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“How foolish is a man! He ruins the present while worrying about the future, but weeps

in the future by recalling the past!”

Ali ibn Abi Talib

“Acquire wisdom from the story of those who have already passed.”

Uthman ibn A↵an

“Do not be an arrogant scholar, for scholarship cannot subsist with arrogance.”

Umar ibn Khattab

“Run away from greatness and greatness will follow you.”

Abu Bakr ibn Siddiq

“The cure for ignorance is to question and; there is no beauty better than the intellect.”

Muhammad pbuh



Abstract

Advances in magnetic resonance imaging (MRI) and analysis techniques have improved

diagnosis and patient treatment pathways. Typically, image analysis requires substantial

technical and medical expertise and MR images can su↵er from artefacts, echo and

intensity inhomogeneity due to gradient pulse eddy currents and inherent e↵ects of pulse

radiation on MRI radio frequency (RF) coils that complicates the analysis. Processing

and analysing serial sections of MRI scans to measure tissue volume is an additional

challenge as the shapes and the borders between neighbouring tissues change significantly

by anatomical location. Medical imaging solutions are needed to avoid laborious manual

segmentation of specified regions of interest (ROI) and operator errors.

The work set out in this thesis has addressed this challenge with a specific focus on

skeletal muscle segmentation of the thigh. The aim was to develop an MRI segmentation

framework for the quadriceps muscles, femur and bone marrow. Four contributions of

this research include: (1) the development of a semi-automatic segmentation framework

for a single transverse-plane image; (2) automatic segmentation of a single transverse-

plane image; (3) the automatic segmentation of multiple contiguous transverse-plane

images from a full MRI thigh scan; and (4) the use of deep learning for MRI thigh

quadriceps segmentation.

Novel image processing, statistical analysis and machine learning algorithms were de-

veloped for all solutions and they were compared against current gold-standard manual

segmentation. Frameworks (1) and (3) require minimal input from the user to delin-

eate the muscle border. Overall, the frameworks in (1), (2) and (3) o↵er very good

output performance, with respective framework’s mean segmentation accuracy by JSI

and processing time of: (1) 0.95 and 17 sec; (2) 0.85 and 22 sec; and (3) 0.93 and 3 sec.

For the framework in (4), the ImageNet trained model was customized by replacing the

fully-connected layers in its architecture to convolutional layers (hence the name of Fully

Convolutional Network (FCN)) and the pre-trained model was transferred for the ROI

segmentation task. With the implementation of post-processing for image filtering and

morphology to the segmented ROI, we have successfully accomplished a new benchmark

for thigh MRI analysis. The mean accuracy and processing time with this framework

are 0.9502 (by JSI ) and 0.117 sec per image, respectively.
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Chapter 1

Introduction

This chapter features the establishment of the research, the importance of the research,

the goal and contributions upon its successful achievements.

1.1 Research Background

There are over 600 skeletal muscles in the human body [4]. Muscles play important

roles in: 1) thermoregulation by generating heat as a product of their contraction and

metabolism; 2) whole-body energy balance by utilizing and storing fatty acids, glucose

and amino acids consumed as part of the diet to provide energy for movement and

other cellular processes; and 3) paracrine and endocrine functions as they release growth

hormones and other factors into circulation. However, the most important functions of

muscles are to provide support for posture and to make movement possible by applying

force while shortening to bones and joints.

The muscles of the arms and legs principally allow us to interact with and move around

the environment. Of all the limb muscles, those located in the thigh are amongst the

largest and most powerful. The thigh is divided into three main compartments: 1) the

quadriceps muscle group on the anterior aspect; 2) the adductor muscles that bring the

thigh toward the mid-line and rotate it (on the medial section); and 3) the hamstrings

on the posterior aspect.

Skeletal muscles are highly adaptable to their habitual use: regular exercise will induce

muscles growth, while sedentary living or other types of disuse leads to muscle atrophy.

1
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Indeed, any disease or other long-term condition causing low muscle mass and strength

can result in mobility impairments. The normal ageing process is one such condition.

During ageing, physical activity levels decrease [5] and the consequent disuse alongside

other biological processes such as hormonal and/or other endocrine changes contribute

to muscle wasting [6]. Figure 1.1 shows a transverse plane cross section of the mid-thigh

in a young (Figure 1.1(a)) and older (Figure 1.1(b)) man and it is clear that the muscles

of the older man are smaller and that the thigh contained higher levels of adipose tissue.

Figure 1.1: Magnetic Resonance Imaging (MRI) scans from (a) Young and (b) Elderly.

Technological advances in medical imaging over the past three decades have led to greater

accessibility to advanced imaging techniques in clinical practice and research settings.

Such technologies include magnetic resonance imaging (MRI), dual-energy X-ray ab-

sorptiometry, ultrasonography and computed tomography. They are widely used by

clinicians to scan body segments to diagnose injury or disease. These imaging techniques

are also used by researchers interested in studies of human anatomy and physiology in

health and disease across the lifespan. These techniques produce precise, high quality

distinctions between di↵erent tissue and cell types.

Over the past few years, physiologists from the School of Healthcare Science, Manchester

Metropolitan University, have coordinated several large-scale research projects to inves-

tigate the causes of atrophy and weakness of leg muscles in old age and how this leads

to problems in daily life activities. As part of this process, MR images were collected

from around 300 people aged between 18 and 90 years1, with about 40% of the subjects

are from the age group of 18 to 40, 50% aged between 41 and 64 and the remaining 10%

for the chronologial age of 65 to 90. The MR images can be analyzed for muscle, fat and
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connective tissue content by examining pixel areas and pixel intensity, and quantifica-

tion of the results reveals di↵erences between people and the e↵ects of ageing or disease

[7–9].

A very interesting and novel line of enquiry has revealed that leg muscles of older people

begin to accumulate fatty adipose tissue. There is very little information currently

available showing how adipose tissue accumulates in leg muscles. Quantification of

the changes in adipose tissue with ageing coupled with the more detailed analysis of

muscle biopsy samples could help to identify the regulatory mechanisms leading to loss

of muscle mass and strength in older age because fatty adipose tissue can emit proteins

that promote the breakdown of surrounding tissue [10].

As with any medical image, there is a need to develop analysis frameworks that accu-

rately quantify the di↵erent elements, in the case of MRI thigh images the elements of

interest are the muscle tissue, adipose tissue and femur bone. Manual segmentation of

regions of interest (ROI) within slices is well established, but time consuming, laborious

and prone to intra and inter-operator variability [8, 11]. Several studies have developed

automated or semi-automated analysis techniques to study MRIs of brain, spinal cord,

heart and other internal organs, but few have developed such techniques to study thigh

muscles [9, 11–13]. The study of thigh muscles is a priority due to their importance in

locomotion, mobility and metabolism and the extent of their deterioration in ageing and

disease. One of the major muscle group of the thigh is the Quadriceps (muscle group

consist of four muscles; vastus lateralis, vastus medialis, vastus intermedius and rectus

femoris), which are all located on the anterior aspect of the thigh. By segmenting the

biggest cross sectional area (CSA) of the quadriceps, which usually located within the

middle-region of thigh MRI, quantification of muscle strength and muscle quality of the

thigh can be measured. Estimation of the severity of a disease or an injury also possible

to support further studies or assessments of the thigh [14–18].

