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Abstract 

The licensure of recombinant protein-based meningococcal vaccines has increased the 

complexity of strain coverage assessments. In 2015, the 4CMenB vaccine was 

introduced into the UK national infant immunisation schedule and an Enhanced 

Surveillance programme was launched by Public Health England’s Meningococcal 

Reference Unit. Meningococcal isolates, representing ~50% of laboratory-confirmed 

cases, are comprehensively characterised using whole genome sequencing and 

4CMenB strain coverage is assessed phenotypically using the Meningococcal Antigen 

Typing System. For the remaining cases, which are confirmed using PCR only, strain 

characterisation was until recently restricted to geno-grouping and geno-subtyping. 

The purpose of this research was to establish new genotypic assays to improve strain 

coverage assessment among non-culture cases, as well as introduce the MEASURE 

assay to predict coverage of a second sub-capsular vaccine, rLP2086, among isolates. 

A PCR sequencing assay targeting the Factor H-Binding Protein antigen gene (fHbp) was 

developed and had an estimated analytical sensitivity limit of between 600ag/µL and 

6fg/µL. Using this assay, fHbp was successfully sequenced from 1510 of the 1661 PCR-

positive clinical samples tested (91%). The distributions of fHbp peptide variants among 

culture and non-culture strains were compared and, whilst differences were observed 

for a small number of predominant variants, the distribution was very similar within 

each capsular group. 

The prospect of performing WGS directly from non-culture specimens was investigated 

using the Agilent SureSelectXT system. Eight of ten clinical specimens yielded genomes 

of acceptable quality. It was estimated that up to 54% of non-culture cases could be 

sequenced using this technique, however, the financial cost is currently prohibitive.  

Finally, the MEASURE assay was risk assessed and overnight formaldehyde incubation 

was introduced to ensure cells were fully fixed. The assay results were similar to those 

generated in a collaborating laboratory, however, further standardisation may be 

required.  

These assays will help to increase the accuracy of strain coverage predictions of the 

currently-licenced and future sub-capsular meningococcal vaccines. 
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1.0 BACKGROUND 

1.1 Invasive Meningococcal Disease 

1.1.1 Meningococcal Disease in the Pre-Vaccine Era 

Invasive Meningococcal Disease (IMD) is an umbrella term used to describe the many 

maladies that can occur as a result of infection by the bacterial pathogen Neisseria 

meningitidis, also referred to as the meningococcus. Accounts of outbreaks resembling 

meningococcal infections date back to the late 17th century (Tyler, 2010). Vivid 

descriptions of outbreaks in 1806 in Geneva and 1806-1810 in the towns of New 

England illustrate the fear and confusion caused by the fulminant and deadly 

symptoms (Vieusseux, 1805; North, 1980; Tyler, 2010). In an 1810 review of local 

epidemics of the deadly ‘spotted fever’, Nathan Strong, a physician from Hartford, 

Connecticut, described cases of “a violent delirium” along with head pain and dark 

purple spots that would not recede under pressure. Writing of the disease, which 

peaked in the winter and spring months, Strong confessed to being “ignorant of its 

nature, mode of attack, or the weapons with which it might be most successfully 

combated” (Strong, 1810). 

The meningococcus was first isolated and described in a Viennese laboratory in 1887. A 

pathologist named Anton Weichselbaum grew the bacterium in pure culture from six 

cases of epidemic cerebo-spinal meningitis. Weichselbaum had named the organism 

Diplococcus intracellularis to reflect the appearance and location of the bacterium 

upon initial observation (Weichselbaum, 1887). In 1891, Quincke developed the lumbar 

puncture technique which facilitated the isolation of the meningococcus from cerebro-

spinal fluid (CSF) (Tyler, 2010).  

In the first decade of the twentieth century, epidemics in Great Britain, the US and 

Canada featured fatality rates as high as 70-90% (Flexner, 1913). The work of 

pathologists such as George Jochmann and Simon Flexner led to the development of 

serum therapies. Flexner, a pathologist based in New York, studied the progression of 

the disease in animal models and developed antiserums by inoculating horses with 
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meningococcal cultures. After introduction of his antisera in 1907, fatality rates among 

the treated were reduced to 20-45% (Flexner, 1913). 

Following the onset of the First World War in 1914, outbreaks in meningococcal 

disease were common place among the army camps of all countries. Consequently, the 

use of serum therapies increased in popularity. In 1916, Harold Amoss developed an 

agglutination method for the standardisation of meningococcal anti-serum (Amoss and 

Wollstein, 1916). It was from this early work that the first meningococcal typing 

systems arose, which subsequently led to the development of the first polysaccharide-

based vaccines (Branham, 1953; Vipond et al., 2012). 

The development of Sulphonamides in the 1930’s also helped to reduce fatality rates, 

particularly during the Second World War. Resistance to Sulphadiazine first emerged in 

the early 1960’s and led to the wide-spread adoption of beta-lactam antibiotics for 

treatment of IMD (Millar et al., 1963).  

In 1923, the first edition of Bergeys Manual of Determinative Bacteriology was 

published and referred to the organism as Neisseria intracellularis . Whilst other 

binomials were used, this was the most commonly-used name for many years. In 1948, 

the sixth edition of Bergey’s Manual used Neisseria meningitidis as the preferred name 

and, in 1963, the Judicial Commission of the International Committee on 

Bacteriological Nomenclature unanimously accepted Neisseria meningitidis as the 

official binomial for the meningococcus (Breed et al., 1948; International Committee on 

Bacteriological Nomenclature, 1963). 

1.1.2 Clinical Features 

The most common clinical presentation of IMD is rapid onset meningitis which occurs 

in around 60-70% of cases (European Centre for Disease Prevention and Control, 2012). 

Meningitis is defined as an infection of the meninges, the fine membranes that 

surround the brain and spinal column. As the bacterium penetrates the blood-brain 

barrier (BBB), it proliferates in the CSF eliciting damaging inflammatory responses. 

Initial symptoms vary widely from case to case, however, patients typically present with 

one or more of the following: headache, fever, nausea/vomiting, joint stiffness, light 
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sensitivity and confusion. Infants may also exhibit lethargy, irritability, poor feeding and 

raised fontanelles (Hart and Thomson, 2006; Brouwer et al., 2010). Perhaps one of the 

most characteristic aspects of the disease is the speed at which it can progress. Once 

invasion has occurred, bacterial load can increase rapidly and in many cases the 

patient's condition can become critical within hours of the onset of the initial 

symptoms (Hackett et al., 2002b). 

Meningococcal septicemia, or meningococcaemia, can occur as the primary IMD 

manifestation (~ 30% of cases) or in conjunction with meningitis (~20% of cases) 

(European Centre for Disease Prevention and Control, 2012). The proliferation of 

bacteria within the bloodstream in many cases results in septicaemic shock 

characterised by severe inflammatory reactions leading to vascular damage and 

circulatory shutdown, often within 24 hours. In the first 12 hours of disease 

progression, general septicaemic symptoms such as cold, painful limbs and abnormal 

skin colouration may be observed along with a non-blanching petechial rash. If 

untreated, the disease can progress to disseminated intravascular coagulation 

manifested as purpura fulminans, severe cutaneous haemoraging and skin/limb 

necrosis (Tzeng and Stephens, 2000; Hart and Thomson, 2006; Pace and Pollard, 2012; 

Strelow and Vidal, 2013).  

The activation of host inflammatory factors can result in vascular injury and damage to 

the cerebral tissues, leaving survivors with limb loss, deafness, seizures and motor 

and/or cognitive deficits, among other sequelae (Weber and Tuomanen, 2007; Karve et 

al., 2011). A 2010 meta-analysis of 132 studies found there to be a 9.5% median risk of 

at least one sequela following recovery from meningococcal meningitis (Edmond et al., 

2010). Other less common forms of IMD include pneumonia, conjunctivitis, pericarditis 

and septic arthritis, often developing after meningitic/bacteraemic episodes (Stephens 

et al., 2007). 

Fatality rates can vary substantially and disease outcome is often influenced by a range 

of factors such as the age of the patient, strain virulence, host genetic polymorphisms 

as well as the timing of symptom recognition and antimicrobial treatment. In 

developed countries, case fatality rates of between 5-10% are commonly reported 
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(Hahné et al., 2006; Gray et al., 2006; Trotter et al., 2007b; Ladhani et al., 2012b; 

Baccarini et al., 2013; Sadarangani et al., 2015). This figure, however, may be much 

higher in resource-poor settings or during outbreaks (Rouaud et al., 2006; Smith et al., 

2006; Ceyhan et al., 2012; Strelow and Vidal, 2013). 

1.1.3 Laboratory Diagnosis 

Confirmation of suspected IMD cases is typically achieved through the isolation of N. 

meningitidis from an otherwise sterile bodily site. Isolates are commonly obtained 

from the blood and/or CSF, using venipuncture and/or lumbar puncture, respectively. 

Blood culture bottles are usually supplemented with culture medium and incubated at 

35-37 °C (with 5% CO2). Samples are subsequently sub-cultured onto agar and streaked 

for single colony isolation (World Health Organization, 2011). 

N. meningitidis can grow on a variety of media, however, blood (sheep, horse or goat) 

or chocolate agars are typically used. The organism is non-haemolytic and, on blood 

agar, colonies appear round, grey and convex with a defined edge and a glistening 

surface. Meningococcal colonies exhibit a similar morphology when grown on 

chocolate agar; however they may appear slightly larger (World Health Organization, 

2011).  

Laboratories use a variety of different methods to confirm IMD depending upon the 

type of sample attained. For CSF samples, attempted culturing is often performed in 

parallel to cytological examination of the specimen. CSF turbidity and pleocytosis, 

especially increased numbers of polymorphonuclear leukocytes (PMNs), are indicative 

of bacterial meningitis. Gram staining of the CSF contents may help to identify bacterial 

cells within the sample. Meningococcal cells may be observed within PMNs and appear 

as ‘coffee-bean’-shaped diplococci (World Health Organization, 2011) 

Oxidase, catalase and carbohydrate utilization tests may be employed to differentiate 

isolated organisms from other common Neisseria species (World Health Organization, 

2011). N. meningitidis is oxidase and catalase positive and can oxidise glucose and 

maltose, but not lactose and sucrose. Further phenotypic confirmation may be 
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provided using methods targeting meningococcal-specific antigens (Lucidarme et al., 

2011b). 

Many laboratories have developed real-time polymerase chain reaction (PCR)-based 

assays to amplify meningococcal deoxyribonucleic acid (DNA) directly from clinical 

specimens (Taha and Fox, 2007). These assays consist of DNA primers and probes 

specific to sequences within conserved meningococcal genes (e.g. ctrA, sodC, crgA) 

(Guiver et al., 2000; Thomas et al., 2011; Taha, 2000). This strategy allows laboratory 

confirmation without the need for in vitro culture of the organism. This is particularly 

invaluable as many specimens do not yield a culturable isolate (Heinsbroek et al., 

2013). 

1.1.4 Treatment 

In the UK, urgent hospital admission of suspected bacterial meningitis or 

meningococcal septicaemia patients is recommended (National Institute for Health and 

Care Excellence, 2010). Those with a non-blanching rash (i.e. suspected septicaemia) or 

those who cannot be immediately hospitalised should be administered a single dose of 

parenteral benzylpenicillin, ideally intravenously, prior to admission. The dosage ranges 

from 300 mg to 1200 mg depending on patient age (National Institute for Health and 

Care Excellence, 2010).  

Following admission, third generation cephalosporins, such as Ceftriaxone, are the 

preferred treatment. Cefotaxime plus either amoxicillin or ampicillin should be 

administered to children younger than 3 months of age (National Institute for Health 

and Care Excellence, 2010).  

Due to the speed of disease progression, prompt antimicrobial therapy is important in 

suspected IMD cases. A 2006 meta-analysis found a positive association between pre-

admission antimicrobial treatment and reduced mortality (Hahné et al., 2006) and 

further work has shown that delays in receiving such treatment are likely to influence 

case fatality rates (Proulx et al., 2005).  
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1.2 Neisseria meningitidis: Cellular Features and Virulence Factors 

N. meningitidis is a non-motile, gram-negative, facultative anaerobe found within the 

class Betaproteobacteria. The organism is an exclusively human pathogen and the 

nasopharyngeal tract represents its primary reservoir (Stephens, 2009). The bacterium 

possesses many features that contribute to its survival within this niche and the 

potential for invasion of host tissues. 

1.2.1 Polysaccharide capsule 

One of the predominant features of the meningococcal cell is the polysaccharide 

capsule. The chemical composition of the polysaccharide capsule is the basis of the 

principal system of categorisation within the species: the Group. Traditionally referred 

to as serogroup, the classification system was developed throughout the twentieth 

century using serological methods (Craven et al., 1978). The term ‘genogroup’ may also 

be used when the determination has been achieved through genetic characterisation.  

There are 12 different capsular groups (A, B, C, E, H, I, K, L, X, W, Y, Z) and of these, six 

cause the vast majority of disease (A, B, C, W, X and Y) (Harrison et al., 2009). The 

capsular polysaccharides of group B, C, W and Y contain sialic acid. Group B and C 

capsules are composed entirely of sialic acid with α2>8 and α2>9 linkages, respectively 

(Bhattacharjee et al., 1975). Group W and Y polysaccharides contain alternating units of 

D-galactose or D-glucose and sialic acid, respectively (Bhattacharjee et al., 1976). Group 

A and X are composed of repeating sub-units of N-acetyl-D- mannosamine-1-

phosphate and N-acetylglucosamine 1-phosphate, respectively (Liu et al., 1971; 

Apicella and Robinson, 1972). 

The genes responsible for capsular synthesis and expression (termed cps) are well 

characterised for all groups (Harrison et al., 2013). Despite significant differences in 

polysaccharide composition, the different loci are remarkably well conserved between 

these groups. All loci can be divided into six regions (A-D, D’ and E) each containing two 

to nine genes. Region A contains the genes responsible for polysaccharide biosynthesis 

and constitutes the majority of the diversity between the different capsular groups. 

The fourth gene within this region (cs, siaD, mynA) encodes the polysialyltransferase, 
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which determines the capsular composition. The polysialyltransferase gene of group B 

and C strains exhibit ~60% similarity whilst ~98% homology is seen between this gene 

among group Y and W strains (Claus et al., 1997). The translated peptides of the group 

W and Y polymerases are consequently very similar and a single amino acid (310) 

determines the specificity to galactose or glucose, respectively (Claus et al., 2009). Due 

to these similarities, a small proportion of invasive strains express capsular 

polysaccharide composed of sialic acid with both D-glucose and D-galactose which, in 

some cases, cross-react with both anti-Y and anti-W sera (personal correspondence, Dr 

Steve Gray, PHE MRU).  

Group A polysaccharides are naturally O-acetylated by the O-acetyltransferases 

encoded by the csaC gene (mynC). Groups C, W and Y polysaccharides, however, can be 

O-acetylated or non-O-acetylated at the sialic acid residues. In the UK, O-acetylation 

was seen among ≥70% of invasive group C and Y strains, whilst only a small proportion 

(8%) of group W strains are O-acetylated (Borrow et al., 2000; Longworth et al., 2002; 

Balmer et al., 2002). In group C organisms the O-acetyltransferase is encoded by the 

cssE gene (oatC) and in group W and Y organisms by cssF (oatWY) (Claus et al., 2004; 

Harrison et al., 2013).  

Regions B and C contain genes involved in the transport and membrane translocation 

of the high-molecular weight polysaccharide. The remaining regions are involved in 

lipooligosaccharide (LOS) synthesis and sialylation (Harrison et al., 2013).  

1.2.2 Porins 

Of the many surface proteins expressed by meningococci, the major porins, PorA (class 

I) and PorB (class II or III), are the most abundant and both expressed by the majority of 

meningococcal strains (Feavers et al., 1996; Law et al., 2014). As with many gram-

negative porins, both PorA and PorB exhibit a trimeric 16-stranded β-barrel peptide 

structure and allow the translocation of hydrophilic molecules in and out of the cell 

(Derrick et al., 1999). Although coded from a same locus within the genome, there is 

notable sequence variation between class II and class III PorB peptides (PorB2 and 

PorB3, respectively), with PorB3 much more closely related to porins of other Neisseria 

species (e.g. PorB1a of Neisseria gonorrhoeae) (Derrick et al., 1999).  
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Due to the abundance of PorA on the cell surface, it is one of the most 

immunodominant antigens with convalescent antibodies specific to exposed epitopes, 

particularly to loop IV (Van der Ley et al., 1991; Idänpään-Heikkilä et al., 1995). In 

encapsulated strains, PorA binds to the C4 binding protein (C4bp) complement 

inhibitor, increasing serum survival (Jarva et al., 2005). Similarly, PorB2 is able to bind 

the alternative complement pathway regulator Factor H (fH), reducing C3 deposition 

and serum susceptibility (Lewis et al., 2013).  

1.2.3 Lipooligosaccharides  

The LOS is a major feature component of the meningococcal cell membrane and is 

crucial to its structural integrity. The LOS maintain the negative charge of the 

membrane and is an important moderator of the host immune response (Unkmeir et 

al., 2002b). Meningococcal LOS is cytotoxic and can cause host endothelial monolayer 

dysfunction and cytoskeletal reorganisation (Slanina et al., 2011). The imbedded inner 

core structure principally consists of acylated Lipid A, whilst the outer portion contains 

variable α and β oligosaccharide chains (Kahler and Stephens, 1998). Lipid A is 

relatively well conserved between strains, however, inner core structural variation can 

significantly impact host immune response and disease progression. LOS with six fatty 

acyl chains on the Lipid A moeity (hexa-acylated) are strongly associated with invasive 

strains, in contrast to those with five acyl chains (penta-acylated), which exhibit 

decreased toll-like receptor 4-mediated induction of cytokines by macrophages 

(Fransen et al., 2010; Rodenburg et al., 2012; John et al., 2016). Structural 

modifications to the inner core (e.g. sialylation) also correlate with invasive potential 

and aid immune survival (Klein et al., 1996; Ram et al., 2003; Plant et al., 2006; Lewis et 

al., 2012; Unkmeir et al., 2002b), whilst the addition of phosphoethanolamine can 

increase adherence to host cells (Takahashi et al., 2008).  

1.2.4 Pili 

Pili are filamentous organelles composed of peptide polymers that protrude many 

micrometres from the cell surface. Pili are indispensable during initial epithelial 

attachment, however, the precise mechanisms of these interactions are not yet fully 

understood (Nassif et al., 1994; Pujol et al., 1997; Kirchner and Meyer, 2005; Exley et 
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al., 2009). N. meningitidis expresses Type IV pili (tfp), the principal structure of which  

consists of repeating PilE subunits arranged in a helical configuration around a 

hydrophobic core (Giltner et al., 2012). PilE undergoes extensive antigenic variation 

through positive immune selection and inter-genomic recombination mediated by 

multiple silent homologous genes (pilS) (Andrews and Gojobori, 2004). Whilst this 

variation can influence interactions with host cell receptors, PilC, located at the pilin 

tip, also appears to play a key role in the epithelial cell adherence (Nassif et al., 1994; 

Rahman et al., 1997; Källström et al., 1998; Morand et al., 2009). Additionally, the 

minor pilin PilX plays an essential role in meningococcal aggregation during 

colonisation (Hélaine et al., 2005).  

1.2.5 Opacity proteins 

The Opacity proteins Opc and Opa are surface exposed adhesins that mediate binding 

to and invasion of host epithelial and endothelial cells (Virji et al., 1993; de Vries et al., 

1996; Muenzner et al., 2000; Johswich et al., 2013) as well as interactions with 

phagocytic cells (McNeil and Virji, 1997). Opc expression can also aid serum resistance 

through the binding of vitronectin, a repressor of the late complement pathway 

(Griffiths et al., 2011; Hubert et al., 2012). 

1.2.6 IgA protease 

The IgA protease autotransporter can be an important determinant of invasive 

potential by cleaving the heavy chain of IgA1 immunoglobulins preventing antibody-

mediated clearance (Plaut et al., 1975). In many hyper-invasive strains (e.g. ST-11 

complex), these Type V autotransporters feature specific nuclear localisation signals, 

which facilitate entry into the nucleus of epithelial cells and cleavage of the NF-κB 

transcriptional regulator resulting in apotosis of the host cell (Besbes et al., 2015). 

Furthermore, IgA protease-mediated cleavage of LAMP1, a major component of 

lysosomes, promotes intracellular survival of invasive strains (Lin et al., 1997; Ayala et 

al., 2001).  
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1.2.7 Other virulence factors 

Within the host, the sequestration of extra-cellular iron, usually in the form of 

Transferrin, Lactoferrin or Haemoglobin/Haptoglobin, is achieved via specific sets of 

cognate receptors (i.e. TbpAB, LbpAB, HpuAB and HmbR ), which are important for 

survival and virulence in vivo (Perkins-Balding et al., 2004; Renauld-Mongenie et al., 

2004; Lucidarme et al., 2013b). 

Other potential virulence factors include NalP, a phase variable autotransporter which 

is involved in cleavage of host complement/meningococcal outer membrane proteins 

and plays an important role in biofilm formation (Roussel-Jazédé et al., 2010; Del 

Tordello et al., 2014; Perez-Ortega et al., 2017), Meningococcal surface fibril (also 

termed NhhA) which mediates adhesion and down regulation of the host complement 

cascade (Griffiths et al., 2011), and the adhesins MspA and App (Hill et al., 2010). 

1.2.8 The meningococcal genome 

The meningococcal genome is approximately 2.2 x 106 base pairs (bp) in length, 

organised in a typical circular chromosome (Parkhill et al., 2000). N. meningitidis is 

naturally transformable, readily receiving exogenous DNA from its environment. There 

is strong genomic evidence of horizontal exchange, incorporating DNA from other 

nasopharyngeal neisserial species such as N. lactamica (Linz et al., 2000; Lucidarme et 

al., 2011a), as well as other co-habiting genera such as Haemophilus (Kroll et al., 1998). 

This transformation is made more efficient by the presence of a 10-12 base pairs (bp) 

DNA uptake sequence, observed at over 2000 loci within the genome (Treangen et al., 

2008). As a result, meningococcal genomes typically feature many artefacts of 

recombination, which represents a primary driver of diversity within the species (Jolley 

et al., 2005).  

Many important meningococcal virulence genes are subject to phase variation (PV), 

allowing changes in their expression. This is achieved through slipped-strand mispairing 

of homopolymeric nucleotide tracts either within the open-reading frame or in the 

flanking gene promoter affecting transcription and/or translation (Sarkari et al., 1994; 

Berrington et al., 2002; Oldfield et al., 2013; Lucidarme et al., 2013b). This selective 
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control of expression levels can facilitate colonisation or invasion of the host and 

avoidance of the immune responses (Tauseef et al., 2013; Alamro et al., 2014; de Vries 

et al., 1996; Hubert et al., 2012). Transformation of heterologous neisserial DNA has 

been found to increase PV frequency (Alexander et al., 2004) and there is evidence that 

PV frequency and general mutability is influenced by the functionality of the mismatch 

repair enzyme DNA adenine methyltransferase (dam) (Bucci et al., 1999). A similar 

study, however, found no such link but mismatch repair proteins MutS and MutL were 

shown to be important regulators of PV frequencies (Richardson and Stojiljkovic, 2001; 

Colicchio et al., 2006). 

1.3 Colonisation and Carriage 

1.3.1 Mechanisms of Colonisation 

Transmission of the meningococcus occurs through direct contact with oral or nasal 

secretions or inhalation of air-borne droplets (Tzeng and Stephens, 2000). The 

colonisation of the nasopharynx begins with the aggregation of the bacterial cells and 

subsequent adherence to nasopharyngeal tissues, particularly non-ciliated columnar 

cells. Both of these actions are facilitated by tfp through inter-bacterial PilX:PilX 

interactions and PilC-mediated binding to host receptors (such as CD46), respectively 

(Stephens et al., 1983; Read et al., 1995; Källström et al., 1998; Hélaine et al., 2005). 

The attachment of tfp is followed by the formation of microcolonies on the apical 

surface leading to close interactions between outer membrane adhesins (e.g. Opc, Opa, 

TspA, NadA) and host cell receptors such as CD66a (Billker et al., 2000; Comanducci et 

al., 2002; Oldfield et al., 2007; Virji et al., 1993; Johswich et al., 2013). The expression 

of sialic acid-based capsules can, however, mask these adhesins and reduce epithelial 

attachment (Stephens et al., 1993; Hammerschmidt et al., 1996; Bartley et al., 2013). 

Furthermore, the glycosylation of pili can lead to detachment of meningococcal cells, 

facilitating the colonisation of neighbouring tissues (Chamot-Rooke et al., 2011). 

Recent work also suggests that a filamentous bacteriophage, MDAΦ, promotes 

aggregation and compensates for the lack of piliation in the upper layers of the 

adherent biomass (Bille et al., 2017) 
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The formation of meningococcal biofilms on respiratory epithelial cells has been 

demonstrated in vitro using both encapsulated and unencapsulated strains (Neil et al., 

2009). The utilisation of extracellular DNA, which is important for the stability of 

biofilms of other bacterial species, can vary between different virulent meningococcal 

strains. This has been suggested as a possible explanation for observed differences in 

carriage rates between hyper-invasive lineages (Lappann et al., 2010). 

1.3.2 Transmission and Carriage in the Population 

Carriage of the organism can be transient, with colonisation lasting a matter of days, or 

can persist for several months (Stephens, 2009). In endemic populations, a consistent 

carriage profile can be seen with relatively low carriage rates observed in children 

under 4 years (<5%). The rate of carriage slowly increases with the population age 

before rising sharply from 15 years of age and peaking at around 19 years, an age 

group in which carriage rates of ~25-30% are frequently observed (Cartwright et al., 

1987; Caugant et al., 1994; MacLennan et al., 2006; Christensen et al., 2010; Jeppesen 

et al., 2015). The rise of carriage in adolescence is generally attributed to attendance of 

closed or semi closed institutions such universities and military establishments where 

close contact with others is increased. A study of UK university students suggested that 

specific social behaviours (e.g. smoking, kissing, visiting pubs/clubs) largely account for 

the sharp increase in carriage from 15 years onwards (MacLennan et al., 2006). Into 

adulthood the carriage rate reduces and plateaus at ~10% (Cartwright et al., 1987; 

Caugant et al., 1994; Christensen et al., 2010).  

Studies of meningococcal carriage in sub-Saharan African populations report more 

discordant carriage profiles with rates between 3% and 30% reported across the region 

(Trotter and Greenwood, 2007; MenAfriCar Consortium, 2015; Basta et al., 2017). In 

recent surveys, higher carriage rates were reported in children (5-14 years) than in 

adolescents/young adults (15-29 years) (Diallo et al., 2016; MenAfriCar Consortium, 

2015). This variation may reflect differences in social norms and behaviours (e.g. lower 

higher education attendance) between countries within this region and those of other 

parts of the world.  
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The characteristics of the carried strains also influence the level of carriage. Marked 

differences in the carriage prevalence of strains of different capsular groups have been 

previously observed (Maiden and Stuart, 2002; Maiden et al., 2008). During the UK 

group C epidemic of the late 1990’s, surprisingly low carriage of group C strains were 

observed including the causative lineage 11.2 (ST-11 complex) strain. This was despite 

high disease incidence and higher carriage of group B, W and Y strains (Jones et al., 

2000; Maiden et al., 2008; Maiden and Stuart, 2002).  

1.4 Pathogenesis 

1.4.1 Traversing the Epithelium  

Colonisation may in some cases lead to migration of meningococci through the 

pharyngeal epithelium. There is some evidence to suggest that environmental factors 

such as smoking and dry, dusty conditions may facilitate meningococcal invasion by 

weakening the pharyngeal lining (Sultan et al., 2005; Stanwell-Smith et al., 1994). Much 

of the evidence suggests meningococci migrate using a transcellular route beginning 

with the tfp-dependent formation of plaques on apical surface (Merz et al., 1999; 

Sutherland et al., 2010; Pujol et al., 1997) followed by subversion of intracellular 

trafficking systems and manipulation of the epithelial cytoskeleton leading to the 

internalisation of the meningococcal cells (Barrile et al., 2015; de Vries et al., 1996; 

Pujol et al., 1997). An alternate invasion mechanism in which internalised pathogenic 

Neisseria spp. “hitchhike” across the epithelium within PMNs has been demonstrated 

in vitro (Söderholm et al., 2011). 

Upon entry into the host bloodstream, rapid multiplication is facilitated by the 

modified expression of around 30% of genes including immune regulators and nutrient 

uptake systems (Echenique-Rivera et al., 2011). Infection can infrequently result in a 

low level, chronic bacteraemia presenting with limited but prolonged symptomologies 

(Thimmesch et al., 2016). Chronic meningococcaemia is probably a result of strong host 

immunity and/or attenuated strain virulence determinants such as lower LOS reactivity 

(Prins et al., 1998; Brouwer et al., 2011). In many cases, however, proliferation of the 

invading strain causes a rapid increase in LOS triggering the release of pro-

inflammatory cytokines which can lead to acute septic shock (Brandtzaeg et al., 1989). 
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Although uncommon, meningococci can be seeded from the bloodstream into 

compartmentalised spaces causing pericarditis and septic arthritis, among other 

systemic infections (Dulović et al., 2009).  

1.4.2 Traversing the BBB 

The BBB is principally composed of junctional complexes located between endothelial 

cells, preventing the paracellular passage of hydrophilic macromolecules, neurotoxic 

compounds and foreign agents (Coureuil et al., 2012). The meningococci appear to use 

both transcellular and paracellular routes to cross the BBB and enter the subarachnoid 

spaces. The tfp play a crucial role in adherence to endothelial cells and the formation of 

cortical plaques, which can result organisational changes in the endothelial actin 

filaments and subsequent internalisation (Eugène et al., 2002; Mikaty et al., 2009; 

Lécuyer et al., 2012; Takahashi et al., 2012). tfp also elicit relocalisation of junctional 

proteins resulting in leakage and allowing the paracellular transport of meningococcal 

cells into the subarachnoid space (Coureuil et al., 2009).  

In the CSF, the bacteria multiply at an enhanced rate owing to the dearth of 

complement proteins and immunoglobulins. Interactions between the invading strains 

and the cells of the leptomeninges elicit the release of a medley of pro-inflammatory 

cytokines including interleukin-6 and interleukin-8. In vitro data suggests the presence 

of meningococcal components such as tfp, capsular polysaccharide and LOS may 

influence the nature of the inflammatory response (Christodoulides et al., 2002).  

1.5 Immunity 

1.5.1 Innate Immunity and the Complement System 

The innate immune system consists of phagocytic cells and a host of cationic peptides 

with a large array of anti-microbial functions. The cytotoxic peptide 

Bactericidal/Permeability-Increasing protein, for example, is released from 

granulocytes and possesses endotoxin-neutralising activity (Schultz and Weiss, 2007). 

The cathelicidin LL-37, expressed by immune and epithelial cells can also kill 

meningococci through membrane-destabilising surface interactions (Jones et al., 2009)  
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Consisting of over 30 plasma proteins, the complement system plays a crucial role in 

recognition and elimination of the invading meningococcal cells. Three distinct 

proteolytic pathways culminate in the formation of C3b which covalently binds to the 

meningococcal membrane surface (Lewis and Ram, 2014). C3b has a dual function in 

relation to meningococcal clearance. Firstly, it serves as an effective opsonin, 

promoting phagocytosis of the invading cell by proximate macrophages and PMNs 

(Ehlenberger and Nussenzweig, 1977). In addition to its opsonic properties, the binding 

of C3b leads the continuation of the proteolytic complement cascade and the eventual 

formation of the membrane attack complex (MAC), a multi-protein complex imbedded 

within the membrane of the invading cell. The MAC acts as a pore, destabilising the 

osmotic balance and causing cell lysis (Lewis and Ram, 2014).  

