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Abstract 

In pursuing higher energy density, without compromising the power density of supercapacitor 

platforms, the application of an advanced 2D nanomaterial is utilised to maximise the performance. 

Antimonene, for the first time, is characterised as a material for applications in energy storage, being 

applied as an electrode material for supercapacitors. Antimonene is shown to significantly improve the 

energy storage capabilities of a carbon electrode in both cyclic voltammetry and galvanostatic charging. 

Demonstrating remarkable performance with a capacitance of is 1578 F g-1, with a high charging current 

density of 14 A g-1, antimonene is shown the be a highly promising material for energy storage 

applications. The system also demonstrates a highly competitive energy and power densities of 20 mW 

h kg-1 and 4.8 kW kg-1 respectively. As well as excellent charge storing capabilities, the antimonene 

demonstrates good cycling capabilities. 



Broader Context 

Supercapacitors with excellent power density and lithium ion batteries with high energy density are 

currently both considered novel, environmentally friendly and high-performance energy storage 

devices. Nevertheless, in view of numerous applications of electronic devices and hybrid electric 

vehicles, there has been great demand for high performance energy storage devices with both higher 

energy density and power density; a device that provides both long lasting energy storage with short 

charging times. A simple solution to this is a device, which utilises a supercapacitor arrangement in 

parallel, providing a simple fast charging solution, with the high energy storage capacity of the parallel 

battery. Typical arrangement of such systems utilise activated carbon as supercapacitor electrode 

materials, which, although affordable, demonstrates relatively low conductivity, low capacity and poor 

stability in lifecycle testing. As a result, advanced nanomaterials have developed significant interest in 

the energy storage fields. A highly novel nanomaterial is presented here for the first time as an electrode 

material for energy storage architectures. Antimonene, a 2D nanomaterial of antimony, is, for the first 

time characterised as a material for energy storage applications.   



 

Introduction 

The increasing development and demand of renewable and sustainable energy sources have required 

the development of sustainable energy storage technologies in order to satisfy the increasing demand 

for green energy1,2. Because of their high power density, competitive energy density, good operational 

safety, long cycling life, and minimum charge separation compared to alternative energy storage 

platforms, electrochemical double-layer capacitors (EDLC) or supercapacitors have been considered an 

energy storage platform with significant potential. Supercapacitors have been extensively explored and 

are recognized as promising devices for energy applications from high-power electronics down to fast 

charging personal electronic devices, from electric vehicles and hybrid electric vehicles down to mobile 

phones3-5 

Advancements in nanomaterials and nanotechonology are playing a key role in bringing these devices 

toward practical applications and improvement in device performance, scale and compatibility. 

Increasingly more attention has been paid to the development of nanomaterials, which are expected to 

allow electrodes development with major storage devices6. 2D nanomaterials have spiked interest due 

to their  high specific surface area, a material property that can significantly contribute to a high double-

layer capacitance. Furthermore, 2D nanomaterials have reactive basal planes and edges that can provide 

electrochemical performance enhancement such as pseudo-capacitance7. After graphene’s successful 

application in different energy storage devices8-11, new 2D inorganic nanomaterials have been 

developed12, most with similar crystalline structures13. Such 2D nanomaterials have shown great 

promise as electrode materials when layered onto the electrodes in electrochemical energy-storage 

devices in which efficient intercalation of ions play an important role14,15. They involve van der Waals 

interactions between adjacent sheets with strong covalent bonding within each sheet. There are very 

good reasons for the exploration of these nanomaterials, which is that monolayer materials show 

increased bandgap and tunable electronic, optical, catalytic, and electrochemical properties16. Such 

materials span the entire range of electronic structures, from insulator to metal, and display intriguing 

properties17. Recently some studies are being carried out successfully for the application of graphene-

like layered material with electrochemical applications like transition metal dichalcogenides18. Even so 

some of this new 2D-nanomaterial are showing desirable performance in supercapacitors applications 

like, 2Dh-boron nitride19, metal oxides20-22, metal carbides23 and metal dichalcogenides24. 