A reliable semi-automatic or fully automatic segmentation framework is critical for large-

scale studies to reduce analysis time compared to manual segmentation and improved

reproducibility. However, semi-automatic or fully automatic segmentation often proves

di�cult due to image artefacts, noise, echo, overlapping of pixel/voxel intensities and

non-uniform 2-D pixel intensity. These image deficiencies or low signal-to-noise ratio

1For details of MRI datasets, please refer Section 3.4.
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(SNR) outputs are known to be a↵ected by inherent e↵ects of pulsed radiation on MRI

radio frequency (RF) coils, gradient pulse eddy current e↵ects from the MRI device, the

subject’s internal variations of electro-chemicals and biochemistry, fluid distribution and

tissue density as well as issues related to body movement during scans. Fully automatic

segmentation of anatomic structures of MRI thigh scans is further complicated by the

potential lack of precisely defined muscle boundaries and issues related to intensity

inhomogeneity or bias field across an image. Even for a well-trained and well-experienced

physiologist, it can be challenging to di↵erentiate muscles borders, especially skeletal

muscles that form a same muscle unit, such as quadriceps and hamstring. This thesis

primarily demonstrates methods of semi- and fully-automatically segmenting MR images

of quadriceps muscles and corresponding femur cross-sections, which can then be used

by researchers and clinicians to facilitate further analysis of the underlying (patho)

physiology.

In recent years, numerous segmentation algorithms have been developed and applied

to a small number of images, but the issue of compatibility of these algorithms to one

another has not been properly documented. A popular technique for image segmen-

tation proposed in [19], derived from the k-means method, is the fuzzy c-mean (FCM)

algorithm. It performs fuzzy partitioning through iterative optimization of the objective

function with update to cluster centers. However the algorithm does not incorporate any

information about spatial context, which causes it to be sensitive to noise and artefacts

[20]. To overcome this issue, various modifications that integrate local spatial informa-

tion as constraints in the objective function were proposed in [20]. Authors in [21, 22]

described a comprehensive version of the robust fuzzy clustering method for noisy im-

age segmentation. Additionally, in [23], the authors suggest a hybrid intelligent color

segmentation method, which features the combination approaches of region growing and

clustering methods.

1.2 Brief Overview of Work Developed in This Thesis

The proposed semi-automatic segmentation method in this thesis is based on adaptive

and automatic thresholding, followed by convex hull pixel identification for unwanted

background removal, manual heterogeneous digital marker line drawing and analysis of
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the ROI. The proposed algorithm is not iterative and hence has less computational com-

plexity and uses a simple histogram concept to trigger ROI segregation. Nevertheless,

optional inclusion of a hybrid method described in [23] will be considered accordingly

to extract the optimum feature of segregated ROI.

Next, the thesis describes a novelty framework for automatic muscle border detection

that distinguishes the quadriceps muscles from the other muscles in thigh MRI scans.

At this stage, analyses were done on collections of mid-scan images (of a dataset), due to

consistency in its tissue compositions. Mid-scan images are also less likely to be a↵ected

by MRI machines eddy current e↵ect. We first measured a statistical shape model of the

quadriceps muscles over a training set of ROI samples. For more robust statistical results

and an average shape model that represents the best universal ROI shape, this training

set is loaded with manually segmented mid-scan MR images of the thigh. Boundary

localization of all manually segmented ROIs were extracted and non-parametric distance

map based on Euclidean metric that represents these ROIs correspondent to background

pixels were generated and piled up into a single matrix to eventually obtain the mean

shape of the ROI by applying principle component analysis (PCA). Providing proper

curve representation of the ROI shape model (obtained from the result of mean shape of

PCA) based on information from image to segment (mid-scan image of one MRI dataset)

is desirable and results in e↵ective seeding points for optimum curve deformation process

later. In doing so, the next stage covers the foundation of image transformation of ROI

shape model, which are part of the rigid or a�ne image registration, and a subset of the

more general transformations [24]. The final stage involves a combination of algorithms

to extract the muscle border between quads and the hamstring.

To further amplify the significance of the research, an enhancement of MRI human

thigh muscle segmentation by template-based framework is developed. This automatic

segmentation framework is applied to all images in a dataset to extract ROI, based on

the information of previously segmented mid-scan MR image (details of fully-automated

frameworks are covered in Chapter 5 and 7). The final curve that fits ROI border

is obtained and smoothed by an energy minimizing function and the application of a

classification algorithm.

Finally, the application of artificial neural networks (ANNs), a concept inspired by the
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human nervous system, is adapted to the automatic segmentation of the ROI in the do-

main of semantic segmentation. In principle, semantic segmentation in ANN is a process

of identifying and analysing the role of each pixel in the image. In relation to a deep

convolutional neural network (CNN), a collection of input images and its corresponding

pixel-labelled images are needed to train a semantic segmentation model, where every

pixel value in a pixel-labelled image represents the class label of that pixel. This pro-

cedure continues with the validation process and the final testing procedure generates

the semantic segmentation results. ANN is regarded as a highly robust technique due

to the minimal to no dependency on specific regulators and rules and can be operated

without certain assumptions, unlike image processing approaches prior to these ANNs.

1.3 Aims and Objectives

The overall aim of the research is to design and develop an automated analysis framework

of thigh MR images, with the segmentation method that is focused on the quadriceps

muscles, femur and bone marrow.

Objective 1. The first objective is to evaluate the strengths and limitations of the

current methodology of image analysis and segmentation in the scope of image process-

ing and computer vision in medical imaging modalities, especially MRI. This includes

examining di↵erent frameworks, statistical and probability analyses, including state-of-

the-art methods, and compare the findings or proposed algorithms with current bench-

marks such as pattern recognition, pixel classifier, deformable models, artificial neural

network, and/or atlas-guided approaches to yielding optimum solution for automatic

segmentation of MR images of the thigh.

Objective 2. The second objective is to design a reliable segmentation and quantifi-

cation framework for MR image of the thigh. Our ROI is consists of quadriceps muscles,

femur and bone marrow. The framework should provide accurate results in a short time

with minimal user input into the segmentation task.
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Objective 3. The third objective is to develop an automated segmentation and

quantification framework for MRI of the thigh. The framework should provide acceptable

results without any supervision.

Objective 4. The fourth objective is to propose an ROI segmentation and quantifi-

cation framework for serial MR images within the same dataset (subject).

Objective 5. The fifth objective is to design a semantic segmentation framework

for MR image of the thigh based on current machine learning approach of deep learning

algorithm.

It is expected that with accurate characterization and localization of di↵erent tissues

(muscles, adipose or pathological) in the quadriceps muscle, a dynamic (reliable, fast and

precise) image analysis can be accomplished. This could also reduce the time taken for

output image analysis in research, but also enhance the understanding of issues related to

muscle movement, force distributions, pathological e↵ects to human anatomical regions,

and increase the reliability of medical diagnosis and patient treatment.