The Classical complement pathway and Lectin complement pathway are activated by 

membrane-bound antigen-specific antibody (IgG or IgM) or carbohydrate-specific 

mannose binding lectin, respectively. Conversely, the Alternate complement pathway is 

not target-specific but is activated spontaneously at a low level on all membrane 

surfaces. Within host tissues, however, this spontaneous activation is inhibited by a 

number of negative pathway regulators (e.g. Factor H) (Lewis and Ram, 2014). 

The critical importance of MAC-mediated lysis is evidenced by increased disease 

incidence in patients with late complement component deficiencies (Fijen et al., 1999; 

Wright et al., 2009; Kuijpers et al., 2010) and those taking complement inhibitors 

(Struijk et al., 2013). These findings also suggest that opsonophagocytic activity (OPA) 

alone is not sufficient for immune protection. The contribution of OPA in the 

prevention of IMD is not yet fully understood. Limited laboratory data suggests that 

complement-mediated phagocytosis may be an effective method of killing, at least 

against some meningococcal strains (Ross et al., 1987). Additionally, the increased 

incidence of meningococcal disease in asplenic individuals indicates a significant 

contributory role as most opsonised bacteria are cleared by phagocytic macrophages in 

the spleen (Ram et al., 2010).  

Capsular polysaccharide plays an important role in the organism’s defence against host 

innate immune response. Expression of homopolymeric sialic acid capsules (e.g. groups 
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B and C) reduces C3 deposition on the bacterial surface thus inhibiting alternative 

pathway-mediated lysis (Jarvis and Vedros, 1987; Vogel et al., 1997; Uria et al., 2008; 

Agarwal et al., 2014). Conversely, data generated using isogenic strains suggests that 

the chemical composition of group W and Y capsules may actually promote rapid 

activation of C3a and deposition of C3 (Ram et al., 2011). Capsular expression can also 

reduce deposition of LL-37, reduce adherence to dendritic cells thus impeding 

phagocytosis, and the expression of group C polysaccharide can inhibit LOS-triggered 

cytokine release by binding to CD14 of human monocytes (Unkmeir et al., 2002a; 

Kocabas et al., 2007; Jones et al., 2009). 

1.5.2 Acquired Immunity and Serum Bactericidal Antibody (SBA) Activity 

Although the innate immune response represents the primary process of 

meningococcal clearance, protective immunity against N. meningitidis is dependent 

upon the adaptive immune system, in particular the presence of circulating serum 

bactericidal antibodies (SBA) against the infecting strain (Erlich and Congeni, 2012). 

These antibodies elicit a rapid response, providing opsonic stimulation of phagocytes 

and activation of the classical complement pathway.  

The influential work by Goldschneider, Gotschlich and Artenstein in the 1960’s 

identified SBA to be the key protective factor against meningococcal disease using in 

vitro bactericidal assays to quantify SBA activity (Goldschneider et al., 1969a). Within 

US army camps, only 5.6% of recruits who developed group C meningococcal disease 

exhibited SBA activity against the epidemic strain, compared to 82% of controls who 

didn’t develop disease. A disease incidence of 38.5% was observed amongst those with 

no bactericidal activity against the acquired group C strain, compared to 1% of the total 

population (Goldschneider et al., 1969a). This work also revealed an inverse correlation 

between the numbers of participants with SBA activity and the incidence of 

meningococcal disease across different age groups.  

A sharp reduction in SBA activity is seen shortly after birth (within the first six months) 

due the depletion of maternal antibodies. SBA activity then gradually increases with 

age, rising sharply throughout adolescence in particular (Trotter et al., 2003, 2007a). 

The gradual increase in SBA activity is attributed to the increased acquisition of carriage 
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as age increases and supports initial evidence that carriage of meningococci or other 

Neisseria commensals (e.g. N. lactamica) has an immunising effect (Goldschneider et 

al., 1969b; Cartwright et al., 1987; Christensen et al., 2010). Despite this pattern, a 

clearly-defined inverse correlation between SBA activity and IMD incidence is not 

always observed (Trotter et al., 2012, 2013), prompting suggestions that other immune 

mechanisms (e.g. OPA) may be partly responsible for the dramatic decrease in cases as 

age increases (Granoff 2009). 

SBA activity, as measured using titres derived from in vitro SBA assays, is the accepted 

surrogate of protection against IMD. Using surrogates provides a means by which the 

level of protection within a population can be reliably predicted and allows the 

assessment of vaccine efficacy without the need for population-wide efficacy studies, 

which are costly and difficult to carry out due to relatively low IMD incidence (World 

Health Organization, 1976; Borrow et al., 2005; Frasch et al., 2009).   

An SBA titre is defined as the serum dilution at which 50% of the bacterial supplement 

is killed during the bactericidal assay. Complement within test sera is heat-inactivated 

prior to introduction of exogenous complement within non-immune serum. This 

equalises the concentrations of complement across the dilution series and ensures titre 

differences between test sera are due to differences in bactericidal antibody 

concentrations only (McIntosh et al., 2015). The aforementioned work by Goldscheider 

et al established a group C protective SBA titre of ≥4 when using exogenous human 

complement in the bactericidal assay (hSBA). This hSBA cut-off has been shown to 

reliably correlate with protection against group B and C disease in subsequent 

polysaccharide and outer membrane vesicle (OMV) vaccine efficacy trials (Artenstein et 

al., 1970b; Holst et al., 2003). The lack of standardisation of human complement 

sources has, however, led to the adoption of rabbit complement in SBA assays (rSBA) 

(Maslanka et al., 1997; Borrow et al., 2005). The use of rabbit complement leads to 

significantly higher titres than those obtained using human complement, especially 

against group B strains (Zollinger and Mandrell, 1983). This effect was observed during 

group C conjugate polysaccharide vaccine trials in the 1990s (Borrow et al., 2001). The 

difference is thought to be at least partly due to the inability of N. meningitidis to bind 

rabbit-derived complement fH. Conversely, binding of human fH in the hSBA leads to 
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down-regulation of the alternative complement pathway and comparatively lower SBA 

titres (Granoff et al., 2009). 

Following the introduction of group C conjugate vaccines in the UK in 1999, a validation 

study using post-licensure sera was performed which took a population-based 

approach and proposed a protective rSBA correlate of ≥1:8 for group C disease 

(Andrews et al., 2003).  

Other functional assays such as whole blood killing assays and OPA assays have been 

developed, however, assay protocols are not yet fully standardised and, unlike the SBA 

assay, the relationship between these assays and protective immunity on a population 

level is yet to be fully understood (Vermont and Van Den Dobbelsteen, 2002; Findlow 

et al., 2006; Welsch and Granoff, 2007; Humphries et al., 2015). In addition to 

functional assays, enzyme-linked immunosorbent assays (ELISA) and multiplex bead-

based immunoassays are commonly used in trials to measure total antigen-specific 

antibody concentrations (Laher et al., 2006; Vermont and Van Den Dobbelsteen, 2002).  

1.6 Typing and Surveillance 

1.6.1 Grouping 

Laboratory determination of the capsular group was traditionally achieved using serum 

agglutination techniques, however, targeted immunoassays (e.g. the ‘dot-blot’ ELISA) 

utilising capsular polysaccharide-specific murine monoclonal antibodies have been 

adopted as the standard phenotypic method (Wedege and Rosenqvist, 1990; Gray et 

al., 2006). Capsular group can be determined genotypically through real-time PCR 

detection and/or sequencing of the siaD gene. This can be particularly useful in the 

absence of a clinical isolate (Heinsbroek et al., 2013). 

1.6.2 Typing and Subtyping 

As immunologically-dominant surface antigens, characterisation of PorA and PorB form 

an important part of meningococcal typing systems; with variation in these proteins 

distinguishing the Subtype and Type of different strains, respectively (Jolley et al., 

2007). Much of the sequence variation within the different porin classes is restricted to 
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eight surface-exposed loops, a likely result of immune selective pressures during host 

colonisation (Smith et al., 1995). Typing of these antigens has traditionally been 

achieved with panels of antibodies that recognise specific surface-exposed epitopes, or 

variable regions (VR), using co-agglutination or dot blot ELISA (Wedege and Rosenqvist, 

1990). PorA VRs are located at the apex of loops I and IV (VR1 and VR2, respectively), 

which are characterised individually (Van der Ley et al., 1991). VR3 (located at loop V) is 

occasionally characterised, however, it offers limited additional discriminatory power.  

The strain Type is determined by collective detection of four PorB VRs located on loops 

I, V, VI and VII (Sacchi et al., 1998). The lack of standardisation of serological typing 

reagents led to the development of genotyping assays to sequence the coding regions 

of the porin VRs (McGuinness et al., 1993; Sacchi et al., 1998).  

1.6.3 Immunotyping 

Structural variation in the oligosaccharide chains of the LOS forms the basis of 

Immunotyping scheme. Unique oligosaccharide chain compositions are assigned 

Immunotypes (L1 to L12) and can influence host cell adhesion, serum survival and 

immune interactions (Plant et al., 2006; Hubert et al., 2012). The L3,7,9 immunotype is 

strongly associated with group B invasive strains, whilst L1,8,10 is associated with 

carriage strains (Jones et al., 1992). 

1.6.4 Population Typing 

Developed in the mid-1980s, Multi-locus Enzyme Electrophoresis (MLEE) provides the 

means of elucidating the underlying population structure of invasive meningococcal 

strains (Selander et al., 1986). The technique identifies differences in the 

electrophoretic migration of seven evolutionarily-restricted ‘house-keeping’ enzymes 

between meningococcal strains. These differences correlate with variation in the 

enzymes amino acid structure and, therefore, genetic variation in the encoding genes. 

Unique electrophoretic patterns produced on an acrylamide gels were assigned 

arbitrary numeric identifiers and strains producing the same/similar patterns were 

grouped into electrophoretic types, which represent closely-related meningococcal 

lineages. 
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For the first time, MLEE allowed researchers to elucidate the diversification of 

meningococcal strains on a longer evolutionary timescale to those observed when 

studying elements under selection pressure (i.e. surface antigens) (Caugant et al., 1986; 

Selander et al., 1986). Despite efforts at standardizing the MLEE assay, differences in 

protocols and reagents led to poor reproducibility between reference laboratories. 

These difficulties, combined with reductions in the cost of PCR and DNA sequencing in 

the 1990’s, led to the transition to Multilocus Sequence Typing (MLST) (Maiden et al., 

1998). MLST involves sequencing fragments of the genes encoding the seven MLEE 

enzymes. Numeric IDs are assigned to unique nucleotide alleles eliminating the 

ambiguity observed with MLEE. Unique combinations of the seven allelic IDs are given 

numeric sequence type (ST) IDs. STs can then be clustered together (typically around a 

central, ancestral ST) with others STs featuring the same allelic variants at four or more 

of the seven loci. These groups of evolutionarily similar strains are termed clonal 

complexes (CC). The MLST scheme for meningococci, as well as many other bacterial 

pathogens, is currently coordinated from online databases hosted by University of 

Oxford, England (www.pubMLST.org). Despite the assignment of over 13,000 unique 

meningococcal MLST STs, many of the IMD cases reported globally are caused by 

strains belonging to a limited number of ‘hyper-virulent’ CCs (Caugant and Maiden, 

2009). 

1.6.5 Whole Genome Analysis 

Shortly after the development of MLST, whole genome sequencing of the first two 

meningococcal genomes MC58 (group B) and Z2491 (group A) was completed (Tettelin 

et al., 2000; Parkhill et al., 2000). Subsequent advancements in massively parallel 

sequencing technologies have allowed cost-effective sequencing of bacterial genomes 

within practical time frames (Bertelli and Greub, 2013).  

This wealth of information has enabled extensive epidemiological analyses of invasive 

sub-lineages, vaccine antigen distributions as well as detailed genomic comparisons of 

past and emerging invasive clones (Hill et al., 2015; Brehony et al., 2015; Lucidarme et 

al., 2015). The significant increase in the proportion of characterised genes has also 

vastly improved the resolution of MLST analyses and a number of extended MLST 

http://www.pubmlst.org/
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schemes have been developed utilising varying numbers of selected loci (Maiden et al., 

2013) (e.g. ribosomal MLST (rMLST) comprising 53 ribosomal protein subunit genes 

(Jolley et al., 2012) and core genome MLST schemes which include those genes 

purported to be present in all/most meningococcal strains (Bratcher et al., 2014)). 

Despite the increasing use of this technology for analyses of a wide range of bacterial 

pathogens (Tagini and Greub, 2017), standard WGS protocols generally require high 

concentrations of purified target DNA template (typically 5-50 ng/µL). DNA enrichment 

techniques, which allow the isolation and/or amplification of specific DNA sequences 

within mixed samples (e.g. clinical specimens) have been developed and a number of 

commercial assays are available. These assays utilise different approaches such as 

degradation or removal of extra-cellular or methylated DNA, and/or selective target 

amplification (Hansen et al., 2009; Clarke et al., 2017). Enrichment assays such as the 

Agilent SureSelectXT and Roche NimbleGen SeqCap systems involve hybridisation or 

“capture” genomic fragment using target-specific oligonucleotide “baits” (García-García 

et al., 2016). These systems have been used successfully to perform WGS of a number 

of viral and bacterial targets from clinical specimens (Depledge et al., 2011; 

Christiansen et al., 2014; Brown et al., 2015, 2016). 

1.7 Epidemiology 

1.7.1 Group A 

Throughout the early twentieth century, the majority of meningococcal disease in 

Europe and South America was caused by group A meningococci. During World War I, 

military camps throughout the Europe and America experienced sporadic group A 

outbreaks resulting in over 10,000 cases (Abio et al., 2013; Baccarini et al., 2013). In 

recent years, group A strains are only predominant in Africa and Asia (including parts of 

Russia) (Achtman et al., 2001; Teyssou and Muros-Le Rouzic, 2007; Harrison et al., 

2009).  

Since the 1960’s, multiple pandemic waves of distinct group A sub-clones, mostly 

originating in East Asia, have spread into Europe, Africa and beyond (Teyssou and 

Muros-Le Rouzic, 2007). Large group A epidemics have repeatedly occurred across 
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many Asian countries (e.g. China, Mongolia, India, Pakistan and Nepal) throughout the 

past century with fatality rates varying from 7-33% (Vyse et al., 2011).  

Historically, the highest IMD incidence, of any capsular group, was found in a band of 

countries of sub-Saharan Africa during the ‘dry season’ (November to May, Fig. 1-1). 

During this period, incidence of group A disease could be 10-100 fold greater than that 

of the corresponding wet season. This region, often referred to as ‘the Meningitis Belt’, 

experienced cyclic epidemics of group A disease every 5-12 years, with high fatality 

rates (Mueller and Gessner, 2010; Koutangni et al., 2015).  

As well as persistent occurrences of disease by ST-1 complex and ST-4 complex sub-

clones throughout the past 60 years, ST-5 complex strains have been imported into 

Africa several times, for example by Hajj pilgrims returning from Mecca in 1987, 

allowing the spread of this lineage to all corners of the continent (Guibourdenche et al., 

1996; Caugant and Nicolas, 2007). In the 1990s, this ST-5 strain was largely replaced by 

an ST-7 sub-clone, which was subsequently replaced by descendant ST-2859 clones in 

several meningitis belt countries (Nicolas et al., 2001, 2005; Lamelas et al., 2014). 

In 2010, the Meningitis Vaccine Project, a collaboration between the Serum Institute of 

India, Programme for Appropriate Technology in Health (PATH) and the World Health 

Organization, commenced the successful introduction of a group A conjugate vaccine 

(MenAfriVac) across the meningitis belt (Djingarey et al., 2015). The vaccine was 

administered to over >200 million individuals aged 1-29 years and has resulted in a 

manifest reduction of group A disease within vaccinated populations (Diomande et al., 

2015). Long-term routine use of MenAfriVac into the Expanded Programme on 

Immunization is recommended in order to prevent the resurgence of group A disease 

in the meningitis belt (Karachaliou et al., 2015). 
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Figure 1-1: A map of Africa with The Meningitis Belt highlighted. The countries 
considered to be in the Meningitis Belt are coloured red and labelled. The countries 
coloured in dark red have historically experienced particularly high incidence (>10 
cases/100,000). Map template sourced at yourfreetemplates.com. 

Figure 1-1: A map of Africa with The Meningitis Belt highlighted.  
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1.7.2 Group C 

Significant incidence of group C disease has historically been observed across Europe 

and the Americas (Baccarini et al., 2013). During the 1990s, a high incidence of group C 

disease was seen in the UK, Spain, Ireland and a number of other European nations, 

primarily driven by the expansion of a single hyper-virulent clone (C:2a:P1.5,2, ST-11). 

The incidence in many European countries increased dramatically from <1 to ~5 per 

100,000 people (Trotter et al., 2007b; Bijlsma et al., 2014).  

Group C conjugate vaccines were introduced into the UK national immunisation 

schedule in November 1999. Laboratory-confirmed group C cases fell from 954 in 

1998/99 to 64 in 2003/04 (34% to 4% of total IMD cases, respectively) (Fig. 1-2) (Gray et 

al., 2006). Such programmes were also adopted by several other European countries 

and, by 2004, notable decreases in the proportion of group C disease were observed 

throughout Europe. The UK incidence of group C disease has remained low 

(<1/100,000) in the years since (Fig. 1-2) (Trotter et al., 2007b; Borrow et al., 2013).  

In 2013, 2014 and 2015, sequential outbreaks of group C disease were observed 

throughout northern Nigeria (Funk et al., 2016; Chow et al., 2016). In 2015 alone, 

>6000 suspected cases were recorded. Cultured isolates yielded a finetype of C:P1.21-

15,16:F1-7:ST-10217. This subtype is uncommon and the ST is not assigned to a CC. 

Reactive vaccination with quadrivalent ACWY polysaccharide vaccines was 

implemented in 2015, however, the impact of this intervention is not yet fully 

determined (Chow et al., 2016). A subsequent genomic study of group C epidemic 

isolates in neighbouring Niger yielded the same ST (Kretz et al., 2016). 
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Figure 1-2: Number of IMD cases confirmed by PHE MRU from 1998/99 to 2016/17 by 

capsular group. 
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1.7.3 Group W 

Throughout the twentieth century, group W disease was reported at a low level 

globally in relation to the other hyper-invasive capsular groups (Silva et al., 2012). Prior 

to 2000, group W disease represented ≤10% of reported IMD cases in the US, South 

America, Europe and Africa (Nicolas et al., 2005; Safadi et al., 2013; Baccarini et al., 

2013; Gray et al., 2006). 

In 2000, however, an outbreak of group W disease occurred amongst Hajj pilgrims in 

Saudi Arabia. The cramped conditions associated with the Hajj and the subsequent 

return of pilgrims to their home countries facilitated the global spread of the causative 

clone (W:2a:P1.5,2:ST-11). Localised outbreaks of group W disease occurred 

throughout Europe (primarily in the UK and France), the Middle East , Africa and East 

Asia (Aguilera et al., 2002; Lingappa et al., 2003; Wilder-Smith et al., 2003; Ceyhan et 

al., 2012). In 2002, Burkino Faso suffered a severe epidemic of over 12,000 cases 

(Koumare et al., 2007). These group W outbreaks featured characteristically high case 

fatality rates (e.g. 20% UK, 37% Singapore) and the age distribution tended towards 

children and young adults (Wilder-Smith et al., 2003; von Gottberg et al., 2008). 

Vaccination recommendations for Hajj pilgrims were changed from bivalent (groups 

A/C) to quadrivalent (groups A/C/W/Y) vaccines in 2002 (Karima et al., 2003). In 

subsequent years, this ‘Hajj strain’ (W:2a:P1.2,5:ST-11) became an established endemic 

strain throughout Africa.  

Since 2010, increases in endemic group W disease caused by CC11 have also been 

observed in Latin America (particularly Chile and Argentina) and Western Europe (Fig 1-

2) (Abad et al., 2014; Ladhani et al., 2015a; von Gottberg et al., 2008). These increases 

have prompted the introduction of quadrivalent conjugate vaccines in Chile, Argentina 

and the UK (Campbell et al., 2017; Borrow et al., 2017). In 2015, a detailed whole 

genome comparative analysis of a global panel of CC11 group W strains was 

performed. The results revealed clear distinctions between so called “Hajj strain” that 

caused disease in the early 2000s and the more recent strains causing high disease 

rates in South America and the UK (Lucidarme et al., 2015). The recent UK strains were 

shown to have evolved from the South American clones and expanded within the UK. 
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Subsequently, high-resolution MLST analysis (n=1546 loci) of UK and Swedish isolates 

from children returning from an international scout convention in Japan identified a 

distinct CC11 strain (dubbed the ‘2013 strain’) that had expanded from the recent UK 

and South American epidemic strains and continues to cause increasing numbers of 

disease cases in the UK as well as other European countries and Australia (Lucidarme et 

al., 2016; Martin et al., 2016; Knol et al., 2017). Cases caused by the recent CC11 strains 

were observed across a wide range of age groups, however, a significant burden was 

seen in those ≥45 years of age (Ladhani et al., 2015a; Martin et al., 2016) 

1.7.4 Group Y 

In relation to strains of other capsular groups, group Y strains cause disease in a 

geographically limited area, being generally prominent in North America and Europe 

only. In North America, incidence of group Y disease was historically low until the 

1990’s when increases in disease rates saw group Y account for approximately a 

quarter of IMD in the United States (Rosenstein et al., 1996).  

Group Y strains cause ~5% of IMD in Europe on average, however, a 10% increase in 

mean annual increase in notification rate was observed between 2000 and 2014 

(Whittaker et al., 2017) with notable recent increases in Scandinavia, Italy and the UK 

(Broker et al., 2014). In 2009/10 in the UK, a corresponding increase in group Y carriage 

was observed in university students (Bidmos et al., 2011). Recent European strains 

have been relatively homogenous, with the majority belonging to CC23, however, core 

genome MLST analyses have revealed several sub-clones that differ in predominance 

between the UK and Sweden (Törös et al., 2015). Group Y strains exhibit a distinctive 

pathogenicity with a relatively large proportion of disease cases featuring pneumonia 

and/or other less common symptomologies (Ladhani et al., 2012a; Säll et al., 2017). 

This may in part be due to the skewed age distribution towards those ≥65 years of age, 

in which co-morbidities and co-infections may impact the nature and likelihood of 

infection. Unlike group W, however, few group Y cases are observed in infants and 

children and the indirect herd protection effect provided by immunising adolescents 

(the primary carriers) with quadrivalent polysaccharide conjugates may not be as 

evident against older age groups. 
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1.7.5 Group B 

Since the 1960’s and 70’s, group B has been the predominant invasive group across 

many countries of Europe, the Americas and Australasia (Trotter et al., 2007b; Harrison 

et al., 2009; Baccarini et al., 2013). In recent years, particularly high mean annual group 

B disease incidences (1.4 – 2.36/100,000) have been seen in the UK, Ireland, the 

Netherlands and New Zealand, however, this the incidence has been gradually reducing 

year on year in the UK and other countries (Sridhar et al., 2015; Ladhani et al., 2012b). 

Invasive group B strains are genetically more diverse than those of other capsular 

groups with a number of globally-dominant clonal lineages. Strains of the ST-32 

complex lineage have been responsible for a significant proportion of European group 

B endemic disease over the past four decades (Bygraves et al., 1999; Brehony et al., 

2014; Trotter et al., 2007b). In addition, a number of hyper-invasive ST-32 complex 

strains, belonging to several different STs, have caused prolonged outbreaks in Norway, 

UK, US (B:15:P1.7,16), Cuba, South America (B:4:P1.19,15 and B:15:P1.7,3) and France 

(B:14:P1.7,16) (Caugant et al., 1986; Diermayer et al., 1999; Rouaud et al., 2006). ST-

41/44 complex strains represent a large proportion of the global group B disease 

burden (European Centre for Disease Prevention and Control, 2012). A high group B 

incidence reported in New Zealand was due to a prolonged outbreak of a ST-41/44 

complex strain (B:P1.7-2,4:ST-42), which began in 2000 (Dyet and Martin, 2005). This 

led to the development and implementation of an OMV vaccine (MeNZB) against the 

causative strain in 2004 (Sridhar et al., 2015). ST-269 complex strains cause a large 

proportion of endemic disease, especially in the UK, as well as a rapid expansion in 

Quebec, Canada leading to vaccination of one region in 2014 (Lucidarme et al., 2009; 

Law et al., 2006; De Wals et al., 2017). 
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Figure 1-3: Distribution of predominant hyper-invasive CCs amongst group B isolates in 
E&W between 2010 and 2016. Data sourced from Meningitis Research Foundation’s 
Meningococcus Genome Library (MRF MGL, https://www.meningitis.org/research-
projects/mrf-meningococcus-genome-library). “Unassigned” isolates are those which 
an ST could not be assigned due to at least one incomplete/interrupted MLST locus in 
the genome assembly. 

Figure 1-3: Distribution of predominant hyper-invasive CCs amongst group B isolates in E&W between 2010 and 2016. 
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In E&W, between July 2010 and June 2016, 63.6% of invasive group B isolates with 

defined STs belonged to one of the three aforementioned hyper-invasive lineages (Fig. 

1-3). The ST-213 complex was the third most prevalent lineage representing a further 

10.3% of characterised group B culture cases during this period.  

In E&W, group B disease is predominant in all ages, however, the majority of group B 

cases are seen in those under 10 years and those between 15-19 years of age. (Hill et 

al., 2015; European Centre for Disease Prevention and Control, 2012; Ladhani et al., 

2012b). Interestingly, variation can be seen in the age distribution of different common 

group B lineages with, for example, ST-32 complex disease more common in older 

children (5-14 years) (Brehony et al., 2014). 

Fatality rates for group B disease are around 5-10% in industrialised settings, however, 

particularly transmissible and virulent strains (i.e. during an outbreak) can cause 

substantially higher case fatality rates (Rouaud et al., 2006; Sridhar et al., 2015). 

1.8 Meningococcal Vaccines 

1.8.1 Capsular polysaccharide antigens and T-cell independent immunity 

The late 1960s saw the development of improved purification methods to extract high-

molecular weight group A, B and C polysaccharides. Following testing in animal models, 

the group A and C polysaccharides were shown to generate robust group-specific 

bactericidal antibodies in human adult volunteers (Gotschlich et al., 1969; Artenstein et 

al., 1970a, 1971; Gotschlich et al., 1972). Subsequent vaccination programmes among 

US army recruits resulted in substantial reductions in group C meningococcal disease 

among the vaccinated camps (Artenstein et al., 1970b; Gold and Artenstein, 1971). 

Similar field trials evaluating group A polysaccharide vaccines in Egypt, Finland and the 

Sudan reported high immunogenicity and group-specific reductions in disease (Erwa et 

al., 1973; Wahdan et al., 1977; Makela et al., 1975).  

Despite promising results from these initial studies, a number of substantial limitations 

were subsequently revealed. Perhaps most critically, it was determined that the 
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immunogenicity of these vaccines was age-specific. Group C polysaccharide vaccines do 

not elicit sufficient immunity to protect children under 2 years of age (Taunay et al., 

1974). Furthermore, group C polysaccharide elicits hypo-responsiveness, reducing the 

immunogenicity of subsequent doses and precluding their use in routine immunisation 

programmes (Gold et al., 1979; Poolman and Borrow, 2011). Evidence suggests this 

may be due to the immaturity of the splenic marginal zones and/or apoptosis of 

memory B lymphocytes following immunisation in infants (Brynjolfsson et al., 2012).  

Following immunisation with group A polysaccharide, infants under 12 months 

produce ten-fold lower levels of antibody than adults; less than putative protective 

levels (2µg/mL) (Wilkins and Wehrle, 1979; Gotschlich et al., 1972). Short-term 

protection is seen in infants over 3 months of age, however, vaccine efficacy can reduce 

markedly within 2-3 years when given to those under 4 years (Reingold et al., 1985). 

Even following booster doses, antibody titres in infants aged <12 months wane within a 

year, however, older children and adults respond well to boosting making it suitable for 

routine use in these populations (Lepow et al., 1977; Kayhty et al., 1980).  

Meningococcal capsular polysaccharides, like most bacterial carbohydrates, are known 

as T-cell independent (TI) antigens (specifically TI-2 antigens) as they do not bind to 

MHC class II proteins and are not, therefore, presented on the surface of antigen 

presenting cells (APC, e.g. dendritic cells, macrophages) for T-cell recognition and 

activation (reviewed by Avci et al. 2011). TI-2 antigens activate B-cells directly through 

cross-linking of the B cell receptors (BCR) resulting in a largely humoral immune 

response characterized by IgM antibody generation and limited generation of memory 

B cells, hindering the development of immune memory (Beuvery et al., 1982).  

Despite these limitations, several capsular polysaccharide vaccines containing A, C, W 

and Y polysaccharides have been licensed. Polysaccharide vaccines have been 

successful in maintaining low IMD incidence within specific at-risk populations, such as 

army recruits, and as part of reactive vaccine campaigns in Africa (Brundage et al., 

2002; Artal, 2015). Crucially, however, the development and licensure of group B 

polysaccharides has been hampered by the structural similarity between the group B 

polysaccharide and human neuronal cells (Finne et al., 1983). This similarity reduces its 
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ability to elicit bactericidal antibodies and raises concerns about possible auto-immune 

reactions following vaccination.  

1.8.2 Polysaccharide conjugates and T-cell dependent immunity 

Many of the disadvantages inherent in the use of polysaccharide antigens were 

overcome through the development of protein-conjugated Haemophilus influenzae 

type b polysaccharide vaccines. These conjugated vaccines elicit stronger immune 

responses characterised by high avidity antibodies as well as the induction immune 

memory (Kelly et al., 2004; Pichichero, 2013). The conjugation of bacterial 

polysaccharides to immunogenic carrier proteins promotes the uptake, processing and 

MHC-II-mediated presentation of the polysaccharide by APCs. Subsequent MHC-II 

recognition by carbohydrate-specific CD-4 T cells triggers cytokine release and the 

proliferation and differentiation of B cells. The maturation of the B cells involves 

antibody isotype switching (e.g. from IgM to IgG), production of higher avidity 

antibodies and increases in the number of memory B cells, which are necessary for 

immune memory responses upon repeated antigenic exposure (Kelly et al., 2006). 

The first meningococcal conjugate vaccines were developed and introduced in the UK 

in the late 1990s. Three group C polysaccharide conjugates (two conjugated to 

modified diphtheria toxoid CRM197 and one to tetanus toxoid (TT)) were introduced in 

response to a steep increase in group C disease in the preceding years (Miller et al., 

2001). Two of the three vaccines (NeisVac-C™, TT-conjugated and Meningitec™, 

CRM197-conjugated) had been licenced based on immunogenicity data derived from 

rSBA analysis of post-immune sera using a putative protective titre of ≥8 (Borrow et al., 

2001). The SBA data for the other vaccine (Menjugate®, CRM197-conjugated) was 

mostly generated using hSBA (MacLennan et al., 2000).  

Acceptable safety profiles, induction of immunological memory and high levels of 

protective immunity in infants and toddlers were demonstrated after one or two doses 

of either vaccine (Richmond et al., 1999; Bramley et al., 2001; Richmond et al., 2001; 

MacLennan et al., 2000). The hypo-responsiveness previously observed with repeated 

polysaccharide vaccination was not seen with the conjugate vaccines and prior 

polysaccharide vaccination did not impair the booster response of conjugated vaccines 
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(MacDonald et al., 1998; Poolman and Borrow, 2011). Additionally, plain 

polysaccharide vaccines were able to boost the response primed by the conjugated 

vaccines (Richmond et al., 2001). 

