a particular institution is 

in metric performance (perhaps suggesting they are ‘doing something right’), the more they outper- 

formed their IS benchmark. However, correlation between IS benchmarks and actual performance 

suggests some redundancy in the information that the IS  benchmark  provides,  as  they  largely  

mirror the pattern of absolute performances. Further enquiry  is  needed  to  confirm  this  pattern  

and understand the underpinning factors associated with actual performance and subsequent impli- 

cations of the value of a sole reliance on IS benchmarking outputs that are strongly linked to actual 

performance. 

For DS benchmarking (bottom box in Figure 3), the interpretation of deviation  of  benchmark 

scores from actual performance could be interpreted differently to benchmarks. Here, a benchmark 

score that is higher than actual performance could be interpreted as ‘good’, while a benchmark score 

lower than actual performance may be interpreted as ‘poor’. This is because DS outcomes estimate 
the performance of the aggregate student population across all participating institutions were they    

to attend the benchmarked institution (Figure 1(a)). However, interpretation is perhaps more subtle 

than for IS. For example, in the scenario that institutions wanted to attract students in future from the 

wider student population, it could be argued that the expected performance of those aggregate 

demographic segments would be favourable compared to competing institutions. This interpretation 

does depend on the relative representation  of those student demographic segments compared to   

the aggregate population, and this is based on the  potential  of  reaching  in  future  the  wider  

student  populations  that  would result in stronger performance.  However, we suggest that this is    

an important consideration for university managers and  practitioners  that  is  only  flagged  by  the 

use of DS benchmark approaches. Certain institutions may want to attract students in a widening par- 

ticipation context or perhaps international students who may not be relatively highly represented in a 

given student population. The outcomes could provide evidence that this would suit the institutional 

practices. However, if both the IS and (simplistic) DS benchmark outcomes were indicating a current 

situation of poor performance, then this is only an indicator that there is capacity for improvement 

through modifying the demographics of the resident student population. 



As an example, we have applied this level of interpretation to our own regional results. When the 

outcomes of both DS and IS benchmarks are compared, several outcomes are apparent. First, in com- 

paring outcomes for DS and IS benchmark outcomes (Figure 2(a,b), respectively), institution ‘A’ 

recorded a DS benchmark performance that was  not  different  (less  than  1  standard  deviation)  

than actual performance, but IS benchmark performance was much higher than actual performance. 

While university A achieved the status quo for the DS benchmark, this is a poor outcome for the IS 

benchmark. Here, the student demographic would  be expected  to  have performed  better  outside  

of the institution they actually attended.  To  stakeholders  managing  benchmark  performance  at  

this institution, this outcome could be used to improve outcomes (e.g. by managing improved per- 

formance). For potential applicants, it could inform relative expected outcomes at that institution, 

with the aforementioned caveat that the expectation is based on a past demographic cohort. Insti- 

tution ‘D’ shows a very low DS benchmark (Figure 2(a); a negative outcome) and a slightly high IS 
benchmark (Figure 2(b); a negative outcome). Here, the interpretation of the DS benchmark is that  

the aggregate student population would be expected  to perform less well at the target university  

than on average. This could indicate a ‘good match’ between programme management and their par- 

ticular student population. However, performance would be expected to decrease were the demo- 

graphic segments attending this institution to become more similar to those represented in the 

aggregate for the region (for example due to a change in applicant demographics or recruitment 

practice). We note that only institution D in our dataset showed significant deviation in benchmark 

performance for both IS and DS measures, and it suggests a poor outcome overall. 

 
Conclusions 

There is increasing international demand for data-led performance metrics in HE institutions. A prom- 
ising approach in objective performance evaluation is benchmarking. Our findings suggest that both  

DS and IS benchmarks can add value to the information available for decision-making in HE. We 

suggest that the ‘double-negative’ benchmarked outcome will be of particular interest to wider sta- 

keholders, such as funding bodies as these comparatively underperforming institutions appear to not 

serve student cohorts to a level seen in their sector. IS benchmarks are relatively straightforward to 

explain in terms of relative performance in the sector, whereas DS outcomes require more careful 

interpretation. We suggest that decision-making using both  benchmarks should vary according  to   

the type of institution and the types of students that they recruit and support. We have provided       

an interpretation framework for both benchmarks using an example of qualification rates in regional 

nursing and allied health degree programmes, supported by graphical explanations of the bench- 

marking approaches. We suggest that this example can be generalized across subject areas and inter- 

national schema. While we have highlighted benchmarking across student demographic segments in 

our example here, we note that benchmarking segmentation can be used to highlight difference 

amongst other groupings, such as subject area (e.g. Department for Education 2018), or other  

regional or socio-economic factors that we do not explicitly consider here. 

Benchmarking has value in accounting for the variation in institutions to make meaningful com- 

parisons, when outcomes are interpreted with sufficient context (Rolstadas 2013; Hazelkorn 2015). 

Provisions of both IS and DS benchmarks should facilitate institutions  to  inform  and  enhance  

current practices. For IS outcomes at a particular institution, it is straightforward to interpret that if 

your students had attended a hypothetical ‘aggregate’ university and would have performed rela- 

tively better, then your institution is not performing well in the sector. However, for DS outcomes, 

different institutions may need to interpret the benchmarks in light of their  ambitions  for serving 

their students and the types of future students that may wish to recruit. Universities with a less 

diverse student population might interpret that an aggregate university cohort (composed of repre- 

sentative student group across the sector) would fare less well, as an indication that their academic 

provision is well-tailored to the needs of their own students. Universities with a narrow range of 

student typologies may interpret poor performance of an aggregate student at their own institution 



as a success. This is because they specialize in teaching their own student typologies. However, uni- 

versities with a high diversity of student typologies (e.g. social backgrounds), may want to interpret 

their DS metrics to enhance the likelihood of success of students represented at a national demo- 

graphic level, with implications for good outcomes across different student socio-economic back- 

grounds and for broadening participation in HE. 

The use of benchmarks in HE is increasing both in prevalence and importance (Agasisti  and  

Bonomi 2014; Hazelkorn 2015). We suggest that the  information provided by  IS and DS outcomes  

can be complementary. The value to stakeholders of using both adjusted measures provides a stron- 

ger evidence base for decision-making, if tailored to the institutional typology and ambition. Bench- 

marking tools have been used widely in HE to monitor performance amongst  institutions,  for  

example in national ranking schemes or to inform management at the national level. These 

approaches seem better suited  to IS benchmarking  approaches that  are relatively  straightforward  

to interpret and compare. DS benchmarks contain different and relevant information that require 

context and interpretation from a particular institution’s perspective. The outcomes of DS bench- 

marking could inform institutional ambitions to attract and teach students most suited to their edu- 

cational systems. We therefore suggest that national-level reporting of both IS and DS benchmarking 

results can be useful to identify levels of relative performance of institutions, improve performance of 

specific student demographic segments and therefore be of value to national education policy, uni- 

versity managers, educational practitioners and students. 
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