1.4 Research Contributions

In this thesis, several contributions related to the statistical and probabilistic analysis for

image segmentation frameworks are presented. The combination of algorithms developed

as part of this route have advantages of less-reliance on object boundaries while being

flexible and adaptable to orientation and size of the image to be segmented, and provides

a simple sequential MR images segmentation framework with no topological issues at

excellent processing rate.

Our first contribution is developing a semi-automatic segmentation framework. This

is interactively done by a user-defined for border delineation between ROI and the

remaining thigh muscles in an MRI scan. This process combines several customized

algorithms with the capability for error correction, which is highly convenient, especially

for first time users or when analysing complex MRI datasets (usually MR images from

old subjects).
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Our second contribution is proposing the association of several approaches, including

prior knowledge of the shape by the spatial reduction method of Principle Component

Analysis (PCA), with optimization of localization and probabilistic analysis for muscle

border detection by a dynamic shape model.

As a third contribution, a fast and accurate automatic framework was established to

determine the minimal energy function for boundary detection of the ROI to series of

MR images in a single MRI dataset, building upon the prior model from previously

segmented mid-scan images (of the same dataset). This approach is guided by geodesic

energy minimization functional of prior model as initial normalization seeds combined

with modification to classification function to ensure the curve fitting remains outside

or on top of zero-energy region on successive images.

Finally, the fourth contribution of this research is validating the application of artificial

neural networks (in the form of deep convolutional networks) in semantic ROI segmen-

tation domain of MRI of the thigh. The transfer learning approaches are pre-trained

and personalized, so that the initialization values of the weight are applicably adjusted.

This weight optimization procedure improves the general feature maps classifications of

the model and in turn, delivers best performance in terms of segmentation accuracy and

processing time.

1.5 Thesis Outline

The rest of the thesis is structured as follows:

1. Chapter 2. This chapter includes a literature review covering the physiological,

anatomical and clinical interests in thigh MRI as well as the basic engineering

behind medical imaging modalities and previous research into image segmentation

of skeletal muscles from MRI.

2. Chapter 3. This chapter covers general methodologies related to image segmenta-

tion, including the state-of-the-art techniques, research materials and MR images

and datasets acquisition.
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3. Chapter 4. This chapter mainly describes the technicality of the semi-automatic

segmentation procedure of thigh MRI and a basic description of the manual an-

notation process for ground truth images.

4. Chapter 5. This chapter describes the algorithms employed for automatic segmen-

tation of MR mid-scan image of the thigh. The chapter starts with automatic

segmentation of each tissue (component) of thigh MRI, followed by automatic

segmentation of the ROI.

5. Chapter 6. This chapter develops a combination of frameworks that lead to auto-

matic segmentation of the sequence of the MR image (from the same dataset as

was previously segmented for mid-scan images as a prior model image).

6. Chapter 7. This chapter explains in depth utilization and validation of applicable

transfer learning approaches on semantic segmentation of MRI of the thigh.

7. Chapter 8. This chapter concludes the thesis and includes the description of future

works and further recommendations related to and beyond the research.



Chapter 2

Research Foundation

This chapter highlights cross combination of principal literature and technology in

human physiology, medical engineering and medical image processing in computing.

2.1 Introduction

Health remains as one of the main concerns in human civilization. Health, as defined by

World Health Organization (WHO) is a “State of complete physical, mental, and social

well being, and not merely the absence of disease or infirmity”. It also can be defined

as the general condition or state of the body, whether it is in good or poor condition.

Our environment and technology continually evolve. Major developments over the past

century to motorised transportation, a shift towards increased urbanisation with the

plentiful and cheap availability of calorie dense foods has transformed the way that the

majority of people live, at least in westernised, developed countries. This has also had

a consequence for human health and physiology, most obviously being associated with

an unprecedented increase in sedentary living and progressive, year-on-year increases

in obesity and related disorders such as type II diabetes mellitus and cardiovascular

disease [25]. Paradoxically, the increased prevalence of these major diseases and related

co-morbidities has not decreased life expectancy; the reverse is true. Advances to health

and social care systems, medicine and pharmacology has led to progressive increases in

life expectancy, although worryingly, people are not living healthier for longer, rather

they are surviving for longer with chronic underlying disease. This has vastly increased

10
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the costs associated with looking after older people and others in society at high risk

of disease (discussed in [26]). The mean life expectancy for women in the UK at birth

in 2008 was 82 and in men it was 78 years. By 2013, this had risen to 83 for women

and 79 years for men. However, the mean “healthy” life expectancy had changed little,

or even decreased over this same period; for women in 2008 it was 66 and in men it

was 65 years, but by 2013 it had fallen to 65 in women and 64 years in men [27].

Musculoskeletal disorders are the most common chronic, disabling conditions, a↵ecting

14% of people aged over 65 years, while heart and circulatory conditions a↵ect 10%;

respiratory conditions a↵ect 6%; endocrine or metabolic conditions a↵ect 6% and mental

disorders a↵ect 4% of people aged over 65 years. Incidence more than doubles in the

10 years that follow retirement, with 30% of over 75s reporting chronic musculoskeletal

conditions; 32% report heart and circulatory conditions and 13% report endocrine or

metabolic conditions [28].

With that in mind, in order to promote healthy culture and lifestyle that lead to the

accomplishment of healthy individuals and society, awareness of recommended daily food

consumptions are desirable [29], as is the application of appropriate physical activity

routines.

The uses of medical equipment in diagnosing and treating patients have become essential

and necessary. Advanced imaging technology, such as magnetic resonance or X-ray that

are used to image the internal body and major organs, are generating vast numbers of

medical images. Such equipment is readily available and accessible to healthcare prac-

titioners for application with patients across developed countries. For example, across

Europe in 2010 there were on average 10.3 MRI scanners and 20.4 Computed Tomogra-

phy (CT) scanners per million population, although these numbers are underestimates

because they do not fully include equipment available in the private sector [28]. In the

UK National Health Service (NHS) alone during 2010, there were 41 and 76 MRI and

CT, respectively, scans per 1000 population [28], which is about 2.5 million MRIs and

4.5 million CT scans in a single year. The images need to be interpreted to form a

diagnosis and to inform appropriate treatment regimens. However, a criticism is often

that the output images and image analysis from medical devices still lack precision, are

time consuming and mostly operator dependent. They therefore lead to increases in

healthcare spending. Further research is needed in order to get better signal-processing
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from medical devices, whether it is for segmentation of region of interest, quantifying tis-

sues or muscles volume, detecting localization of pathology, treatment and rehabilitation

planning, computer-assisted surgery or even studying of anatomical structures.

The success of developments to improve automated image analysis could further boost

the output accuracy of current techniques and enhance the time taken in processing the

output images from MRI, in terms of segmentation, thereby reducing healthcare costs.

This research is also expected to produce an automatic algorithm system and therefore

reducing the dependability to human supervisions.

2.2 Human Physiology

By definition, physiology is a study that aims to understand the mechanisms of how

living things work and emphasises body functions. Human physiology studies how our

cells, tissues, organs and systems work together, how these biological tissues interact in

order to maintain homeostasis. Physiology is sometimes referred to as the “science of

life” that looks at living properties, from molecular basis of cell functions to the whole

integrated behaviour of the entire body [30].