In recent years, a new family of compounds similar to graphene, based on anisotropic layered elemental 

materials, are attracting the attention of the scientific community. These materials, ideally, consist of 

one atom thick type two dimensions structure; each atom is covalently bonded with adjacent atoms to 

form a puckered honeycomb structure. For example, phosphorene, from an allotrope of phosphorous, 



black-phosphorus25, is worthwhile to be mentioned because of the interesting properties with 

applications in optoelectronics and electronics26,27 and in energy storage devices28-31. The success of 

phosphorene has carried on the attention to the rest of fifth main group of elements16, and new materials 

such as  Arsenene, Antimonene, and Bismuthene have been predicted with interesting properties32-34, 

and even so some of them have been isolated35,36. Antimonene is considered a material of great interest 

for applications in electrochemistry and has been also isolated from its layered allotrope form.  Firstly 

it has been isolated by mechanical exfoliation37 and then by liquid-phase exfoliation38.  

In this work, we have focused our attention on the electrochemical capacitive performance of 

antimonene flakes. There are not any electrochemical study on this new 2D-nanomaterial in this form, 

and we have demonstrated the successful application of it as a supercapacitor, obtaining highly 

competitive specific capacitances values, laying the basic aspects of a new research line on energy 

storage devices with the use of antimonene. 

  



Results and discussion 

Modified SPE characterization 

Modified SPEs have been characterized by SEM and Raman spectroscopy in order to confirm the proper 

modification of the electrodes with the 2D-nanomaterial. SEM images Figures 1 A, B and C clearly 

show the deposit of small particles (flakes) of antimonene compare with the bare SPE SEM image fig 

1 D. As can be observed in SEM images, shown in Figure 1, antimonene form flakes with lateral 

dimension around 200-400 nm. This is a typical antimonene morphology, agreeing well with that 

described in the literature describing the synthesis38. The atomic composition of the flakes is antimony, 

Sb, as can be determined by EDX spectrum (Figure ESI 1 and Table ESI 1). The presence of these 

nanoflakes  

Raman spectroscopy also confirm the presence of antimonene over the modified SPEs surface (Figures 

2A and 2B). In addition to the Raman bands associated with carbon, which constitutes the base of the 

SPE, two Raman bands, associated with the antimony (Sb) A1g and Eg vibrational modes at 149.8 cm-1 

and mode at 110 cm-1 respectively, were detected. The intensity of these bands increase when higher 

amounts of antimonene are drop-casted over the SPE surface, which indicates at the same time higher 

antimony deposition and even that the thickness of these nanostructures could increase. This fact could 

be related with the decrease of capacitance observed in the next showed results, when higher amounts 

of antimonene are drop-casted over the SPE, being consequence of less electroactive surface of the 2d-

nanomaterial when higher nanostructures are deposited or the stack of the small few layers antimonene 

flakes occurs. 

As a new 2D-nanomaterial that has little known regarding its physicochemical and capacitive properties 

for electrochemical applications, antimonene enhanced SPE’s, A-SPEs, electrochemical behavior with 

a redox probe has been studied, using cyclic voltammetric responses in 1 mM Ru(NH3)6
3+ in 0.1 M KCl 

(figure S2 A, B and C and table S2). No important variation of electron transfer rate constant was 

observed, which indicates no difference in the electrochemical process. However, a slight increase in 

the redox peak intensity occurs as a consequence of the increase of electrochemical active area 

generated by the nanomaterial in the electrode surface. It becomes clear from these results that few layer 

antimonene flakes are behaving as a good conducting material, with a high heterogeneous electron 

transfer rate, an order of magnitude higher than that of the carbon ink used in the typical SPE. This 

result was expected, as previously reported in the literature, which shows the semi-metallic behavior of 

antimonene, proving that two or more layers of antimonene nanostructures is a conductive material37. 