In late 1999, the first group C conjugate vaccine was added to the national infant 

programme at a 2-, 3- and 4-month schedule. This was rolled out alongside a catch-up 

campaign for those aged up to 18 years (Miller et al., 2001). The group C conjugate 

vaccines had a dramatic effect on group C disease in the UK (see section 1.7.2). In 2006, 

the UK infant schedule was changed to a two dose primary (3 and 4 months) and a 

booster at 12 months of age in order to extend direct protection into the second year 

of life (Borrow et al., 2010). This was reduced further in 2013 to a single priming dose 

and 12 month booster but with the introduction of an adolescent booster (13-14 years 

and university entrants) in order to provide protection to those who had only been 

vaccinated during infancy (i.e. those not part of the initial catch up campaign) and to 

provide herd protection (Findlow and Borrow, 2015). Finally, in 2016, the single 

primary group C dose was removed from UK routine schedule. It was deemed 

unnecessary due to the low numbers of group C cases and continuing herd protection 

provided by adolescent vaccination. 

Since the success of group C conjugate vaccines, multivalent glyco-conjugates (ACWY 

and CY) have been licenced in many countries and possess TT or diphtheria derived 

carrier proteins. The usage depends on the licence restrictions but many are used in 

infants e.g. Menveo™ (ACWY-CRM197) licenced from 2 months in US and Nimenrix™ 

(ACWY-TT) is licenced from 6 weeks of age in EU (Ali et al., 2014).  

In the UK in 2015, the adolescent MenC conjugate dose was changed to an ACWY 

conjugate in response to the increase in group W and Y disease in the UK (Campbell et 

al., 2017). Clinical studies in teenagers who had been primed with a conjugate MenC 

vaccine in infancy found a very high response rate (>98%) one month post-boosting. 

Those primed and boosted with TT-conjugated vaccines exhibited the highest group C 

SBA titres (Ishola et al., 2015).  

The TT-conjugated MenAfriVac has all but eliminated group A disease from vaccinated 

areas in sub-Saharan Africa and also elicited anti-tetanus serological responses leading 
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to a significant reduction in neonatal tetanus (Borrow et al., 2015; Diomande et al., 

2015). Despite this success, the persistence of non-group A disease throughout sub-

saharan Africa has prompted research into the development of affordable mono-valent 

and multi-valent vaccines for targeting strains of other capsular groups in resource-

poor settings (Micoli et al., 2013).  

1.8.3 Outer Membrane Vesicles Vaccines 

N. meningitidis has the ability to bleb and release OMVs during proliferation. OMVs 

contain a medley of outer membrane and periplasmic structures, many of which are 

immunogenic protein antigens (Vaughan et al., 2006). In the 1970s, the lack of 

polysaccharide vaccines against group B strains prompted research into the use of 

OMVs as vaccines (Holst et al., 2013). These early vaccines were derived from epidemic 

strains using deoxycholate detergent membrane extraction, which reduces the LOS 

content, therefore attenuating their toxicity (Acevedo et al., 2014; Holst et al., 2013). 

These vaccines exhibit good safety profiles and generate strong SBA responses against 

the strains from which they are derived and those expressing the same PorA VR2 

epitope. However, against strains which express heterologous PorA variants, 

monovalent OMV vaccines elicit limited cross-protective immunity, especially in infants 

(Martin et al., 2006; Thornton et al., 2006; Nokleby et al., 2007; Holst et al., 2009). 

Three monovalent OMV vaccines are currently licenced for the prevention of 

meningococcal disease. VA-MENGOC-BC® was developed by the Finlay Institute in Cuba 

and its OMV is derived from the CU385 epidemic strain from central America 

(B:4:P1.19,15:ST-32 complex). The vaccine was introduced into the Cuban vaccine 

schedule in 1989, initially for those up to six years of age with a reported efficacy of 

92.56% (Sierra et al., 1991). A trial of VA-MENGOCOC-BC® in Brazil, however, reported 

lower efficacy (-37 to 74%) in a setting in which only 58.4% of invasive strains 

possessed the matched the VR2 subtype (de Moraes et al., 1992).  

The Norwegian-produced MenBvac® was developed from the hyper-invasive, European 

strain H44/76 (B:15:P1.7,16:ST-32 complex) (Rosenqvist et al., 1995). Trial results have 

demonstrated high vaccine efficacy against the epidemic strain (Holst et al., 2013). The 

efficacy correlated well with immunogenicity data in adolescents which showed a 
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significant increase in geometric mean titres following two doses (2.4 to 19.0). Titres 

had, however, waned to pre-vaccination levels after 12 months (Holst et al., 2003). 

Lastly, an international collaboration between the Norwegian Institute of Public Health, 

the New Zealand government and Chiron Vaccines resulted in the licensure of MeNZB™ 

to tackle an epidemic of the New Zealand NZ98/254 strain (B:4:P1.7-2,4:ST-41/44 

complex) (Thornton et al., 2006). 

Whilst these vaccines have been successful in controlling single-strain epidemics, the 

immunodominance of the PorA antigen precludes the use of these vaccines against 

diverse endemic strains. Despite these limitations, OMVs have proved themselves to be 

an effective platform for antigen delivery and new generations of OMV vaccines are 

being developed in an attempt to improve immunogenicity and strain coverage. Many 

recent formulations contain native OMVs which are naturally-blebbed and passively 

collected from the growth medium. The use of naturally conformational OMVs 

overcomes many shortcomings of detergent OMV extraction such as the loss of vesicle 

integrity, increased aggregation and the removal of potentially immunogenic 

phospholipids and lipoproteins (van de Waterbeemd et al., 2010).  

In order to overcome the limited cross-protection, genetic engineering has been used 

to expand the PorA repertoire of recent OMV vaccines (Van der Ley and Poolman, 

1992). HexaMen and NonaMen, for example, consist of two or three deoxycholate-

extracted OMVs each expressing three different PorA variants, respectively. The 

inclusion of multiple PorA variants increases the proportion of strains covered 

(Vermont et al., 2003; Kaaijk et al., 2013).  

Several other candidate OMVs have tailored antigenic makeup and/or increased 

expression of constitutive antigens (Koeberling et al., 2009; Weynants et al., 2009; 

Pajon et al., 2013; Norheim et al., 2015). Additionally, a number of vaccine 

formulations, including the licenced group B vaccine Bexsero® (4CMenB), contain 

OMVs alongside recombinant proteins and/or glyco-conjugated polysaccharides in 

order to increase strain coverage and immunogenicity (Gorringe and Pajon, 2012; 

Tunheim et al., 2014; Block et al., 2015).  
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1.8.4 Recombinant Protein Vaccine Antigens 

1.8.4.1  Identification of protein antigen candidates 

The limited scope of protection offered by first generation, monovalent OMV vaccines 

prompted researchers to identify individual sub-capsular protein antigens which are 

relatively conserved between invasive strains and/or exhibit substantial cross-reactive 

immunogenicity. Developments in genomic technologies and the sequencing of the 

first two complete meningococcal genomes in 2000 provided researchers 

unprecedented insight into the workings of the meningococcal cell (Tettelin et al., 

2000; Parkhill et al., 2000). With this came the opportunity to use the genomic data as 

a starting point in identifying promising surface-exposed vaccine candidates. Using a 

technique known as Reverse Vaccinology, researchers at Chiron Vaccines (subsequently 

Novartis and GlaxoSmithKline) based in Sienna, Italy carried out comprehensive in silico 

analyses of the genome of group B strain MC58 in order to identify genes with features 

and motifs indicating cell surface localisation such as the LXXC lipobox motif. The group 

expressed 350 such proteins in Escherichia coli, which were then used to immunise 

mice to assess immunogenicity (Pizza et al., 2000). These proteomic and genotypic 

analyses of surface proteins have yielded a number of promising vaccine antigen 

candidates.  

1.8.4.2 Factor H-Binding Protein (GNA1870 / LP2086) 

Factor H-binding protein (fHbp) was among the prospective antigens identified by the 

Sienna group through the use of Reverse Vaccinology (Masignani et al., 2003). 

Concomitantly, this 28kDa protein was identified independently by a New York-based 

research group at Wyeth Vaccines (now Pfizer Vaccines) using detergent extraction and 

ion chromatography and was given the designation Lipoprotein 2086 (LP2086) 

(Bernfield et al., 2002; Fletcher et al., 2004).  

NMR spectroscopy and X-ray crystallography revealed fHbp’s dual domain structure, 

which consists of an N-terminal ‘taco shaped’ ß- sheet (residues 1-137) and a C-

terminal anti-parallel ß- barrel (residues 138-255, Figure 1-4). The wild type protein is 

lipidated at the N-terminal and is anchored to the outer membrane via an 
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serine/glycine linker of varying length (approximately 20 residue) allowing the antigen 

to sit away from the membrane (Figure 1-4) (Mascioni et al., 2009, 2010; Cantini et al., 

2009; Cendron et al., 2011). This is likely to reduce any masking of immunological 

epitopes by polysaccharide capsule and other membrane components, however, there 

is evidence to suggest that the LOS layer may prevent the binding of monoclonal 

antibodies to epitopes adjacent to the outer membrane (Mascioni et al., 2009, 2010).  

Considerable sequence variation exists between the different fHbp peptides harboured 

by invasive and non-invasive strains. Individual variants fall into three broad groups 

based on amino acid sequence similarity: variant groups 1, 2 and 3. Variants within 

each group exhibit >81% amino acid identity whilst similarity between variant groups 1 

and 3 is as low as 63% (Brehony et al., 2009; Masignani et al., 2003). In an alternate 

naming scheme, variant groups 2 and 3 are collectively referred to as ‘subfamily A’, 

reflecting their relative similarity, whilst variant group 1 is named ‘subfamily B’ 

(Fletcher et al., 2004).  

Epitope mapping studies have shown that most subfamily/variant group specific 

residues are located on the extracellular face of the protein, which is likely to be 

evidence of immunological selection pressures (Cantini et al., 2009; Mascioni et al., 

2010). The identification and analysis of additional fHbp peptide variants, in particular 

natural chimeras, revealed a distinctly modular structure in which small invariant 

peptide regions separate five large variable segments (Beemink and Granoff, 2009; 

Pajon et al., 2010). Each segment (A to E) of a specific peptide variant, is given either an 

α or a β designation (or 1 or 2, respectively) (Beernink and Granoff, 2009). Using the 

unique combinations of the five segments, Beernink and Granoff (2009) divided 

individual fHbp peptides into six modular groups (I to VI), later expanded to nine 

groups (I-IX) (Beernink et al., 2009; Pajon et al., 2010).  
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Figure 1-4: A schematic representation of the fHbp peptide (variant 1.55) as expressed 
from the surface of the meningococcal outer membrane. 

White: Serine/Glycine ‘tether’ anchoring the protein to the outer membrane. Green: N-
terminal ß- sheet. Blue: C-terminal ß- barrel. Pink/red: linker between the two main 
domains. Boxed inset image: representation of the peptide surface facing away from 
outer membrane. 

 

Image reproduced from McNeil, L. K., Zagursky, R. J., Lin, S. L., Murphy, E., Zlotnick, G. W., Hoiseth, S. K., 
Jansen, K. U. and Anderson, A. S. (2013). ‘Role of Factor H Binding Protein in Neisseria meningitidis 
Virulence and Its Potential as a Vaccine Candidate To Broadly Protect against Meningococcal Disease’. 
Microbiology and Molecular Biology Reviews, 77 (2), pp.234–252., with permission from the American 
Society for Microbiology. 
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Most of the differences between subfamily A and B are seen in the C-terminal domain, 

whilst the N-terminal domain is important in distinguishing the two groups of 

subfamily A (Brehony et al., 2009; Murphy et al., 2009). The N and C domains are 

subject to interchanging recombination resulting in variants with combinations of 

domain types with unique signature residues. In a 2009 study, four distinct subfamily A 

N/C-terminal combinations were identified, namely N1C1, N1C2 (variant group 3), 

N2C1 and N2C2 (variant group 2) (Murphy et al., 2009). Subfamily B variants were 

divided into three further N-terminal domain types: N4, N5 and N6 (Murphy et al., 

2009).  

The primary function of fHbp was first reported by Madico et al in 2006. Knock out 

strains and western blotting show fHbp to be a ligand for human fH, a negative 

regulator of the alternative complement pathway (Madico et al., 2006). Recruitment of 

fH to the cell surface by fHbp increases the survival of meningococci in human blood 

and serum (Madico et al., 2006; Welsch et al., 2008; Seib et al., 2009). The protein 

binds to  domain 6 and partially at domain 7 of human fH (Schneider et al., 2009). 

Peptides of all variant groups can bind fH and recruitment of fH correlates with the 

level of fHbp at the bacterial surface (Seib et al., 2011; Madico et al., 2006). The fH 

affinity of different fHbp variants can, however, vary independently of expression level 

(Seib et al., 2011). Studies involving diverse isolate panels have observed lower 

expression of subfamily A variants in relation to subfamily B peptides (Hong et al., 

2012; Biagini et al., 2016). In 2008, a study suggested that strains with higher levels of 

fHbp expression may exhibit greater dependence on the lipoprotein for immune 

resistance than those with low fHbp expression (Welsch et al., 2008). These differences 

in fH affinity and surface expression of fHbp may be associated with the differential 

expression of alternate fH ligands among meningococcal strains such as Neisserial 

Surface Protein A, PorB3 and sialylated LOS (Lewis et al., 2012).  

To date, almost all characterised invasive isolates, regardless of capsular group, possess 

fHbp. The level of surface expression can, however, vary considerably and, in several 

studies, strains were divided into high and low expressors (Beernink et al., 2007; Seib et 

al., 2010; Masignani et al., 2003; Fletcher et al., 2004). Expression level can influence 

the level of bactericidal activity with high expressers being more susceptible to 
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bactericidal killing (Jiang et al., 2010; Pajon et al., 2010). A small proportion of invasive 

meningococcal strains harbour fHbp alleles yielding truncated peptides and an even 

smaller number (typically <0.2%) lack an fHbp locus (Lucidarme et al., 2011a). In these 

strains, the locus is replaced by a gene commonly observed in N. lactamica (NLA18150) 

encoding a putative opacity protein (Lucidarme et al., 2013a). 

Vaccination with fHbp generates a variant group-specific response, i.e. antibodies 

elicited by variant group 2 fHbp peptides are generally not bactericidal against strains 

expressing variant group 1 variants (Pajon et al., 2010; Masignani et al., 2003; Fletcher 

et al., 2004). In one study, this principle was tested using transgenic mutants possessing 

different subfamily B variants expressed from a constitutive promoter (Brunelli et al., 

2011). Pooled anti-fHbp variant 1.1 serum from adults exhibited strong SBA reactions 

against all mutants expressing variant 1 peptides, however titres were relatively lower 

against the heterologous variants (i.e. not 1.1). Pooled sera from infants immunised 

with recombinant fHbp variant 1.1 were poorly cross-reactive against strains with other 

variant 1 peptides after three doses (2, 4 and 6 months) and showed limited cross-

reactivity after a booster dose (12 months) (Brunelli et al., 2011). These results indicate 

that the cross-reactivity of fHbp within variant groups could be less prominent in 

infants due to the under-developed immune system and suggests that fHbp alone may 

not provide as broad strain coverage in this age group as in adults. There is evidence 

that expression level could impact on the cross-reactivity of antibodies raised against 

heterologous variant groups, with higher expressers more susceptible to antibodies 

raised against fHbp of a different variant group (Pajon et al., 2010). 

Several variant-specific monoclonal antibodies have been described and the 

corresponding epitopes contributing to bactericidal activity have been identified 

(Malito et al., 2013; Welsch et al., 2008; Mascioni et al., 2010). Many of these 

antibodies exhibit a synergistic bactericidal effect, in which binding of antibodies to 

epitopes at a distance of 16 to 20 Å is required to induce C1q engagement and 

initiation of complement-mediated bactericidal activity (Beernink et al., 2008). In 2016, 

Biagini et al. used western blotting and flow cytometry on mutant MC58 strains and 

determined that bactericidal antibody activity required an fHbp surface density of 757 
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molecules per cell. This was deemed consistent with the distance between molecules 

required for C1q engagement (Biagini et al., 2016).  

In most strains, transcription of fHbp is driven by a promoter sequence upstream of 

fHbp. Under oxygen-limiting conditions, transcription of fHbp is upregulated in a 

fumarate and nitrate reductase-dependent manner (Oriente et al. 2010). Conversely, 

fHbp is upregulated in iron replete conditions (Sanders et al., 2012). The gene can also 

be transcribed from the promoter of the upstream cbba gene as a bi-cistronic 

transcript, however, this has only been observed in strains of the ST-32 complex 

(Oriente et al., 2010; Sanders et al., 2012). The fHbp promoter also features a RNA 

thermosensor which, at low temperatures, can restrict translation of the peptide (Loh 

et al., 2013). 

Differing nomenclatures are currently used to describe allelic variation in the fHbp gene 

and the corresponding peptides. The Sienna group used arbitrary numbers to identify 

unique nucleotide and peptide variants as they were discovered. These IDs are 

preceded by the variant group to which the variant belongs separated with a full stop 

(e.g. ‘1.15’ refers to variant 15 within variant group 1) (Bambini et al., 2009). In this 

system, the original variant identified through analysis of MC58 is 1.1. The New York 

group (currently Pfizer Vaccine Research) established a similar but unrelated system in 

which arbitrary, unique numeric identifiers are immediately preceded by the subfamily 

to which the variant belongs (e.g. B44, refers to variant 44 within subfamily B) (Fletcher 

et al., 2004). Following the incorporation of fHbp into University of Oxford’s Bacterial 

Isolate Genome Sequence Database (BIGSdb) typing repertoire, the identifiers assigned 

by Sienna were adopted for the most common variants that were initially discovered. 

Additional nucleotide and peptide variants that were subsequently submitted to the 

database were given successive numbers and these are then cross referenced with the 

alpha numeric ‘Pfizer system’ (Brehony et al., 2009). 

1.8.4.3  Neisseria Adhesin A 

The use of reverse vaccinology also led to the identification of Neisseria Adhesin A 

(NadA, originally named GNA1994), an oligomeric protein which is strongly 

immunogenic in rats and humans and has been shown to play in integral role in 
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adhesion to and invasion of host epithelial cells (Comanducci et al., 2002; Capecchi et 

al., 2005; Findlow et al., 2010).  

NadA exhibits significant amino acid sequence variation and allelic variants can be 

clustered into three broad groups (Bambini et al., 2014). Group I contains two 

subgroups NadA-1 and NadA-2/3 which share >90% sequence homology and are 

immunologically cross-reactive (Comanducci et al., 2002). Group I alleles are commonly 

found among a limited number of albeit predominant invasive lineages, namely the ST-

32 complex, ST-11 complex and ST-8 complex. Group II contains subgroups NadA-4/5 

and NadA-6 which are mostly restricted to carrier strains or the cc213 invasive lineage. 

As such, NadA is not as widely represented among invasive strains as fHbp 

(Comanducci et al., 2004; Bambini et al., 2009). 

Expression of NadA can differ 100 fold between harbouring invasive strains and 

expression is influenced by phase variation mediated by homopolymeric tracts in the 

gene promoter region (Beernink et al., 2007). NadA expression is naturally repressed by 

the NadR regulator. During colonisation of the nasopharynx, NadA expression is de-

repressed in the presence of 4-hydroxyphenyl acetate, a phenol ester commonly found 

in human saliva, by inhibiting the DNA-binding capability of NadR. This finding raises 

questions about the validity of SBA results generated in vitro in the absence of 4-

hydroxyphenyl acetate (Metruccio et al., 2009). 

1.8.4.4 Neisserial Heparin Binding Antigen 

Neisserial Heparin Binding Antigen (NHBA, originally named GNA2132) is a surface-

located protein that was also discovered by reverse vaccinology through the 

identification of an associated LXXC motif and was initially found to be capable of 

eliciting bactericidal antibodies in mice (Pizza et al., 2000). A subsequent 

immunogenicity study using anti-NHBA murine sera generated conflicting results 

(Welsch et al., 2003). Despite demonstrable antibody binding, complement deposition 

and rSBA bactericidal activity, the anti-NHBA antiserum only killed 2 out of 7 strains 

when tested with human complement. Interestingly, the strain from which the 

recombinant NHBA variant was derived was one of the five hSBA-resistant strains. The 

anti-NHBA serum did, however, provide passive protection in intraperitoneally-infected 
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rats, suggesting OPA may play a protective role (Welsch et al., 2003). Serruto et al. used 

dot blotting and hSBA to demonstrate NHBA-specific killing by human convalescent 

sera (Serruto et al., 2010). Using affinity chromatography, the protein was shown to 

bind Heparin via a conserved, central Arg-rich region, which increases serum resistance 

in the SBA. Furthermore, NHBA was shown to be cleaved from the surface by the NalP 

protease (in some strains) and human Lactoferrin at sites adjacent to the Arg-rich 

region (Serruto et al., 2010). Recently, Partridge et al demonstrated a significant NHBA 

contribution to SBA elicited by 4CMenB, especially in conjunction with anti-fHbp 

antibodies (Partridge et al., 2017). The NHBA-encoding gene is found in the all invasive 

strains, however, a small proportion of strains harbour NHBA variants with frameshifts 

and/or insertion sequences which disrupt translation (Jacobsson et al., 2006; 

Lucidarme et al., 2010; Bambini et al., 2009). 

1.8.5 Recombinant Antigen Vaccines 

1.8.5.1  4CMenB 

4CMenB is a protein vaccine comprising three recombinant proteins (50 µg of each) 

and an OMV from the New Zealand outbreak group B strain NZ98/254 (25 µg) 

adjuvanted with aluminium hydroxide. Five recombinant proteins were identified 

among the MC58 genome using reverse vaccinology (Pizza et al. 2000). fHbp 

(GNA1870), NHBA (GNA2132), NadA (GNA1994), Neisseria ubiquinone binding protein 

(GNA1030) and a yet unnamed protein (GNA2091) were selected due to their collective 

presence among diverse group B strains as well as the ability of the corresponding 

antisera to elicit SBA activity and/or passive protection in infant mouse models 

(Giuliani et al., 2006; Pizza et al., 2000; Comanducci et al., 2002; Serruto et al., 2010; 

Masignani et al., 2003).  

In order to facilitate large-scale production of these recombinant proteins, four of the 

antigens are presented as two fusion proteins: NHBA is fused with NUbp and fHbp is 

fused with GNA2091. The fusion of these proteins also appears to increase the SBA 

activity induced by the individual antigens (Giuliani et al., 2006). Early human trials 

reported greater immunogenicity with formulations containing the NZ98/254 OMV 

(4CMenB / rMenB + OMV) compared to the recombinant antigens alone (5CVMB / 
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rMenB) or those with the Norwegian 44/76 SL strain OMV (rMenB + NW OMV) 

(Findlow et al., 2010; Snape et al., 2010; Biagini et al., 2016). 

As with other meningococcal vaccines, the efficacy of 4CMenB was assessed using 

immunogenicity data measuring the production of protective bactericidal antibodies in 

vaccinees (Bai et al., 2011). Clinical trials were designed to assess the immunogenicity 

of each individual antigenic component by using hSBA assays against multiple reference 

strains, each possessing and expressing one of the four antigens but mismatched (i.e 

expresses heterologous variants) for the remaining three antigens. A recent study of a 

small number of immunised adults found that these reference strains exhibit higher 

susceptibility to immune serum than a diverse panel of recent invasive strains (Giuntini 

et al., 2017) suggesting the use of the reference strains may over-estimate vaccine 

efficacy.  

The key Phase II and III trials that led to the licensure of 4CMenB are summarised in 

Table 1-1. Strong SBA responses have been shown to last at least six months in healthy 

adolescents and adults after two doses at one to six months apart (Kimura et al., 2011; 

Santolaya et al., 2012; Snape et al., 2013). Santolaya et al. (2013) found that adolescent 

titres remained high in >64% of vaccinees when tested 18-24 months after the second 

or third dose (Santolaya et al., 2013). Conversely, a small study in adults found that SBA 

titres against a number of diverse strains waned significantly after only 4-6 months 

(Giuntini et al., 2017). In infants, strong SBA responses are seen after two or three 

primary doses given one or two months apart (Gossger et al., 2012; Findlow et al., 

2010). An anamnestic response was observed following boosting at 12 months, 

however, waning of bactericidal antibodies was seen by 60 months, even after a 

secondary booster at 40 months (Vesikari et al., 2013; McQuaid et al., 2015). The 

vaccine shows an acceptable safety profile in all age groups but increased 

reactogenicity relative to other routine vaccines (RV) has been widely reported and 

largely attributed to the OMV component (Perrett et al., 2015; Gossger et al., 2012; 

Santolaya et al., 2012; Vesikari et al., 2013). No interference with commonly used 

vaccines was indicated, however, increased reactogenicity was observed when 

administered with other scheduled vaccines (Vesikari et al., 2013; Gossger et al., 2012).  
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Table 1-1: Key Phase II/III studies assessing the safety and immunogenicity of 4CMenB. 

 

Age Group Study ID Country
No of 

subjects
Age Formulation Schedule Endpoints Results Reference

NCT00381615 UK 147
2 

months

rMenB or  

4CMenB

2, 4, 6 & 12 

months

Reactogenicity and 

safety. hSBA titres 

at pre-primary, pre-

booster and 1 

month after 2nd, 

3rd & booster.

Both vaccines tolerated 

and immunogenic against 

strains with homologous 

or similar antigen variants. 

rMenB + OMV elicits 

greater SBA responses. 

(Findlow et al. 

2010)

NCT00433914 UK 60
6-8 

months

rMenB or  

4CMenB

6, 8 & 12 

months 

Reactogenicity and 

safety. hSBA tires 

at baseline and one 

month after 2nd & 

3rd dose.

Both vaccines tolerated 

and immunogenic against 

strains with homologous 

or similar antigen variants. 

rMenB + OMV elicits 

greater SBA responses. 

(Snape et al. 

2010) 

NCT00721396
Europe 

(various)
1885

2 

months

 4CMenB 

with/without 

routine 

vaccinations 

(RV)s

2, 4 & 6 OR 

2, 3 & 4 

months

hSBA response at 

baseline and 

following third dose.

Bexsero immunogenic 

against reference strains 

with homologous variants 

with and without RVs 

using either dosing 

schedule. Minimal 

interference with RV 

immunogenicity.

(Gossger et 

al. 2012) 

NCT00657709
Europe 

(various)
3630

2 

months

 4CMenB 

with/without 

RVs

2, 4, 6 & 12 

months

Lot to lot 

consistency. 

Reactogenicity and 

immunogenicity by 

hSBA assay at 

baseline, following 

third dose and 

following booster

Bexsero immunogenic 

against strains with 

homologous or similar 

antigen variants with and 

without RVs. Minimal 

interference with RV 

immunogenicity. Bexsero 

more reactogenic with 

RVs.

(Vesikari et al. 

2013) 

NCT00847145
Europe 

(various)
2249

12 

months

 4CMenB 

with/without 

RVs

Booster at 12 

months

hSBA responses 

one month after 

booster dose.

95-100% with hSBA titre 

of ≥5 after 12 month 

booster with or without 

RV.

 (Vesikari et 

al. 2013)

 NCT01026974 UK 60
40-62 

months

rMenB or  

4CMenB

6, 8, 12 and 

40 months 

hSBA titres before 

40 month booster 

and one month 

after  booster

 4CMenB titres wained up 

to 40 months. 4CMenB 

immunogenic following 

booster at 40 months.

 (Snape et al. 

2013)

NCT01027351 UK 132
40-60 

months

rMenB or 

4CMenB

2, 4, 6, 12 & 

40 months 

OR 12, 40 & 

42 months 

OR 40 & 42 

months OR 

60 & 62 

months

hSBA response at 

60 or 63 months 

following various 

schedules and 

formulations.

 4CMenB titres wained 

between booster doses at 

40/42 months and 60 

months. 4CMenB 

immunogenic following 

two primary doses at 60 

and 62 months.

(McQuaid et 

al. 2015) 

NCT01423084

Australia 

and 

Canada

344
11-17 

years
4CMenB

2 doses of 

4CMenB 2 

months apart

Immunogenicity by 

hSBA assay, lot to 

lot consistency, 

safety profile.

hSBA titres of >5  against 

fHbp, NadA and PorA 

reference strains observed 

in >90% participants two 

weeks after dose 2. 

Minimal reduction in 

hSBA activity seen after 

one month. Both lots 

consistent with 

acceptable safety profile.

 (Perrett et al. 

2015)

NCT00661713 Chile 1631
11-17 

years
4CMenB

1, 2 or 3 

doses at 1, 2 

or 6 month 

intervals.

hSBA after 1, 2 or 

3 doses measured 

at baseline and one 

month following 

vaccination. 

99-100% participants has 

>1:4 hSBA titre after 2 or 

3 doses vs 91-97% of 

those receiving 1 dose. 91-

100% of those receiving 2 

or 3 doses had >1:4 titres 

after six months vs 73-

76% after 1 dose.

(Santolaya et 

al. 2012) 

Adults 

(≥18/19 yrs)
NCT00560313

Germany 

and Italy
54

18-50 

years

 4CMenB or 

Men ACWY-

CRM

4CMenB at 

baseline, 2 

and 6 months 

followed by 

MenACWY-

CRM at 7 

months.

hSBA titre 

assessed 1 month 

post-vaccination. 

Safety and 

tolerability.

≥80%, ≥91% and ≥92% of 

vaccinees achieved a 

hSBA titre of ≥1:4 after 

dose 1, 2 and 3, 

respectively. Acceptable 

rates of adverse 

events/reactions, however, 

greater than with 

MenACWY-CRM.

 (Kimura et al. 

2011)

Infants (<1 

yr)

Toddlers (1-

3 yrs)

Adolescents 

(11-18/19 

yrs)



46 

 

In 2012 and 2013, 4CMenB was licenced under the trade name Bexsero® for use in 

those aged over two months in Europe and Australia, respectively. It was also licenced 

in Canada in late 2013 for those aged from two months to 17 years. In January 2015, 

4CMenB gained FDA accelerated approval in the US for use in those aged 10-25 years. 

In 2015, the UK became the first country to introduce 4CMenB into the national infant 

immunisation schedule. The vaccine was introduced for newborn infants from 

September 2015 at a 2 and 4 month primary schedule with a 12 months booster dose 

(Ladhani et al., 2015b). A small catchup campaign was also launched for infants born 

from 1st May 2015. These infants received one or two doses of 4CMenB with their 3 

month and/or 4 month routine vaccinations depending on their age, as well as the 12 

month booster. A single dose of paracetamol has been shown to reduce the incidence 

of fever without impacting on immunogenicity (Prymula et al., 2014) and paracetamol 

is recommended following primary vaccination with 4CMenB and at 4-6 hourly 

intervals as required (Ladhani et al., 2015b).  

In the first ten months of the programme, routine uptake of 4CMenB in infants was 

high (95.5% for one dose; 88.6% for two doses) and a 50% reduction in incidence rate 

ratio was observed in the vaccine-eligible cohort (Parikh et al., 2016). A vaccine 

effectiveness of 94.2% was calculated based on a estimated strain coverage of 88% 

(Frosi et al., 2013). Subsequent analyses of more recent strains have revised down the 

strain coverage estimate for England, Wales and Northern Ireland suggesting that 

vaccine effectiveness is likely to be higher than 95% for this period (Parikh et al., 2017).  