Anatomy on the other hand, describes and explores the structures of living things.

Anatomy studies the form, while physiology investigates the function or in simple words,

anatomy looks at what the living thing is, while physiology looks at what the living thing

does [30].

Fundamentally, physiology and anatomy are extremely closely related disciplines and

generally scholars in life science tend to study these two disciplines together.

2.2.1 Muscular System

The muscular system in general, is responsible for the movement of the human body,

from as tiny as an eye blinking, involuntary or voluntary contractions of the diaphragm

during breathing, blood circulation through vasoconstriction/vasodilation of blood ves-

sels, to heart atria and ventricles contracting to eject blood, all so that movements and

interactions with the environment can be sustained. Muscle contractions also produce

heat, so are involved in thermoregulation and metabolism [31]. The skeletal muscle
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system is under voluntary neural control and the muscles attach to bones via tendons.

There are over 600 individual skeletal muscles and they collectively make up roughly

half of a healthy person’s body weight [32]. Each skeletal muscle is a distinct organ,

composed of individual muscle fibres (roughly the diameter of a human hair) and each

muscle fibre is surrounded by connective tissue and blood vessels (capillaries), as well as

having a single connection to the nervous system via a motor neuron.

2.2.1.1 Muscle Types

1. Visceral muscle. Visceral muscle, also known as “smooth muscle”, is normally

found inside of organs like the stomach, bladders, womb, intestines, and blood

vessels. It is considered as the weakest of all muscle tissues, in terms of force

production, however it is very e↵ective in transporting substances, nutrients, hor-

mones and even unwanted molecules and pathogens throughout the whole body.

Visceral muscle is also known as involuntary muscle since it is controlled by the

unconscious segment of the brain, meaning it cannot be directly controlled by the

conscious mind. Physically, this muscle appears smooth and uniform when ob-

served under a microscope, and this smooth appearance unambiguously contrasts

with the banded physical of cardiac and skeletal muscles [33].

2. Cardiac Muscle. Located only in the heart, this muscle type is solely responsible

for pumping blood throughout the body. Like smooth muscle, cardiac muscle

tissue also cannot be controlled consciously, so it is classified as an involuntary

muscle. While signals from the brain and exclusive hormones adjust the rate of

contraction and rhythm, cardiac muscle stimulates itself to contract. This blood

pumping power house’s natural pacemaker is made of cardiac muscle tissue that

encourages other cardiac muscle cells to contract. Because of its self-stimulation,

this muscle type is considered to be auto-rhythmic or naturally regulated [34]. Its

cells are normally striated-like array and appear to have dark and light stripes

when observed under a microscope. The formation of protein fibres inside of these

cells produces these dark and light striations. These patterns indicate that in

general, cardiac muscle cell is much stronger than visceral muscle. Cardiac muscle

cells are divided to an X or Y shaped cells firmly linked to one another by special

connections called intercalated disks. These microbiological elements are built up

of finger-like projections from two adjacent cells that interconnect and provide a
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robust bond between the cells. The divided structure and intercalated disks allow

the muscle cells to combat high blood pressures and the strain of pumping blood

throughout a lifetime. These features also aid in spreading electrochemical signals

rapidly from cell to cell so that the heart can beat as a unit [34].

3. Skeletal Muscle. It is the only voluntary muscle tissue in human body and can be

controlled consciously. All physical actions that a person intentionally performs,

such as writing, typing, speaking or walking, involves contractions of skeletal mus-

cle. The typical role of skeletal muscle is to make movement possible by contraction

(i.e. by moving parts of the body closer to the bone that the muscle is attached to).

As the name suggest, these muscles are mostly attached to two bones across a joint,

permitting those attached muscles to move parts of the respective bones closer to

each other. Skeletal muscles also provide protection to bones and major blood ves-

sels and nervous systems, contribute to posture and support and produce a major

portion of total body heat [35]. Its cells were formed when many smaller progen-

itor cells lump themselves together to procedure long, straight, multi-nucleated

fibres and its striation configuration is comparable to cardiac muscle. Some parts

of these skeletal muscle fibres such as the thigh and gluteal muscle groups produce

very high force and power movements [32].

Figure 2.1 shows configuration or structure of 3 muscle types and their common locality

in human body.

2.2.2 Anatomy of Thigh Muscles

The muscles that enable voluntary movements of the limb are skeletal muscles and

the muscles in the thigh are amongst the largest and most powerful because they are

largely involved in upright locomotion, such as walking, stair negotiation and running.

Anatomically, the thigh muscles are split into di↵erent sections: Anterior muscles, known

as the quadriceps, that extend the knee joint and assist in hip flexion; Posterior muscles,

known as the hamstrings, that flex the knee joint; Medial muscles, known as adductors

that adduct and rotate our thighs; and Lateral muscle, known as abductors, that abduct

the legs [35].
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Figure 2.1: 3 di↵erent type of muscles in human body. Courtesy: www.study.com

2.2.2.1 The Anterior Thigh Muscles

The main anterior thigh muscles are the quadriceps, which includes the vastus lateralis,

vastus intermedius, vastus medialis and rectus femoris. However, other anterior thigh

or hip muscles include pectineus, sartorius and iliopsoas groups [35, 36].

1. Iliopsoas. The iliopsoas is a built up of two muscles that flex the thigh, in which

one of those muscles, the psoas major, is a crucial component for posture support:

• Psoas major originates on the twelfth thoracic and the five lumbar vertebrae

and attaches onto the lesser trochanter of the femur and its contraction is

regulated by the first three lumbar spinal nerves.

• Iliacus originates on the sacrum, iliac crest, and sacroiliac ligaments and

attaches onto the tendons of the psoas major and the lesser trochanter of the

femur. Its contraction is regulated by the femoral nerve.

2. Pectineus. This muscle group originates on the pubis portion of the hipbone,

termed superior ramus and attaches to femur on its pectineal line. Its contraction

is regulated by the femoral nerve and allow adduction and flexion of the thigh.
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3. Quadriceps femoris. This muscle group consists of four fibres that originate from

di↵erent locations but sharing the same tendon, which attaches to the anterior

tibia tuberosity via the patella. The femoral nerve regulates the contractions of

all four muscle components to control knee extension.

• Rectus femoris forms the central portion of the muscle group and originates at

the anterior inferior iliac spine and just above the acetabulum of the hipbone.

It is biarticular and contributes to both knee extension and hip flexion.

• Vastus lateralis is the lateral-most muscle and originates at the linea aspera

of the femur and the greater trochanter.

• Vastus intermedius can be discovered deep to rectus femoris and castus lat-

eralis. It originates on the long femur shaft.

• Vastus medialis is the most medial component of the unit and originates on

the linea aspera and the line of inter-trochanteric.

4. Sartorius. This muscle attaches on the medial surface of the tibia and originates

on the anterior superior iliac spine. The femoral nerve regulates its contraction

and this allows abduction, flexion, rotation of the thigh and flexion of the leg at

the knee.

2.2.2.2 The Medial Thigh Muscles

This muscle unit of the medial part of the thigh, responsible for leg rotation and bringing

the thigh toward the medial or mid-line of the body [35, 36].