 

Exploring antimonene as a capacitive material 



We first consider the cyclic voltammetric responses of the bare SPE utilizing a two-electrode system in 

0.5 M H2SO4 at different scan rates, which provides a benchmark, after which we analyzed the response 

exhibited upon drop casting of antimonene amounts ranging from 1.8 to 36 ng (Figure 3 A, B and C). 

It can be clearly observe the increase of capacitive current when small amounts of antimonene are drop-

casted onto the SPE. Even so, a redox process is observed at formal potential 0.0 V, which could be 

ascribed to the oxidation and reduction of antimonene, as a consequence of a faradaic process which 

also contributes significantly to the capacitance increase. With the clear presence of faradaic 

electrochemistry, cyclic voltammetry measurements with a 3 electrode configuration (antimonene/SPE 

as working electrode, saturated calomel as reference electrode, and a platinum wire as counter) were 

carried on acid media (0.5 M H2SO4) (Figure ESI3). As can be observed in the voltammogram an anodic 

stripping peak is observed at 0.08 V, ascribed to the oxidation of Sb atoms to Sb (III) cathions. This 

peak increase during the voltammetry scans applied, until it stabilized (fifth scan). No clear reversible 

reduction peak are observed in the voltammogram, unless we consider Sb (III) cation reduction occurs 

at the same potential of solvent discharge, regenerating the Sb atoms in the antimonene structure 

previously oxidized, keeping the nanomaterial unaltered. 

 

The capacitance of the working electrode, CWE, was calculated from the corresponding voltammograms, 

as shown in Figure 3, using the following equation: 

 

 

𝐶𝑤𝑒 =  
∫ 𝐼(𝑉)𝑑𝑉

𝑉2

𝑉1

2 · ∆𝑉 · 𝑣 · 𝑚
 

(1) 

 

where Cwe is the specific capacitance exhibited by the working electrode in faradays per gram (F/g), 

∫I(V)dV is the area under the intensity current function between V2 and V1 potentials in coulombs (C), 

essentially a measure of the charge stored by the capacitor device.  ΔV is the potential difference 

between V2 and V1 in volts (V), v is the voltammograms scan rate in volts per second (V/s) and m is 

the material (antimonene) mass in grams. The determined capacitance values are showed in table 1 and 

Figure 3D. Huge capacitance values are obtained, being that in the best configuration of around 8500 

F/g. This huge value determined are the consequence of the combination of two factors, on the first 

hand the increase of electrochemical active area and the consequence increase of the electrochemical 

double layer over the electrode surface. On the other hand, these huge values are a consequence of the 

faradaic process describe, increasing the area under the current curves because of the redox peak. 



In order to have more realistic capacitance values, galvanostatic charge/discharge study was performed 

using a two-electrode approach to compliment the setup utilized for supercapacitors within the field. 

Figure 4A illustrates the charge/discharge profiles obtained for bare SPE, and antimonene modified 

SPE with increasing amounts of the 2d-nanomaterial. The results clearly show that dV/dt decrease, 

which is a consequence of the capacitance increase when SPE are modified with the 2d-nanomaterial. 

Capacitances values and specific capacitance values are shown in table II and III respectively. These 

values are lower than the obtained by CV, but we consider it more realistic values, and no faradaic 

process are involved in that case. The specific capacitance in the best configuration 3.6 ng 

Antimonene/SPE at a current of 14 A g-1 is 1578 F g-1 (Figure 4C). This high value is competitive with 

other 2D-nanomaterial that are being proving as supercapacitor material19,39-41, and with other types of 

material use in supercapacitors42-46. As can be see (Figure 4B) the absolute capacitance values increase 

with the amount of antimonene deposited onto the SPE surface until we modified with 18.0 ng 

antimonene. From that 2D-nanomaterial mass, the capacitance decrease, which could be a consequence 

of the nanomaterial agglomeration or stacking, decreasing the electroactive surface area. 