1.8.5.2  rLP2086 

rLP2086 is a recombinant vaccine composed of two lipidated fHbp peptides. Selection 

of the two variants was based on the observed cross-reactivity within fHbp subfamily A 

(variant groups 2 and 3) and B (variant group 1) but the limited reactivity between the 

subfamilies (Pizza et al., 2008; Fletcher et al., 2004). Consequently, including one 

variant from each subfamily should theoretically provide protection against all fHbp 

variants. The vaccine contains variant 1.55 (B01) and 3.45 (A05) (Zlotnick et al., 2015). 

Early data suggested that lipidated fHbp is more likely to induce SBA than the 

corresponding non-lipidated peptide (Fletcher et al., 2004). In pre-clinical studies using 
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rabbit serum, rLP2086 elicited SBA against 87 of 100 diverse isolates. The immune 

serum was shown also to be reactive against fHbp on the cell surface in a subfamily 

specific manner. Expression of fHbp (measured using monoclonal antibody MN86-994-

11-1) correlates positively with killing using rLP2086 anti-serum in the SBA assay (Jiang 

et al., 2010).  

Early clinical trials were carried out using 3-dose schedules (0, 1 and 6 or 0, 2 and 6 

months) of varying vaccine concentrations and hSBAs were performed against at least 4 

test strains which had been selected to represent a disparate, heterologous fHbp 

peptides expressed at low/medium levels (Zlotnick et al., 2015). A phase I study in 

toddlers (18-36 months) found acceptable tolerability to the vaccine and high hSBA 

titres against a strain expressing a homologous fHbp variant (3.45; A05) but 

seroconversion (≥4-fold increase in hSBA titre) was seen in <50% of vaccinees after 

dose 3 when tested against three of the four initially-selected strains expressing 

heterologous fHbp variants, even at the highest vaccine dose (200 µg) (Marshall et al., 

2012). Similar results were seen in older children (8-14 years) (Nissen et al., 2013). SBA 

responses in adolescents and adults were, however, much more robust and, after 3 

doses of 60 µg, 120 µg or 200 µg, seroconversion or titres of ≥4 were observed in ≥90% 

of participants against strains with diverse fHbp variants (Richmond et al., 2012a, 

2012b). The vaccine exhibits an acceptable safety profile in this age group (Sheldon et 

al., 2012).  

Based on these early data, a final formulation of 120 µg (60 µg of each lipoprotein) was 

selected and confirmed to be tolerated and immunogenic in adolescents and adults 

(Marshall et al., 2013; Ostergaard et al., 2016). A subsequent study in infants was, 

however, terminated early due to safety concerns. Following a single dose of 60 µg, 

80% of participants reported mild/moderate fevers (Martinon-Torres et al., 2014). 

These findings have precluded further trials of rLP2086 in infants. 

A large, phase III trial in adolescents compared rLP2086 vaccine schedules and 

observed that whilst three doses provided higher hSBA titres, the majority of 

participants generated titres of ≥8 against all four test strains after only two doses 

(Vesikari et al., 2016). They also found that SBA responses positively correlate with the 
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amount of time between doses. These findings are confirmed by a subsequent Phase III 

study in adolescents and young adults in which, against most test strains, three doses 

elicited significantly greater SBA conversion than after two doses (Ostergaard et al., 

2017). A follow-up to a previous phase II trial in adolescents suggested that protection 

may last up to four years in many cases. Protective hSBA titres (≥4) against 3 of the 4 

test strains were observed in >50% of vaccinees 48 months after the third rLP2086 

dose (Marshall et al., 2017). Conversely, a small study in laboratory workers immunised 

with rLP2086 found that hSBA titres waned considerably 11 months after the third 

dose (Lujan et al., 2017). 

rLP2086 was licenced in the US in 2014 under the trade name Trumenba®. The vaccine 

was accepted for use in 10-25 year-olds via the FDA accelerated approval programme. 

The vaccine was also licenced in Europe in 2017 for use in those aged ten years and 

older. As the vaccine is restricted to use in adolescents/ adults, the potential utility of 

the vaccine is likely to be lower than that of 4CMenB, which can be used to directly 

protect infants. rLP2086 may, however, be useful for controlling sporadic outbreaks in 

older populations (e.g. universities), especially where the circulating invasive strain may 

not be covered by 4CMenB antigens (Soeters et al., 2017b). Like 4CMenB, routine use 

of rLP2086 in adolescents is unlikely to be cost-effective unless the vaccine is shown to 

impact the acquisition of nasopharygeal carriage, which can lead to indirect herd 

protection of younger populations as observed with group C conjugate vaccines. 

Limited data are available on this question; however a recent carriage study in a US 

university observed no reduction in carriage following vaccination with rLP2086. 

(Soeters et al., 2017a). This study involved relatively small numbers of participants and 

so additional, suitably-powered studies are required in order to conclusively determine 

the impact of this vaccine on carriage. 

1.8.6 Predicting Vaccine Strain Coverage and Assessing Impact 

Predicting the strain coverage of vaccines consisting of capsular polysaccharide 

antigens, which have a relatively uniform composition, is fairly simple as 

polysaccharide vaccines will protect against all strains belonging to the corresponding 

capsular group. Such protection is dependent upon adequate capsular expression of 
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the polysaccharide, however, as an indispensable virulence factor, the vast majority of 

invasive strains express the antigen in abundance (Gray et al., 2006).  

In contrast, many protein antigens, particularly those under immune selective pressure, 

exhibit significant sequence variation which can restrict the breadth of the bactericidal 

response elicited by protein-based vaccines (Urwin et al., 2002). Additionally, many 

antigens can be relatively sparse on the outer membrane surface and the level of 

expression of protein antigens (e.g. fHbp) can vary widely between strains (Biagini et 

al., 2016). As such, strain coverage predictions of novel recombinant vaccines require a 

much more complex evaluation of antibody cross-reactivity against the specific peptide 

variants in conjunction with measurements of surface expression by individual invasive 

strains. 

1.8.6.1 Predicting the strain coverage of 4CMenB 

The multi-component nature of 4CMenB complicates the assessment of its strain 

coverage. During its licensure, a small panel of strains was used in the SBA to assess the 

immunogenicity of each antigenic component. Using the SBA assay against the large 

numbers of strains required for an accurate prediction of strain coverage would be time 

consuming and would require large amounts of immune serum and exogenous 

complement. In order to facilitate such large-scale strain coverage evaluations, the 

Meningococcal Antigen Typing System (MATS) was developed. The purpose of the 

MATS is to predict killing of strains in the hSBA assay by antibodies elicited by 4CMenB. 

The MATS uses a sandwich-ELISA format to measure the binding of polyclonal rabbit 

antibodies, each raised against the individual recombinant 4CMenB antigens (fHbp, 

NadA and NHBA), to the corresponding antigens present in the lysates of each strain 

tested. The amount of antigen bound to the wells of the plate is a function of the cross-

reactivity between the harboured antigenic variant and the antibodies, as well as the 

amount of antigen present in the lysate. The signal intensities are compared to those of 

reference strains to produce a relative potency (RP) value for each antigen. A MATS 

assessment study by Donnelly et al. established RP cut off values for each antigen, 

termed positive bactericidal thresholds (PBT), and found that strains with RPs above 

the assigned PBT for one of the three antigen had >80% likelihood of being killed by 
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pooled serum from infants who have received 4CMenB at 2, 3, 4 and 12 months 

(Donnelly et al 2009). As the expression level of the PorA OMV antigen is not a 

determinant of immune recognition and strain killing, this component is not assessed 

using the ELISA. Typing of PorA is sufficient and the presence of the P1.4 VR2 epitope is 

predictive of strain killing by post-vaccination sera (Martin et al., 2006). As a result, for 

a strain to be predicted as ‘covered’ by the MATS, it must produce an RP above the 

assigned PBT for at least one recombinant antigen and/or possess the PorA P1.4 VR2 

epitope.  

The MATS assay has been established within many reference units throughout Europe 

and beyond. The first large-scale use of the MATS was in a Europe-wide assessment of 

1052 invasive group B isolates collected during the 2007/08 epidemiological year from 

five countries. The study reported an overall European strain coverage of 78% (73%-

87% inter-country variation) with 73% of English and Welsh strains covered (Vogel et 

al., 2013). FHbp and NHBA were the predominant antigenic contributors with the 

majority of all tested European isolates MATS positive for these one or both of these 

antigens. Only around 7% of strains were MATS positive for NadA. In England and 

Wales, 69% of covered strains were positive for >1 antigen (Vogel et al., 2013). 

In 2016, a comparative analysis of the 2007/08 English and Welsh isolate data and MATS 

data from group B isolates collected during the 2014/15 epidemiological year reported 

an small but significant reduction in strain coverage between these two years (to 68% 

in 2014/15) (Parikh et al 2017). Analysis showed this decrease in coverage was due to a 

reduction in a predominant, cross-reactive NHBA variant (peptide 21) driven by 

changes in CC distribution, particularly within the ST-269 complex (Parikh et al 2017). A 

number of other MATS assessments have been carried out in Europe and elsewhere 

(Bettinger et al., 2014; Tzanakaki et al., 2014; Medini et al., 2015; Abad et al., 2016). As 

in the UK, differences in strain coverage across these countries were also attributed to 

natural variation in the geographical CC distribution demonstrating that strain coverage 

of protein-based vaccines can be sensitive to changes in the antigenic distribution 

within the hyper-virulent strain population. 
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Two recent studies have compared MATS results to SBA killing and both concluded that 

MATS provides a conservative estimation of coverage as a small number of MATS-

negative strains were killed by pooled infant and adolescent immune serum in the SBA 

assay. It has been suggested that, in the SBA (and in vivo), the immune response maybe 

augmented by synergism between the antibodies targeting different antigens, an effect 

that would not be observed in the MATS. Furthermore, the MATS would not take into 

account bactericidal activity of antibodies targeting additional, minor antigens with the 

OMV preparation (Abad et al., 2015; Frosi et al., 2013).  

MATS is also useful for investigations into potential vaccine failures. Invasive isolates 

from 4CMenB vaccinees are tested to determine whether the strain should have been 

killed by immune serum. In cases in which a viable isolate has not been obtained, 

predictions of vaccine strain coverage are based on genotypic information only. In 

these cases a strain can only be considered covered if it possesses PorA P1.4 and/or 

one of a small number of fHbp variants which have been shown to be reliably MATS 

positive in isolates. These are peptide variants 1.1, 1.4, 1.37, or 1.232 (Vogel et al., 

2013). 

1.8.6.2 Predicting the strain coverage of rLP2086 

As rLP2086 is composed solely of two fHbp variants, predicting strain coverage is 

relatively less complex. During the licensure of rLP2086, the manufacturers 

demonstrated the ability of the vaccine to protect against strains expressing diverse 

fHbp variants. Thus, cross-reactivity between rLP2086-elicited antibodies and the fHbp 

variant harboured by an invading strain is assumed providing fHbp is expressed 

sufficiently on the surface of the bacterium. Thus, the characterisation of the specific 

fHbp variants harboured by invasive strains is not explicitly required to predict 

coverage, only evidence of fHbp surface expression. To this end, a flow cytometry assay 

named the Meningococcal Antigen Surface Expression (MEASURE) assay was developed 

in order to quantify the level of surface expression on meningococcal cells fixed using 

formaldehyde (McNeil et al., 2018).  

The MEASURE assay utilises a monoclonal antibody (MN86-994-11-1) that recognises 

diverse fHbp peptide variants (of both subfamilies/all variant groups). In 2018, McNeil 
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et al. elucidated the binding epitope of MN86-994-11-1 on fHbp using hydrogen-

deuterium exchange mass spectrometry. They showed that the antibody binds 

primarily to the C-terminal β-barrel. Residues 180 to 198 were of particular importance 

as they are involved in binding to the antibody among protein variants of both 

subfamilies. The binding affinities of the antibody were shown to be relatively 

consistent across eight different fHbp variants (McNeil et al., 2018). 

The MEASURE readout is the mean fluorescence intensity (MFI) and directly correlates 

with the expression of fHbp on the cell surface. In a comparison of MEASURE results 

and the hSBA killing result (killing defined as 4-fold SBA titre rise) among 45 strains, 

expression levels of fHbp were positively correlated with the likelihood of killing by 

post-immunisation human serum (Jiang et al., 2010). McNeil et al. later confirmed 

these findings with an additional 109 strains. Whilst a poor correlation between the 

hSBA titre and MEASURE MFI was found, the MFI was predictive of killing overall. The 

data suggested that strains producing an MFI of 1000 (purported to be equivalent to 30 

pg of fHbp / µg of total cellular protein) or above have a 91% chance of susceptibility to 

anti-rLP2086 serum (McNeil et al., 2018). 

1.9 IMD Surveillance in England and Wales 

In England and Wales (E&W), national surveillance of IMD is carried out primarily by 

the Public Health England’s Meningococcal Reference Unit (PHE MRU). PHE MRU 

carries out laboratory IMD confirmation and strain characterisation of clinical isolates 

submitted by microbiology laboratories throughout the E&W. Speciation through 

oxidase, catalase and carbohydrate utilisation tests are typically followed by phenotypic 

finetyping using Dot-blot ELISA and/or co-agglutination (Gray et al., 2006). 

Following phenotypic characterisation, meningococcal isolates undergo whole genome 

sequencing. All meningococcal isolates received since July 2010 have been (or are due 

to be) whole genome sequenced using the Illumina HiSeq platform. The assembled 

genomic data are stored in the MRF MGL within BIGSdb hosted by the University of 

Oxford (www.pubMLST.org) (Jolley and Maiden, 2010). The database features 

automated indexing tools which search for and characterise known meningococcal 

genes within the uploaded data, assigning arbitrary numeric identifiers to each unique 

allele.   

http://www.pubmlst.org/
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In addition to isolate characterisation, a real-time PCR screening assay, targeting the 

meningococcal capsular gene ctrA, has been used to test submitted clinical specimens 

since 1997. Figure 1-5 illustrates the numbers of cases confirmed by each confirmation 

method per year since 1998/99.  

Within two years of the introduction of the PCR diagnostic service, a 56% increase in 

confirmed disease cases was observed (Guiver and Borrow, 2001). In recent years just 

less than half of IMD cases (44.9%) are confirmed solely through PCR analysis of 

culture-negative clinical samples and approximately a quarter by both culture and non-

culture (Figure 1-5) (Heinsbroek et al., 2013). Taqman® assays targeting siaD (for 

groups B, C, Y and W) and mynA (for group A) are also used to allow genogroup 

determination (Hackett et al., 2002a). 

The assay was originally a triplex assay designed to also detect Haemophilus influenzae 

(bexA) and Streptococcus pneumoniae (ply) DNA. In 2003, an additional meningococcal 

reverse primer was included in order to compensate for a primer site mismatch which 

led to a lack of coverage of strains belonging to the ST-269 cluster (ST-269 complex) 

(Gray et al., 2012).  

In 2011, the assay was again amended, removing the Haemophilus primers/probes 

(due to low numbers of cases) and incorporating the group B-specific (siaDb) target 

within a lyophilised master mix format. As group B is the predominant capsular group 

in E&W, it was reasoned that this change would, in most cases, eliminate the 

requirement of a secondary PCR for group confirmation thereby reducing the assay 

turnaround times (McHugh et al., 2015). Due to a detected reduction in the sensitivity 

of the assay, the mix was changed again in 2015 to a ‘wet mix’ with ctrA-specific ABY 

dye probe (unpublished data, PHE MRU).   
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Figure 1-5: Number of IMD cases confirmed by PHE MRU from 1998/99 to 2016/17 by method of 

confirmation
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Due the dearth of meningococcal DNA and the presence of human DNA among clinical 

specimens, whole genome sequencing of meningococci directly from these specimens 

is not yet possible. Consequently, beyond capsular grouping, non-culture strain 

characterisation is limited to sequencing of the porA gene (not published) and the 

seven MLST loci (Birtles et al., 2005) using nested PCR assays, however, the MLST assay 

is not routinely used due to greater number of targets involved. 

Following the introduction of 4CMenB into the routine infant immunisation  

programme in 2015, PHE implemented an Enhanced Surveillance programme to 

monitor the impact of this intervention and other meningococcal vaccine programmes 

(i.e. MenC and MenACWY) in terms of measuring vaccine effectiveness and assessing 

potential changes in strain distribution. Clinicians are asked to provide additional EDTA 

samples and throat swabs from suspected IMD cases. These are sent to PHE MRU and 

can be used for genotypic strain characterisation and/or future seroprevalence studies.  

The limited strain characterisation possible for non-culture cases impedes an accurate 

assessment of the impact of 4CMenB introduction on the meningococcal strains in 

circulation in England and Wales as well as hindering the accuracy of strain coverage 

predictions for other non-capsular vaccines. 
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Thesis Objectives and Structure 

The overall aim of the research was to develop and introduce a number of 

assays/techniques designed to improve and/or increase the phenotypic and genotypic 

data generated by PHE MRU prior to and as part of PHE’s Enhanced Surveillance 

programme.  

 

The primary objectives were to: 

1. Develop a non-culture PCR sequencing assay to allow amplification and 

characterisation of the fHbp allele directly from clinical specimens submitted to 

PHE MRU. 

2. Apply this fHbp genotyping assay to five years (2011-2015) of submitted clinical 

specimens in order to reveal the distribution of fHbp variants among non-

culture strains and assess any disparity with that of corresponding invasive 

isolates. 

3. Assess the effectiveness of the Agilent SureSelect XT system for enrichment of 

meningococcal DNA within non-culture DNA extracts in order to facilitate whole 

genome sequencing. 

4. Transfer an established flow cytometry-based assay designed to quantify the 

level of fHbp surface expression and perform inter-laboratory comparisons of 

results. 
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2.0 METHODS AND MATERIALS 

2.1 Storage and culturing of N. meningitidis isolates 

2.1.1 Storage of meningococcal isolates 

All meningococcal isolates used were stored at -80 °C on Microbank® beads (Prolab 

Diagnostics, Canada) or equivalent. These porous beads provide a solid support for 

bacterial storage. To inoculate a vial of beads for bacterial storage, an overnight culture 

of the required strain was prepared. A 10 µL loop containing bacterial growth was 

added to the vial and resuspended in the glycerol broth by rotating the loop. The lid 

was then replaced and the vial was inverted to mix the beads within the broth. The 

broth was then removed and discarded using a plastic pipette. The bead vial was then 

stored at -80°C. 

2.1.2 Culturing meningococci on agar plates 

All bacterial manipulations were performed within a class I microbiological safety 

cabinet (MSC, Contained Air Solutions, UK) on Columbia Blood Agar (CBA) (Oxoid, UK) 

unless otherwise stated. Bacteria were applied to the agar using 10 µL sterile plastic 

loops (from Microbank® beads) or using a pipette (broth/liquid) and streaked for single 

colony isolation. Agar plates were allowed to dry within the MSC before being 

transported to a CO2 incubator (LEEC, UK) for overnight incubation (16-20 hours) at 37 

°C with 5% (v/v) CO2.  

2.1.3 Preparation of meningococcal liquid suspensions 

Preparation of meningococcal suspensions within broth was achieved by transferring 

bacteria from agar plates grown overnight directly to the broth (see 2.1.2). Within the 

MSC, a sterile cotton or polyester swab was used to remove the required number of 

meningococcal colonies for the agar surface. The swabs were then placed into the 

liquid and gently agitated along the inside of the vessel to remove the colonies and 

break up the cells. Once a suspension of a sufficient concentration was achieved, the 

swab was discarded and the liquid vessel sealed. 
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2.2 Storage and handling of clinical specimens 

2.2.1 Storage of clinical specimens 

All clinical specimens (e.g. EDTA blood, CSF, knee fluid, pericardial fluid) were stored at 

-80°C in the original vials received by PHE MRU. 

2.2.2 Handling of clinical specimens 

Clinical specimens were treated as potentially infectious and were manipulated within 

an MSC.  

2.3 Preparation, quantification and storage of DNA extracts 

2.3.1 Extraction of DNA from meningococcal isolates 

Extraction of DNA from meningococcal isolates was performed by PHE MRU as part of 

previous sequencing projects (Hill et al., 2015; Vogel et al., 2013). The isolates were 

extracted using the DNeasy Blood and Tissue kit (Qiagen, UK) following the 

manufacturers’ gram-negative bacteria protocol (DNeasy® Blood & Tissue Handbook, 

July 2006). 

2.3.2 Extraction of DNA from clinical specimens 

Unless otherwise stated, DNA extraction from clinical specimens was performed by PHE 

MRU as part of routine diagnostic PCR testing. PHE MRU uses the MDx biorobot 

platform (Qiagen, UK) in accordance with the manufacturer’s protocol with a final 

elution volume of 80 µL.  

Alternatively, DNA extraction from clinical specimens was performed manually using 

DNeasy Blood and Tissue Kit following the ‘Animal Blood’ protocol (DNeasy® Blood & 

Tissue Handbook, July 2006). The DNeasy protocol involved adding 100 µL of specimen 

to a 1.5 mL screw-capped tube containing 20 µL of Proteinase K solution (Qiagen, UK) 

before adding 100 µL of phosphate-buffered saline (PBS, ThermoFisher, US). Then, 200 

µL of Buffer AL (Qiagen, UK) was added and the suspension was vortexed vigorously. 

The tube was incubated at 56 °C on a heating block (Grant Instruments, UK) for 10 
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minutes. The tube was then pulse spun in a Micromax (IEC) or Biofuge Pico (Heraeus) 

microfuge in order to remove suspension from the tube lid before the addition of 200 

µL of Ethanol (>99.5%, Sigma Aldrich, UK) to the suspension. The tube was once again 

vortexed and centrifuged to remove suspension from the lid.  The tube contents were 

then transferred to a DNeasy spin column within a 2 mL collection microtube (Qiagen, 

UK). The spin column and collection microtube were spun at 6000 x g for 1 minute to 

draw the lysate through the filter. The column was then carefully removed and placed 

into an empty collection microtube. To wash the filter, 500 µL of Buffer AW1 was added 

to the spin column and spun once again at 6000 x g for 1 minute. The spin column was 

added to another empty collection microtube before the addition of 500 µL of Buffer 

AW2 to the column and centrifugation at 16,000 x g for 3 minutes. The spin column 

was then placed into a sterile Eppendorf tube for elution. The elution was performed 

by adding 50 µL of Buffer AE (Qiagen, UK) to the spin column and allowing one minute 

incubation at RT. The column was then spun at 6000 x g for one minute. This was then 

repeated within another 50 µL of Buffer AE giving a total elution volume of 100 µL. The 

use of two successive elutions maximised the DNA yield whilst minimising the volume 

in which the DNA was eluted.  

2.3.3 Quantification of DNA 

DNA quantification was performed using a Qubit 2.0 fluorometer in conjunction with 

the Qubit® double-stranded DNA (dsDNA) BR Assay Kit (ThermoFisher, US). Prior to 

use, calibration of the fluorometer was performed using two standards provided in the 

kit. To calibrate, a sufficient volume of Qubit® dsDNA BR Reagent was diluted in Qubit® 

dsDNA BR Buffer at a 1:200 concentration. For each standard, 190 µL of diluted reagent 

was added to a thin-wall, clear, 0.5 mL PCR tube (Corning, US) before adding 10 µL of 

the standard. The standards were incubated for 1 minute at room temperature (RT) 

before being read in the fluorometer. 

For each extract to be quantified, 190 µL of diluted Qubit® dsDNA BR Reagent was 

added to a PCR tube before adding 5 µL of the DNA extract and incubating for 1 minute 

at RT. The tubes were then placed into the fluorometer and read by pressing ‘READ’. 
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The assay concentration (diluted concentration) and the stock concentration (extract 

concentration) were recorded for each extract.   

2.3.4 Collation of non-culture DNA extracts for fHbp genotyping 

Attempts were made to obtain DNA extracts from all non-culture cases confirmed by 

the PHE MRU from 1st January 2011 to 31st December 2015. For cases in which there 

was no available extract, re-extraction of DNA from the original specimen was carried 

out either manually using Qiagen Blood and Tissue DNeasy kit (see section 2.3.2). 

Cases in which no specimen and/or extract could be obtained could not be tested.  

2.3.5 Storage of DNA extracts 

All DNA extracts were stored in screw-capped microfuge tubes or Eppendorf tubes at 4 

°C or -80 °C.  

2.4 Polymerase chain reaction 

2.4.1 Primer preparation and storage 

All primers were produced by Eurofins Genomics using HPSF (High Purity Salt Free, a 

proprietary reverse phase cartridge purification method) at a 0.20 µmol synthesis scale. 

Primers were supplied lyophilised and reconstituted in molecular grade water (Sigma 

Aldrich, UK) to a concentration of 100 µM (master stock, x20). To prepare working 

stocks (5 µM), 50 µL of the master stock was diluted in 950 µL of molecular grade water 

(Sigma Aldrich, UK) and mixed. All primer stocks were stored at -20 °C.  

2.4.2 Preparation of PCR reaction master mix 

All PCR master mixes were prepared using the HotStarTaq DNA polymerase kit 

(containing HotStarTaq DNA polymerase, 10x PCR Buffer and 25 mM MgCl2) and dNTP 

mix (Qiagen, UK). All reagents were stored at -20 °C. To prepare a master mix, PCR 

reagents and required primers were removed from storage and allowed to defrost at 

RT. Reagents were then mixed by inverting the tubes and then spun in microfuge to 

remove reagent from tube caps. Master mixes were prepared within a PCR cabinet by 



61 

 

adding the required volumes of each reagent to a 1.5 µL screw-capped micro tubes or 

30 mL Universal tube and gently mixing using a pipette (Table 2-1).  

 

 Table 2-1: Standard PCR master mix reagent volumes for PCR reactions 

Reagent 
Volume per 25 

µL reaction (µL) 
Volume per 50 

µL reaction (µL) 
Volume per 100 
µL reaction (µL) 

HotStarTaq PCR 
buffer 

2.5 5 10 

HotStarTaq DNA 
Polymerase 

0.125 0.25 0.5 

dNTPs (10 mM each) 0.5 1 2 
PCR primer 1 (5 µM) 2.5 5 10 
PCR primer 2 (5 µM) 2.5 5 10 

MgCl2 (25 mM) variable* variable* variable* 

Distilled water variable# variable# variable# 

*added to the required concentration. #added up to required master mix volume (reaction volume – 
extract volume) 

Table 2-1: Standard PCR master mix reagent volumes for PCR reactions. 

The required volume of master mix was added to the wells of a MicroAmp® Optical 96-

Well Reaction Plate (ThermoFisher, US). 

2.4.3 Addition of DNA extracts and use of thermal cycler. 

The DNA extracts were defrosted at RT (if frozen) before being spun briefly in the 

centrifuge to clear the tube lids. The required volume of DNA extract was then added 

to the appropriate well of the PCR reaction plate containing the master mix. The plate 

was sealed using MicroAmp® Optical 8-Cap strips (ThermoFisher, US). The plate was 

placed onto a Verity thermal cycler (Applied Biosystems, US) and the required PCR 

programme was completed.  

2.4.4 Gel electrophoresis of PCR products 

2.4.4.1 Preparation of agarose gels. 

The presence/absence of amplified products was determined through visualisation on 

2% agarose gels. Agarose gels were prepared by weighing 3 g of agarose (Sigma Aldrich, 

UK) and suspending it in 150 mL of 1x Tris-Borate EDTA (TBE) buffer (89 mM Tris-borate 
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and 2 mM EDTA, pH 8.3., Sigma Aldrich, UK). The suspension was heated in a 

microwave oven for up to two minutes until the agarose had fully dissolved. After two 

minutes of cooling at RT, 15 µL of 10,000x SYBR® Safe DNA stain (Thermo Fisher, US) 

was added to the dissolved agar and mixed through gentle agitation. The agar was then 

poured into a casting tray left at RT until fully solidified. The gel was placed into a gel 

tank (ThermoFisher, US) and submerged in 1x TBE buffer.  

2.4.4.2 Preparation of gel loading buffer. 

A 30% (v/v) glycerol solution was prepared by mixing the appropriate amount of 

glycerol to distilled water. Small amounts of Bromophenol blue (Sigma Aldrich, UK) 

were then successively added until the buffer was stained to a dark green colour. 

2.4.4.3 Loading and running of agarose gels 

A volume of 5 µL of loading buffer was added to 5 µL of each PCR product and loaded 

into the the agarose gel. For each line of wells in the gel (i.e. each gel comb), 6 µL of 

GelPilot 100 bp plus molecular ladder (ML, Qiagen, UK) was loaded. 

The gel was run at 100 V. The length of electrophoresis time required depended on the 

intended PCR product length. For the fHbp PCR round-two product (~1330-1530 bp), 

approximately 15 minutes was sufficient.  

2.4.4.4 Visualising PCR products in gel 

After electrophoresis, the gel visualised using the G:BOX transilluminator (Syngene, 

US). Using the Genesys software, the gel image was captured using the automated 

capture settings. The brightness and contrast of the image was adjusted as appropriate 

post-capture and the image was cropped to include the used wells only.  

The intensity of the PCR product bands was determined visually in comparison with the 

molecular ladder to assign approximate band intensities: strong, medium, weak or very 

weak. The intensity was recorded and would determine the volume of water added to 

the products in the subsequent PCR clean up stage. 
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2.4.5 Clean-up of PCR products 

PCR products were cleaned using ExoSAP-IT® (Affymetrix, US). The product contains 

Shrimp Alkaline Phosphatase and Exonuclease I, two hydrolytic enzymes which digest 

residual dNTPs and primers/single stranded DNA remaining within the reaction mix.  

PCR cleanups were performed in MicroAmp® fast optical 96-well reaction plates 

(Thermo Fisher, US). For each sample, 2 µL of ExoSAP-IT® was added to 5 µL of each 

PCR reaction mix. The plate was heated on a ABI 9800 Fast thermal cycler (Applied 

Biosystems, US) using the following protocol: 37 °C for 15 minutes, 80 °C for 15 

minutes, retained at 4 °C. 

The clean-up mix was then diluted using molecular grade water. The dilution factor 

used for each product was dependent upon the intensity of the corresponding band 

produced on the agarose gel. ‘Strong’ bands were diluted ¼, medium bands were 

diluted ⅓ and weak bands diluted ½. To very weak products, 3 µL of water was added 

(1/1.42 dilution). 

2.5 Optimisation and analysis of fHbp PCR assay 

2.5.1 Primer selection and design 

Selection of PCR and sequencing primers was primarily based on the location of its 

complementary sequence in relation to fHbp and the conservation of the nucleotide 

sequence among diverse meningococcal strains. To identify new primer candidates, the 

Primer Quest online tool (Integrated DNA Technologies, US 

https://www.idtdna.com/Primerquest/Home/Index) was used to identify putative 

candidates within input sequences. To identify suitable PCR primer-sites, DNA 

sequences of the flanking regions of fHbp among 15 complete meningococcal genomes 

from the Genbank database (National Center for Biotechnology Information (NCBI), US) 

were inputted into Primer Quest (Appendix I). 

The suitability of parameters such as melting temperature, percentage G/C content 

(%GC) and the likelihood of hairpin/dimer formation were also assessed using the 

online Oligoanalyzer tool (Integrated DNA Technologies, US. 

https://www.idtdna.com/Primerquest/Home/Index
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https://www.idtdna.com/calc/analyzer). Melting temperatures of ~55-60 °C and %G/C 

of 40-60% were considered ideal. Primers which form internal hairpins and self-

dimerisations with delta G score of <-9 kcal/mole were considered unsuitable (as 

recommended by Integrated DNA Technologies, US).   