1. Adductor brevis. This muscle fibre originates on the pubis and attaches on the

femur at linea aspera and pectineal line. Contraction is innervated by the obturator

nerve and this permits thigh adduction.

2. Adductor longus. Originates on the pubis and attaches on the middle of the linea

aspera of the femur. Contraction regulates by the obturator nerve and as above,

this also permits thigh adduction.

3. Adductor magnus. Originates on the ischial tuberosity and the pubis and attaches

on the femur at the gluteal tuberosity, linea aspera, and the adductor tubercle.
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Innervated by the sciatic nerve and the obturator nerve and stimulates thigh ad-

duction and assists in thigh extension and flexion.

4. Gracilis. This muscle originates on the pubis and attaches on the medial tibia.

Innervated by the obturator nerve and this allows thigh adduction and leg flexion

at the knee.

5. Obturator externus. This fibre is originates at the membrane of the hip bone

and obturator foramen, and attaches to the femur. Allows thigh rotation by the

innervation of the obturator nerve.

2.2.2.3 The Posterior Thigh Muscles

This muscle unit is also known as the hamstring and formed by three posterior thigh

muscles and allows leg flexion and thigh extension [35, 36].

1. Biceps femoris. Consists of short and long fibre heads. The short head origi-

nates on the linea aspera of the femur, and the long head originates on the ischial

tuberosity. These muscles attach on the fibula at the lateral side. Both short and

long heads are innervated by the fibular and tibial portion of the sciatic nerve,

respectively. It roles include leg rotation and thigh flexion and extension.

2. Semitendinosus. Originates on the ischial tuberosity and attaches on the superior

part of the medial tibia. Contractions activated by the tibial portion of the sciatic

nerve and this allows thigh flexion and extension and medially rotates the leg.

3. Semimembranosus. Originates on the ischial tuberosity and inserts on the medial

condyle of the tibia. It works in conjunction with the semitendinosus with similar

innervation resource and roles as semitendinosus.

2.2.3 General E↵ects of Ageing in Human Physiology

Coordination and contraction of muscles are stimulated (activated) by electrical signals

from the brain that travel through the central nervous system and out via motor neurons

to activate individual muscle fibres very precisely. Any variations in the bones, muscles
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Figure 2.2: Cross section of thigh muscles. Courtesy: https://en.wikipedia.org

and joints due to ageing process may a↵ect the posture shape and walking structure,

typically leading to limitations to daily routine and slowing down movements [37].

With ageing, movement decelerates and may become restricted [38]. The walking pattern

or gait cycle becomes shorter and slower, unsteady and with lesser arm swinging [38].

The changes of gait cycle may induce instability hence may escalate the loss of balance

that may lead to falls and risk of injuries. Some elderly people have reduced reflexes.

This is most often caused by declines in the muscles and tendons, as well as changes in

the nerves. Metabolic changes within muscle due to decreases in capillary density and

mitochondria (which are responsible for aerobic energy production) [39] contribute to

lower energy levels [40], thus making the individual prematurely exhausted. Changes in

hair and skin pigmentation and fragmentation are also normal [41].
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Osteoporosis or porosity of bone density or bone mass is a common problem of old age,

especially for post-menopausal women [42], due to declining hormones, particularly es-

trogen, and changed absorption of major minerals that regulate healthy bone, including

proteins and calcium [42]. Bone to bone connections, such as those in the knee, hip and

vertebrae that form the spine, are separated by a fluidal disk that cushions impact to re-

duce bone-friction. As we age, the height is reduced as the fluidity of the disks gradually

decreased. The content of other critical minerals for a dynamic bone are also reduced,

making each bone in the spinal cord thinner and a↵ecting its structure and becoming

compressed, curvy and bent, contributing to a slight loss of height [43]. Inhomogeneous

branch of ageing bones or bone spurs is also an ageing e↵ect and may promote tense

and severe disorders due to nerve compressions on the vertebrae [44]. Joints breakdown

may lead to deformity, inflammation, sti↵ness and pain. Such alterations in joint a↵ect

almost all elderly people. These changes range from minor sti↵ness to severe arthritis.

Average lean body mass also decreases, partly triggered by a loss of muscle tissue or mus-

cle wasting/atrophy [45], but there is also a clear increase in body fat mass. Alterations

to muscle composition often begin earlier for men compared to women [46].

Muscle fibres tend to shrink but not shorten, and as the result, muscle tissue is replaced

slowly by fat accumulation [47]. Lost muscle tissues are also substituted with a hard

and sturdy fibrous tissue and mostly visible in the hands, which may appear skinny and

thin. Subsequently, muscles are less toned and unable to appropriately contract and may

become sti↵ and inflexible with age and may lose tone, even with consistent exercise.

Reduction in muscle mass may also decrease body strength. Healthy and active ageing

or “master” athletes may find that their performance improves in events that require

longevity and endurance such as walking, but decreases in events that require short

bursts of energy, such as sprinting [48].

Unintentional, rhythmic skeletal muscles movements (often termed muscle tremors) are

also common in the elderly [49]. Elderly people who are less or not active at all may

have paresthesias, a weakness or an abnormal sensations, normally tingling or pricking

sense due to damage to peripheral nerves [49]. People who are unable to move on their

own, or who do not stretch their muscles with exercise, may develop muscle or joint

contracture syndrome, an unusual disorder of muscle or joint function. Figure 2.3 and

2.4 summarise the e↵ects of ageing on human physiology, in general.



Chapter 2. Research Foundation 20

Figure 2.3: E↵ects of ageing in human physiology 1. Courtesy:
https://www.flickr.com/photos/sportex/5387348258

Figure 2.4: E↵ects of ageing in human physiology 2. Courtesy:
https://www.slideshare.net/Drraveesoni/psychopharmacology-in-elderly
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2.3 Medical Imaging Modalities

The development of cutting-edge and up-to-date imaging technologies has significantly

enhanced the overall quality of medical care available to both practitioners and end-

users. Non-invasive imaging modalities allow a physician to make increasingly accurate

diagnoses and may provide precise and reasonable modes of treatment. Modern medical

imaging modalities are capable of acquiring data on internal anatomical structures, as

well as mappings of physiological function.

Typical applications of medical imaging include diagnostic radiology, radiation therapy

(usually applied to malignant cancerous cells), pathological study, laboratory medicine,

surgery and internal organs/systems mapping. Altering energy type approaches and

the acquisition techniques can obtain distinctive types of output images from one ma-

chine/scanner to another. Modalities referred to as the di↵erent modes of construct-

ing/assembling images. Each modality has its own characteristics in medical diagnostic

and treatment system. Listed below are the most common medical imaging modalities

available on today’s market.

2.3.1 X-Ray

Also known as projection radiography and is the first medical imaging technology avail-

able in modern medicine. X-ray was pioneered by Wilhelm Conrad Roentgen on 8

November 1895 and the first apparatus in capturing radiographic images of human in-

ternal anatomy [50]. Practitioners, who have had qualification to handle X-ray machine

and appropriate training in interpreting diagnostic images, are called radiologist.