For supercapacitors, cycling stability is also a very important parameter. Therefore, the charge-

discharge stability was studied over 10000 galvanostatic cycles applying a specific current of 14 Ag-1 

on a 36 ng antimonene/SPE (Figure 4D). The capacitance retention values demonstrate that after an 

initial drop to 65% the successive cycles retain the capacitance between 65-63% of the initial 

capacitance over the entire range of cycles, showing the same capacitance between the scan 800 to the 

10000. This result proved that after an initial stabilization the capacitance keep constant at least more 

than 9000 charge-discharge cycles, the maximum number of cycles that has been experimentally study 

on this work. It is likely that the decrease in the first 1000 cycles can be attributed to some of the drop 

cast antimonene being liberated from the electrode surface with charge cycling.  

Typically, a supercapacitors exhibit a low energy density, E, and a high power density, P, the values 

of which are calculated using E=I (dV)(dt)/2m and P=(I(dV))/2m respectively, where m is the mass of 

the antimonene residing upon the surface of the SPE (i.e. 1.8 ng), in this case the values correspond to 

0.02 W h kg-1 and 4800 W kg-1 respectively. These values are indicative of a high power 

supercapacitor and a similar. 

  



Experimental 

All chemicals utilized were of analytical grade and were used as received from Sigma-Aldrich without 

any further purification. All solutions were prepared with deionized water of resistivity not less than 

18.2 MΩ·cm and (when necessary) were vigorously degassed prior to electrochemical measurements 

with high purity, oxygen free nitrogen. 

Single or few layers antimonene suspension were prepared according to the describe method by Gibaja 

et al. 38 Briefly the method consist on applied sonication to antimony crystals in a 4:1 isopropanol/water 

mixture without any surfactant, generating a very stable suspension of micrometer large few layers 

antimonene over weeks, even under ambient conditions. 

The working electrodes used were screen-printed graphite electrodes (SPEs).  The SPEs, which have a 

3 mm diameter working electrode, were fabricated in-house with appropriate stencil designs using a 

microDEK 1760RS screen-printing machine (DEK, Weymouth, UK). The SPE design has been 

previously reported47. For the case of each fabricated electrode, First a graphite ink formulation (Product 

Code: C2000802P2; Gwent Electronic Materials Ltd, UK), which is utilized for the efficient connection 

of all three electrodes and as the ink material for both the working and counter electrodes, was screen-

printed onto a polyester (Autostat, 250 mm thickness) Flexible film. After curing the screen-printed 

graphite layer in a fan oven at 60 ºC for 30 minutes. Finally, a dielectric paste (Product Code: 

D2070423D5; Gwent Electronic Materials Ltd, UK) was then screen-printed onto the polyester 

substrate to cover the connections and define the active electrode areas, including that of the working 

electrode (3 mm diameter). After curing at 60 ºC for 30 minutes the SPEs are ready to be used.  

Antimonene modified electrodes were prepared by drop-casting aliquots of the 0.02 g/L antimonene 

4:1 isopropanol/water suspension onto the required working electrode with a micropipette. After few 

minutes, the solvent completely evaporated (at ambient temperature) and the modified electrodes 

utilised without further modification. All electrochemical measurements were performed with an 

Autolab TYPE III (Autolab, The Netherlands). It is noted that the charge-discharge curves and cyclic 

voltammetry for capacitances measures were obtained using a two-electrode configuration and the 

cyclic voltammetric (CV) studies, using Ru(NH3)63+ and H2SO4 to characterize the electrochemical 

behavior of antimonene in acid media were carried out utilizing a three-electrode system, where a 

platinum wire and saturated calomel electrode (SCE) were used as counter and reference electrodes 

respectively. 

Scanning electron microscopy (SEM) images and surface element analysis were carried on using a 

JEOL JSM- 5600LV model equipped with an energy-dispersive X-ray (EDX) microanalysis package.  