To assess location and conservation of primers, DNA sequences of fHbp, the flanking 

genes (GNA1869 and GNA1871 in strain MC58) and intergenic regions from 392 

invasive isolates (Appendix I) were downloaded from genomic data held within the 

PubMLST database (University of Oxford, http://pubmlst.org/neisseria/). Sequences 

were aligned using BioEdit Sequence Alignment Editor version 7 (Hall, 1999). Further 

assessment of potential non-specific binding within the target region was performed 

following deletion of the corresponding primer-binding sites from sequence alignments 

using Sequencher v4.7 (Gene Codes Corporation, Ann Arbor, MI USA). Primer 

candidates with significant complementarity (≥4 bp) to other targets were not selected. 

2.5.2 Primer optimisation 

Optimisation of new primer sets was carried out empirically by varying the master mix 

MgCl2 concentration as well as the thermal cycler annealing temperature, extension 

time and PCR cycle number. Conditions which yielded the strongest/brightest product 

band of appropriate size and the least visible non-specific amplification (on 2% agarose 

gel) were selected. Optimisation was performed using single PCR rounds (i.e. not 

nested). Other than specific variable parameters (annealing temperature, extension 

time and cycle number), which were selected during optimisation, standard thermal 

cycler conditions (as recommended in Qiagen HotStarTaq PCR Handbook (October 

2010)) were used. These included 95°C for denaturation (15 mins initially and then 1 

minute per cycle), an annealing time of 30 secs, an extension temperature of 72°C and 

a final extension step of 4 mins at 72°C. For each primer set, a range of annealing 

temperatures encompassing the predicted primer melting temperatures was chosen 

for testing. Initial extension times were calculated assuming one minute per 1000 bp of 

product was sufficient for amplification. A PCR cycle number of 35 was initially used 

and adjusted as appropriate. 

https://www.idtdna.com/calc/analyzer
http://pubmlst.org/neisseria/
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DNA extracts from seven meningococcal isolates were selected for use as template 

during assay development. These are listed in Appendix II. The use of purified 

meningococcal DNA allowed sufficient amplification after only one PCR round (i.e. non-

nested) to allow visualization on an agarose gel. The isolate panel possessed fHbp 

variants from different variant groups/modular groups. Four of the seven were used for 

PCR primer optimisation (highlighted).  

2.5.3 Assessment of fHbp PCR assay sensitivity 

2.5.3.1 Preparation of diluted extract series  

The assessment of assay sensitivity was carried out through analysis of pre-quantified 

DNA extracts. Extracted DNA from each of the isolates listed in Appendix II was 

quantified and adjusted in elution buffer (Buffer AE, Qiagen, UK) to a concentration of 6 

ng/mL. For each adjusted extract, a series of eight 10-fold dilutions was carried out by 

transferring 20 µL of each successive diluted extract to 180 µL of elution buffer. 

2.5.3.2 Calculation of molecular weight of meningococcal genome 

In order to determine the assay sensitivity in terms of genome copies, a calculation was 

performed to estimate the molecular weight of an average meningococcal genome. 

The calculation assumed a single base pair of dsDNA weighs 650 Da and the average 

meningococcal genome length is 2.2 million bp (Mbp). Following these assumptions: 

650 Da x 2,200,000 = 1.43 x 109 Da = 1.43 x 109g/mole.  
1.43 x 109 g of meningococcal DNA contains 6.022 x1023 genome copies.  
6.022 x1023 / 1.43 x 109  =  
4.21 x 1014 copies per g. 
4.21 x 1011 copies per mg 
4.21 x 108 copies per µg 
421,000 copies per ng 
421 copies per pg 
0.421 copies per fg 
0.421 x 10-3 copies per ag 

These numbers were used to determine the number of genome copies per microlitre 

for each extract dilution. These figures were then used to estimate the numbers of 

copies per reaction by multiplying by the number of microlitres of DNA extract used in 

the reaction mix.  
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2.5.3.3 Analytical sensitivity assessment 

The analytical sensitivity of the PCR assay was determined by identifying the highest 

dilution at which PCR products were visible on a 2% agarose gel. Assessment was 

carried out following PCR round one only and then following the nested PCR protocol. 

Initially, for PCR round one, 5µL of each DNA extract was added to a 25 µL reaction. 

Products were visualised on a gel. For dilutions at which faint or no round one products 

were visible, different volumes (1 µL, 2 µL and 5 µL) of the round one mix were then 

used as template in 25 µL PCR round two reactions. Products were again visualised on a 

gel. 

To assess the impact of the DNA extract volume used in the first round of a nested PCR 

assay on the chances of fHbp amplification, 5 µL, 10 µL and 20 µL of each 10-7 and 10-8 

extract was added to PCR round one reactions with total volumes of 25 µL, 50 µL and 

100 µL, respectively. The total reaction volumes were increased along with template 

volume to ensure the proportional amount of template added was consistent across 

each extract volume (i.e. 20% of reaction mix). Following round one, 2 µL of each round 

one mix was added to a 25 µL PCR round two reaction. Products were visualised on a 

gel. 

2.5.4 ctrA-specific real-time PCR analysis of analytical sensitivity extracts 

2.5.4.1 Standard meningococcal Taqman® assays 

In order to provide a correlation between the estimated DNA sensitivity limit and the 

cycle threshold (Ct) value, the diluted extracts of the analytical sensitivity panel were 

tested using ctrA-directed real-time Taqman® assays (Thermo Scientific, US). In 2012, 

the duoplex ctrA/ply Taqman® assay was replaced by a quadriplex, lyophilised master 

mix.  In order to obtain the most accurate comparison, the dilution extract panel was 

tested using both assay formats. The lyophilised mix was supplied incorporating all four 

target components. Although the ply component of the wet-mix was not required, it 

was included in order to prevent any impact on the assay results. 
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2.5.4.2 Wet mix Taqman® assay 

For the wet master mix assay, the reagents were removed from the freezer, allowed to 

defrost. For each of the two forward primers, 37.5 µL of the master stock (80 µM) was 

added 500 µL of molecular grade water (Sigma Aldrich, UK) in a screw-capped 

microfuge tube (Sarstedt, Germany). These two solutions were then mixed resulting in 

a pre-mix with a concentration of 3 µM of each forward primer. A pre-mix of the three 

reverse primers was similarly prepared by diluting from 80 µM master stock to a 

concentration of 3 µM of each reverse primer within 1 mL of molecular grade water. 

Finally a pre-mix of the two probes was prepared by diluting master stock (50 µM) to 

final concentration of 4 µM in 1 mL of water. 

For each extract, 2.5 µL of each primer/probe pre-mix was added to 12.5 of Taqman® 

Fast Advanced Master Mix (Applied Biosystems, US). For each dilution extract, 5 µL was 

added to 20 µL of the master mix. Due to stochastic effects observed during the 

analytical sensitivity analysis, the two lowest dilutions (10-7 and 10-8) of each isolate 

were tested in triplicate. The primer and probes sequences as well as the final working 

concentrations are shown in Table 2-2. 

 

Table 2-2: Sequences and working concentrations of primers/probes within ‘wet’  
mastermix duplex Taqman® assay. 

Reagent Primer/probe sequence (5’-3’) Concentration (nM)

ctrA forward primer GCTGCGGTAGGTGGTTCAA

ply forward primer TGCAGAGCGTCCTTTGGTCTAT

ctrA reverse primer 1 TTGTCGCGGATTTGCAACTA

ctrA reverse primer 2 TTGCCGCGGATTGGCCACCA

ply reverse primer CTCTTACTCGTGGTTTCCAACTTGA

ctrA Taqman® probe* CATTGCCACGTGTCAGCTGCACAT

ply Taqman® probe# TGGCGCCCATAAGCAACACTCGAA

*- tetrachloro-6-carboxyfluorescein (6-FAM) reporter#- VIC reporter.

300

300

200

 

Table 2-2: Sequences and working concentrations of primers/probes within ‘wet’ mastermix 

duplex Taqman® assay. 

The PCR plate was sealed and placed on a 7500 Real-Time PCR System (Thermo Fisher, 

US). The PCR cycling parameters used were heating at 95°C for 10 minutes followed by 
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45 cycles of a two-stage temperature profile of 95°C for 15 seconds and 60°C for 1 

minute. 

2.5.4.3 Lyophilised Taqman® assay 

The lyophilised Taqman® plates were manufactured by Applied Biosystems (US) and 

consisted of primers/probes targeting the ctrA, ply and siaD genes (Table 2-3). 

Table 2-3: Sequences and working concentrations of primers/probes within lyophilised, quadruplex Taqman® assay. 

Table 2-3: Sequences and working concentrations of primers/probes within lyophilised, 
quadruplex Taqman® assay. 

For each well, the lyophilised mix was reconstituted in 20 µL of molecular-grade water 

before adding 5 µL of DNA extract. The PCR cycling parameters used were heating at 

95°C for 2 minutes followed by 40 cycles of a two-stage temperature profile of 95°C for 

3 seconds and 60°C for 30 seconds. 

2.5.5 Specificity of fHbp PCR sequencing assay 

2.5.5.1 Selection of meningococcal validation panel 

To assess the specificity of the fHbp sequencing assay, a validation panel of 96 clinical 

non-culture specimens and corresponding isolates was compiled (i.e. matching 

isolate/specimen pairs from 96 clinical IMD cases). The validation panel was selected 

from IMD cases confirmed from 2010-2012. All the clinical isolates had previously 

Reagent Primer/probe sequence (5’-3’) Concentration (nM)

ctrA forward primer GCTGCGGTAGGTGGTTCAA 300

ctrA reverse primer 1 TTGTCGCGGATTTGCAACTA 300

ctrA reverse primer 2 TTGCCGCGGATTGGCCACCA 300

ctrA  probe* CATTGCCACGTGTCAGCTGCACAT 200

ply forward primer TGCAGAGCGTCCTTTGGTCTAT 300

ply reverse primer CTCTTACTCGTGGTTTCCAACTTGA 300

ply  probe # TGGCGCCCATAAGCAACACTCGAA 200

siaDb forward primer ATTATACAGCCTGCTCATCTCTATATGC 900

siaDb reverse primer TCCCTTCATCAATTAAATGAGTCGTA 900

siaDb  probe ¤ TTACAGGCCACTACTCCT 300

Internal control forward primer CCCTTGTCGAGCATTTAAAAGAG 100

Internal control reverse primer TTCATGTATGGTTCATCCTCGAA 100

Internal control probe≠ CATCGAGGCCAACTCGAAACATCGG 100
*- LIZ reporter, #- VIC reporter, ¤- tetrachloro-6-carboxyfluorescein (6-FAM) reporter, ≠-Cy5 reporter
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undergone whole genome sequencing. In order to select the most appropriate 

specimen/isolate pairs, the MLST (ST and CC) data from the isolates were downloaded 

from the MRF MGL within the BIGSdb database.  

eBURST analysis (Feil et al., 2004) was used to predict the genetic relatedness of the 

isolates by dividing STs into groups based on the similarity of the seven allelic MLST 

variant combinations. All MLST profile data used in the analysis was obtained from the 

PubMLST database (accessed 30/12/2013). At least 6 identical MLST loci were required 

for group definition. In the analysis, Single-locus variants (SLVs) are grouped around a 

‘founder ST’. The founder ST has the most SLVs and is the putative ancestral ST for each 

group. Each group approximated the established meningococcal CCs. Isolates were 

selected based on the location of the corresponding STs on the eBURST diagrams. 

Disparate STs were selected within each ST group, and the number of isolates per 

group roughly correlated with the incidence of the corresponding CC within the 

genomic dataset.  

For CC11, four of the six isolates were ST-11 and could not be meaningfully contrasted 

using conventional MLST. To achieve this, rMLST was performed on all available CC11 

genomes within PubMLST using the BIGSdb Genome Comparator tool. Using the 

resultant distance matrix, a NeighborNet tree was constructed using SplitsTree v4 

(Huson and Bryant, 2006). The isolates were highlighted on the tree in order to assess 

the genetic relatedness of the isolates among all ST-11 strains available.  

As the DNA extracts from isolates contained DNA at a relatively higher concentration, 

all isolates were tested using PCR round one and two individually. This allowed for a 

more accurate assessment of the specificity of the primers. The corresponding non-

culture extracts were tested using the optimised nested PCR protocol.  

Amplification was confirmed using gel electrophoresis. Samples that failed to generate 

a PCR product of appropriate size were re-tested twice before being considered PCR-

negative. To test the primer binding sequences for fHbpRd2R, the downstream fHbp 

flanking sequences among MRF MGL isolates from epidemiological years 2010/11 and 

2011/12 (n=923) were downloaded from the PubMLST.org (via BLAST) and aligned in 

BioEdit v7 (Hall, 1999). 
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2.5.5.2 Neisseria lactamica isolates 

In order to assess the wider conservation of the primers, six isolates of the related 

commensal N. lactamica were tested using the assay (Table 2-4).  

 

Table 2-4: N. lactamica isolates used to assess primer site conservation 

Isolate ID 
Sequence 

Type 
Clonal Complex 

M98 250306 640 ST-640 complex 

M00 240031 624 ST-624 complex 

M03 240246 609 ST-613 complex (putative) 

M98 250219 4192 Cluster 4192 

M03 241253 9417 ST-613 complex 

M99 242475 1494 ST-1494 complex 

Table 2-4: N. lactamica isolates used to assess primer site conservation. 

Extraction of the isolates was carried out as part of a previous study (Lucidarme et al., 

2013a). The primer binding sequences from the isolate genomes were downloaded 

from PubMLST.org using the BLAST function. All N. lactamica isolates were tested in the 

two PCR rounds separately. 
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2.6 Optimised fHbp PCR parameters 

2.6.1 Final primer selection for fHbp genotyping  

The primers used for fHbp PCR and sequencing are listed in Table 2-5. The ‘alternate’ 1st 

round PCR primers were only used for extracts which had failed to yield a PCR product. 

On these occasions, the standard 2nd round PCR primers were used, however, 18692F 

and 1871Ralt were occasionally used as round two PCR primers if a primer mismatch 

was suspected. 

2.6.2 Finalised fHbp PCR parameters 

Table 2-6 lists the thermal cycler conditions that were identified as optimal following 

PCR primer optimisation. The standard primers round one and two primers sets 

required no additional MgCl2 in the mastermix (concentration 1.5 mM). 
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Table 2-5: Oligonucleotide primers used for genotyping of fHbp. 

Table 2-6: Thermal cycler parameters used during fHbp PCR analysis. 
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2.6.3 Sequencing master mix and reaction 

Sequencing primers were manufactured, prepared and stored as outlined in 2.4.1. 

Sanger sequencing reactions were performed using BigDye terminator v.3.1 cycle 

sequencing kits (ThermoFisher, US). One reaction was prepared for each primer (Table 

2-7). 

Table 2-7: Sequencing master mix reagent volumes for fHbp genotyping 

Reagent Volume per reaction (µL) 

BigDye® Terminator v3.1 Ready Reaction Mix 0.5 

BigDye® sequencing buffer 1.75 

Sequencing primer (5 µM) 0.66 

Distilled water 6.09 

Table 2-7: Sequencing master mix reagent volumes for fHbp genotyping. 

For each sample to be sequenced, 9 µL of each primer mix was added to 1 µL of each 

PCR product. The plate was then placed on a thermal cycler and the sequencing 

reaction was performed using the conditions described in Table 2-8. 

Table 2-8: Thermal cycler parameters used during fHbp sequencing reactions. 

Table 2-8: Thermal cycler parameters used during fHbp sequencing reactions 

Stage Temperature (°C) Duration Number of cycles 

Taq Activation 95 1 minute x1 

Denaturation 95 10 seconds 

X25 Annealing 55 5 seconds 

Extension 60 4 minutes 

Holding 4 ∞ x1 

2.6.4 Clean-up of sequencing products 

Sequencing reaction products were cleaned by ethanol precipitation. Sodium-Acetate 

buffer (3 M, Sigma Aldrich, UK) was added to 190 proof ethanol (Sigma Aldrich, UK) at a 

concentration of 4%. The solution was left to chill for 10 minutes before 40 µL was 

added to each sequencing reaction well. The plate was gently vortexed and incubated 

at room temperature for 10 minutes. The plate was then centrifuged at 2000 x g in a 

plate centrifuge for 20 minutes. Following centrifugation, the plate was gently inverted 
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on to absorbent paper roll to remove the supernatant. The plate was then placed in the 

centrifuge upside down (wells facing up) on a small piece of paper roll and centrifuged 

at 150 x g for 1 minute to remove residual supernatant. Following centrifugation, 100 

µL of 70% ethanol was added to each pellet and the plate was once again sealed and 

centrifuged at 2000 x g for 20 minutes. The plate was again inverted and centrifuged 

upside down at 150 x g for 1 minute to remove the supernatant. The pellets were 

resuspended in 15 µL of HiDi formamide (ThermoFisher, US). The plate was then 

heated on a thermal cycler at 50 °C for 5 minutes. 

2.6.5 Electrophoretic analysis of sequencing products 

Capillary electrophoresis of sequencing products was performed using a 50 cm 

capillary on an ABI 3130xl genetic analyser using POP-7™ Polymer separation matrix 

(ThermoFisher, US). The plates were loaded on to an available platform and all 

appropriate reservoirs were filled with 1x Running Buffer (ThermoFisher, US) and 

nuclease-free water (Sigma Aldrich, UK). Using the ABI 3130xl software, appropriate 

sequence IDs were imported from a Microsoft Excel worksheet and the appropriate run 

parameters selected. Once all checks were complete, the electrophoresis run was 

performed. Basecalling was carried out automatically by the ABI 3130xl software. 

Electropherogram traces were saved in AB1 format. 

2.6.6 fHbp sequence analysis 

Analysis of fHbp sequence traces was carried out using Sequencher v4.7 (Gene Codes 

Corporation, Ann Arbor, MI USA). For each sample, the AB1 electropherogram files for 

all four sequencing primers were imported into Sequencher. A contig was assembled 

using the ‘Assemble automatically’ option utilising default assembly parameters. The 

resultant contig was then inspected and oriented in correct direction (5’ to 3’). The 

start of fHbp (invariably beginning TGCAGC) was located and all upstream sequence 

was deleted from the contig. Poor quality traces found at the end of sequence traces 

were removed for each primer. The traces were realigned as required. The stop codon 

of the gene was then located and all downstream sequence was deleted from the 

contig. Any conflicting/ambiguous base calls were resolved by visually referring to the 

electropherogram. The fHbp allele and translated peptide IDs of the sequence were 
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determined using the PubMLST fHbp webpage’s (pubmlst.org/neisseria/fhbp) single 

sequence query tool. Any unassigned alleles or translated peptide sequences were 

subsequently submitted to the PubMLST fHbp curator for numeric ID assignment. All 

fHbp sequencing results were stored in a Microsoft Access database.  

2.7 fHbp genotyping data analysis 

2.7.1 Clinical specimen, isolate and patient information 

Anonymised information on PCR-positive clinical specimens (e.g. specimen type, 

genogroup, ctrA-specific and group-specific Ct values and any corresponding isolates) 

was provided by PHE MRU. Specimens from IMD cases with corresponding isolates or 

multiple non-culture specimens were identified and lists of testing were produced. For 

the comparative culture vs. non-culture analyses, the patient age in months and date 

of receipt of specimen/isolate for all IMD cases confirmed from January 2011 to March 

2015 was provided by the PHE MRU.  

To assess the distribution of fHbp variants amongst the prevalent CCs, fHbp and MLST 

genotyping data from isolates received over six epidemiological years were compiled. 

Genotypic data from isolates received from 2010/11 to 2014/15 (n=2306) were 

downloaded from the MRF MGL. To these, the corresponding data from isolates 

received in 2007/08 (n=613), produced using PCR sequencing as part of a previous 

study, were added (n=2919). The ST-269 complex was divided into two clusters, the ST-

269 cluster or the ST-275 cluster based on the similarity of the MLST allelic profile (i.e. 

4 or more identical alleles) to either ST-269 or ST-275, respectively.  

2.7.2 Analysis of fHbp genotyping data 

Analysis of raw data and preparation of graphs were performed using Excel 2013 

(Microsoft, US). Fisher’s exact tests and Cochran Mantel Haenszel tests were performed 

using Minitab 17 (Minitab Inc. US). Differences generating a p-value of <0.05 were 

considered statistically significant. 
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2.8 Selection of non-culture specimens for SureSelect XT assessment 

2.8.1 Selection of non-culture specimens 

For assessment of the SureSelectXT system, ten clinical specimens were selected from 

group B IMD cases that had also yielded viable isolates. In order to select samples with 

DNA from diverse strains, MLST data from all isolates (January 2011-July 2015) with a 

corresponding PCR-positive clinical specimen were downloaded from the PubMLST 

database (https://www.pubmlst.org/neisseria). Data on ctrA-specific Ct values, 

genogroup and specimen type on the corresponding PCR-positive specimens were 

provided by the PHE MRU. Five blood samples and five CSF samples were selected from 

cases caused by relatively diverse group B strains. A wide range of Ct values were 

selected in order to assess the sensitivity of the assay. 

2.8.2 Estimation of DNA concentration within clinical specimens 

To allow a practical assessment of the sensitivity of the SureSelectXT enrichment 

protocol, the DNA concentrations within the selected clinical specimens were 

estimated based on the ctrA-specific Ct values derived using the Taqman® PCR assay. To 

perform these estimations, ctrA-specific Ct values obtained from a dilution series of 

quantified meningococcal DNA extracts (Table 3-3) were plotted on a scatter graph in 

Microsoft Excel (Ct value against DNA concentration). An exponential trendline was 

applied to the data and the trendline equation was used to predict the DNA 

concentration from the Ct value of the selected clinical specimens.  

The equation was also used to estimate the meningococcal DNA concentrations of 

hypothetical extracts producing all Ct values from 19 to 40. The Ct values of all PCR 

positive extracts (January 2016-December 2016) were compiled (data provided by PHE 

MRU) and used to estimate the proportion of extracts on which whole genome 

sequencing could be performed. To estimate the proportion of non-culture IMD cases 

that could be characterised, any duplicate specimens (i.e. additional samples from an 

individual patient) were removed until only one sample was included per case. The 

sample with the lowest Ct value (highest DNA concentration) was selected in each case.  

https://www.pubmlst.org/neisseria
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2.9 SureSelect XT bait design, target enrichment and sequencing 

Declaration: The methods described in the following section were performed solely 

by collaborators at University College London (UCL).  

2.9.1 RNA bait design 

Meningococcal-specific RNA baits were designed by collaborators at UCL using a previously-

described  Perl script (Depledge et al., 2011). Genomic sequences from complete 

meningococcal genomes on the NCBI GenBank database (n=77) and whole/draft 

meningococcal genomes within PubMLST (n=2898) were used as a template. 

The bait library consisted of overlapping sequences of 120bp providing 2X coverage across all 

reference sequences. Sequences with specificity to the human genome (Hg19, accession 

number: GCF_000001405.13) were removed. Additional sequences were generated separately 

to match any gaps identified when aligned to complete meningococcal genomes. All bait 

sequences were uploaded to SureDesign (Agilent Technologies, US) and the oligonucleotides 

were manufactured by Agilent Technologies. 

2.9.2 DNA extraction and enrichment of DNA libraries 

DNA extraction, target enrichment, genome sequencing and de-novo contig assembly was 

performed by collaborators at UCL.  

DNA extraction was performed using the EZ1 DNA Blood Kit on the EZ1 Advanced XL system 

(Qiagen, UK) following the manufacturer’s instructions with an additional bead-beating 

bacterial cell lysis step. A total sample volume of 300 µL was used for each extraction. For 

samples with <300 µL available, dilution was performed using molecular grade water as 

required.  

Target enrichment and DNA library preparation was performed in accordance with the 

SureSelectXT Target Enrichment System for Illumina Paired-End Multiplexed 

Sequencing Library protocol (Agilent Technologies, US). Sequencing of captured DNA libraries 

was performed on an Illumina MiSeq using the 500-cycle V2 kit (Illumina, US) in accordance 

with the manufacturer’s protocol.  

Read sequences were aligned to a human reference genome (Hg19, accession number: 

GCF_000001405.13) using BBMap (version 37.00). Reads that did not align were corrected for 
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predicted sequencing error using Lighter (Song et al., 2014) and overlapping read pairs were 

merged using FLASH (Magoč and Salzberg, 2011). All merged paired reads and unpaired reads 

were then de novo assembled using SPAdes (Bankevich et al., 2012) without read error 

correction, assembler only, using k-mer values of 21, 33, 55, 77, 99 and 127. 

2.10 Analysis of specimen-derived genomic data 

2.10.1 Estimation of genome coverage and median read depth 

Genome coverage and median read depth of each specimen-derived genome were 

calculated by collaborators at UCL by aligning screened reads against a pseudo-

reference meningococcal genome. To generate the pseudo-reference, the complete 

genomes in the PubMLST database (n=237) were screened for their similarity to each 

sample by estimating distances based on shared K-mers using Mash (Ondov et al., 

2016).  

Pseudo-references were produced by aligning de-novo assembled contigs for each 

specimen against the corresponding complete genome using the BWA-MEM algorithm 

(Li, 2013). The resulting consensus sequences were used as pseudo-references to 

assess genome coverage and median read depth. 

2.10.2 Comparison of isolate and specimen-derived genomes 

In order to assess the quality of the specimen-derived genomes and to compare them 

with the corresponding isolate genomes, data on key genomic parameters were 

downloaded from PubMLST alongside typing data commonly used by the PHE MRU 

and other reference laboratories. The numbers of contigs, cumulative contig length, 

number of tagged loci and number of tagged NEIS loci were attained alongside the 

allele IDs for PorA VR1, PorA VR2, PorB VR, FetA VR, fHbp peptide, NHBA peptide, NadA 

peptide and MLST loci (abcZ, adk, aroE, fumC, gdh, pdhC, pgm). The ST and CC were 

also downloaded. Comparisons of the paired genomes were performed visually. Where 

data were missing, BLAST searches of the gene were carried out in the relevant 

genome in an attempt to identify the complete sequence on multiple contigs. Novel 

alleles were submitted for allelic ID assignment.   
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More comprehensive comparisons were then performed using the PubMLST Genome 

Comparator tool (Jolley and Maiden, 2010). In turn, each genome pair was selected 

and compared at all indexed NEIS loci (n=2652) using default parameters. NEIS loci that 

were present and complete in both genomes were compared visually for discrepant 

allele IDs. In each case, the discrepant alleles were downloaded and aligned using 

BioEdit v7. The number of nucleotide differences was recorded and if multiple 

differences were found and/or the gene was discrepant in more than one genome 

pair, the gene was BLAST searched using the NCBI Nucleotide BLAST tool 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify evidence of paralogy or regions of 

similarity among all N. meningitidis genomes within the NCBI Genbank database.  

2.11 MEASURE assay strains, stocks and reagents 

2.11.1 Strains used for assessment of MEASURE assay 

Table 2-9 lists the strains used for assessment of the MEASURE assay. Twelve diverse 

strains were selected to assess paraformaldehyde (PFA) killing effectiveness and up to 

nine strains were used in order to compare MFI results between laboratories and agar 

types. 
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Table 2-9: Strains used for assessment of MEASURE assay. 

Assessment Isolate ID 
fHbp 

peptide 
Group ST Clonal Complex 

PFA killing 
assessment 

M01 240007 15 B 269 ST-269 complex 

M01 240070 16 W 184 ST-22 complex 

M01 240601 15 B 1791 ST-269 complex 

M04 240731 123 B 340 ST-41/44 complex 

M04 241215 4 B 41 ST-41/44 complex 

M05 240300 45 B 7299 ST-213 complex 

M14 240606 1 B 290 ST-32 complex 

M14 240616 13 C 11 ST-11 complex 

M15 240098 25 Y 23 ST-23 complex 

M15 240133 13 B 60 ST-60 complex 

M15 240465 22 W 11 ST-11 complex 

NZ98/254 14 B 42 ST-41/44 complex 

Inter-
laboratory and 

agar type 
comparisons 

PMB 1135 55 B 44 ST-41/44 complex 

PMB 1745 45 B 2100 ST-213 complex 

PMB 2058 24 B 2976 ST-269 complex 

PMB 2802 19 B 43 ST-41/44 complex 

PMB 3242 4 B 4489 ST-41/44 complex 

PMB 3453 16 B 35 ST-35 complex 

PMB 3536 14 B 41 ST-41/44 complex 

M15 240821 47 B 1946 ST-461 complex 

M15 240859 13 B 275 ST-269 complex 

 

2.11.2 Preparation of bacterial GC glycerol broth stocks 

The MEASURE assay requires all strains to be pre-cultured within small aliquots of 

gonococcal (GC) broth with 14% (v/v) glycerol prior to plating on to GC agar during the 

MEASURE assay. To prepare the GC glycerol broth, glycerol (Sigma, UK) was added to 

GC broth (provided by Pfizer Vaccines), vigorously shaken and vortexed at high speed 

until a homogenous solution was achieved. For each strain, bacterial suspensions in GC 

glycerol broth were prepared at the required volume (determined by the number 

required) in a Universal tube (see 2.1.3). A volume of 50 µL was transferred to 1.5 mL 

screw-capped microtubes and stored at -80 °C. 
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2.11.3 Preparation of 1% (w/v) Bovine Serum Albumin in PBS 

To prepare 1 L of 1% (w/v) Bovine Serum Albumin in PBS (BSA/PBS), 10 g of bovine 

serum albumin (BSA, Sigma Aldrich, UK) was added to 1 L of 1x PBS (without added Ca 

or Mg, Thermofisher, US). The solution was mixed until all BSA has dissolved before 

being filter sterilised using a Nalgene 0.2 μM filter unit (Thermofisher, US). BSA/PBS 

was stored at 4⁰C. 

2.11.4 Preparation of 1% (v/v) Paraformaldehyde in PBS 

Batches of 1% (v/v) PFA in PBS (PFA/PBS) were prepared by diluting 16% PFA 

(methanol-free, Alfa Aesar, US) in 1x PBS (without added Ca or Mg, Thermofisher, US). 

To prepare 480 mL of PFA/PBS, 30 mL of 16% paraformaldehyde was added to 450 mL 

of PBS. The solution was gently mixed and stored at 4⁰C. 

2.11.5 Preparation of GCK broth for meningococcal cultivation 

The GC broth, 4% Sodium Bicarbonate solution and Kelloggs supplement used to 

prepare GCK broth were provided by Pfizer Vaccines. GCK broth was prepared by 

supplementing GC broth with 4% Sodium Bicarbonate solution (1% v/v) and Kelloggs 

supplement (1% v/v). GCK broth was prepared prior to each assay run. Strains were 

cultured in 25 mL GCK broth within 250 mL Erlenmeyer flasks (Corning, US). 

2.12 Assessing the killing effectiveness of PFA/PBS 

2.12.1 “Dilution” method 

For the initial killing assessments, a “dilution” method was used. Meningococcal strains 

were grown overnight (>16 hours) on CBA (refer to 2.1). For each strain tested, 

meningococcal cells were resuspended in two 15 mL Falcon tubes (Corning, US) 

containing 5 mL of GCK broth. The optical density (OD) of the suspensions were 

measured at 650 nm using a WPA S800 spectrophotometer (Biochrom Ltd., UK). Cells 

were added until an OD of >0.55 was achieved (greater than the OD used in the 

MEASURE assay). The suspensions were centrifuged for 4 minutes at 1825 x g and the 

supernatant was discarded. To one tube, 5 mL of PFA/PBS was added. As a control, 5 
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mL of GCK was added to the second tube. Both tubes were vortexed thoroughly and 

the incubated at 1-4 ⁰C for the required time using a CoolRack (Biocision, US). 

At the required time points, 2 μL of each suspension was transferred to microfuge 

tubes containing 1998 μL of GCK broth (1/1000 dilution). This was performed in order 

to reduce the effect of the fixative and to ensure sufficient growth after the dilution in 

the absence of the fixative (control). Then, 100 μL of each diluted suspension was 

plated onto a CBA plate, which was incubated at 37 ⁰C with 5% CO2 for ≥48 hours. The 

plates were then inspected for meningococcal growth and any colonies were counted 

(or recorded as confluent growth).  