It is performed with a pulse of X-ray source on one side of the patient and a typically

flat X-ray detector (photographic film or a computerized system or digital radiography

detector system) on the other side. A brief duration of usually less than 1/2 second pulse

of X-rays is emitted by the X-ray tube, a large fraction of the X-rays interact in the

patient, and some of the X-rays penetrate through the patient and reach the detector,

where an X-ray radiographic image is formed.

The distribution consistency of X-rays that enter the patient is adjusted by the degree

to which the X-rays are removed from the beam by scattering and tissue density. The
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attenuation properties of tissues such as bone, soft tissue and air inside the patient are

di↵erent from one another, resulting in the heterogeneous distribution of X-rays that

emerges from the patient [50].

Transmission imaging refers to imaging of X-ray emission from energy source (outside

the body) to X-ray plate detector (the energy passes through the body and is detected

on the other side of the body). Projection imaging refers to the case when each point on

the image corresponds to information along straight-line trajectory through the patient.

X-ray radiographic imaging is suitable for a very wide range of medical indications, espe-

cially the diagnosis of broken bones, pathological changes in the lungs and cardiovascular

disorders.

2.3.2 Computed Tomography

Computed Tomography (CT) scanner also known as Computerized Axial Tomography

(CAT) scanner (or computer transmission tomography or computer tomography), is a

technique with similar image acquisition as X-ray machines, where the image-capturing

process is taken from X-rays that are transmitted through the body. These contain

information on the body’s elements in the path of the X-ray beam. By using multi-

directional scanning of the object, multiple data can be collected. And this is done by

configuring rotational X-ray beam sources around the object, to capture images from

many di↵erent angles [51].

Although also based on the variable absorption of X-rays by di↵erent tissues, CT imaging

o↵ers a di↵erent form of imaging known as cross-sectional imaging. Figure 2.5 shows

typical characteristics of X-ray and CT scan images.

A computational model of the attenuation of the matrix elements along rows and

columns generate a cross-sectional image of the body. The use of computer is mandatory

since the number of mathematical procedures required to construct clinically accurate

and applicable images are very large. The data obtained from this computation analysis

can be presented in a conventional form resulting in a 2-D CT scan image [51].

Processing power from a computer is used to put a set of regulations, in terms of timing,

anode voltage and beam current. The high voltage direct current (DC) power supply
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Figure 2.5: Medical imaging output characteristics of X-ray (left) and CT scan (right).
Courtesy: www.fda.gov

drives an X-ray tube that can be mechanically rotated along the circumference of a

gantry. The patient lies in a tube through the centre of the framework. X-rays are

beamed through the patient and are partially absorbed while remaining X-ray particles

impinge upon several radiation detectors that are secured around the circumference of

the gantry.

Reaction of the detector is directly related to the number of particles impinging on it

and to the tissue density. Measurements based on data acquired from a complete scan

are then made by the computer and later generates a live visual output image of a cross-

sectional transverse plane of the patient on the screen. Output data also can be stored

for future analysis.

Since the images from CT scanner are extremely detailed compared to output image of

conventional X-rays, the computerized 2-D images can be reconstructed into 3-D map-

ping or model. This formation of virtual internal anatomy image would be beneficial for

diagnostic and treatment, also for surgeons before, during or after operations. Never-

theless, without good medical reasons, physicians by default will try to avoid using CT

scanner due to large amount of ionising radiation X-rays emission transmitted across

the patient’s body compared to traditional X-ray method.

2.3.3 Ultrasound

Ultrasound is another common diagnostic imaging technique by which ultrasonic signal

is applied to describe the state of internal body organs. Bursts of high-frequency sonic
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waves are transmitted from a “piezo-electric” or “magnetostrictive” transducer (receiver)

through the skin and projected into the internal anatomy [52].

When this signal strikes a boundary between two tissues of di↵erent acoustical impedance,

reflections (echoes) are returned to the transducer. The transducer transforms these re-

flections to an electric signal that are proportional to the depth of the boundary, which

is later pre-processed (filtered), amplified and displayed on an oscilloscope. An image of

the interior structure is formed based on the travelling time of total wave applied, the

average sound speed transmitted and the energy concentration of the reflected waves

[52].

The converter control unit receives signals of transducer position and synchronise pulse

signals and generates X and Y position from reflected signals. This data is then fed to

the scanner memory and stored. Digital-to-analog converter (DAC) is used to process

this information and generate a real-time live image on the screen. Due to amount of

noise, image processing techniques may be used to fully utilize ultrasound images [53].

2.3.4 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is another technique for detailed soft and hard tissues

image acquisition throughout the body without “ionizing radiation” like X-ray machine

or CT scanner. Because of this ionizing radiation free feature, MRI has gradually become

the preferred method for diagnosing anomaly or potential health issues in many di↵erent

parts of the body [54]. In general, MRI produces images that can show di↵erences

between healthy and unhealthy tissues. Medical practitioners use MRI to examine major

body parts such as the brain, heart, spine, joints (hip, wrist, knee, shoulder and ankle),

abdomen, pelvic region, breast, blood vessels and bladder.

MRI employs powerful magnetic fields, radio waves, rapid changes in magnetic fields,

and a processor to generate images [55]. Depending on application, di↵erent gradient

coil systems produce a time varying, controlled spatial non-uniform magnetic fields in

di↵erent directions. Similar to procedures in CT scanning, the patient is kept in this

gradient field space, in a specially designed magnetically shielded room. There is also

transmitter and receiving RF coils surrounding the space on which the image is to be
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constructed. And respectively, the initiation of linear magnetic field gradient to the

uniform magnetic field is applied to the patient [56].

The resonance frequencies of the processing nuclei depend on the positions along the di-

rection of the magnetic field gradient. This produces a one-dimensional (1-D) projection

of the structure. By taking a series of these projections at di↵erent gradient orientations

using X, Y and Z gradient coils, a two- or three-dimensional (2- or 3-D) image can be

acquired [57].

The slice of the image depends upon the gradient magnetic field and is controlled by

a processor. This field can be positioned in three time-invariant planes of X, Y and Z.

The transmitter provides the radio frequency (RF) signals and on the other hand the

receiver coil picks up nuclear “resting state” magnetic resonance signals and fed to the

processor. This signal is then processed and MRI scans (or images) are constructed by

applying 2-D Fourier Transformation [51].

Figure 2.6: The cutaway of typical MRI machine. Courtesy: www.howstu↵works.com
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2.3.4.1 MR Imaging Sequences

Image contrast is considered as the main objective in the acquisition of medical imag-

ing, where certain contrast characteristics of anatomical structures will be emphasized

before the acquisition process, depending on the output image analysis. This allows the

operator to distinguish the output structures and define which tissues of the anatomy

are healthy or abnormal. Without the use of any contrast enhancing agents, such as

Gadolinium (Gad), image contrast in MRIs is natively superior than CT machines.

T1-weighted and T2-weighted scans are the most common MRI sequences, where T1-

weighted MR images are produced by manipulating short pulse sequence parameters of

echo time (TE) and repetition time (TR), while T2-weighted MR images are produces

by using greater TE and TR times compared to T1. Other MR imaging sequences

include Fluid Attenuated Inversion Recovery (FLAIR) and Di↵usion Weighted Imaging

(DWI). Figure 2.7 and 2.8 demonstrate the di↵erences between T1- and T2-weighted

MR images in human brain and spinal region, respectively.