Raman spectroscopy analysis of antimonene modified SPE surfaces was done using a ‘Renishaw InVia’ 

spectrometer with a confocal microscope (x50 objective) spectrometer with an argon laser (514.3 nm 

excitation) at a very low laser power level (1.2 mW) to avoid any heating effects. Spectra were obtained 

using a 10 second exposure time for 3 accumulations. 



Conclusions 

Antimonene, for the first time, is characterised as a material for applications in energy storage, 

being applied as an electrode material for supercapacitors. It is shown to significantly improve 

the energy storage capabilities of a carbon electrode substrate in both cyclic voltammetry and 

galvanostatic charging. Demonstrating remarkable performance with a capacitance of is 1578 F 

g-1 with a high charging current density of 14 A g-1 antimonene is shown the be a promising 

material for energy storage applications. The antimonene enhanced electrodes demonstrate a 

pseudo-capacitive faradaic voltammetric response, which is shown to enhance the 

electrochemical capacitive performance of the electrode materials. The presence of the 

antimonene is shown to significantly increase the capacitive performance of the supercapacitors 

when compare to a device with bare graphitic electrodes. Quantities of antimonene as little as 

1.8 ng of material are shown to significantly improve the capacitive performance of the system. 

The system also demonstrates a highly competitive energy and power densities of 20 mW h kg -

1 and 4.8 kW kg-1 respectively. As well as excellent charge storing capabilities, the antimonene 

demonstrates good cycling capabilities over 1000 cycles until the drop cast material is liberated 

from the substrate.  
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Figure 1. SEM images at different magnifications of (A) (B) (C) 36 ng antimonene/SPE and (D) bare 

SPE. 

  



 

Figure 2. (A) and (B) Raman spectra of bare SPE and modified antimonene/SPE with different amounts 

of antimonene.  

 

 

  



Figure 3-Cyclic voltammograms obtained with a two electrodes system of SPE and different amounts 

of antimonene modified SPE at 10 mV/s (A), 100 mV/s (B) and 500 mV/s (C) in 0.5 M H2SO4. It becomes 

clear that the integral area of the CVs, a property that is indicative of the capacitance of the system, is 

directly proportional to the quantity of antimonene present on the electrode.  

 

 

 

 

  



Figure 4. (A) Charge/discharge profiles recorded in 0.5 M H2SO4 with unmodified (black) 1.8 ng (red), 

3.6 ng (green), 9.0 ng (blue), 18.0 ng (cyan) and 36.0 ng (pink) antimonene modified SPEs applying 

0.05 µA. (B) Capacitances values vs. current applied obtained from charge-discharge profiles. (C) 

Specific capacitances values vs. specific current applied obtained from charge-discharge profiles. (D) 

Relative capacitance for successive charge-discharge cycles respect the 1st cycle capacitance. The 

capacitance of the bare SPE, on it’s first cycle, is also indicated. It is shown that the Antimonene 

enhanced electrodes are consistently performing higher than the bare SPE.  

 

  



Figure 5. Ragone plot showing the results obtained for Antimonene/SPE and some actual data obtained 

at bibliography of 2d-nanomaterial or modified 2d nanomaterials. 40,41,48-56 The antimonene 

supercapacitor, shown as black squares, is compared to: 1) a graphene/sodium cholate enhanced 

electrode;49 2) reduced graphene oxide paper electrodes;48 3) 2D nanosheets d-MnO2 / graphene 

electrodes;51 4) Nitrogen crumpled graphene sheets;52 5) Nitrogen enriched carbon nanosheets;53 6) 

RuO2/graphene hybrid material;54 7) Nickel cobalt sulfide nanosheets;55 and 8) 2-D titanium carbide.56 

 

  



Table 1. Capacitances values obtained from charge-discharge profiles for different amounts 

antimonene modified SPEs at different currents in µF. 

