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ABSTRACT We present path entropy, an information-theoretic measure that captures the notion of
patterning due to phase separation in organic tissues. Recent work has demonstrated, both in silico and
in vitro, that phase separation in epithelia can arise simply from the forces at play between cells with differing
mechanical properties. These qualitative results give rise to numerous questions about how the degree of
patterning relates to model parameters or underlying biophysical properties. Answering these questions
requires a consistent and meaningful way of quantifying degree of patterning that we observe. We define a
resolution-independent measure that is better suited than image-processing techniques for comparing cellular
structures. We show how this measure can be usefully applied in a selection of scenarios from biological
experiment and computer simulation, and argue for the establishment of a tissue-graph library to assist with
parameter estimation for synthetic morphology.

INDEX TERMS Entropy, graph theory, distance measurement, biomedical image processing, pattern
analysis.

I. INTRODUCTION
One of the major mechanisms for understanding tissue devel-
opment is adhesion-mediated sorting of cell mixtures into
homotypic groups, which was discovered by Steinberg in
the 1960s [1]. Interest in this phase separation mechanism
has recently surged, partly because of its ability to create
synthetic biological patterning mechanisms [2] and partly
because it has been found to drive events critical to the forma-
tion of organoids from stem cells [3], [4], making the process
relevant to biotechnology as well as to basic development.

These investigations in experimental and synthetic biology
have been paralleled by the development of analytic and com-
putational models to explain pattern development. The first
class of these are reaction-diffusion systems, such as those of
Turing [5] and Gierer and Meinhardt [6], in which a slowly
diffusing activator molecule activates its own synthesis and

also the synthesis of a rapidly diffusing inhibitor molecule.
In such a system, small random asymmetries lead to slightly
elevated production of activator morphogens and become
centres of activator production and inhibit nearby sites from
doing the same. The result is a field with separated spots,
patches or stripes of high activator expression, which can
be modelled for a two-component fluid system by the
Cahn-Hilliard equation [7].

The second class of model is discrete, and patterning
emerges from the mechanical properties of the cells
themselves: cell-cell adhesion, contractility, and the bal-
ance between cell surface area and volume. In this
class are the Cellular Potts model [8] and the model of
Sandersius et al. [9], in which motion takes place on a
mesh of a scale much smaller than a cell, and Vertex
models [10], [11], in which the system is represented as
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a dynamic and irregular mesh where polygons correspond
directly to cells. Recently, analytic results have become
available [12], [13] that predict cell shapes produced by both
numerical simulations and models in a homogeneous setting
and they have been demonstrated [14] to produce phase sep-
aration in simulation in a heterogeneous setting.

Against this background, there is a dearth of tools for
comparing data produced by each of these disparate meth-
ods. Qualitatively, snapshots of tissues undergoing phase
separation in simulation [13], [14] look similar to those
produced experimentally by engineering cells with different
levels of cadherin molecules [2]. In both cases the mechanism
is understood to be Steinbergian differential adhesion, but
the commonly used methods for quantitative techniques on
epithelial sheets are mainly concerned with polygon distri-
butions [15] or structural motifs [16] and are not straightfor-
wardly extended to a setting with multiple cell types.

Graph-based distance, or graph similarity measures are
well known. Eschera and Fu [17] define a distance between
attributed feature graphs extracted from images in terms of
transformations required to derive one from the other. Others
such as Bunke and Shearer [18] define a distance (in fact,
a metric) in terms of the size of the maximal common sub-
graph. Measures of these types do not, however, contain any
intrinsic notion of pattern or information, so do not ade-
quately capture these higher-level concepts. They are, in a
sense, overspecific.

Shannon’s entropy [19] has proven difficult to extend to
two or more dimensions in a meaningful way. The funda-
mental problem is that entropy depends on the underlying
probability distribution over some set of possibilities, but
there is no unique way to decide which set is appropriate.
Entropy is an extrinsic anthropomorphic concept, not an
intrinsic property of the system [20] precisely because of this
freedom to choose the appropriate distribution. Information-
theoretic measures for images are known, but they are typ-
ically constructed on the probability distribution of pixel
values in an image [21]–[23], essentially transforming a
two-dimensional problem into one dimension, sacrificing
spatial structure in the process.