Figure 2.7: Di↵erences of MR imaging sequences of the brain. (a) T1-weighted
image. (b) T2-weighted image. (c) Flair image. Courtesy: http://casemed.case.edu-
/clerkships/neurology/

2.3.5 Other Modalities

2.3.5.1 Positron Emission Tomography (PET)

This modality uses concept of coincidence detection (in the context of neurobiology) to

image functional processes. Radioactive positron emitting isotope is merged with an

organic substance, creating element, used as an indicator of metabolic utilization [58].
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Figure 2.8: MR images of the spine. (a) T1-weighted image; white arrow indicates
injured structure on the bone injury. (b) T2-weighted image; black arrow depicts bone
oedema (feature of bone injury). Courtesy: http://www.lbgmedical.com/blog/mri-a-
sophisticated-technology-for-imaging-soft-tissue-pathology/

Images of how tissues and organs are working throughout the body can be shown includ-

ing irregularities such as tumour. PET images may also be viewed in conjunction with

CT scan images to determine anatomical correlation. To optimize the image reconstruc-

tion that involves positron imaging, current CT or MRI scanners may incorporate PET

technique, permitting PET-CT, or PET-MRI, respectively. This functional-anatomic

hybrid imaging provides a very useful tool in non-invasive diagnosis and patient man-

agement.

2.3.5.2 Single-Photon Emission Computed Tomography (SPECT)

This 3-D tomographic modality is another type of nuclear imaging test that uses gamma

camera from several projections to generate 3-D images. An advance dual detector

head camera combined with a CT scanner, termed a SPECT-CT, provides better vi-

sualization and localization of functional organs [59]. In previously described medical
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imaging modalities, energy is passed through the body and sensors convert the occur-

rence reactions. However, in SPECT imaging, the patient is injected with a radioisotope

substance, radioactive gamma rays are then emitted through the body as the natural

decaying process of this substance takes place. Gamma rays emissions are finally cap-

tured by detectors that surround the body. In other words, the patient is now the source

of the radioactivity, rather than the medical imaging modality used.

2.3.5.3 Mammography

This niche imaging modality, also called mastography, uses low-dose ionizing radiation

X-rays to examine the human breast and aids in the early detection of breast cancer,

typically through detection at tissue microcalcifications. Mammography may also pro-

duce a missed diagnose (false negatives) of cancer. It is estimated that around 20% of

the number of cancers are miss-diagnosed [60], mostly due to the cancerous malignant

tissues that hidden by other dense tissue.

2.4 Previous Works on Image Segmentation of Human

Thigh Muscles

Image segmentation has a long history, in which arguably, researchers at Stanford Re-

search Institute Artificial Intelligent Group did its initial attempt in a vision project,

dated back in 1970 [61]. This group used exploiting regions on image as data for image

partitioning and a heuristic decision tree to trim down the explicable partition results.

In 1972, an approach that was based on region growing process was described [62] and

another of the earliest approaches of image enhancement and threshold selection using

histogram was reported [63, 64].

For medical or clinical image segmentation in general, one of the earliest forms of digital

image analysis is reported in [65], where a semi-automatic approach is carried out to

outline and contain a region of interest of the left ventricle. Pattern recognition based

method was applied [66] in 1973 to automatically detect tumour in radiograph images.

Conclusively, according to [67], discussions on the history of medical image analysis are

based on four findings:
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1. First medical image analysis era, termed 2-D image analysis (pre-1980 until 1984).

2. Era of pattern recognition driven and knowledge based idea. Also the era of MRI

becoming more popular and important as a source of image data (circa 1981-1990).

3. Era of the development of 3-D medical imaging (3-D MRI, SPECT and PET) and

maturation of 2-D image analysis. Integration system, 3-D modelling and image

analysis increasingly popular (1992-1998).

4. Advance image analysis and visualisation, focusing on solution to achieve the best

accuracy, processing time and reliability (1999-present).

From 2002 until 2015, twelve segmentation attempts on the MRI of the thigh have

been recorded (in year of chronicle published order), which include [7, 8, 68–77], where

automation process were done by incorporating either one or a combination of these

techniques: thresholding (intensity based or histogram modelling); classification (fuzzy

c-means (FCM) being the popular approach or k-means); active contour; and/or region

growing. These methods focusing on classifying muscles, marrow, femur, subcutaneous

adipose tissue (SAT) and/or intermuscular adipose tissue (IMAT) as an individual com-

ponent (or group), where after the implementation of suitable pre-processing algorithms

(to remove/reduce noise or improve pixel’s intensity), these individual components (or

groups) can be routinely segmented.

The segmentation accuracies across all methods above are considered exceptional in

general, with all methods achieved average accuracy of greater than 85% and the seg-

mentation results can be seen statistically improved over time (2006/07 [70, 71] - 95.73%,

by FCM; 2009 [7] - about 96%, by adaptive thresholding and histogram modelling; 2013

[76] - about 97%, by k -means clustering; and 2015 [77] - 96.8%, by snake active contour).

Considering the application (or combination of applications) of such basic techniques,

the system’s average processing time across all methods are also recorded to be im-

proved over time (2009 [8] - 52 sec per image, by FCM and active contour; 2013 [75]

- about 5.21 sec per image, by region growing and 3-D intensity map; and 2015 [76] -

0.25 sec per image, by k -means clustering). Two major reasons that understandably

contribute to the better mean average processing time are superior computer technology

and hardware available on the market and the optimisation of algorithms and processing

platforms from developers. Regardless, this simple, precise and fast automation process
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may also assist significantly in quantification analysis for cross sectional area (CSA) or

volumetric of MRI of the thigh, which are vital information to clinicians and researchers

interested in early life development, ageing, disease and the e↵ectiveness of rehabilitation

programmes.

In 2012, an advance discrete optimization solution by a graph-based Random Walker

(RW) was proposed by Baudin et al. [13], where a graphical model able to automati-

cally determine appropriate seed positions with respect to di↵erent muscle classes was

introduced. The process was established by combining frameworks of seeds sampling

and graph edges; and Markov Random Fields (MRF) formulation that calculate the

cost function form, unary potential, geodesic distance potential, and relative orienta-

tion potential of muscle structure and position. Authors reported that small muscles

(within the thigh region) are prone to segmentation errors compared to the large ones

and as a result, recommending the use of deformable registration approaches to alleviate

the bias introduced from the rigid registration step, for future work. Next in [78], the

same authors worked on the introduction of linear sub-spaces constraints within RW

segmentation framework, where the novel knowledge or prior-based quadriceps segmen-

tation was proposed, contributing to a slightly improved segmentation output accuracy,

compared to [13]. The technique was developed based on Random Walker (RW) formu-

lation, where the concatenation of all the node’s (or seed’s) probability is proliferated

by block diagonal matrix (depending on the quantity of the label); combined with prior

knowledge to the respective RW formulation above; and the design of low dimensional

a�ne of implicit space within the spatial matrix. Results were presented in 2-D MR im-

age cross-sectional area, with an average segmentation accuracy (by Dice coe�cient) of

0.84±0.08 and computational time of approximately 15 minutes per segmentation. An-

other e↵ort from Baudin et al. including extension for the segmentation of whole muscles

of thigh MRI [79], again by integration of similar RW graph-based with prior informa-

tion frameworks as above, where statistical shape atlas was employed to represent prior

knowledge. In addition to these frameworks, a balancing parameter was introduced to

the formulation of nodal’s total energy; with an addition of confidence map to adjust the

influence of the contour’s model. This configuration leads to an e�cient iterative linear

optimization and further enhanced the quality of segmentation accuracy, yielding an

average segmentation accuracy (by DSC) of 0.86± 0.07 and processing time of around 5

minutes per segmentation. However, errors to muscle segmentation are still problematic,



Chapter 2. Research Foundation 31

especially to small muscle components (e.g. Gracilis muscle and tensor fasciae latae),

due to large registration errors on the same muscle assumption.

