
Downloaded from: http://e-space.mmu.ac.uk/621160/
Version: Accepted Version
Publisher: Elsevier
DOI: https://doi.org/10.1016/S0959-8049(16)61517-4

Please cite the published version

https://e-space.mmu.ac.uk
a reduction of the final tumor volume (p = 0.03) and an overexpression of VASH (p = 0.03), but without affecting the vascular amount (p > 0.05).

When administered therapeutically, all the tested compounds were able to inhibit tumor growth (p < 0.01), assuming that the Q3G group had decreased final tumor volume (p = 0.04) as well as reduced VASH expression (p = 0.03) and decreased vascular proliferation (p < 0.05). It was found an inversely proportional relationship between the tumor growth of human colon adenocarcinoma/HT-29 and VASH expression (p < 0.05).

Conclusion: Flavonoids HR and Q3G demonstrated antiangiogenic potential in colon adenocarcinoma/HT-29 when administered prophylactically and therapeutically, respectively. Q3G showed direct inhibition of the neovascular proliferation.

No conflict of interest.

[545] Anti-cancer properties of secondary metabolites derived from marine bacteria

L. Lee-Jones1, Q. Wang2, S. Bohan3, O. Martin4, P.E. Linton2, 1Manchester Metropolitan University, Healthcare Science, Manchester, United Kingdom

Background: Natural combinatorial chemistry has been occurring in plants and microorganisms throughout evolutionary history and consequently is far more sophisticated than that achievable in the laboratory by current combinational chemical procedures. This makes natural products an invaluable source of novel bioactive molecules which could lead to the development of novel pharmaceutical compounds to treat cancer.

Materials and Methods: Samples were collected from Heysham, West Lancashire. Marine bacteria were isolated to pure culture from marine tidal surfaces including marine invertebrates, molluscs and marine plants using actinomycete-seawater culture media. Resultant pure cultures were grown in bacteria well-free crude extracts where prepared by culture centrifugation and filter-sterilisation. Bacterial species were identified by 16S rDNA PCR-sequencing methods. Crude extracts were then screened for bioactivity in the human haematological cell lines (Jurkat, U937 and K562) to determine their effects on cell proliferation, cell cycle and induction of apoptosis.

Results and Discussion: From an initial pilot study of 12 extracts derived from several strains of actinomycetes, 5/12 demonstrated anti-proliferative properties for both 24 and 48 hour timepoints. A further extract demonstrated anti-tumour activity at the 48 hour time point only.

Conclusion: The pilot study successfully investigated 12 extracts derived from marine bacteria and had a high success rate (42% for both 24 and 48 hour time points, 50% for 24 hour and/or 48 hour time points). One of the extracts demonstrated anti-proliferative properties that were more potent than the hydroxyurea (positive) control. Evaluation of the bioactive properties of the remaining panel of extracts (n = 82) is now underway. Marine bacteria represent a largely untapped resource with enormous potential as a source of novel bioactive compounds.

No conflict of interest.

[555] New biocompound for the treatment of glioma: Is rutin hydrolyzed by hesperin an alternative?

C. Pacheco1, PM. Moro1, R. Colenci1, A.C. Duarte1, M.C.F. Messias2, G. Mammpir3, C.T. Parisi3, D.G. Prioli3, T.W. Santos3, 1São Francisco University, Medicine Course. Initiation Scientific Programme, Bragança Paulista, Brazil, 2São Francisco University, Stricto sensu in Health Science, Bragança Paulista, Brazil, 3São Francisco University, Medicine Course, Bragança Paulista, Brazil

Flavonoids have shown biological effects, including antitumor activity by cell cycle arrest, DNA repair and apoptosis induction. Quercetin-3-O-glucoside (Q3G) has been the aim of several studies; however, it is scarce that rutin can be obtained as an end product after de-glucosylation. Considering 3-rutinoside (Rutin), resulting in a mixture addressed as Hydrolyzed Rutin (HR), with significant increase in bioavailability and antitumor potential. This study sets out to evaluate HR’s cytotoxic activity in vitro, and its antiproliferative, pro-oxidative and genotoxic potential in the human glioma model of glioma/U-251.

Methods: Tumor cell lines panel were evaluated for HR’s antiproliferative activity using Sulfurhodamine B assay. HR’s action mechanisms were also investigated in cells apoptosis and cell cycle by flow cytometry. 15 nude mice randomly were divided in 3 groups: control (n = 7), HR treatment (n = 4) and HR prophylaxis (n = 4). All animals were grafted with human Glioma/U-251. The control group didn’t receive any treatment. The HR prophylaxis group received the biocompound for 5 days prior to tumor graft, while the HR treatment group first received the graft, initiating coumpound administration only when tumors reached volumes >100 mm³. All animals had tumor growth daily monitored. The control group was used as a standard for comparative analysis. The animals were euthanized and the tumors resected. The histopathological analysis used to confirm diagnosis, morphological characteristics, number of mitosis and the presence of necrosis. Lipid peroxidation was done by TBARS method and genotoxicity tests by COMET assay. The results were carried out adopting a significance level of 5%.

Results: Among the tumor cell lines tested, HR obtained the best antiproliferative effect on Gliona/U251, able to reach significant results of total growth inhibition (TGI) with 3.6 μg/mL of drug concentration. No results were found in apoptosis flow cytometry. However, HR showed action of cell cycle arrest in the G1 phase, demonstrating a cytostatic effect. There was tumor growth inhibition on treated (p = 0.03) and prophylaxis group (p = 0.01). There was a decrease in mitoses (p < 0.04) in the treated groups. There was an increase in lipid peroxidation of both prophylactic and therapeutic HR groups. There was no significant variation in oxidative DNA damage level.

Conclusion: HR exhibited moderate antiproliferative action in glioma. Cytotoxicity was proven by TBARS assay, although, no genotoxic effect was shown. The evaluation of possible action mechanisms of HR in glioblastoma demonstrated cytostatic effect, but no apoptosis induction. Therefore, HR presents antiproliferative effect in high grade glioma glioma/U-251. Results suggest that morbidity reduction and cellular morphology changes are due to mechanisms related to drug action through a process of apparent oxidative damage on the cell membrane.

No conflict of interest.

[565] Hydrolyzed rutin in an animal model of human glioma

P. Prado1, C. Pacheco1, C.T.P. De Oliveira2, P.D.O. Carvalho2, G. Mammpir3, D. Prioli3, A.Y.K. Grizatto1, 1São Francisco University, Medicine Course. Initiation Scientific Programme, Bragança Paulista, Brazil, 2São Francisco University, Stricto sensu in Health Science, Bragança Paulista, Brazil, 3São Francisco University, Medicine Course, Bragança Paulista, Brazil

Among the various types of cancers, glioma is configured as a neoplasm of high power of invasion, proliferation and recurrence, being among the most important and difficult to cure. The average survival time is usually less than one year after diagnosis. Thus, the need to search for new drug to combat this tumor improves survival of patients. Flavonoids are phenolic compounds of natural origin that are present in most foods of the human diet and have antitumor activity.