The Maximum Entropy technique [24], widely used in
image reconstruction from partial data, treats an image as
a two dimensional structure, but is necessarily sensitive
to image resolution. Likewise, other measures such as by
Rubner et al. [25] and the vast literature on distances between
images for retrieval purposes do encode something of the
information content, are also relative to the image resolution.
For that reason, without some kind of pre-alignment such
as with Cuturi & Doucet’s technique of fast computation of
Wasserstein Barycentres [26], they are not directly applicable
to the task of comparing tissue examples from vastly different
sources — experimental imagery on the one hand and simu-
lation data on the other. A similar criticism can be made of
Larkin’s delentropy measure [27] (however, see section II of
Larkin’s paper for an extended discussion of information-
theoretic measures of images).

In this paper, we provide such a method by defining a
family of resolution-independent entropymeasures on graphs
that captures the different patterns observed throughout the
literature on phase separation in cellular tissues. We choose
to frame the measure in terms of graphs not only because
the cell-cell contacts of epithelial and other biological tissues
are intrinsically graph-like [28], but because it is indepen-
dent of the scaling or resolution of imagery. The property
of resolution-independence is important because it allows
comparison across different experiments, both in vitro and
in silico. Using this measure, it is possible to answer such
salient questions as how quickly a pattern forms when start-
ing from a random tissue or to meaningfully compare the
degree of patterning observed in different numerical or wet-
lab experiments. This capability enables workflows in syn-
thetic mammalian biology where the goal is to engineer cell
lines that will produce these kinds of patterns.Whether and to
what extent the desired pattern is achieved can be consistently
measured, and this information fed back into the system as the
genome, host environment or external stimulus is adjusted.

II. MATHEMATICAL PRELIMINARIES
We will use some concepts from graph theory and from
information theory and probability. We assume a basic level
familiarity with these on the part of the reader. Nevertheless,
we review some key definitions and clarify the notation that
we use throughout.

A set, X is a collection of elements. The number of ele-
ments in the set, its cardinality, is written as |X |. If another
set Y is a subset of X , written Y ⊆ X , then the chance of
choosing an element x of X uniformly at random and finding
that it is also an element of Y is Pr(x ∈ Y ) = |Y |

|X | .
A partition of a set, is a set of non-empty subsets of X

called {Yi}, such that each element in X is in exactly one
of the Yi. A partition gives rise to a probability distribution,
which has the property that,∑

i

Pr(x ∈ Yi) =
∑
i

|Yi|
|X |
= 1 (1)

The Cartesian product of two sets, X ×Y is the set of pairs
(x ∈ X , y ∈ Y ). If both sets are the same, this is also written
as X2 and analogously for higher powers.

A directed graph, G, consists of a set of vertices, V , also
called nodes, and a set of edges that connect the vertices,
E ⊂ V 2. A path of length n on the graph is a sequence
of vertices, (v0, v1, . . . , vn) such that (vi, vi+1) ∈ E for
0 ≤ i < n. We take the special case of zero-length paths to
be simply the set of vertices itself. Let us write Sn(G) for the
set of all paths of length n from the graph, G.
A graph invariant is a quantity that depends only on

the structure of the graph itself and not any representa-
tion or labelling. In particular it is a quantity that is invariant
under graph isomorphism.

Let C be a set of colours and χ : V → C be a function
that maps vertices to colours. A coloured graph, (V ,E, χ) is
a graph together with such a function. Note that χ induces
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a partition on G when applied to each vertex. This partition
map groups vertices together by colour.

III. PATH ENTROPY
Tomotivate our pattern complexity measure more concretely,
let us consider some exemplar simulated tissues, shown
in Figure 1. These consist of three kinds of cells, represented
as different colours, in equal proportion. The qualitative dif-
ference between each of the images is intuitively clear, from
no discernible pattern, to a kind of quasi-uniform distribu-
tion of white cells, in long, thin stripes and round patches
reminiscent of the ‘‘dappling’’ calculated by hand by Turing.
We seek a measurement that can be made on these that is able
to distinguish them.

We choose to define this measure on the coloured adja-
cency graph of cells, as opposed to an image of the tissue as
in the approach taken, for example, in [27]. The reason for
this choice is that when calculated on the graph, the measure
is resolution independent. It can be applied equally well
to simulation data that has no intrinsic notion of image or
resolution or to processed outputs from experimental imagery
of cell colonies or epithelial sheets. As an important goal is to
be able to compare data from different sources, this property
is important.

Let us proceed as follows. The entities of interest are cells
so let us say that V corresponds to the set of cells in a given
tissue. Further, let E be the edges, the adjacencies between
cells. The patterns of interest are meaningful in terms of
different kinds of cells so let the colours, C , correspond to the
kind. For the purposes of this paper we are concerned with the
resulting coloured graph which we call the adjacency graph
of cells.