 Antimonene mass (ng) 

Current (µA) 1.8 3.6 9.0 18.0 36.0 

0.05 2.78 5.66 7.63 8.98 7.05 

0.10 2.60 5.45 6.89 7.69 5.88 

0.50 2.01 4.74 5.52 7.79 4.43 

1.00 1.79 3.62 4.27 5.47 3.99 

2.00 1.66 3.36 3.95 4.99 3.74 

5.00 1.58 3.22 3.71 4.12 3.58 
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Table S1. Weight and atomic percentages obtained by EDX of 36 ng antimonene/SPE surface. 

 

 

 

 

 

 

 

 

  

Element Wt% At% 

CK 84.41 90.01 

OK 11.89 09.52 

SbL 03.69 00.48 

Matrix Correction ZAF 



Table S2. Specific capacitance values (F/g) obtained from charge-discharge profiles for different 

amounts antimonene modified SPEs at different specific currents (A/g). 

1.8 ng Antimonene  3.6 ng Antimonene  9.0 ng Antimonene  18.0 ng 

Antimonene  

36.0 ng 

Antimonene  

I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) 

28 1547 14 1573 6 848 3 499 1 196 

56 1446 28 1514 11 765 6 427 3 163 

278 1115 139 1316 56 613 28 433 14 123 

556 994 278 1005 111 475 56 304 28 111 

1111 923 556 932 222 439 111 277 56 104 

2778 878 1389 895 556 413 278 229 139 99 

 



Table S3. Specific capacitance values (F/g) obtained from charge-discharge profiles for different 

amounts antimonene modified SPEs at different specific currents (A/g). 

1.8 ng 

Antimonene 

3.6 ng 

Antimonene 

9.0 ng 

Antimonene 

18.0 ng 

Antimonene 

36.0 ng 

Antimonene 

I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) I (Ag-1) C (Fg-1) 

28 1547 14 1573 6 848 3 499 1 196 

56 1446 28 1514 11 765 6 427 3 163 

278 1115 139 1316 56 613 28 433 14 123 

556 994 278 1005 111 475 56 304 28 111 

1111 923 556 932 222 439 111 277 56 104 

2778 878 1389 895 556 413 278 229 139 99 

 

  



Table S4. Specific capacitance data at F/g obtained during CVs measurements using different amounts 

of antimonene modified SPE at different scan rates. 

 Antimonene mass (ng) 

Scan rate (V/s)/  1.8 3.6 9.0 18.0 36.0 

0.025 8549 6747 2816 2789 1587 

0.050 8361 6091 2679 2536 1442 

0.075 8246 5790 2537 2365 1347 

0.100 8187 5609 2428 2249 1277 

0.250 7975 5075 2113 1909 1102 

0.500 7538 4498 1843 1617 957 

 

  



 

Table S5. Effective heterogeneous electron transfer rate constant, ko
eff of bare SPE and 

modified antimonene/SPE in 1 mM Ru(NH3)6
3+ 0.1 M KCl. 

Electrode k0
eff/ cm·s-1 

SPE 2.05·10-3 

1.8 ng Antimonene/SPE 2.16·10-3 

3.6 ng Antimonene/SPE 2.23·10-3 

9 ng Antimonene/SPE 2.26·10-3 

18 ng Antimonene/SPE 2.23·10-3 

36 ng Antimonene/SPE 2.09·10-3 

72 ng Antimonene/SPE 2.08·10-3 

 

 

 

 

 

 

 

 

  



 

Figure S1. EDX spectra obtained of 36 ng antimonene/SPE surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2. Cyclic Voltammograms of bare SPE (black), 36 ng Antimonene/SPE (red) and 72 

ng Antimonene/SPE (green) at 10 mV/s (A), 100 mV/s (B) and 500 mV/s (C) in 1 mM 

Ru(NH3)6
3+ 0.1 M KCl. 

 



Figure S3. (A) Cyclic voltammograms of bare SPE (red) and 36 ng antimonene/SPE (black). 

(B) Successive cyclic voltammograms of 36 ng antimonene/SPE. In both cases CVs were 

obtained at 0.5 M H2SO4 using a three electrodes system. 

 

 

 