2.12.2 “Centrifugation” method 

In order to increase the sensitivity and reliability of the later killing assessments, a new 

method was developed. Meningococcal strains were grown overnight (>16 hours) on 

CBA (refer to 2.1). For each strain tested and each time point required, meningococcal 

cells were resuspended in two 15 mL Falcon tubes (Corning, US) containing 3 mL of 

GCK broth. The OD of the suspensions were measured at 650 nm using a WPA S800 

spectrophotometer (Biochrom Ltd., UK). Cells were added until an OD of >0.55 was 

achieved. The suspensions were centrifuged for 4 minutes at 1825 x g and the 

supernatant was discarded. To one tube, 3 mL of PFA/PBS was added. As a control, 3 

mL of GCK was added to the second tube. Both tubes were vortexed thoroughly and 

the incubated at 1-4 ⁰C for the required time using a CoolRack (Biocision, US). After the 

required time, the two tubes were centrifuged for 4 minutes at 1825 x g and the 

supernatant was discarded before 5 ml of GCK was added the tube. The tubes were 

vortexed to resuspend the cells and centrifuged once again for 4 minutes at 1825 x g. 

Finally, the supernatants were poured away and the pellets were resuspended in the 

residual broth remaining in the tube (200-300 μL) by agitating the bottom of the tube. 

This broth and the suspended cells were then transferred to CBA plates, which were 

incubated at 37 ⁰C with 5% CO2 for ≥48 hours. The plates were then inspected for 

meningococcal growth. 
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2.13 Finalised MEASURE assay protocol and data analysis 

2.13.1 Overnight growth on GC agar 

For each strain to be tested, 10 µL of the defrosted GC glycerol broth was plated for 

single colony isolation on GC agar. Agar plates were incubated overnight (16-18 hours) 

at 37 °C with 5% CO2. 

2.13.2 Liquid culturing of meningococci 

All strains were grown within GCK broth to an OD of 0.5-0.55 (at 650 nm). To prepare 

initial meningococcal suspensions, 50-100 isolated meningococcal colonies were 

removed from the inoculated GC plates (following overnight incubation) and 

transferred to the Erlenmeyer flask containing 25 mL of GCK broth (2.11.5). The swabs 

were gently agitated along the inside of the vessel to remove the colonies and break up 

the cells. The OD of the suspensions was measured at 650 nm using a WPA S800 

spectrophotometer (Biochrom Ltd., UK). Broth suspensions with ODs of 0.15-0.2 were 

transferred to a Minitron shaking incubator (Infors HT, Germany) and incubated at 37 

°C with 150 rpm shaking. To suspensions with ODs of <0.15, more meningococcal 

colonies were added before being re-tested. To suspensions with ODs of >0.2, more 

GCK broth was added before being re-tested. This was repeated until all strains had 

achieved the starting OD of 0.15-0.2 and were incubated.  

After one hour of incubation, the flask of each strain was removed from the incubator 

and the OD was again measured and recorded before the flask was returned to the 

incubator. The OD of the suspensions were then periodically measured and recorded as 

required until an OD of 0.5-0.55 was achieved. Upon reaching this OD, 5 mL of the 

suspension was transferred to a 15 mL Falcon tube (Corning, US) using a sterile 

pastette. The broth in the tube was then cooled to 1-4 °C in a CoolRack (Biocision, US). 

Suspensions that exceeded this OD were discarded and those strains were repeated on 

a subsequent assay run. 

After 2-10 minutes, the Falcon tubes were centrifuged for 4 minutes at 1825 x g. 

Following centrifugation, the supernatant was carefully poured in to disinfectant. The 

tube was sealed and the bottom of the tube was agitated in order to disrupt the pellet 
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within the residual GCK broth. To the pellet, 5 mL of PFA/PBS was added and the tube 

was sealed and vortexed at high speed to resuspend the cells. This was repeated for all 

tubes before they were incubated at 4 °C for at least 16 hours. 

2.13.3 Assay Day Three (cell staining and acquisition) 

The fixed meningococcal cells were antibody stained using a three-step procedure. The 

reagents used to staining of the fixed meningococcal cells are described in Table 2-10. 

Table 2-10: Staining reagents used in MEASURE assay. 

Staining 
step 

Antibody/reporter Manufacturer 
Working 

concentration 

Primary 
IgG control (non-specific) 

and MN86-994-11-1 (fHbp-
specific) 

Sponsor 6.7 µg/mL 

Secondary 
Biotinylated anti-mouse IgG 

(Goat) 

Jackson Immuno-
research. US (Cat: 

115-065-164) 
10 µg/mL 

Tertiary 
SA-PE (Streptavidin bound 

to Phycoerythrin) 
BD Biosciences, Cat 

# 554061 
5 µg/mL 

 

Following at least 16 hours incubation at 4⁰C, the fixed cells were vortexed to 

resuspend the cells. For each strain, 50 µL was added to each of four microtitre wells as 

illustrated in Figure 2-1. Primary staining was carried out in parallel using both a non-

specific isotype control and the fHbp-specific monoclonal (MN86-994-11-1). Staining 

was carried out in 96-well microtitre plates and each strain was stained in 

quadruplicate (Fig. 2-1). Two of the four quadruplicates were stained with a non-

specific control primary antibody and the remaining two were stained with the fHbp-

specific antibody (MN86-994-11).    
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Figure 2-1: Configuration of staining plate during primary staining in the MEASURE assay. 
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The microtitre plate was then centrifuged at 1825 x g for 4 minutes. The supernatant 

was removed by inverting the plate. The cells were washed by resuspending the cells 

pellets in 200 µL of BSA/PBS. The plate was then centrifuged at 1825 x g for 4 minutes 

before the plate was inverted to remove the BSA/PBS. 

The primary antibodies were prepared by diluting stock antibodies to the working 

dilution in BSA/PBS. 50 µL of the appropriate antibody was added to each well as 

indicated in Figure 2-1. The cell pellets were then resuspended in the antibody 

solutions. The plate was incubated at 4 °C for 30 minutes. 

Following incubation, 150 µL of BSA/PBS was added to each well before the plate was 

centrifuged at 1825 x g for 4 minutes. The supernatants were removed by plate 

inversion and the cells were re-suspended in 200 µL of BSA/PBS. The plate was once 

again centrifuged at 1825 x g for 4 minutes and the supernatant discarded. The 

secondary antibodies were diluted to the working concentration in BSA/PBS, 50 µL was 

added to each microtitre well and the cells were resuspended. The plate was incubated 

for 30 minutes at 4 °C. 

The plate was then washed twice in BSA/PBS (as described following the primary 

antibody incubation) before the SA-PE was diluted to the working concentration in 

BSA/PBS and added to the cells (50 µL). The plate was covered (to protect from light) 

and incubated for 30 minutes at 4 °C.  

The plate was once again washed twice in BSA/PBS before the pelleted cells were 

resuspended in 200 µL of PFA/PBS. Prior to analysis of the stained cells, a ¼ dilution of 

the cells was performed by transferring 50 µL of each well to the corresponding well of 

a new microtitre plate which contain 150 µL of PFA/PBS. To the wash wells (rows B, D, F 

and H), 200 μL of BSA/PBS was added. The plate was sealed with a perforatable plate 

sealer. 

For wells containing the stained cells, 20,000 events were captured (using pre-defined 

FSC-A/SSC-A gate) at a ‘slow’ flow rate (14 μL/minute) using an Accuri C6 flow 

cytometer (Becton Dickinson, US). Acquisition was performed beginning at well A1 and 
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working down each column in turn (Fig. 2-1). The intervening wash wells were acquired 

for 5 seconds in order to reduce carryover.  

Following acquisition, the mean MFI within the FL-2 channel for each stained wells 

were recorded. As such, two fHbp-specific MFI values were recorded for each strain in 

each assay run.  

2.13.4 Analysis of MEASURE results data 

For each strain tested, median values and inter-quartile ranges were calculated using 

Microsoft Excel. Using Minitab 17 (Minitab Inc., US), Mann-Whitney tests were 

performed in order to compare differences in MFI. Differences generating a p-value of 

<0.05 were considered statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

3.0 RESULTS 

3.1 The development of a non-culture fHbp genotyping assay 

Declaration: Much of the work described in the following section was published in 
Clark et al. 2014 and parts of the following paragraphs have been amended from this 
publication. This article was written solely by me and all words used are my own. 
 

3.1.1 Primer selection and optimisation 

3.1.1.1 Existing primers 

Primers 1869-2F and 1871Ralt were pre-optimised and have been used in previous 

studies (Lucidarme et al., 2011a). The complementary binding sites were checked 

against the conservation panel (Appendix I) to assess level of conservation. 1869-2F 

appeared much conserved, with only five isolates showing a single base-pair mismatch 

within the binding site. None of these were at the 3’ end and so are unlikely to prevent 

amplification. For 1871Ralt, however, 171/391 (43.7%) of isolates featured single base 

pair mismatches in the 5’ portion (first 5bp) of the binding site. These were deemed 

sufficiently conserved and, due to their out-lying positions, were selected for use in 

PCR round-one. These primers generate a product of between 1649 and 1876 bp.  

Three of the four sequencing primers selected for the assay were also previously 

published (Jacobsson et al., 2006). The fourth primer of this set, gna1870R, exhibited 

secondary binding to an alternate site within fHbp resulting in poor quality sequence 

traces. An alternative reverse sequencing primer was, therefore, required as well as 

‘nested’ round-two PCR primers. 

 

3.1.1.2 Design of new fHbp primers 

To facilitate the use of a nested PCR protocol and to offer flexibility in the use of the 

existing primers, two PCR primer pairs, fHbpouterF & fHbpouterR, and fHbpRd2F & 

fHbpRd2R, were designed. Moreover, a new sequencing primer, fHbpseqR2, was 

designed to replace gna1870R as the outermost reverse sequencing primer. 

Firstly, a search for candidate PCR primer sites outside of/flanking the selected round-

one primers was made using sequences from 15 complete genomes (Appendix I). 

Seven ‘outer’ forward candidates and five reverse candidates were identified. Only 
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three forward candidates and one reverse candidate showed sufficient sequence 

conservation among 391 English and Welsh meningococcal isolate genomes within the 

PubMLST database (University of Oxford, http://pubmlst.org/neisseria/). Of the three 

forward candidates, two exhibited binding to sites within the genes and intergenic 

regions flanking fHbp. The remaining forward candidate, named fHbpouterF7, was 

sufficiently specific and suitable for use with the remaining reverse candidate 

fhbpouterR5a (i.e. no dimers, similar melting temperatures). These were selected as 

the ‘outer’, alternate primer set and, for clarity, were renamed fHbpouterF and 

fhbpouterR, respectively. These primers yield a PCR product of approximately 2200bp 

(depending on the presence of internal indels). 

To identify candidates for the standard round-two PCR primers, sequences proximate 

to the round-one primer sites were used. For the forward site, five suitable candidates 

were initially identified but only one exhibited sufficient conservation among PubMLST 

genomes (fhbpRd2F2). To facilitate primer extension, this candidate was modified to 

include a 3’ terminal dinucleotide CC. In order to retain its original GC%, a CC 

dinucleotide was removed from the 5’ end. This primer was renamed fhbpRd2F2a to 

reflect these changes. 

The PrimerQuest software generated only two suitable reverse candidates among the 

corresponding search region. Both primers showed minimal secondary binding within 

fHbp and in the flanking sequences, however, only one (fHbpRd2R2) exhibited 

sufficient conservation for routine use. This primer had to be modified through the 

removal of the three 3’ end bases and the addition of a guanine at the 5’ end in order 

to remove variable bases and increase the melting temperature, respectively. The 

modified primer was named fHbpRd2R2a. fHbpRd2R2a showed acceptable 

conservation among the 391 genomes analysed except for position 18 (5’ to 3’), at 

which the majority of isolates (234/391, 59.8%) had a single mismatch (a cytosine in 

place of the original thymine). Due to this dichotomic nucleotide residue among 

invasive isolates, a degenerate base was introduced at this position. These two primers 

were selected for use as standard round two PCR primers and yield a PCR product of 

approximately 1500bp. They were renamed fHbpRd2F and fHbpRd2R. The 

complementary binding sites of all four newly-designed PCR primers are located within 

http://pubmlst.org/neisseria/
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genes flanking fHbp, NMB1869 (in MC58) coding for fructose-bisphosphate aldolase 

upstream of fHbp and NMB1871 coding for a putative peptidase downstream of fHbp.  

The search for a new reverse sequencing primer yielded three candidates. All three 

exhibited a good level of conservation and showed no significant non-specific binding 

to the second round PCR product. The three candidates were tested by sequencing 

using standard sequencing protocol on PCR products from the seven sensitivity panel 

isolates (Appendix II). All candidates produced acceptable reverse sequence traces, 

however, the traces produced by fHbpseqR2 appeared to feature less background noise 

than the other two primers. This primer was then tested on products from non-culture 

samples. Once again the traces were of sufficient length and clarity. This primer was 

chosen as the standard outer reverse sequencing primer. It contains two degenerate 

sites at positions 9 and 15. These were introduced to improve the homology of the 

primers among isolates of the conservation panel (Appendix I).  

 

3.1.1.3 Optimisation of newly-designed PCR primers 

Initial optimisation of the second round PCR primers (fhbpRd2F and fHbpRd2R) 

involved testing three different MgCl2 concentrations (1.5 mM, 3 mM and 4.5 mM) and 

five different annealing temperatures (51°C, 55 °C, 58 °C, 60 °C and 63 °C) over two PCR 

runs. Four of the seven isolates listed in Appendix II were used (highlighted by *). The 

resulting products are shown in Figure 3.1. 
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Figure 3-1: PCR products from four isolates after 35 cycles using fhbpRd2F and 
fHbpRd2R. The numbers above indicate the isolate number as described in Appendix II. 
The MgCl2 concentration used is indicated at the bottom of the image. The 
corresponding annealing temperature used is indicated to the left of each row. 
ML=molecular ladder. Ladder size (bp) is indicated to the right of each panel. 
Figure 3-1: PCR products from four isolates after 35 cycles using fhbpRd2F and 

fHbpRd2R. 
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Strong, defined bands of approximately 1500 bp can be seen for all conditions tested. 

Very faint non-specific products of 200-300 bp can also be seen in almost all 

conditions. Based on these findings, a wide range of annealing temperatures could be 

used; however, 63 °C was chosen as the optimum temperature to reduce the likelihood 

of non-specific binding. No additional MgCl2 was deemed required (final selected 

concentration: 1.5mM). 

The final parameter to be optimised was the cycle number. It was predicted that 

restricting the cycle number for the second PCR round to a minimum would help to 

reduce non-specific amplifications, which may be more likely to occur when testing 

non-culture extracts containing host DNA. Using the complete seven-isolate panel 

(Appendix II), the round-two primers were tested using the finalized conditions but at 

25 and 30 cycles (previously tested at 35). Whilst the bands after 25 cycles are 

moderately bright, after 30 cycles, very strong PCR bands, similar to those observed 

after 35 cycles were seen (Fig. 3-2). It was, therefore, decided to restrict the second 

round to 30 cycles in order to reduce the potential for non-specific product generation.  

 

Figure 3-2: PCR products using round-two fHbp primers on 2% agarose gel following 
optimisation of PCR cycle number. The numbers above the images correspond to the 
order in which the isolates are listed in Appendix II. The PCR cycle numbers used are 
indicated below the images. 

Figure 3-2: PCR products using round-two fHbp primers on 2% agarose gel following optimisation of PCR cycle number. 

In order to optimise the alternate outer primers, the four isolates used previously for 

optimisation (Appendix II) were tested in a single PCR round (2 µL template in 25 µL 

reaction) using three annealing temperatures (58 °C, 60 °C and 63 °C) and three MgCl2 

concentrations (1.5 mM, 3 mM and 4.5 mM). As with the second round primers, the 

annealing temperature did not appear to influence the product yield to a great degree 

(Fig. 3-3). The MgCl2 concentration, however, did impact on the result with the yield at 

4.5 mM noticably lower and with non-specific bands present.  
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Figure 3-3: PCR products following a single PCR round (35 cycles) with fHbpouterF and 
fHbpouterR using extracts from four isolates. The isolate numbers above the image 
correspond to those in Appendix II. Annealing temperatures are indicated to the left of 
each panel and MgCl2 concentrations are shown below. ML=molecular ladder. Ladder 
size (bp) is indicated to the right of each panel.   

Figure 3-3: PCR products following a single PCR round (35 cycles) with fHbpouterF and fHbpouterR using extracts from four isolates. 

At the highest annealing temperature, the 3mM MgCl2 concentration appeared yield a 

greater amount of product and relatively lower amounts of non-specific amplification. 

As these will be used as round one PCR primers, a cycle number of 45 should be used in 

order to maximise the sensitivity of the assay. The finalised PCR conditions for the fHbp 

PCR primers are listed in Table 2-6.  
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3.1.2 Assessment of analytical sensitivity 

A dilution series of DNA extracts from seven diverse isolates (Appendix II) were used to 

assess the analytical sensitivity of the PCR protocol to the target template. Table 3-1 

contains the estimated DNA concentration of each extract dilution as well as the 

calculated number of meningococcal genomes per microlitre. 

Table 3-1: Estimated DNA concentration and number of meningococcal genomes per 
microliter for each extract dilution of the analytical sensitivity panel. 

 

Extract dilution 
Estimated DNA 

concentration  

Number of meningococcal 

genome copies (per µL) 

Original adjusted extract 6ng/µL 2.53 x 106 

10-1 600pg/µL 2.53 x 105 

10-2 60pg/µL 2.53 x 104 

10-3 6pg/µL 2530 

10-4 600fg/µL 253 

10-5 60fg/µL 25.3 

10-6 6fg/µL 2.53 

10-7 600ag/µL 0.253 

10-8 60ag/µL 0.0253 

Table 3-1: Estimated DNA concentration and number of meningococcal genomes per microliter for each extract dilution of the 

analytical sensitivity panel. 

PCR amplification using round-one primers (non-nested) yielded strong visible PCR 

products for all seven isolate extracts down to the 10-4 dilution (Fig 3-4). Faint bands 

were visible for isolates down to the 10-5 dilution. This indicates a PCR round one 

analytical sensitivity limit of 60 fg/µL or 25.3 genome copies/µL. As 5 µL of initial 

template was used for round one, this suggests at least ~127 copies are required in a 

round one reaction mix for visualisation of PCR product. 
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Figure 3-4: PCR products following fHbp PCR round one reaction using diluted extracts 
from the seven isolates of the analytical sensitivity panel.  
A volume of 5 µL of extract was added to a 25 µL reaction. The numbers above the 
image correspond to the isolate number in Appendix II. The extract dilution is indicated 
below each set of wells. ML=molecular ladder. Ladder size (bp) is indicated to the right 
of each panel. 
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PCR round one reaction mix from those extracts that produced faint or no visible bands 

(10-5, 10-6, 10-7 and 10-8) were transferred to PCR round two reactions using 1 µL, 2 µL 

and 5 µL of template in 25 µL reactions. All isolates produced strong bands at 10-5 and 

10-6 (Fig. 3-5). At 10-7 dilution, five of the seven isolates produced strong PCR products. 

No products were visible for any of the isolates at 10-8. As some of the 10-7 extracts 

yielded a product, the analytical sensitivity of the nested PCR protocol was determined 

to be between 600 ag/µL and 6 fg/µL (between 1.2 and 12 genome copies per 

reaction). 

The intensity of the bands increased with volume of round one mix used in round two 

reaction, however, the volume used did not appear to influence which of the isolate 

extracts amplified (i.e. negative extracts were negative at all transfer volumes tested). 

Larger transfer volumes also resulted in greater non-specific product amplification as 

evidenced by additional bands and smears on the gel. Based on these results, it was 

decided that 2 µL would be used as the standard transfer volume as it would provide a 

reasonable chance of product visualisation whilst curtailing spurious non-specific 

product amplification.  

It was hypothesised that the volume of DNA extract used in the first round of the 

nested PCR may be influential in determining the likelihood of gaining a PCR product at 

the lower DNA concentrations (such as those in 10-7 and 10-8 dilutions). To test this 

hypothesis, differing volumes (5 µL, 10 µL and 20 µL) of the 10-7 and 10-8 extracts were 

added to the first round of nested PCR reactions. The results (Fig. 3-6) indicate that 

using greater extract volumes improve the chances of amplification. All of the 10-7 

extracts yielded strong PCR products when 20 µL of extract was used, but only two and 

six of the seven 10-7 extracts successfully amplified when 5 µL and 10 µL was used, 

respectively. For the 10-8 extracts, four produced visible product, all were produced 

when using 20 µL of extract. These findings suggest that the analytical sensitivity could 

in some cases be increased down to 60 ag/µL (~0.5 genome copies per reaction) if at 

least 20 µL of extract was used in the reaction.  
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Figure 3-5: PCR products following 25 µL fHbp PCR round two reactions using 1 µL, 2 µL 
and 5 µL of PCR round one product for extract dilutions 10-5, 10-6, 10-7 and 10-8 as DNA 
template. The numbers above the top panel correspond to the isolate numbers in 
Appendix II. The volume of round-one product transferred to the second PCR round in 
indicated above each panel. The extract dilution is specified adjacent to each set. 
ML=molecular ladder: top band= 1500bp. 

Figure 3-5: PCR products following 25 µL fHbp PCR round two reactions using 1 µL, 2 µL and 5 µL of PCR round one product for 

extract dilutions 10-5, 10-6, 10-7 and 10-8 as DNA template. 
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Figure 3-6: PCR products following nested fHbp PCR reactions using 10-7 and 10-8 DNA 
extracts. Three differing round one template/reaction volumes were tested. The 
template/reaction volumes are indicated to the right of each row. ML=molecular 
ladder: top band= 1500bp. 

Figure 3-6: PCR products following nested fHbp PCR reactions using 10-7 and 10-8 DNA extracts. 

3.1.3 Correlative Taqman® analysis of analytical sensitivity extracts 

Two different ctrA Taqman® assay formats: the original ‘wet mix’ assay introduced in 

2003, and the more recent lyophilised assay (refer to 1.9) were used to determine the 

Ct values of the diluted extracts of the analytical sensitivity panel. The Ct values derived 

following analysis of the diluted extracts using the wet master mix assay are shown in 

Table 3-2. The Ct values increased as the DNA concentration decreased. The Ct values 

ranged from 16.8 to 44.7. The average increase in mean Ct value between each 

successive 10-fold dilution was 3.53. The final two dilutions for each isolate were tested 

in triplicate to compensate for possible stochastic sampling effects. Indeed, such effects 

were observed with one of the seven 10-7 extracts failing to produce a positive result in 

all three attempts. Of the 10-8 extracts, 3/7 failed to produce a positive result. None of 

the extracts at these two dilutions produced positive results in triplicate.  
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Table 3-2: ctrA-specific Ct values of diluted isolate DNA extracts using ‘wet’ Taqman assay.  Table 3-3: ctrA-specific Ct values of diluted isolate DNA extracts using lyophilised Taqman assay. 
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The Ct values produced by testing the diluted extracts using the reconstituted 

lyophilised assay plate are shown in Table 3-3. The Ct values of 10-1 dilution extracts 

were very similar to those observed using the wet mix assay. Also, the results once 

again show a consistent increase in Ct value as the DNA concentration decreased; 

however, using the lyophilised assay, the average increase in mean Ct value at each 

successive dilution was higher than the wet mix assay at 4.03. This translates into a 

lower sensitivity, which in turn results in a lack of positive results for all of the 10-8 

extracts and only one positive result for one of the 10-7 extracts. The Ct values between 

each isolate appeared to be reasonably similar with the exception of M07 241036, 

which appeared to be approximately three Ct values higher than the corresponding 

extracts at each dilution. The reasons for this were unclear, but are likely to be due to 

an error during dilution and/or quantification. 

3.1.4 Specificity of the fHbp PCR assay 

In order to assess the ability of the newly-developed assay to amplify fHbp from diverse 

meningococci, a panel of 96 isolates and corresponding non-culture samples (from the 

same patient) was compiled. eBURST and Splitstree analyses of the isolate MLST data 

were used to illustrated the diversity of the panel. The annotated eBURST and 

SplitsTree diagrams can be found in Appendix III. The isolates were selected from 

disparate STs and rMLST profiles, indicating genetic diversity. 

The selected isolates and non-culture specimens, along with the corresponding MLST 

and fHbp data, are listed in Appendix IV. For the isolates, the two fHbp PCR rounds 

were carried out individually. Using the PCR round one primers, PCR products of 

appropriate size (~1750bp) were generated from all 96 isolate extracts. Using the PCR 

round two primers, however, one of the 96 extracts (M11 240189) failed to produce 

any discernible PCR product. Three subsequent attempts also failed to amplify an 

appropriate product. To assess the complementarity of the primers to the isolate 

genome, the fHbp flanking regions of M11 240189 were downloaded from PubMLST 

and aligned against the PCR round two primer sequences. Three base mismatches were 

identified in the 3’ end of the fhbpRd2R primer binding site (Fig.3-7). 
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To assess the prevalence of these mismatches among English and Welsh invasive 

isolates, the sequences containing the fhbpRd2R binding regions amongst all MRF MGL 

isolate genomes from 2010/11 and 2011/12 (n=923) were downloaded and aligned. 

Only one other isolate (M11 240984) was found to feature this mismatch. 

 

 

Figure 3-7: Comparative alignment of the fHbpRd2R PCR primer (3’ to 5’) against (A) 
the majority of isolate genomes within the MRF MGL (921/923) and (B) a small number 
(2/923) of MRF MGL genomes as well as genomes from two of the six N. lactamica 
isolates tested. Single dots indicate bases matching the PCR primer. 

Figure 3-7: Comparative alignment of the fHbpRd2R PCR primer (3’ to 5’) against (A) the majority of isolate genomes within the MRF MGL (921/923) and (B) a small number (2/923) of MRF MGL genomes as well 

as genomes from two of the six N. lactamica isolates 

Sequencing of the PCR products from the isolates was successful for all but one (M11 

240402). The data downloaded from the corresponding genome indicates that M11 

240402 is an fHbp-null isolate (Appendix IV) explaining lack of sequence traces. All of 

the 94 sequenced fHbp amplicons matched the alleles amongst the corresponding 

genomes (Appendix V).  

The DNA extracted from the specimens was tested using the finalised nested PCR 

protocol. Of the 96 extracts tested, 83 (86.5%) produced appropriate PCR products on 

the first attempt (Run 1, Appendix V). Two subsequent runs (Runs 2 and 3) were 

performed on non-amplifying extracts using the finalised PCR conditions. These two 

runs yielded six additional PCR products. The remaining seven extracts that failed to 

generate a PCR product were tested in one final run using increased round one 

template/reaction volumes (20 µL/100 µL) and with increased PCR cycles (round one 

increased to 45, round two increased to 35). PCR products were obtained for two of the 

seven extracts. The remaining five extracts were considered PCR negative and no 

additional attempts at amplification were made. In total, 91 of the 96 clinical specimen 

extracts (94.8%) yielded an appropriately-sized PCR product after four attempts (Table 

3-5). The clinical specimen corresponding to isolate M11 240189 (M11 909694) yielded 
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an acceptable PCR product despite, presumably, harbouring the same round two 

primer mismatch as the isolate. 

The sequencing results for all amplified products are shown in Appendix V. All of the 

products from the clinical specimen extracts were successfully sequenced and all but 

two of the fHbp alleles matched those of the corresponding isolate. For the two 

discordant extracts (M11 922854 and M11 915746), both alleles differed from the 

corresponding allele by a single base. Re-amplification and sequencing of the extracts 

yielded fHbp alleles that matched the corresponding isolates suggesting that PCR-errors 

had occurred during the initial amplification.  

To assess the wider conservation of the fHbp PCR primers, six diverse N. lactamica 

isolates (Table 2-4) were tested in each PCR round individually. N. lactamica do not 

possess the fHbp gene, however, an allele encoding putative opacity protein 

(NLA18150) is found at this locus (Lucidarme et al., 2013a). The PCR primers target 

sites within flanking genes and should, therefore, yield a PCR product if the binding 

sites are conserved. For PCR round one, a PCR product was obtained from all six 

isolates, however, four of the six isolates failed to yield a product using the PCR round 

two primers. Analysis of the primer binding sites within the genomes of these four N. 

lactamica isolates revealed the identical fhbpRd2R mismatches as found in M11 

240189 (Fig. 3-7).  

For these four isolates, 2 µL of the amplified PCR round one product was used as a 

template for PCR round two reactions as performed in the nested protocol. This was to 

attempt to repeat the successful nested PCR amplification seen in clinical specimen 

M11 909694 despite the primer mismatches. All four isolates produced an 

appropriately-sized PCR product following round two of the nested protocol.  
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3.2 An analysis of fHbp peptide sub-variant distribution among non-

culture confirmed IMD cases: 2011-2015 

Declaration: Much of the work described in the following section was published in 
Clark et al., 2016 and parts of the following paragraphs have been amended from this 
publication. This article was written solely by me and all words used are my own. 

3.2.1 Laboratory confirmed IMD cases: Jan 2011 to Dec 2015 

From the 1st January 2011 to the 31st December 2015, PHE MRU confirmed 4090 IMD 

cases. Table 3-4 contains the number of culture and non-culture confirmed cases from 

each calendar year. Overall, a downward trend was observed in the total number of 

laboratory-confirmed cases over the five years studied.  

 

Table 3-4: Number of laboratory-confirmed IMD cases in England and Wales by 
calendar year and confirmation method: 2011 to 2015. 

Calendar 
Year (Jan-

Dec) 

No. of non 
culture-

confirmed 
cases (% of 

total) 

No. of 
culture-

confirmed 
cases 

No. of total 
cases (n) 

2011 498 (50.9) 481 979 

2012 382 (48.2) 410 792 

2013 331 (42.7) 445 776 

2014 264 (38.6) 420 684 

2015 298 (34.7) 561 859 

Combined 1773 (43.3) 2317 4090 

 

The proportion of cases confirmed by PCR alone reduced yearly between 2011 and 

2015. Over the five years, 43.3% of IMD cases were confirmed by PCR alone.  

Table 3-5 illustrates the capsular group distribution among culture and non-culture 

cases.  
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 Table 3-5: No and proportion of each capsular group within culture and non-culture cases for each calendar year. 
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Figure 3-8 shows the differences in method of confirmation among different age 

groups for each capsular group. The majority of all group B cases (57.2%) were seen 

among those aged four years or younger. For group W and Y disease, the largest 

numbers of cases were, however, seen in older individuals with 37.8% and 43.6% of 

cases among those >60 years of age, respectively. With regards to confirmation 

method, a similar overall pattern was seen across the three capsular groups with 

isolation of a viable organism more common among cases in young infants (<12 

months) and older adults (>60 years).  
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Figure 3-8: The proportions of culture and non-culture-confirmed group B, group Y, group W cases and all cases combined, stratified by patient age group. 
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3.2.2 Overview of fHbp genotyping and variant group distribution. 

Among all 2317 invasive isolates sequenced, 2304 (99.4%) possessed a full-length fHbp 

peptide. Ten isolates harboured alleles featuring frame-shift mutations which resulted 

in truncated alleles (nine ST-11 complex isolates harboured fHbp allele 669 and a ST-32 

complex isolate possess allele 743). Three isolates during this period were fHbp-null 

(i.e. did not possess an fHbp allele). Table 3-6 shows the proportion of non-culture IMD 

cases in each calendar year for which sufficient DNA extract and/or clinical specimen 

was available for fHbp genotyping. Over the five year study period, testing was not 

possible on 112 (6.3%) of non-culture cases due to lack of material. The proportion of 

available material increased between 2011 and 2015. 