Intuitively, a pattern is found in the sequence of colours
extending out in one direction or another from a given point
in the tissue. To capture this, we lift the colouring function
from operating on vertices, to operating on sequences of
vertices, or paths, χn : Sn(G)→ Cn for a given path length, n.
As with χ , the χn induces a partition of Sn(G): paths with the
same colour sequence get into the same class.

We use this partition to obtain a probability distribution
over Cn,

pn(G)(s) =
|{σ ∈ Sn(G), χn(σ ) = s}|

|Sn(G)|
=
|χ−1n (s)|
|Sn(G)|

(2)

where s ∈ Cn. Where there is no risk of confusion or ambi-
guity, we will write pn(s) in place of pn(G)(s) from now on.
Definition 1: Given a coloured graph, G = (V,E, χ) and

the probability distribution over colour sequences given by
Equation 2, we define the n-th order Path Entropy on the
graph to be the Shannon Entropy of this distribution:

En(G) = −
∑

s∈Cn+1

pn(s) log (pn(s)) (3)

As with the probability distribution, we write simply En in
place of En(G) where there is no risk of confusion.

Note that though the motivation is a measure on planar
graphs representing epithelial sheets, there is nothing in this
formulation that presupposes such a restriction. The family
of entropy measures is equally well defined on graphs that
embed into three or higher dimensional spaces.

IV. GENERALISATION TO MOTIFS
The foregoing is concerned with paths only, one-dimensional
sequences of vertices. There is evidence that it may be fruitful
to consider two dimensional motifs, or graph fragments [16].
The approach given here can be straightforwardly applied to
motifs. The general pattern for defining an entropy on a graph
is to come up with a partition map and use the probability
distribution that arises from that to get an entropy [29]. A set
of motifs induces a partition on the graph: the set of sets of
subgraphs matched by each motif. Indeed a path of length n
is simply a special kind of motif.

In order to deal with coloured graphs, or heterogeneous
tissues, the matching function is simply lifted to a form that
distinguishes differently coloured motifs as opposed to the
purely structural ones considered by Vincente et al. This is
precisely analogous to the coloured paths that we have used
above. The corresponding notion of Motif Entropy follows
directly.

FIGURE 1. A selection exemplar simulated tissue configurations for three cell types in equal proportion. At left, randomly distributed populations on a
regular hexagonal lattice (typical initial conditions for simulation). The others are the resulting configurations after some elapsed time for different costs
of heterotypic and homotypic edges between cells. In particular, the cost of a heterotypic edge with a white cell increases from left to right, and the cost
of a homotypic edge between white cells decreases. The precise meaning of Case I through Case IV is explained in Section XI. (a) Initial conditions.
(b) Case I. (c) Case III. (d) Case IV.
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V. COMPUTATIONAL COMPLEXITY OF PATH ENTROPY
The steps required to calculate En, following directly from
the definition in Section III, are as follows.

A. We begin by enumerating of paths of length n,
Sn(G). This can be accomplished with a depth-
first search to depth n for each vertex. Fortunately,
though the number of paths can be very large,
|V |n+1 for a complete graph, we do not need to store
the paths themselves: we can simply proceed to
the next step and count occurrences of each colour
sequence. Naturally we need to produce each path,
so we must have time complexity of O(k|Sn(G)|)
where k is a factor describing the complexity of
producing a single path. This method time com-
plexity in the worst case of O(|V |n+1) [30] for a
complete graph, and because paths can be produced
incrementally during the search, k must be no more
than a constant. For planar graphs of the kind con-
sidered here, where average degree 〈d〉 ≈ 6 [15],
the situation is somewhat better, with time complex-
ity of O(|V | 〈d〉n). The depth-first search has space
complexity of O(|V |) to keep track of each vertex
visited.

B. For each path, σ ∈ Sn(G), we compute its colour
sequence, χn(σ ), and count the occurrences of
each sequence. This requires visiting each vertex
v ∈ σ and computing χ (v). The time complexity
is therefore O(|Sn(G)|), just as for the previous
step. An upper bound on the space complexity can
be obtained by supposing that all possible colour
sequences occur. This is certainly the case for small
numbers of colours and short paths such as we
consider here. In this case, a count must be stored
for each colour sequence, giving space complexity
of O(|C|n).

C. We next compute the probability distribution, Equa-
tion 2. We must know |Sn(G)|, and for each colour
sequence count from the previous step, |χ−1(s)|,
to work out the ratio of paths with each sequence
to the total number of paths. We can bound this as
we have done with the previous step at one division
per sequence, and store a floating-point number for
each, giving both space and time complexity of
O(|C|n).

D. Finally, we calculate the entropy as in Equation 3.
This entails iterating over each element, pi, in the
distribution and calculating pi log (pi), while keep-
ing a running sum. This clearly hasO(1) additional
space complexity and the number of arithmetic
operations is linear in the number of elements in the
distribution, so time complexity is O(|C|n).

In summary, the time complexity of calculating En is
bounded by,

O(n|V | 〈d〉n + |C|n) Average case

O(n|V |n+1 + |C|n) Worst case (4)

FIGURE 2. Empirical running time of calculation of En of the graph of
Figure 1d for increasing values of n with an implementation in Python
running on a 2.4GHz Intel Xeon E5645 CPU.

and the space complexity by,

O(|V | + |C|n) (5)

Additionally we can verify empirically that the running time
for the above procedure for calculating En increases compa-
rably to an exponential function of n, as shown in Figure 2.
As we see below, in practice it is unnecessary to calculate En
directly for n > 1 so the exponential running time is not a
serious handicap.

A. LINEARITY OF PATH ENTROPY
As discussed below in Section X, we find an empirical result
that, for the graphs and colourings under consideration here,
that the path entropy En is linear in n. That is,

En = (E1 − E0)n+ E0 n > 0 (6)

This observation is significant because as shown by Equa-
tion 4, the computational work to calculate En directly grows
exponentially with n. Since it can be worked out simply from
E0, E1 and n, there is little benefit in the direct calculation.
It is important to note that this result does not hold in

general. An easy way to find a counterexample is to construct
a graph where the colour of the (n + 1)th vertex in a path
depends not only on the nth but also on previous vertices.
Fortunately the paths in the coloured planar graphs that we
consider here do not appear to have this property. An interest-
ing theoretical problem that we do not treat here is to precisely
determine for which underlying coloured graphs this linear
relation holds, and for graphs where it does not, what can be
deduced about the path entropy for paths of lengths greater
than two.

VI. RELATIVE ENTROPY
For completeness, and because it will be used later, we review
the concept of relative entropy between two probability dis-
tributions. This is known in a more general setting as the
Kullback-Leibler divergence [31] and is written,

D(p | q) =
∑
i

pi log
(
pi
qi

)
(7)

for two distributions, p = {pi} and q = {qi}. For this to be
well-defined, it is required that pi = 0 if qi = 0. Intuitively it
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gives a notion of distance between two distributions, however
this intuition should be taken with a grain of salt: as formu-
lated, in general it will violate the triangle inequality.

In the present context, we consider the distance from a
reference graph containing paths R to a given graph G. The
reference graph could be the initial conditions for a simula-
tion or experiment or it could be an exemplar or ‘‘typical’’
pattern. This distance in this setting is simply,

D1(G |R) =
∑
s∈C2

p1(G)(s) log
(
p1(G)(s)
p1(R)(s)

)
(8)

VII. EXAMPLES IN TWO COLOURS
To see how path entropy works in practice, and before con-
sidering real examples, let us consider a few simple cases.
We first consider very simple patterns in two colours for
which entropies can be calculated by hand on rectangular
lattices, and thenmore complex but nevertheless artificial pat-
terns in three colours on hexagonal lattices shown in Figure 5.

Starting with the simplest possible regular, symmetric two-
colour, diagram will illustrate how the measure E1 captures
clustering. In what follows we do not impose periodic bound-
ary conditions, although it would be perfectly natural to
do so. Instead, we opt to consider, for clarity of presentation,
the graphs exactly as they appear on the page.

Consider a 2x2 checkerboard,

|S1| = 8

|χ−11 (wb)| = |χ−11 (bw)| = 4

E1 = 1

This can obviously be extended to checkerboards of arbitrary
size. Furthermore, larger checkerboards will, provided sym-
metry is preserved, give numerically the same value for E1
because there are no like-colour adjacencies and every unlike-
colour adjacency is reflexive.

|S1| = 8

|χ−11 (ww)| = |χ−11 (bb)| = 2

|χ−11 (wb)| = |χ−11 (bw)| = 2

E1 = 2

Rearranging the squares into stripes, we can see the measure
E1 distinguish between different kinds of regularity. With
a little more work, we can see that this value for E1 is
characteristic of stripes one cell wide on a rectangular lattice,

|S1| = 48

|χ−11 (ww)| = |χ−11 (bb)| = 12

|χ−11 (wb)| = |χ−11 (bw)| = 12

E1 = 2

Rearranging the stripes into a thick and two thin, however,
we see that the E1 measure counts it as, in some sense, more
regular. Or, more to the point, more clustered,

|χ−11 (ww)| = 12

|χ−11 (bb)| = 20

|χ−11 (wb)| = |χ−11 (bw)| = 8

E1 = 1.89

Finally, two thick stripes,

|χ−11 (ww)| = 20

|χ−11 (bb)| = 20

|χ−11 (wb)| = |χ−11 (bw)| = 4

E1 = 1.65

and this is maximally clustered and a local minimum of the
E1 entropy. It is a local minimum because any change would
increase the number of heterotypic edges, and decrease the
homotypic ones. Such a change to the distribution of paths
can only increase the corresponding entropy.