Table 3-6: The number and proportion of non-culture IMD cases with sufficient DNA 
extract and/or clinical specimen available for fHbp genotyping by calendar year. 

Year 
Total no. 
of cases 

No. of 
specimens/extracts 
available (% of total) 

No. of successfully-
typed cases (% of 

total) 

2011 498 461 (92.8) 411 (82.5) 

2012 382 345 (90.3) 319 (83.5) 

2013 331 317 (95.8) 298 (90.0) 

2014 264 252 (95.5) 235 (89.0) 

2015 298 286 (96.0) 247 (82.9) 

Combined 1773 1661 (93.7) 1510 (85.2) 

Table 3-6: The number and proportion of non-culture IMD cases with sufficient DNA extract and/or clinical specimen available for fHbp genotyping by 

calendar year. 

Overall, a PCR product was successfully amplified and sequenced from 90.9% of the 

non-culture cases that had an available specimen and/or DNA extract. For each 

calendar year, these data represented between 80% and 90% of all non-culture IMD 

cases with 85.2% of non-culture cases typed over the five year period (Table 3-8).  

Following the addition of the fHbp data from cultured isolates, of which all were 

successfully sequenced, a total of 93.6% (3827/4090) of all IMD cases confirmed from 

2011 to 2015 were fHbp genotyped. Figure 3-9 shows the proportion of typed strains 

harbouring fHbp of each variant group among different capsular groups.  
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Figure 3-9: fHbp variant group distribution among typed culture and non-culture strains belonging to different capsular groups or 

no

n-groupable strains (NG). 
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A noticeable disparity was observed in the prevalence of the different fHbp variant 

groups within strains of the different groups. Almost all characterised group W and Y 

strains harboured variant 2 fHbp peptides, whilst approximately two-thirds (70.9%) of 

group B strains possessed variant 1 peptides. Group C and non-groupable strains were 

also more commonly found to possess variant 1 peptides.  

3.2.3 Distribution of common fHbp peptide variants 

Among all characterised strains (n=3827), 305 unique fHbp alleles and 254 fHbp 

peptide variants were found. The following eleven variants, each represented by ≥50 

strains, were found among 79.2% of all characterised strains: variants 1.4 (15.6%), 1.13 

(12.3%), 2.22 (11.8%), 2.25 (10.1%), 1.15 (9.1%), 2.19 (5.9%), 1.14 (4.73%), 1.1 (3.5%), 

3.45 (3.5%), 2.16 (2.6%) and 3.47 (1.7%). The majority of typed group W cases (82.8%) 

featured peptide variant 2.22. Variant 25 was predominant among group Y cases 

(83.4% of typed strains). Group C strains were more diverse with 1.13, 1.15, 1.19 and 

2.22 collectively representing 71.2% of combined typed cases. Eight of the eleven 

common fHbp peptides mentioned above were present in substantial numbers among 

group B strains (each with ≥50 cases). Variants 1.1, 1.4, 1.13, 1.14, 1.15, 2.19, 3.45 and 

3.47 collectively represented 75.1% of all typed group B strains.  

Due to the homogeneity of group W and Y strains with respect to fHbp, there were no 

significant differences in the peptide distribution within these groups. Among group B 

cases, the proportional distribution of the eight common fHbp variants was relatively 

constant over the five years with a maximum variation of 1.04% (variant 1.13) to 5.2% 

(variant 15) of the total characterised group B cases. Fig. 3-10 shows the proportional 

changes in these eight variants among typed group B cases (n=2709) over the five years 

studied. Overall, the non-culture fHbp peptide distribution was similar to that seen 

among the isolates; however, consistent variation in the proportional distribution 

(across all five years) of three of the eight predominant variants (1.15, 2.19 and 3.47) 

was observed. Variants 2.19 and 3.47 were found more among the isolates than non-

culture strains (Fig. 3-10), however, only the differences among strains harbouring 2.19 

reached statistical significance (calendar year-adjusted Cochran-Mantel-Haenszel Test, 

P=0.013).  
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 Figure 3-10: The proportion of culture or non-culture typed group B strains from each calendar year which are represented by eight common fHbp variants.  
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Peptide 1.15 was significantly more common among group B non-culture cases than 

isolates (calendar year-adjusted Cochran-Mantel-Haenszel Test, P=0.000017).  

Stratification and analysis of the data by patient age groups revealed that these 

significant differences were restricted to those aged 16-24 years or 25-59 years (one-

sided Fisher’s exact tests, P= 0.007 and P= 0.049, respectively). Only characterised 

cases which had a known patient age were included (n=2703).  

The peptide differences between culture and non-culture cases may be the result of 

features that are inherent to a subset of strains. Figure 3-11 shows the distribution of 

fHbp peptide variants among English and Welsh isolates received over six 

epidemiological years. The majority of the fHbp variants largely clustered within a 

single CC/cluster. Of the 252 isolates harbouring fHbp 1.15, 231 (91.7%) belonged to 

the ST-269 cluster. Isolates with peptide 2.19 were largely split between the ST-41/44 

complex (27.6%) and the ST-275 cluster (51.6%). 
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Figure 3-11: The distribution of fHbp variants among English and Welsh isolates by CC. 
Isolates received in 2007/08, 2010/11, 2011/12, 2012/13, 2013/14 and 2014/15 
epidemiological years were included (n=2919). The ST-269 complex was divided into 
two subclusters: the ST-269 and ST-275 clusters. ‘Singletons’ refers to isolates with STs 
that are not part of a defined CC. 

  

Figure 3-11: The distribution of fHbp variants among English and Welsh isolates by CC. 
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3.2.4 Representativeness of group B isolates 

To assess how representative group B isolates are of group B disease as a whole (i.e. 

both cultured isolates and non-culture strains), a comparison of fHbp distribution 

among isolates and all cases combined was performed across different patient age 

groups.  

Figure 3-12 illustrates the proportions of group B isolates and all cases represented by 

each of the common fHbp variants. The largest differences between isolates and all 

cases were observed for fHbp 1.15, with this variant representing 6.0% and 4.1% more 

of all cases than isolates alone within the 16-24 years and 5-15 years age groups, 

respectively. For all other variants and age groups, <3% differences were observed 

between isolates and all cases combined. When all ages were combined, the profile of 

group B isolates and all group B cases were very similar with no major differences other 

than that of variant 1.15. 
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Figure 3-12: The representativeness of group B isolates amongst all typed group B 
strains in different age groups. Each bar represents the proportion of common fHbp 
variants within typed group B isolates (Cul, n=1374) and the corresponding proportions 
amongst all group B cases (culture and non-culture combined, n=2709) within the 
indicated age group or all ages.  

Figure 3-12: The representativeness of group B isolates amongst all typed group B 

strains in different age groups. 
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3.3 Whole genome sequencing from non-culture specimens 

Declaration: Much of the work described in the following section was published in 
Clark et al., 2017 and parts of the following paragraphs have been amended from this 
publication. This article was written solely by me and all words used are my own. 
 

3.3.1 Specimen selection 

The ten clinical specimens selected to evaluate the SureSelectXT Target Enrichment 

System as well as the MLST information of the corresponding isolates are listed in 

Table 3-7. The Ct values of the specimens ranged from 20-39. The meningococcal DNA 

concentrations of the specimens were calculated using the equation: 

 

y = 2x107e-0.589x where Y equals the DNA concentration and x equals the Ct value. (Refer 

to section 2.8.2) 

 

The estimated meningococcal DNA concentrations and corresponding total 

meningococcal DNA amounts are listed in Table 3-7 and ranged from 2 fg/µL to 153 

pg/µL. 
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 Table 3-7: Clinical specimens selected for evaluation of SureSelectXT system with corresponding clinical isolate information. Ta
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3.3.2 Genome coverage and depth of coverage of specimen-derived genomes 

Table 3-8 lists the results of aligning the sequencing reads of specimen-derived 

genomes against the human reference genome (Hg19) and against the corresponding 

meningococcal pseudo-reference consensus.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



118 

 

 Table 3-8: Results for seq uencing 

of specimen-derived genomes and read alignment against human and meningococcal references. 
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The proportion of reads aligning to the meningococcal reference ranged from 0.1% to 

64.1%. The genome coverage of each samples ranged from 7.2% to 98.6%. The median 

depth of coverage varied from 0x to 254x. 

All but two of the ten genomes yielded >92% genome coverage and ≥10x median 

depth. Interestingly, for four of these eight high coverage specimens, <10% of the 

sequencing reads aligned to the meningococcal reference. Genome coverage values 

correlated positively with the estimated meningococcal DNA amount within the 

specimens, indeed all of the specimens with high genome coverage and depth 

contained an estimated ≥100 pg of meningococcal DNA (Table 3-8).   

3.3.3 Gene-by-gene comparison of isolate and specimen-derived genomes 

Table 3-9 contains meta-data on the paired (isolate and non-culture) genomes as well 

as the extracted typing data that are commonly used by reference laboratories. Of the 

ten specimen genomes, two did not yield recognisable meningococcal loci. Specimen 

M15 890512 was not accepted for submission to PubMLST (lowest DNA amount, 423 

fg) and none of the indexed loci were identified within the genome of specimen M15 

890382. The remaining eight specimens yielded genomes of acceptable quality with 

designated allele data for most of the loci of interest. When compared to the isolate 

genomes, the mean number of contigs of the specimen-derived genomes was 

substantially higher (1314 vs. 342) and among the eight acceptable genomes, the 

cumulative contig length was higher than for the corresponding isolate. This most likely 

indicates the presence of additional DNA sequences (host or contaminating bacteria) 

within the assembly.  
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Table 3-9: Genomic properties of specimen and isolate-derived meningococcal genomes and allelic data fo r common typing targets. 
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The eight acceptable specimen genomes produced allele IDs congruent with the 

corresponding isolate genomes at all of the characterised loci of interest. Whilst four of 

the eight acceptable specimen genomes yielded complete typing data, the remaining 

five genomes were missing data for at least one antigen and/or MLST loci (Table 3-9). A 

correlation could be observed between the estimated DNA amount within the 

specimen and the coverage of the loci of interest. Those specimen genomes that 

featured missing data all had predicted DNA amounts of <500 pg.  

Following the expanded genome comparison at 2,652 indexed NEIS loci, substantial 

variation in the number of NEIS loci covered by both paired genomes in each case 

(Table 3-9). Between 945 and 1780 NEIS loci were present and complete in both 

genomes. The proportions of these that were discrepant were small, varying from 

0.11% to 1.16%. The discrepant loci for each genome pair are listed in Appendix VI.  

Of the genes with multiple nucleotide differences between paired genomes, all but one 

exhibited evidence of paralogy and/or produced significant additional hits during BLAST 

searches of complete meningococcal genomes. For the remaining gene, NEIS0534 

(rpsP), four nucleotide differences were observed between the two genomes 

(specimen M15 908607 and isolate M15 240270). The four synonymous differences 

were within a 28bp region in the first half of the gene. BLAST searches of human 

genomes with NCBI Genbank yielded no significant hits.   
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3.3.4 Predicted utility of SureSelect XT system for characterisation of non-culture 

cases confirmed in England and Wales. 

These data indicate that specimens containing ≥100 pg of meningococcal DNA are likely 

to yield genomes of high coverage and those with ≥500 pg of available target DNA 

appear to provide complete common typing data. To predict the proportion of non-

culture cases confirmed by PHE MRU that contain sufficient target DNA, the 

hypothetical DNA amount within specimens over a wide range of ctrA-specific Ct values 

(19 to 40) and possible sample volumes was estimated (Table 3-10). The predicted 

likelihood of attaining an acceptable genome using the SureSelect XT system was 

determined in each case. 

These predictions indicate that specimens producing Ct values >30 are unlikely to 

produce a genome of acceptable quality at any specimen volume (maximum extraction 

volume: 300 µL). Specimens generating Ct values ≤26 were estimated to yield 

acceptable genomes from volumes down to only 25 µL. Those with Ct values of ≤23 

contain at least 500 pg and would be likely to yield better quality genomes (more 

complete loci). Between Ct values of 26 and 31, the likelihood of producing an 

acceptable genome is determined by the volume of sample available (Table 3-10).  

From January 2016 to December 2016, PHE MRU confirmed 336 non-culture cases. As 

some cases yielded multiple specimens, the total number of PCR positive non-culture 

specimens was 495. Of all the PCR positive non-culture specimens, 54.5% (270/495) 

produced a Ct value of >30 and are, therefore, unlikely to generate an acceptable 

genome. After removal of duplicate specimens and selection of those with the lowest 

Ct value (i.e. one specimen per case), 156/336 (46.4%) produced Ct values of >30. 

Approximately 28.3% (n=95) and 13.1% (n=44) produced Ct values of ≤26 and ≤23, 

respectively. There were 85 non-culture cases for which the most concentrated 

specimen produced Ct values from 27 to 30 (25.3%) and so the likelihood of successful 

WGS would be dependent on remaining specimen volume.   
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Table 3-10: Estimated meningococcal DNA load of non-culture specimens and predicted outcome of non-culture WGS. 
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3.4 Transfer of the MEASURE Assay 

3.4.1 Assessing killing effectiveness of 1% PFA/PBS 

During the MEASURE assay, PFA/PBS is used to fix meningococcal cells prior to staining 

(McNeil et al., 2018). This process is important to ensure the cells are non-viable and 

that the biological risk associated with meningococcal cultures is eliminated. The 

original MEASURE protocol specified that the cells were incubated in PFA/PBS for at 

least ten minutes. As part of the transfer of the assay to PHE MRU, an assessment of 

the ability of PFA/PBS to kill the meningococcal cultures was performed. 

The initial killing assessment involved testing four strains with three different PFA/PBS 

batches using the “dilution” method (refer to 2.12.1) at four time points: 15 minutes, 

30 minutes, 45 minutes and 60 minutes. The initial test (using batch PFA007) showed 

survival of three of four strains after 45 minutes incubation and one strain survived up 

to 60 minutes (Table 3-11). Control plates (incubated in PBS without PFA) showed 

confluent growth. 

To confirm the results, the test was repeated using a second PFA/PBS batch (PFA008) 

for up to 80 minutes. All four strains survived up to forty minutes incubation. Two 

strains survived for 60 minutes and M01 240070 survived for 80 minutes (Table 3-12). 

Control plates showed confluent growth. To ensure these results were not due to a 

defective 16% PFA batch, a new PFA/PBS batch (PFA009) was prepared from a different 

16% PFA batch. Two of the four previously used strains were tested against PFA009 and 

were both shown to tolerate 30 minutes (Table 3-13). M01 240070 was again the most 

tolerant and survived 60 minutes in the new batch. Control plates showed confluent 

growth. 
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Table 3-11: Meningococcal growth following up to 60 minutes incubation in 1% PFA. 

Table 3-12: Meningococcal growth following up to 80 minutes incubation in second 1% PFA batch. 

Table 3-13: Meningococcal growth following up to 60 minutes incubation in third 1% PFA batch. 
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After the initial results, changes were made to the assessment methodology in order to 

increase sensitivity. The next assessment involved significantly extended time points 

including overnight incubation (≥16 hours). Using the newly-developed centrifugation 

method (refer to 2.12.2), the two strains tested exhibited survival after 4 hours 

incubation in PFA/PBS (Table 3-14). Control plates showed confluent growth. 

Table 3-14: Meningococcal growth following up to 20 hours incubation in PFA011. No 
growth was observed at 16 or 20 hours time points.  

    Number of colonies after x hours in 1% PFA 

Isolate ID 
1% PFA 
Batch 

3 hours 4 hours 16 hours 20 hours 

M01 
240007 

PFA011 
~300 ~200 0 0 

M01 
240070 

~300 ~200 0 0 

Table 3-14: Meningococcal growth following up to 20 hours incubation in PFA011. 

Following overnight incubation at 16 and 20 hours, no growth was observed for either 

strain. The overnight assessment (16 hours incubation) was repeated with six 

additional, diverse strains using two additional PFA/PBS batches (Table 3-15). Whilst 

one PFA/PBS batch killed all six strains (PFA012), the other (PFA013) failed to kill all but 

one strain after 16 hours. Control plates showed confluent growth. 
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Table 3-15: Meningococcal growth following 16 hours incubation in 
PFA012 and PFA013. No growth was observed after 16 hours in PFA012 
for any strain; however six strains survived 16 hours in PFA013. 

Isolate ID 1% PFA Batch 
Number of colonies after 

16 hours in 1% PFA 

M15 240133 
PFA012 0 

PFA013 35 

M04 240731 
PFA012 0 

PFA013 ~200 

M05 240300  
PFA012 0 

PFA013 0 

M14 240606 
PFA012 0 

PFA013 5 

M15 240465 
PFA012 0 

PFA013 5 

M14 240616 
PFA012 0 

PFA013 30 

M15 240098 
PFA012 0 

PFA013 ~200 

Table 3-15: Meningococcal growth following 16 hours incubation in PFA012 and PFA013. 

To confirm these results and determine whether PFA013 may be a defective batch, the 

two most tolerant strains from the preceding assessment were tested once again 

against PFA013 as well as five new batches, PFA014 to PFA018. After 16 hours, PFA013 

once again failed to kill both strains, however, no growth was observed after incubation 

in any of the five new PFA/PBS batches (Table 3-16). Control plates showed confluent 

growth. 
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Table 3-16: Meningococcal growth following 16 hours in five newly-prepared PFA/PBS 
batches. All PFA batches but PFA013 killed both strains after 16 hours incubation. 

Isolate ID 1% PFA Batch 
Number of colonies after 16 

hours in 1% PFA 

M04 240731 

PFA013 3 

PFA014 0 

PFA015 0 

PFA016 0 

PFA017 0 

PFA018 0 

M15 240098 

PFA013 23 

PFA014 0 

PFA015 0 

PFA016 0 

PFA017 0 

PFA018 0 

Table 3-16: Meningococcal growth following 16 hours in five newly-prepared PFA batches. 

Finally, in order to determine the shelf life of the PFA/PBS, selected batches were 

tested after different intervals. Table 3-17 shows the results of three batches tested 

following 11 weeks storage at 4⁰C and one batch 21 weeks after preparation. All 

batches were effective against both strains tested after 16 hours incubation. Control 

plates showed confluent growth. These results suggest that PFA/PBS batches are likely 

to retain killing effectiveness after at least 21 weeks of storage at 4⁰C. 

The findings of this killing assessment resulted in changes being made to the MEASURE 

protocol in order to accommodate an overnight incubation step (≥16 hours) prior to 

antibody staining of fixed meningococcal cells. Whilst these changes altered the days 

on which certain stages of the assay were performed, no further alterations to the 

protocol were made. The new assay protocol was successfully re-validated by the assay 

developers and no significant impact on the results was observed following 

introduction of the overnight incubation (data not available).  
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Table 3-17: Meningococcal growth following 16 hours in 11 week-old or 21 week-old 
PFA/PBS. No growth was recorded for either strain after 16 hours in any of the PFA 
batches. 

Isolate ID 1% PFA Batch 
Number of colonies after 

16 hours in 1% PFA 

M04 240731 

PFA016* 0 

PFA017* 0 

PFA018* 0 

PFA019# 0 

M15 240098 

PFA016* 0 

PFA017* 0 

PFA018* 0 

PFA019# 0 

* 11-weeks since preparation, # 21-weeks since preparation 

Table 3-17: Meningococcal growth following 16 hours in 11 week-old or 21 week-old 1% PFA. 

3.4.2 Assessing the impact of agar type used during production of GC glycerol 

broth 

During the set-up of the assay, it quickly became apparent that the GC agar used for 

initial cultivation of the organisms was not sensitive enough to support sufficient 

growth unless a highly-concentrated inoculum was used. As such, inoculating the GC 

agar plates directly from microbank beads was not possible. Meningococcal strains had 

to be prepared in GC glycerol broths prior to testing. In the assay, the organism is 

grown overnight on agar prior to preparation of the GC glycerol broths. Due to the 

greater financial cost and diameter of the GC agar, using CBA for this step was deemed 

preferable. To assess any potential impact of using CBA as opposed to GC agar, a 

comparison of MEASURE MFI results between strains grown from GC glycerol broths 

produced using the different agars was performed.  

Nine control strains were tested using both GC glycerol broth types using the finalised 

MEASURE protocol. For the GC glycerol broths produced using GC agar, ten MFI values 

were generated over the course of the assay transfer. Only two MFI results were 

generated for each of the GC glycerol broths grown from CBA. The results are shown in 

the Figure 3-13. 
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Figure 3-13: Mean MEASURE MFI values for nine strains when the GC glycerol broth was produced from overnight grown on GC and CBA. 
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The mean MFI results were very similar between the GC glycerol broths produced using 

either agar type with overlapping 95% confidence intervals for all strains. The sample 

size was, however, low and so it is difficult to accurately assess the impact of this 

change. 

3.4.3 Inter-laboratory comparison of MEASURE controls 

A comparison of MEASURE MFI results generated between PHE MRU and a 

collaborating institution was performed. Seven control strains were tested six times in 

duplicate, thus generating twelve MFI values (Table 3-18). 

 

Table 3-18: MFI values, means and 95% confidence intervals (CI) for strains tested using 
MEASURE assay at PHE MRU. The MFI values varied between strains but were 
consistent across all replicates. 

  
Strain ID 

PMB 
1135 

PMB 
1745 

PMB 
2058 

PMB 
2802 

PMB 
3242 

PMB 
3453 

PMB 
3536 

1 2602 7242 1841 57694 3111 712 8081 

2 2400 6515 1874 56885 3127 654 7329 

3 2878 8075 2304 38596 3010 648 6742 

4 2488 8940 2423 32653 2861 639 7172 

5 2785 7472 2391 50464 2784 560 10543 

6 2414 7295 2194 46025 2653 612 10823 

7 2353 7133 2523 23291 2896 624 5179 

8 2326 6389 2282 26628 3700 703 4962 

9 2230 6967 2578 24921 3672 420 5208 

10 2394 7286 2799 23811 2893 524 5423 

11 2233 6914 2201 22461 3365 652 4926 

12 2254 6646 2225 23351 3358 414 5138 

Mean 2446.4 7239.5 2302.9 35565.0 3119.2 596.8 6793.8 

95% 
CI 

2312.9 - 
2579.9 

6792.6 - 
7686.4 

 2129.6 
-2476.2 

26794.1 - 
44335.9 

2903.3 - 
3335.1 

534.0 - 
659.7 

5453.3 - 
8134.4 

 

Table 3-18: MFI values, means and 95% confidence intervals (CI) for strains tested using 

MEASURE assay at PHE MRU. 
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Mean MFI values varied widely between strains from 597 (PMB3453) to 35,565 

(PMB2802). Within strains, the values were quite consistent, however, only PMB2058 

was normally distributed around the mean.  

Figure 3-14 illustrates the comparison of the data generated at PHE MRU with the 

equivalent data generated in the collaborating laboratory. The data from the 

collaborators were generated over 24 runs (96 data points), by three operators and 

using two cytometers (both BD Accuri C6). Whilst the median values were reasonably 

similar for each strain, those generated at PHE MRU were higher than those from the 

collaborating laboratory across all seven strains. Furthermore, all but one of the strains 

showed statistically significant differences between the laboratories (Mann-Whitney 

test, p<0.011). The strain producing congruent inter-laboratory values, PMB3453, was 

the lowest expressing strain. When commercial phycoerythrin (PE) reagent beads 

(Bangs Laboratory Inc., US) were used to assess and compare cytometer performance, 

the cytometer at PHE MRU generated mean MFI values that were 12% higher than 

those at the collaborating laboratory (data not available).  
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Figure 3-14: Box and whisker plots showing comparison of MEASURE results between 
PHE MRU and a collaborating laboratory (Lab 1) for seven control strains. The upper 
and lower box limits indicate the 75% and 25% quartiles, respectively, whilst the central 
line denotes the median values in each case. The whiskers illustrate the maximum and 
minimum values. 

 

Figure 3-14: Box and whisker plots showing comparison of MEASURE results between PHE MRU and a collaborating laboratory for 

seven control strains. 
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4.0 DISCUSSION 

Since 2012, two protein-based group B meningococcal vaccines have been licenced for 

use in Europe and beyond. One of these vaccines, 4CMenB, was introduced into the UK 

national infant immunisation schedule in late 2015 alongside the commencement of an 

Enhanced Surveillance programme in order to assess the impact of this intervention. 

Key to this programme, PHE MRU performs strain characterisation on submitted clinical 

isolates and residual meningococcal DNA from within clinical specimens. Assessing the 

strain coverage of these vaccines is a large part for this characterisation and the work 

described herein involved the development and/or assessment of new assays which 

will aid ongoing strain coverage assessments of 4CMenB and future assessments of 

other protein-based vaccines. 

4.1 Development and validation of fHbp PCR sequencing assay 

To facilitate the development of an fHbp nested PCR assay, existing fHbp primers were 

assessed to determine their suitability for use in the assay. One set of existing primers 

(1869-2F and 1871Ralt) were determined to be suitably conserved and had previously 

been shown to be effective in studies of fHbp distribution in meningococci and the 

presence of fHbp in N. lactamica (Lucidarme et al., 2013a, 2011a).  

Two new PCR primers, fHbpRd2F and fHbpRd2R, were designed for the second PCR 

round of the nested protocol. Optimisation experiments using genomic DNA as a 

template (i.e. not nested PCR product) showed positive amplification at a wide range of 

annealing temperatures (51-63 °C). A very small amount of non-specific product was 

visible on the gel at all temperatures tested, however the use of a nested protocol may 

help to reduce these products by increasing the specificity. Similarly, using different 

primers for sequencing should help prevent any impact on the sequencing data. Whilst 

the highest annealing temperature (63 °C) was selected for the standard PCR protocol, 

the ability to use a lower annealing temperature maybe useful in future in order to 

compensate for any primer-binding site mismatches. 

After testing a panel of 96 diverse clinical isolate/specimen pairs, all isolates were 

successfully amplified using the round one primers. An fHbpRd2R binding site 
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mismatch in one of the 96 isolates prevented amplification using the round two 

primers (not nested). This mismatch was found to be very uncommon among invasive 

meningococci within the MRF MGL, but was observed among four of the sixteen N. 

lactamica genomes studied. The mismatch could conceivably become more common 

due to natural fluctuation in strain distribution or horizontal gene transfer amongst 

Neisseria strains. Interestingly, however, the use of a nested PCR protocol allowed 

amplification of the second round product. The precise mechanism through which the 

primer binding site mismatch was countered was not determined, but it is 

hypothesised that the greater amount of DNA template during round two of a nested 

protocol (i.e. round one product compared to genomic DNA template during a single 

PCR) may increase the chances of semi-complementary binding of the mismatched 

primers during the early PCR cycles. The resultant products would feature the exact 

primer sequence, allowing efficient amplification in the subsequent cycles. For this 

reason, fHbpRd2R was deemed acceptable for use in the assay. The use of a nested 

protocol may also compensate for any other primer mismatches in future. 

Upon sequencing of the amplified extracts, two of the isolate/sample pairs had fHbp 

alleles that were discrepant at one base pair. Re-amplification and sequencing of fHbp 

from the clinical specimen extracts yielded the matching alleles indicating that the 

initial mismatch was due to a PCR error. These findings suggest that samples that yield 

novel fHbp alleles, especially those which are only one base pair different from an 

indexed allele, should be re-amplified and sequenced in order to prevent false alleles 

being included in the PubMLST database. 

In order to assess the sensitivity of the newly-developed assay, a panel of serially 

diluted DNA extracts from diverse isolates was tested using the finalised nested 

protocol. Using the standard 10 µL of DNA template in a 50 µL round one reaction, the 

nested assay successfully amplified extracts down to an estimated meningococcal DNA 

concentration of 600 ag/µL. The sensitivity could be increased to a DNA concentration 

of ~6 ag/µL in some cases by using 20 µL of extract in a 100 µL reaction.  

This sensitivity level was then correlated to the Ct values generated using the ctrA-

specific Taqman® assay in order to predict the proportion of clinical specimens which 
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could be sufficiently typed. As the assay format had recently moved from duplex, wet-

mix assay to a quadruplex, lyophilised mix assay, the diluted extracts were tested using 

both. The lyophilised Taqman® assay exhibited lower sensitivity in relation to the wet 

mix assay, especially at lower DNA concentrations. This could be due to the differences 

in the sensitivities of the fluorophores used for the ctrA probes (6-FAM and LIZ for wet 

mix and lyophilised assay, respectively). For the lyophilised assay, the additional group 

B siaD target does, however, provide supplementary detection in the majority of cases 

(i.e. group B cases). The DNA extracts of one of the isolates produced consistently 

higher Ct values than the other isolates in both the wet and lyophilised assays. This is 

most likely due to an error during quantification and/or dilution. 

The results of the optimisation and Taqman® experiments suggest that using 5 µL or 10 

µL of DNA extract in round one of the nested assay should allow amplification of fHbp 

from samples that produced Ct values up to 41 using lyophilised Taqman® assay (~600 

ag/µL). In 2011/12, 98% of the non-culture samples received produced a Ct value of ≤41 

(unpublished data, PHE MRU). Using 20 µL of extract would increase the sensitivity 

further, and would theoretically allow amplification of some extracts that may have 

produced a negative ctrA result in the lyophilised assay (or Ct 42 using wet mix assay).  

Although using greater volume of extract slightly increases the sensitivity of the assay, 

the clinical specimens from which the DNA is extracted are in most cases 

unreplenishable. The extracts should, therefore, be conserved as much as possible for 

typing of other targets and/or future work. Using greater extract volume also involves 

using a greater total reaction volume which leads to increased reagent costs. For these 

reasons, 10 µL of extract in a 50 µL reaction volume was chosen for the finalised PCR 

round one protocol. Another way of conserving extract/reagents would be to restrict 

the use of a nested PCR to the weaker samples only. The validation data indicate that 

the template concentration that generates visible amplification after only a single PCR 

round (using 5 µL of extract) corresponds to a ctrA Ct value of ~30-32. It could, 

therefore, be suggested that those clinical extracts that produce Ct values of ≤32 

should be tested using 5 µL of extract in a non-nested fHbp PCR protocol.  
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It must be noted that these data are based on analyses of diluted purified 

meningococcal extracts and not clinical extracts which contain human DNA as well as 

potential PCR inhibitors which may impact the sensitivity of the Taqman® and/or fHbp 

typing assay. The true sensitivity of the assay could only be determined by testing a 

large number of clinical extracts. 

4.2 An analysis of fHbp peptide sub-variant distribution among non-

culture confirmed IMD cases: 2011-2015 

Following the development of a sensitive fHbp PCR sequencing assay, it was applied to 

clinical specimens from non-culture IMD cases confirmed over five calendar years 

(2011-2015). The total number of non-culture cases reduced between 2011 and 2015, 

which is consistent with the gradual reduction in group B cases observed in previous 

decade (Table 1-4). The increase in group W disease somewhat compensated for this 

reduction since 2012 and contributed to the small increase in total cases in 2015. The 

proportion of cases confirmed solely by molecular methods also reduced steadily 

between 2011 and 2015. This can largely be attributed to the increase of group W 

disease over this period, of which only a small proportion were confirmed by PCR. The 

disparity among group B cases and group W and Y cases with regards to method 

confirmation is attributed to the differences in patient age distribution between the 

strains (Ladhani et al., 2012a). It is hypothesised that among older patients with 

possible co-morbidities and/or non-specific symptoms (e.g. pneumonia and septic 

arthritis), meningococcal disease is less likely to be suspected by clinicians and, as a 

result, the rate of submission of clinical specimens for meningococcal PCR testing is 

much lower than for younger patients presenting with archetypal 

meningitic/septicaemic symptoms. This of course suggests there could be a substantial 

number of IMD cases within these older age groups that are escaping laboratory 

confirmation leading to an under-estimation of the total disease burden.  