These minima are interesting. In general, for the
two-colour case, the entropy will have two minima: for a
maximally clustered pattern and for maximally dispersed,
checkerboard pattern. The latter is easily seen to be a global
minimum as all adjacencies are of the same, heterotypic, type.
For the clustered case, while as many edges as possible are
homotypic, there still must be an interface between clusters
of different colours so not all adjacencies can be the same.
The outcome of choosing an arbitrary adjacency at random
cannot then be certain, so the entropy must be greater than
for the checkerboard.

VIII. TWO-SPECIES EPITHELIA
Weare now in a position to apply thesemeasures to some real-
world cases. We start with some data from the same series as
the phase separation study previously mentioned [2]. In that
study, cells are genetically engineered to vary their level of
production of cadherin molecules in response to external reg-
ulation using tetracycline. The cadherin molecules govern the
adhesiveness of the cells to their neighbours. Two varieties of
these cells, differing only in the nature of cadherin expressed,
and therefore adhesiveness, upon tetracycline induction, were
mixed randomly together in a 50:50 mixture and allowed
to settle. Cell cultures from experiments with, and without
tetracycline are shown in Figures 3a and 3b.

Some processing is needed to take this data into a form
where the measures that we define here can be applied. The
procedure is relatively straightforward. First, positions and
kinds of the nuclei are identified directly from the image.
These provide the vertices for our graph. Next, neighbour
relationships are derived from the Voronoi tessellation of
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FIGURE 3. Top row experimental data, bottom row simulation data. Figures 3a and 3b show raw confocal images from Cachat et al.’s study of phase
separation due to differential adhesion, after 24 hours. All cell nuclei are stained to appear blue, while only the nuclei of the E-cadherin variety appear
green. Figures 3c and 3d show the graph derived from the voronoi tesselation of the cell centroids from the confocal images. Figure 3e shows the entropy
trace of a typical simulation where heterotypic edges between cells are more costly than homotypic edges. Figure 3f shows the data from the same
simulation, compared using relative entropy with the Voronoi tessellations of Figures 3c and 3d. Finally, Figures 3g and 3h show simulated tissues at the
minimum of the relative entropy curves in Figure 3f, that is, those that correspond most closely to experiment by our measure. Both curves increase as
the simulation becomes yet more clustered than the experiment. (a) Confocal no tetracycline. (b) Confocal tetracycline. (c) Voronoi no tetracycline.
(d) Voronoi tetracycline. (e) Simulation entropy. (f) Relative entropy. (g) Simulation ≈ no tetracycline. (h) Simulation ≈ tetracycline.

these points. The results of this procedure on the confocal
images are shown in Figures 3c and 3d.

The simulation method that we use to compare to this
experimental data is similar to that of Osborne et al. [14]
using the Chaste software package [32] and Farhadifar’s
potential [11]. In brief, the tissue is described by a potential,

U =
∑
i∈V

K
2
(Ai − A0)2 +

∑
i,j∈V 2

λijEij +
∑
i∈V

0

2
P2i (9)

where Ai and Pi are the area and perimeter of the ith cell,
respectively, A0 is the preferred area of a cell (assumed to be
uniform in the population of interest in the present scenario),
andEij is the length of an edge between cells i and j (defined to
be zero if the cells are not adjacent). The first term represents
compression or dilation of the cell away from its preferred
area and the last, the contractility of the perimeter. The con-
stants, K and 0 that trade off the relative importance of these
effects are held fixed.

The entire coding for differential adhesion takes place in
the middle term of Equation 9. λij is cost per unit length
of an edge between the two cells. For the two-species case,
this matrix has entries that are either zero for cells that are
not adjacent, or values that depend on the kind of each cell.
Heterotypic edges have one value and homotypic another.
In what follows, we abuse the notation slightly and interpret
λαβ to mean the cost per unit length of an edge between cells

of type α and β, and we use 3 to refer to the matrix of these
costs for different cell types.

The simulation proceeds from randomly coloured cells
on a regular hexagonal lattice, and the tissue is allowed
to relax, in a direction that minimizes the potential, rear-
ranging according to the standard topological transitions for
foams [33], [34]. To avoid settling to a local minimum, at each
step vertices are subjected to some noise, an additional small
force in a random direction.

We model the effect of tetracycline indirectly, representing
the induced adhesion effect as the cost of edges. For these
simulations we used values for heterotypic edges approxi-
mately twice as costly as for homotypic1 and the result is a
time-series of tissue exemplars beginningwith cells randomly
distributed and gradually developing more structure, or clus-
tering. The claim [14] is that this sequence is representative
of the process that occurs in vitro. Figure 3e shows how the
absolute entropy, E1, of these tissue exemplars changes over
time. Clearly it is decreasing overall.

Finally, we can use Equation 8 to work out the extent to
which tissue snapshots from the numerical simulation are
similar to the experimental data. The relative entropies of
the simulation to each of the experimental cases, with and

1In particular, λpp = λee = 0.05 and λpe = λep = 0.096, and in all cases
0 = 0.04 and K = 1
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without tetracycline are shown in Figure 3f. Each has a
minimum, and the minimum for the case with tetracycline
occurs later, at a stage where the simulation has become more
ordered (lower absolute entropy) than without. The tissue
exemplars corresponding to these two minima are shown
in Figure 3g and 3h, and they correspond qualitatively well
with their experimental counterparts. Our measure makes this
impression quantitative.

Notice that the distance to the reference snapshot increases
as the simulation progresses. This means that the simulated
tissue, for these parameter values, becomes more ordered
according to our measure than the experimental data. Given
a suitably large library of simulation data with which to
compare to experiment, one would naturally wish to find one
where the distance measure converges to zero in order to
make a well-supported claim that the simulation parameters
are a good fit to the experiment.

IX. RATE OF PATTERN FORMATION
If a time-series of experimental data is available (unfortu-
nately in this instance it is not) it is also possible to com-
pare the rate of pattern formation. We can, however, show
how path entropy can be used to quantify the rate of pat-
tern formation with a set of numerical experiments. In these
experiments we aim to understand more precisely how differ-
ential adhesion affects pattern formation. The salient model
parameters are the homotypic edge cost, λαα , which is held
fixed, the heterotypic edge cost, λαβ which we allow to vary.
Other parameters such as perimeter contractility, 0, the area
pressure constant,K , and the amount of noise, Z , we also hold
fixed. The results are shown by plotting E1 for various values
of λαα in Figure 4.

FIGURE 4. Path entropy time series for simulations with various values
for the heterotypic edge cost, λαβ . In all cases the homotypic value is
λαα = 0.05.

As suggested by the simple examples in Section VII and
can be seen in Figure 3, lower entropy values correspond to
more ‘‘dappling’’ patterns as they were described by Tur-
ing. The physical reason for the emergence of the pattern,
in discrete models such as the Vertex or Cellular Potts models
governed by a potential such as Equation 9 is quite simple.

The heterotypic perimeter of a patch is expensive compared
to the homotypic interior, so the dynamics simply arise from
the process of minimizing (up to the appropriate constants)
the ratio of perimeter to surface area. Absent topological
constraints, the shape that accomplishes this minimization is
a circle. In an equal mixture of cells constrained to be a planar
graph, both kinds of cells cannot form circular patches simply
because it is not possible to tile a plane with circles. Therefore
competing but symmetric tendencies of each kind of cell to
try to form circular patches results in the familiar pattern.

Given this understanding of the process, what we can
read from the figure is, all else being equal, the greater the
difference between the homotypic and heterotypic edge costs,
the more rapidly the entropy of the tissue decreases. It takes
about twice as long for the simulation with a heterotypic edge
cost, λαβ = 0.07 as does the one for which λαβ = 0.09 to
reach degree of pattern present that corresponds to E1 = 1.9.
When the heterotypic cost is only slightly larger than the
homotypic cost, it may take much longer indeed to achieve
that same degree of patterning.

Not shown are cases where the homotypic cost is allowed
to vary, but the conclusions are straightforward and readily
apparent from the time-series of our E1 measure for them.
Larger values of λαα that are still smaller than λαβ do result in
patterning, but more slowly. This makes sense because these
larger values are more rigid and as a result the entire system
changes more slowly and the topological transitions that are
necessary for pattern development due to cell migration less
frequent. When λαα is allowed to be greater than λαβ , the
resulting pattern is very different because now rather than
minimising the number of heterotypic edges they should be
maximized. In this way we get patterns much like a checker-
board as predicted in Section VII. While these underlying
mechanisms are well known, their effect is clearly exposed
by studying the behavior of E1.