In 2011, due to a relatively small proportion of DNA extracts available for testing, DNA 

from 89.1% of the specimens was manually re-extracted using the Qiagen Blood and 

Tissue kit. For subsequent years, however, changes in practices pertaining to the 

retention of the extracts within PHE MRU led to an increase in the number of extracts 
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available, negating the use of secondary DNA extraction. Over the five years, 93.7% of 

all non-culture cases had an extract available for testing and 85.2% were successfully 

characterised. This represents a substantial proportion of cases and provides a 

reasonable overview of fHbp distribution.  

The subfamily distribution of the fHbp variants varied significantly between strains of 

different capsular groups with almost all groups W and Y featuring subfamily A variants 

and two-thirds of group B strains harbouring variants of subfamily B. This is consistent 

with studies in other countries (Wang et al., 2011; Law et al., 2014). There was only 

slight variation in subfamily distribution between culture and non-culture strains within 

each group. There was substantial difference in subfamily distribution when all groups 

were combined, however, this is largely due to the differences in capsular groups 

between culture and non-culture (i.e. fewer group W and Y among non-culture strains). 

In terms of specific fHbp peptide variants, group W and Y strains were very 

homologous with the vast majority of all strains harbouring 2.22 or 2.25, respectively. 

This reflects the homogeneity of these strains in terms of CC distribution. The majority 

of group W isolates belonged to either ST-22 complex or ST-11 complex, whilst almost 

all of the group Y strains belong to ST-23 complex. Group B strains possessed a greater 

array of fHbp variants reflecting the greater diversity of these strains.  

After a comparison of group B isolates and non-culture strains, two of the eight 

commonly-observed variants were found to be consistently greater in one of the data 

sets than the other in all five calendar years. Variant 2.19 was significantly more 

common among isolates. The reason for the difference is not known, however, 

increased viability of the organism during infection and in vitro would explain this 

observation. As fHbp plays a key role in protecting the strain against the host 

complement system, it is conceivable that expression of a specific variant with high fH 

affinity could mediate such an increased viability. Although, a recent study of fHbp 

promoter regions found that strains harbouring variant 2 fHbp peptides are likely to 

share a common fHbp promoter clade which is associated with low surface expression 

(promoter clade V) (Biagini et al., 2016).  
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In contrast, fHbp 1.15 was found to be significantly more common among non-culture 

cases. This may indicate a lack of viability or an increased susceptibility to antimicrobial 

treatment. Unlike 2.19, which is associated with multiple common CCs, 1.15 was found 

almost exclusively among ST-269 cluster strains. This could suggest the presence of a 

characteristic unique to this population that is responsible for this pattern. In a recent 

study, variant 1.15 had a ten-fold lower affinity for fH than 1.1 and expression of 1.15 

was associated with lower growth in blood and plasma. It must be noted, however, that 

a correlation between fH affinity and meningococcal survival in blood, plasma or serum 

was not clearly demonstrated (Dunphy et al., 2011; Seib et al., 2011). Another recent 

study revealed that ST-269 cluster strains lacks NalP, a serine protease autotransporter 

which is prevalent in most other predominant group B lineages (Oldfield et al., 2013). 

Among a large collection of both carriage and invasive isolates, the nalP gene had been 

deleted in all ST-269 cluster isolates, whilst such deletion was only observed 

sporadically in other group B strains. NalP has been shown to increase the survival of 

meningococci in serum by cleaving complement component 3 (C3), NHBA and 

Lactoferrin Binding Protein B from the membrane surface (Serruto et al., 2010; Roussel-

Jazédé et al., 2010; Del Tordello et al., 2014). It is conceivable therefore that the lack of 

NalP may therefore result in a lower growth and/or survival rates of invading ST-269 

cluster strains in vivo, reducing the likelihood of bacterial isolation. 

The difference between fHbp 1.15 prevalence among culture and non-culture was 

largely restricted to older children, adolescents and young adults. This is consistent 

with the hypothesis that ST-269 cluster strains are more susceptible to clearance, as 

individuals in these age groups are likely to have better-developed immune responses 

than infants and young children. The age-specific pattern may also be due to strain-

independent factors such as differences in disease presentation which could possibly 

affect diagnostic practices (as suggested for group W and Y strains).  

The final analysis assessed the representativeness of group B isolates among all group B 

strains. The proportions of cases represented by the common fHbp variants were very 

similar between isolates and all cases, especially when looking at all ages combined. 

Within specific age groups, the aforementioned differences in subvariant 1.15 

prevalence were notable. These results suggest that, overall, cultured group B isolates 



140 

 

can be relied upon to provide a representative sample of all English and Welsh invasive 

group B strains. Culture-based assessment of vaccine antigens such as those 

undertaken in the MATS and MEASURE assays are, therefore, likely to provide accurate 

estimations of vaccine strain coverage. It must be acknowledged, however, that this 

study only focussed on one sub-capsular antigen and that currently unseen differences 

between culture and non-culture strains may be revealed following more expansive 

characterisation, such as whole genome sequencing.  

4.3 DNA enrichment and genomic analysis of non-culture IMD 

specimens 

Despite increasing practicability in recent years, whole genome analysis of 

meningococcal strains has largely been restricted to cultured isolates (Tagini and Greub, 

2017). The ability to sequence meningococcal genomes directly from clinical specimens 

has been hindered by low target DNA content and the presence of non-target DNA, 

primarily human host DNA. As up to a half of IMD cases in England and Wales are 

confirmed without strain isolation, this restriction severely limits the extent of 

meningococcal strain characterisation in England and Wales as a whole. 

Whole genome analysis of non-culture cases would support the enhanced surveillance 

of vaccine antigens and investigations into potential vaccine failures. In recently 

studies, genomic data have been used to predict vaccine antigenic expression levels, 

identify newly-emerging invasive sub-lineages and provide epidemiological links 

between invasive strains during outbreaks (Chatt et al., 2014; Tzeng et al., 2017; Biagini 

et al., 2016; Lucidarme et al., 2015). The DNA within these specimens represents a 

genetic ‘snap shot’ mid-infection. As such, performing WGS on these materials may 

improve our understanding of meningococcal virulence. 

Target specific oligonucleotides have been used to enrich DNA from a wide array of 

sample types in a number of diverse fields including environmental microbiology and 

archaeology (Carpenter et al., 2013; Vezzulli et al., 2017). The Agilent SureSelectXT 

system has been previously used to sequence the genomes of herpesvirus, norovirus 

Chlamydia trachomatis and Mycobacterium tuberculosis directly from clinical 

specimens (Nimmo et al., 2017; Depledge et al., 2011; Christiansen et al., 2014; Brown 
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et al., 2015, 2016). In this study, eight of the ten IMD specimens selected yielded draft 

genomes of acceptable coverage and depth. For the remaining two specimens, the lack 

of genomic data generated is highly likely to be due to a dearth of meningococcal DNA. 

Other studies using the SureSelectXT system on bacterial targets have been successful, 

however, the success rate is difficult to compare as different targets have widely 

varying genome sizes (e.g. C. trachomatis has genome size of ~1 Mbp whilst M. 

tuberculosis has a genome size of ~4.4 Mbp) and the samples from which the DNA was 

extracted varied (e.g. vaginal swabs, sputum, blood etc.) (Christiansen et al., 2014; 

Brown et al., 2015; Tagini and Greub, 2017).  

After comparing the specimen-derived genomes to the genomes of corresponding 

isolates, the isolate-derived genomes contained fewer contigs and, in most cases, a 

greater number of annotated genes. This finding generally indicates that the isolate 

genomes are of relatively better quality, although this is somewhat unsurprising given 

the source. The eight, acceptable specimen-derived genomes featured a greater 

cumulative contig length in comparison to the corresponding isolates. This suggests 

that additional, non-target sequences (human and/or contaminating DNA) were 

included in the assembly despite the enrichment and screening of the reads for human 

sequences.  

Comparisons of the typing data extracted from the paired specimen/isolate genomes 

revealed perfect agreement in terms of the allelic IDs of commonly-used typing loci, 

although some genes were incomplete in genomes derived from specimens with <500 

pg of meningococcal DNA. Among a wider panel of NEIS loci (n=2652), only a small 

number of discrepant genes were identified, which illustrates the accuracy and 

reliability of the enrichment process. Most of the discrepancies could be explained as 

mis-assembly of the reads due to paralogous sequences. For one discrepant gene, rpsP 

(NEIS0534), no evidence of paralogy/presence of similar sequences could be identified. 

All four nucleotide differences were synonymous (therefore unlikely be influential) and 

within a short region of the gene. Thus far, an explanation for these differences is not 

forthcoming; however, characterisation of more specimen-derived genomes in future 

may yield an explanation. 
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Whilst the RNA bait sequences were generated from a large number of genomes 

(n=2975), N. meningitidis exhibits high homologous recombination rates, which may 

hinder the cross-reactivity of the baits and less common invasive strains or carriage 

strains (Vos and Didelot, 2009). In this study, these RNA baits appeared to be effective 

at enriching DNA from diverse group B strains, however, the wide array of DNA 

amounts among the selected specimens made it difficult to compare the hybridisation 

efficiency among different strains. In addition, the isolate and specimen genomes were 

produced at different times, using different assembly/sequencing methods. This is a 

limitation of the comparison and makes it difficult to accurately assess the influence of 

DNA target enrichment on sequence quality.  

The results generated from this small study suggest that specimens containing ≥100pg 

of meningococcal DNA are likely to yield genomes of sufficient quality. Based on these 

data, it was estimated that 28.3 to 53.6% of the non-culture IMD cases confirmed by 

PHE MRU could be whole genome sequenced using this technique. Whilst this would 

represent a significant increase in the total proportion of E&W invasive meningococcal 

strains from which genomic data are available, it is likely that approximately one 

quarter of all strains from laboratory confirmed IMD cases would remain largely 

uncharacterised. It must, however, be noted that this study represents a first attempt. 

Future optimisation of DNA extraction protocols and/or pre-enrichment depletion of 

non-target DNA have been shown to improve genome quality (Brown et al., 2015). 

Such optimisations may also increase the proportion of non-culture IMD cases which 

can be whole genome sequenced. 

One of the most important factors influencing the utility of new techniques/assays is 

the financial cost and, in this case, the use of the SureSelectXT system is likely to be 2-

3x the cost per strain than the corresponding protocols for whole genome sequencing 

from cultured isolate DNA. Whilst this does represent a significant outlay and may 

preclude the application of this technique to all eligible non-culture cases, when 

comparing this cost to the current non-culture characterisation activities (i.e. fHbp and 

PorA VR non-culture genotyping), the SureSelectXT system is likely to be substantially 

more efficient in terms of the number of loci characterised per pound sterling and per 

microlitre of sample/extract. Although reagent costs are substantially higher than for 
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traditional PCR and Sanger sequencing, consolidation of molecular characterisation to 

a single protocol would prove to be a significant saving in terms of laboratory time and 

staff costs. Nonetheless, the cost may still be too high at present to justify WGS of all 

non-culture cases. As such, analyses of specific samples of interest (e.g. outbreak 

samples) may be more practical. 

4.4 Assessment and transfer of the MEASURE assay 

The MEASURE assay is a flow cytometry-based assay used to quantify the amount of 

surface-expressed fHbp on fixed meningococcal cells. The assay was developed and 

validated in a collaborating laboratory and was transferred to the PHE MRU for 

independent assessment of UK and European meningococcal strains. Previous studies 

have shown a strong positive correlation between MEASURE MFI and the SBA activity 

of rLP2086 antisera (Jiang et al., 2010; McNeil et al., 2018).  

The assay involves the cultivation of relatively large volumes of liquid meningococcal 

culture, which represents a significant risk to the operator and other laboratory staff. 

As part of the transfer, a comprehensive risk assessment was performed. One of the 

key elements of the risk assessment was to confirm that the fixing method utilising 1% 

PFA/PBS was sufficient to render the cultivated cells non-viable and eliminate the 

biological risk further downstream in the assay. PFA is a commonly used fixative and 

has advantages over other fixatives (e.g. solubility, cost, protein cross-linking). The 

results of a number of experiments indicated that the original assay protocol, involving 

incubation of cells in PFA/PBS for at least 10 minutes, was grossly insufficient to render 

the cells non-viable.  

The collaborating laboratory indicated that the killing assessments initially carried out 

relied on GC agar to test for meningococcal survival (personal correspondence). It was 

later confirmed that GC agar is significantly less sensitive at growing meningococci than 

blood-based agar. This is an effect that has been observed in previous studies which 

utilised GC-based agar (personal correspondence, Dr. Steve Gray PHE MRU). 

Using a sensitive recovery method, it was determined that some meningococcal strains 

can survive up to and possibly beyond four hours in PFA/PBS. The time points were 
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therefore extended (16 and 20 hours) to assess survival after an overnight PFA/PBS 

incubation. All nine of the diverse strains tested were non-viable after 16 hours using 

seven different PFA/PBS batches. Unfortunately, one batch, PFA013, was ineffective 

after 16 hours suggesting that PFA013 was a defective batch. The reason for this is 

unclear. Whilst unlikely, perhaps not all of the 16% PFA was added to the PBS diluent in 

error. Alternatively, the formaldehyde within the 16% ampoule could have polymerised 

and thus reducing the concentration of the solution. Whatever the cause, this result 

supports the adoption of a validation step to ensure the effectiveness of new 1% 

PFA/PBS batches prior to use. 

As a result of these experiments, the assay was altered to allow for an overnight (≥16 

hours) incubation. This necessitated assay re-validation by the collaborating laboratory. 

The re-validation confirmed that extension of the incubation duration does not impact 

on the results of the assay.  

Further validation activities included comparing the use of GC agar and CBA for 

production of GC glycerol broths. The use of GC glycerol broths was required as GC agar 

does not sufficiently support growth when inoculated directly from microbank beads. 

The limited tests perform indicated broad similarity between the final MEASURE MFI 

results when the GC glycerol broth was prepared by either agar. Whilst the sample size 

was small and further tests are required to confirm these findings, they suggest that 

culturing methods prior to assay day one do not influence fHbp expression. Previous 

work which was carried out in attempt to bridge the assay to using solid agar showed 

that changes to the agar during the MEASURE assay itself (assay day one) can influence 

fHbp expression values (Clark et al., 2013).  

Once the assay had been fully established within the laboratory, several preliminary 

runs were performed using seven control strains. The results for each strain appeared 

to be reasonably consistent over six assay runs; however, a comprehensive assessment 

of assay repeatability was not performed. 

Finally, a comparison of the assay results generated at PHE MRU and those produced 

by collaborating laboratory revealed similar but significantly different results for all but 

the low-expressing control strain (PMB3453). The PHE MRU generally produced higher 
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MFI values than the counterpart laboratory. These differences could be caused by a 

myriad of factors including variation among operators, reagents and/or equipment. 

Many of the assay-specific reagents (e.g. media and antibodies) were provided directly 

by the sponsor and attempts were made to ensure additional, non-supplied reagents 

(e.g. PBS, paraformaldehyde, BSA) are standardised as much as possible. It is, 

therefore, more likely that the differences were due to operator and/or equipment 

variation.  

In the MATS assay, reference strains are used to generate standard curves against 

which test strains are compared (Donnelly et al., 2010). Presumably, this internal 

comparator acts to reduce inter-operator and inter-laboratory variation. Indeed, such 

analyses have revealed high concordance between MATS results generated in multiple 

laboratories (Plikaytis et al., 2012). Despite the use of positive control strains, no such 

internal reference is used to calculate the readout in the MEASURE assay. The assay 

result is therefore more susceptible to variation that will inevitably occur as the assay is 

performed by different operators, using different equipment in different laboratories. 

In 2017, rLP2086 was licenced in Europe for use in those aged ≥10 years. Although it is 

not currently used routinely in the UK, it could be utilised in future to control outbreaks 

in adult populations (e.g. universities and colleges). In this circumstance, the MEASURE 

assay would provide a key indicator of its probable strain coverage. Consequently, any 

variation in the MEASURE readout as a result of operator/equipment changes could 

influence the likelihood of the vaccine being used. 

 

The MATS assay is also used to assess the level of fHbp expression. Although they both 

quantify fHbp expression, the MEASURE assay differs from the MATS assay in several 

important ways. The use of a cross-reactive monoclonal antibody in the MEASURE 

means that the expression values should be independent of the peptide variant being 

quantified, unlike MATS which uses polyclonal antibodies specific to the 4CMenB 

vaccine variant (1.1). Whilst the ability of MN86-994-11-1 to bind diverse fHbp variants 

has been illustrated in previous studies (and indeed in the current results), data on 

potential variation in affinity between different fHbp variants is limited. McNeil et al. 

(2018) found that the binding affinities of MN86-994-11-1 were quite consistent across 

eight diverse fHbp peptides representing different subfamilies (KD = 10-10 to 10-12), 
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however, it is conceivable that fHbp variants with significantly different MN86-994-11-1 

affinities could exist among the invasive population (McNeil et al., 2018). This study 

identified the key binding residues and assessed the sequence variation among this 

small number of fHbp peptides, however, a more comprehensive comparison of these 

residues among a much wider array of fHbp peptides (e.g. all peptides in PubMLST 

database) would be a relatively simple undertaking and would provide greater 

confidence in the consistency of MN86-994-11-1 and the MEASURE assay as a whole. 

Despite these uncertainties, using a monoclonal antibody in the MEASURE assay 

provides a more objective assessment of fHbp expression than the MATS, which is will 

only be relevant in the context of 4CMenB. The MEASURE is likely to be a very useful 

tool for assessing expression of variant groups 2 and 3 (which cannot be measured 

using MATS), elucidating the mechanisms of fHbp expression and monitoring changes 

in fHbp expression among predominant strains over time. 

The MEASURE differs from MATS in that it quantifies only surface-expressed fHbp, 

whilst the MATS quantifies total cellular fHbp protein. It could be argued that, because 

immune recognition relies upon surface expression, the MEASURE provides a more 

relevant measure of expression. The relationship between fHbp gene transcription, 

peptide translation and translocation to the bacterial surface has not been extensively 

studied. In 2016, Biagini et al. measured total fHbp protein levels among diverse strains 

using quantitative mass spectrometry. Using these values and a standard bacterial 

surface area value (derived from MC58), they calculated an estimated number and 

density of fHbp molecules on the surface, assuming fHbp is equally distributed. These 

calculations assumed that all fHbp was located on the cell surface, however, this was 

not confirmed. McNeil et al. (2018) used MEASURE and Western blotting to suggest 

that a MEASURE MFI of 1000 is equivalent to 30 pg of fHbp protein per μg of cellular 

protein, although this again does not provide a precise quantification of fHbp 

expressed on the surface (McNeil et al., 2018). It may be possible that, much like fHbp 

expression generally, the level of translocation of translated fHbp peptide to the 

surface varies between strains. If this is the case, flow cytometry-based assays like the 

MEASURE would provide a more relevant prediction of serum bactericidal responses. 
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4.5 Conclusions and further work 

The primary purpose of this work was to improve and expand the methods employed 

by the PHE MRU in order to characterise invasive meningococcal strains. In September 

2015, the 4CMenB sub-capsular meningococcal vaccine was introduced into the UK 

infant immunisation schedule. In order to assess the impact of the vaccine, an 

Enhanced Surveillance programme was launched which utilises many different 

characterisation methods (Parikh et al., 2017). Whole genome sequencing and MATS 

testing provide broad characterisation of meningococcal isolates and can accurately 

predict whether cultured strains are expected to be covered by the vaccine post-

implementation (Medini et al., 2015). For 40-50% of IMD cases, however, no isolate is 

obtained. Previously, characterisation of these strains was limited to genogrouping and 

geno-subtyping (PorA sequencing). As 4CMenB is not a polysaccharide-based vaccine, 

genogrouping provides no definitive indication of coverage. PorA sequencing does 

allow assessment of coverage of the OMV component, however, only 16% of E&W 

isolates in 2014/15 harboured the vaccine variant, P1.4 (Parikh et al., 2017). The 

development of the fHbp genotyping assay represented an expansion of the partial 

ability to assess 4CMenB coverage among non-culture strains, whilst providing an 

almost complete strain coverage prediction for rLP2086, which contains only fHbp. The 

ability to assess expression, however, is currently not possible without a viable isolate.  

Although, the PCR product amplified during the non-culture assay contains the 

complete intergenic region upstream of fHbp. As such, only minor changes to the 

sequencing protocol would be required in order to sequence this promoter as well as 

the coding region. The ability to accurately predict the level of fHbp surface expression 

directly from promoter sequences has not yet been convincingly demonstrated, 

however, strong correlations between specific promoter clades and high or low 

expression levels have been reported (Biagini et al., 2016). In the near future, it may be 

possible to make reliable predictions of fHbp expression without the need to test a 

viable isolate in vitro. This would allow comprehensive non-culture strain coverage 

predictions for fHbp, which will help to better assess 4CMenB going forward and 

provide more accurate predictions of rLP2086 coverage. 
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Much of the work has focussed on fHbp, however, the two other recombinant protein 

antigens (NadA and NHBA) are likely to offer protection, in particular NHBA which was 

predicted to be protective against 34% of E&W strains collected in 2014/15 (Parikh et 

al., 2017).  

Characterisation of these antigens among isolates is achieved using WGS and the 

development of WGS protocols for non-culture clinical samples represents a big step 

forward in terms of improving strain coverage assessments. The SureSelectXT system is 

currently predicted to be effective for up to 54% of non-culture cases, however, further 

optimisation is required. The column-based DNA extraction technique currently used 

has a maximum sample volume which restricts the amount of DNA which can be 

extracted. Investigations into alternative methods (e.g. bead-based methods) could 

improve the proportion of strains which can be tested.  

Other DNA enrichment techniques could also be investigated, including the generation 

of oligonucleotide baits in-house and hybridisation of native DNA fragments instead of 

DNA libraries (Tsangaras et al., 2014; Gasc and Peyret, 2017). The generation of baits 

in-house would likely reduce costs but could also allow the production of more specific 

baits by utilising the vast library of meningococcal DNA stored within PHE MRU (e.g. 

generation of baits specific to certain capsular groups). Enrichment of native, non-

fragmented DNA would allow for sequencing using platforms that produce longer read 

lengths, e.g. PacBio RSII (Nakano et al., 2017). Such technologies improve assembly of 

difficult regions (e.g. repeat motifs, paralogous loci), and could conceivably improve 

genome coverage in relation to sequencing of DNA libraries. Other techniques such as 

selective whole genome amplification (SWGA) could also be assessed (Clarke et al., 

2017). In SWGA, a set of small oligonucleotides are designed in silico and used in a 

multiple displacement amplification reaction in order to preferentially amplify target 

genomes in the presence of background genomes. It has been shown to be effective at 

amplifying DNA from mixed clinical samples in order to sequence M. tuberculosis and 

Plasmodium vivax with high genome coverage (Cowell et al., 2017; Clarke et al., 2017).  
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For now, however, comprehensive strain coverage assessments, especially those 

incorporating measurements of fHbp expression are limited to cultured meningococci. 

The analysis of fhbp variants among five years worth of non-culture samples did, 

however, indicate that isolates do provide a reasonable representative sample of all 

invasive strains, at least within capsular groups. Slight variation was observed in 

particular fHbp variants among culture and non-culture strains but whether these 

differences persist into the future remains to be seen. Non-culture fHbp genotyping 

continues to be performed routinely as part of the Enhanced Surveillance programme 

and future comparisons are likely to be made. 

In conclusion, the assays described in this thesis will help to improve the accuracy of 

post-licensure assessment of 4CMenB. Strain coverage represents a key aspect in 

determining vaccine effectiveness and impact and these activities will help to influence 

decisions on future utilisation of 4CMenB, as well as rLP2086 and future sub-capsular 

meningococcal vaccines. 
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Appendix I: The isolates used to determine the conservation of the 

fHbp primer sites and to identify prospective primer candidates. 
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Appendix II: Isolates used for fHbp PCR assay optimisation and the 

determination of the analytical sensitivity 

Isolate 
no. 

Isolate ID Group ST CC 
fHbp 
allele 

fHbp 
peptide 

1 *M08 240297 B 32 ST-32 complex 1 1 

2 M07 240954 C 491 ST-11 complex 10 10 

3 M07 241036 B 269 ST-269 complex 15 15 

4 *M07 241073 B 162 ST-162 complex 21 12 

5 *M07 240725 B 2080 ST-41/44 complex 348 109 

6 *M08 240113 B 213 ST-213 complex 30 30 

7 M08 240032 B 461 ST-461 complex 71 47 

*isolate used for primer optimisation 

 

Appendix III: eBURST and SplitsTree diagrams of fHbp PCR assay 

validation panel strains. 

 

All MLST profile data were downloaded from PubMLST on 30/12/2013. The annotated 

red dots on the diagrams indicate validation panel isolate STs. The eBURST diagrams 

represent seven common clonal complexes: A= ST-41/44 complex, B= ST-269 complex, 

C= ST-32 complex, D= ST-22 and ST-23 complexes, E= ST-213 complex and F= ST-60 

complex. According to PubMLST, ST-10281 is part of the ST-213 complex, however, in 

this analysis, there was no SLV linking ST-10281 to another member of this eBURST 

group. 

Four of the six ST-11 complex validation panel isolates were of ST-11. Ribosomal MLST 

analysis was, therefore, performed on ST-11 complex isolate genomes to produce a 

Neighbor-Net SplitsTree diagram (G). All ST-11 complex isolate genomes within the 

PubMLST database (n= 177) were analysed and the six validation isolates were 

highlighted in red on the tree. 
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Appendix IV: Validation panel of 96 isolates/clinical specimen pairs 

selected to approximate the strain diversity among invasive 

meningococci in England and Wales. 
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Appendix V: fHbp genotyping results for validation panel of 96 

isolates/clinical specimen pairs. 
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Appendix VI: Discrepant NEIS alleles among the specimen and 

isolate. 

 

 

 

 

Locus Product*
Allele in M15 

901648

Allele in M15 

240178

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0835 hypothetical protein 223 20 1 ND n/a

NEIS1901 (lgtB)
lacto-N-neotetraose biosynthesis glycosyl 

transferase
200 359 1 ND n/a

NEIS2580 hypothetical protein 20 166 1 ND n/a

NEIS2854
D12 class N6 adenine-specific DNA 

methyltransferase
8 1 1 ND n/a

NEIS0591 hypothetical protein 2 7 2 Partial additional hits (~230bp) in most Genbank genomes. n/a

NEIS0802 hypothetical protein 78 5 5
Paralogous in three Genbank genomes (alpha522, H44/76 and 

M01 240355). 
n/a

NEIS1452 hypothetical protein 1056 17 30 (indel) Partial additional hits (~100bp) in all Genbank genomes.
Repeated motif. Probable 

assembly artefact.

NEIS1900 (lgtE)
lacto-N-neotetraose biosynthesis glycosyl 

transferase
294 57 249

Two significant hits in all Genbank genomes. Homologous to NEIS 

1901 (lgtB).
n/a

Locus Product*
Allele in M15 

908607

Allele in M15 

240270

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0953 hypothetical protein 55 22 3 Paralog of NEIS1664. Two-three full hits in all Genbank genomes. n/a

NEIS1664 hypothetical protein 55 22 3 Paralog of NEIS0953. Two-three full hits in all Genbank genomes. n/a

NEIS0534 (rpsP) 30S ribosomal protein S16 4 22 4 Single hits in all Genbank genomes. No evidence of paralogy.
Encodes ribosomal subunit. Highly 

conserved.

NEIS1940 hypothetical protein 5 6 4 Paralogous in one Genbank genome (DE10444). n/a

Locus Product*
Allele in M15 

894870

Allele in M15 

240103

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0361 hypothetical protein 127 79;102 1 ND
Two identified alleles in isolate 

genome. Possibly paralogous

NEIS0957 hypothetical protein 23 15 1 ND n/a

NEIS1792 hypothetical protein 3 4 2 Two hits in one Genbank genome (alpha14) n/a

NEIS1958 hypothetical protein 5 139 9
Paralogous in four Genbank genomes plus small (115bp) matches 

in all.
n/a

Locus Product*
Allele in M15 

897440

Allele in M15 

240142

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0164 valyl-tRNA synthetase 1072 3 1 ND n/a

NEIS0276 hypothetical protein 95 21 1 ND n/a

NEIS0581 (galU) glucose 1-phosphate uridylyltransferase 420 10 1 ND n/a

NEIS0718 signal peptidase I 299 4 1 ND n/a

NEIS1702 hypothetical protein 18 60 1 ND n/a

NEIS0036 (pilT1) type IV pilus retraction ATPase PilT 562 14 2 Single hits in all Genbank genomes. No evidence of paralogy. n/a

NEIS2905 hypothetical protein 277 271 2 Partial additional hits (~100bp) in all Genbank genomes. n/a

NEIS2099 putative immunity protein 5 19 5
Paralogous in several Genbank genomes including H44/76 and 

MC58 (cc32).
n/a

NEIS2451 hypothetical protein 4 1 22 Paralog of NEIS2461. Multiple hits in several Genbank genomes. n/a

NEIS2461 hypothetical protein 1 4 22 Paralog of NEIS2451. Multiple hits in several Genbank genomes. n/a

NEIS1865 hypothetical protein 180 142 34 with indel Paralog of NEIS0027. Multiple hits in several Genbank genomes. n/a

Locus Product*
Allele in M15 

948231

Allele in M15 

240805

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0832 hypothetical protein 102 113 1 ND n/a

NEIS1020 hypothetical protein 1 10 1 ND n/a

NEIS1418 putative membrane peptidase 97 70 1 ND n/a

NEIS0453 hypothetical protein 67 5 5
Paralogous. Two full-sizes hits in many Genbank genomes 

including closest ref genome (M01 240355)
n/a

NEIS0213 (pglA) pilin glycosyltransferase 321 305 2 (indel) Single hits in all Genbank genomes. No evidence of paralogy. Poly-G tract. Probable PCR error.

NEIS1452 hypothetical protein 892 39 75 (indel) Partial additional hits (~100bp) in all Genbank genomes.
Repeated motif. Probable 

assembly artefact.

NEIS2409 hypothetical protein 30;52 62;65 up to 11
Paralogous. Two full-sizes hits in seven Genbank genomes 

including closest ref genome (M01 240355)
n/a

NEIS1214 transcription-repair coupling factor 166 985 234 (indel) Multiple partial additional hits in most Genbank genomes. n/a

Locus Product*
Allele in M15 

933165

Allele in M15 

240650

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0046 (rfbA)
glucose-1-phosphate 

thymidylyltransferase
38 148 1 ND n/a

NEIS1702 hypothetical protein 18 60 1 ND n/a

Locus Product*
Allele in M15 

906731

Allele in M15 

240240

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS1598 chorismate synthase 116 384 1 ND n/a

NEIS2580 hypothetical protein 59 68 1 ND n/a

NEIS0276 putative rotamase 193 315 9 (indel) Small additional hits (189bp) in some Genbank genomes.
Repeated motif. Probable 

assembly artefact.

Locus Product*
Allele in M15 

901404

Allele in M15 

240180

No. of nucleotide 

differences
Genbank BLAST result Comments

NEIS0966 phage-related protein 12 9 1 ND n/a

NEIS2789 hypothetical protein 40 41 1 ND n/a

NEIS0967 amidase 61;71 187
28 (187 vs 71) and 

8 (187 vs 61)

Two alleles assigned for specimen. Paralogous in several 

Genbank genomes. 
n/a

* as described on PubMLST ND= Only single difference. Genbank BLAST not performed