X. EXAMPLES IN THREE COLOURS
The patterns in Figure 5 are all regular, except for the first,
which is random. The random pattern is in fact representative
of the initial conditions of the simulations which we will see
later. They use three colours and a regular hexagonal lat-
tice. This has some important consequences for the minimal
entropy in a three-colour setting as we will see.

Figure 5 shows some example graphs in three colours
and the corresponding path entropies. As usual, the number
of cells of each colour is equal. Again, we include a ran-
domly coloured graph and we include the generalization of
a checkerboard to a hexagonal lattice. We also include thin
and thick stripes.

Some observations about the minima of the entropy can
be made here and they are different from the two colour
case. The example with thick stripes, or greater clustering,
has lower entropy than the others and it is a minimum by the
same argument from Section VII, namely that any change
can only increase the entropy by lessening the number of
homogeneous edges.
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FIGURE 5. A selection of three-coloured planar graphs Figure 5e shows the path entropies, En, for these graphs, for path lengths n from 0 to 7.
(a) Random. (b) 6-checkers. (c) Thin stripes. (d) Thick stripes. (e) Path entropies.

In the three-colour case, however it has a lower entropy
than the maximally dispersed, equivalent of the checker-
board. This is because it is not possible to colour a hexagonal
lattice with only two colours while respecting the constraint
that no two adjacent cells may have the same colour. Three
colours are needed. This means that it is no longer true that
for the maximally dispersed case all adjacencies are identical.
The hexagonal checkerboard therefore no longer corresponds
to a global minimum of E1. In fact the maximally clustered
graph must now be the global minimum.

For these examples, the entropy for longer path lengths
was also calculated directly. The results, shown in Figure 5e
clearly illustrate that there is no benefit to the extra compu-
tational cost of calculating path entropy for paths of longer
than 2 cells. This provides some further justification to our
choice to confine our attention to E1. The reasoning about
the minimum of E1 for the three-colour case shows that
this measure appropriately captures the degree of cluster-
ing or homogeneity.

XI. THREE-SPECIES EPITHELIA
Turning finally to the examples from Figure 1, we briefly
study the patterning dynamics of epithelia consisting of three
cells. We show that the E1 metric can also be employed
to evaluate whether one can distinguish the rate of pattern
formation in systems with multiple cell types. As with the
two-cell case, we consider interactions between cell types,
but now form a 3 × 3 matrix,

3 =

λrr λrw λrb
λwr λww λwb
λbr λbw λbb

 (10)

accordingly as an edge is between red, r , white, w, or blue,
b cells. We presume that this matrix is symmetric, and indeed
it can always be symmetrised without changing the behaviour
simply by taking, λ′αβ = λ

′
βα =

1
2 (λαβ + λβα).

We consider four cases, in an attempt to find a regime
where the presence of a third kind of cell materially affects
phase separation and pattern development. Namely,

I. Homotypic red and blue edges are inexpensive,
homotypic white edges are very expensive.
Heterotypic edges with a white cell are very
inexpensive and heterotypic red-blue edges are

relatively expensive. In the absence of white cells,
this behaves like the typical red-blue dappled pat-
tern. Adding white cells should have them maxi-
mally dispersed.

II. As with Case I, but the relationships to white cells
inverted. Homotypic edges among white cells are
now very inexpensive, and heterotypic ones are now
very expensive. This is expected to form round
patches of white cells.

III. All homotypic edges have the same, low cost.
Heterotypic edges with white cells are relatively
inexpensive and red-blue edges are relatively
expensive. The low cost of white-heterotypic edges
produces long, thin, white borders between red and
blue regions.

IV. As with Case III, but with the heterotypic costs
inverted. Red-white and blue-white edges are now
expensive and red-blue heterotypic edges are rela-
tively inexpensive. This produces results very sim-
ilar to Case II.

For these numerical experiments, in each case, the propor-
tion of white cells was varied from 0 to 33%. The results of
calculating time-series for E1 are shown in Figure 6.
This cursory search of four regions of the parameter space

does not uncover a regime where a third kind of cell affects
the rate or degree of pattern formation. This fact is made quite
clear by the E1 measure, whose rate of change is essentially
the same for all of the cases. It remains an open area of
research whether or not there is a regime where the presence
of a third kind of cell accelerates or retards pattern formation
by acting analogously to a lubricant or a glue.

XII. TISSUE LIBRARY FOR PARAMETER FITTING
A natural supposition, given this ability to measure how well
patterns in simulated tissue graphs correspond to experimen-
tally derived ones, is that we may be able to estimate the
parameters in the Farhadifar potential, Equation 9, to the
experimental data. This possibility is suggested by the obser-
vation that, not only is the degree of patterning measurable
using our technique, so is the rate of pattern development.
These two measures, E1 and its time derivative could in prin-
ciple be used for parameter estimation. Equally they could
be used as predictors of experimental behaviour, for example
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FIGURE 6. Entropy for various population fractions of white cells, for
each of the cases above. The salient observation is that the slopes of the
curves, the rate at which entropy changes, do not vary perceptibly with
the amount of white cells. (a) Case I. (b) Case II. (c) Case III. (d) Case IV.

estimating the concentration of a certain inducer required for
a given rate of phase separation.

Up to normalization, the parameters 3 and 0 do corre-
spond to physical phenomena. This kind of fitting is indeed
possible, with some limitations. The main limitation is that
it is not possible to distinguish, within the region of interest
between equally good pairs of parameters, (3,0), along an
iso-surface in the phase diagram [12], [13]. However, holding
one fixed (0), it is indeed possible to derive an estimate of the
corresponding value for 3.

The procedure is simple but would require a large library
of simulation data. For each parameter value, the time-
series of E1 can be calculated and stored, along with other
statistics of interest (such as the degree distribution of cells).
Data emanating from experimental imagery, processed into
a coloured graph using the Voronoi tessellation or other
techniques, can then be compared, and a best guess at the
parameters arrived at. The time derivative of E1 is important
because often different adhesion values (3) that produce
similar patterns can be distinguished by the rate at which the
patterns appear.

Producing such a library is a very computationally inten-
sive task. For the present work, we have simulated only a
small subspace of possible parameter choices for two cells,
and for three, and without necessarily reaching a steady
state in all cases this has consumed several CPU-decades
of processing time. Furthermore for accurate distributions,
the tissue size should be as large as possible and at present
tissues larger than about 5000 cells are prohibitive.

Despite the challenges, it is worthwhile to create and make
available such a resource which the authors believe would
be a valuable quantitative tool for synthetic morphology
research.

XIII. CONCLUSIONS
Aside from application in synthetic morphology, the method
presented can also be adapted to analyze samples of natu-
ral tissues and applied to the study of cancer progression.
Recent successes using deep learning neural networks [35]
to characterize cancer progression in tissue imagery samples
are instructive. In that study accuracy rates with deep learning
were comparable to trained pathologists but the technique
does not permit inspection or reverse-engineering to identify
the salient features being recognized. Successes using similar
techniques have also been reported for identifying certain
cardiovascular pathologies [36]. By contrast, our measure
has much more stringent requirements on input data — we
require input in the form of a coloured graph — but its
principle of operation is straightforward to understand.

There is an important limitation when applying this tech-
nique to imagery from naturally occurring, as opposed to
synthetic, tissue. Path Entropy is defined by cell types and
their adjacencies. Synthetically engineered tissue designed
to study mechanical interactions among cells is much more
regular than its naturally occurring counterpart. This means
it is correspondingly easier to extract the information needed
to calculate path entropy from images of synthetic tissues.
Accommodating structural heterogeneity in naturally occur-
ring tissue likely requires segmentation techniques that con-
sider actual cell boundaries and not a Voronoi tessellation
derived from nuclei as we have done here. Advances in
microscopy and optical technologies make possible high-
throughput analysis and simultaneous measurements of pro-
teins and other molecules (such as miRNA) in histological
specimens and tissue micro-arrays. This allows the identifi-
cation of subpopulations of genetically similar cells within
tissue samples, using measurement of loci-specific fluores-
cence in situ hybridization (FISH) spot signals for each
nucleus [37], [38]. The use of neural networks to perform
segmentation at the tissue level has been shown and remains
a current topic of research [39]–[41]. These methodologies
could facilitate the construction of the graph underlying an
epithelial tissue and suggest an appropriate extension of the
metric proposed in this work.

In this paper, we have defined a specialized class of entropy
measures, path entropies, on adjacency graphs designed
to quantify the degree of patterning present in cellular
tissues and noted some of its interesting properties. We
have demonstrated how this measure can be used on two
dimensional epithelial tissues to establish a correspondence
between experimental and simulation data that quantifies
the impression of similarity between the patterns expressed.
We have further demonstrated how the measure generalizes
to tissues consisting of three species and noted some dif-
ferences from the two species case. Finally, we have pro-
posed, for the specific application of synthetic morphology,
the establishment of a library of tissue data upon which
these measures can be calculated, to assist in parameter
estimation, providing a useful quantitative tool for synthetic
morphology.
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