Another fully automatic segmentation method for thigh MRI was demonstrated by An-

drews et al. [11]. This technique provides a good accuracy for individual muscle segmen-

tation of the thigh, by using energy minimizing probabilistic segmentation that indicates

area of ambiguity. The automatic segmentation made possible with the frameworks that

comprise of a probabilistic segmentation function representation of isometric log-ratio

(ILR) transform; the shape space (relative locations of muscles) by principle component

analysis (PCA); image alignment by using femur bone coordination as an anchor of the

vector estimation; and energy construction strictly based on energy function over the

shape space of an image. The results were presented in 3-D diagram and the method

was capable of segmenting 11 muscles within the thigh automatically and achieved an

average segmentation accuracy (by DSC) of 0.92 ± 0.03 across all images, but with

undisclosed processing time per segmentation/image. A recent publication by Andrews

and Hamarneh [80] presents comprehensive incorporation of probabilistic shape repre-

sentation consists of adjacent object information and prior anatomical volume, called

generalized log-ratio (GLR). The main benefit of GLR application is that it may produce

a probabilistic segmentation that can be used to generate uncertainty information to aid

subsequent analysis of di↵erent muscle components on thigh MRI. In other words, the

GLR transformation can be designed to ensure statistical shape models capture variabil-

ity in smaller structures properly. The method is designed based on four major steps.

Firstly, GLR representation in the context of thigh muscle segmentation to encode de-

tails such as muscle size, adjacency information, and to train a statistical shape model

over the space of GLR representations. Secondly, the introduction of pre-segmenting

images technique for all components involve (fat, muscles and bone). The results are

mainly used to perform alignment computation. Thirdly, random forest classifier train-

ing to assist in detecting intermuscular boundary locations. And finally, results from

all steps above were integrated into a globally minimized convex energy functional by

the means of primal-dual method to generate a probabilistic segmentation. As the sys-

tem was mainly designed to tackle issues related to segmentation accuracy, the major

drawback is that the average segmentation time took 50 ± 4.3 minutes per image to

run. The average segmentation accuracy by using this method is 0.808± 0.074 (by Dice

coe�cient), which is quite promising, considering the procedure and analysis was done



Chapter 2. Research Foundation 32

to all muscles, individually, on MRI of the thigh.

In 1992, Morrison et al. [12] made an attempt on MRI thigh segmentation by using

artificial neural network. The network model integrates a probabilistic neural network

to facilitate the generation of probability estimates at each pixel for use in an iterative

segmentation process. This preliminary study on MRI thigh segmentation using one of

the simplest forms of neural network reported that the segmentation result is una↵ected

by the quality of the training dataset. Today, the concept of neural network has been

revolutionised and diversely applied, including in segmentations of medical imaging. Re-

cent research in medical imaging by the application of advance form of neural networks,

represented in convolutional neural network (CNN) or fully convolutional neural net-

work (FCN) (again, in year of chronical published order), include [81–85], which mostly

covered MRI segmentations of region in brain, heart and breast.

2.5 Discussion and Conclusion

Naturally, the process of muscle wasting begins as we age (mostly due to hormonal and

endocrine changes) and this deteriorating muscle tissue is replaced by the accumulation

of fatty adipose tissue. The anterior thigh muscles are particularly susceptible to muscle

wasting in ageing and disease, and this is of clinical significance due to these muscles

playing a major role in everyday ambulation. Muscle wasting is a widely recognisable

feature of ageing, but the process could be escalated at an early age due to bad dietary

habits, sedentary living, and/or disorders related to metabolic syndrome or disease.

In addition, because of limitations of outputs from the medical imaging modalities (par-

ticularly the output images from MRI scanners), where images are shown in grayscale

and have substantial noise, echo, overlapping of pixel/voxel intensities, various thigh

tissue compositions especially conditions associated with muscle atrophy (wasting) de-

scribed above, inter- and intra-slice inconsistency, indistinct muscle borders even for a

well-trained physiologist, it can be challenging to di↵erentiate muscles borders, espe-

cially skeletal muscles that form a same muscle unit, such as quadriceps and hamstring.

Figure 2.9 demonstrates the MRI output profiles that defined the whole MRI database,

with about 80% of the whole database is made up by images such as in Figure 2.9(f),

10% from Figure 2.9(e) and the remaining 10% from Figure 2.9(a)-(d).
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Figure 2.9: MRI output profiles. (a) Intensity inhomogeneity. (b) Echo. (c) Overlap-
ping of pixels (limb movements during scan). (d) Yellow arrows indicate muscles that
are not part of the region of interest (ROI) but appear to attach together with the ROI.
(e) Thigh MRI composition in elderly. (f) Thigh MRI composition in young subject.

Image segmentation technique plays an important role in computer vision and partic-

ularly in analysis of medical image processing, due to its connection to the healthcare

science. However, as described earlier, no single segmentation technique (or even com-

bination of segmentation techniques) in medical imaging is capable to o↵er a complete

solution in terms of precision, processing time and reliability. Nevertheless, approaches

that are dedicated to certain applications and association of these methods usually pro-

vide better performance and results. In fact, it is important to understand that most

medical image analysis e↵orts are fundamentally influenced and driven by the particular

image datasets being utilized and the clinical or biological tasks that inspire the need

for analysis of medical imaging.

In earlier medical image processing, two major procedures were commonly applied to

simplify segmentation analysis. First a pre-processing phase, where it is mainly used

for filtering and segmenting unwanted noise and to improved intensity inhomogeneity.

The second phase usually associates with a classification process, either by interactively

introducing seeding points or curves on an image or by adaptively designing an intensity

or histogram model for segmenting di↵erent but apparent classes (or objects) in an



Chapter 2. Research Foundation 34

image.

At the time of writing, there are limited automatic segmentation frameworks pub-

lished on MRI of quadriceps or thigh muscle components as a whole, with respect to

the segmentation of individual muscle unit or muscle components in the thigh. And

the template-based level-set semi-automatic quadriceps segmentation method [9] su↵ers

from segmentation inconsistency and inaccuracy.

Since the results of this research will be critical in supporting clinical studies aiming to

determine factors a↵ecting muscle strength, structure and function in young and old age,

it is crucial for the development of operator independence and accurate segmentation

systems, without compromising much on processing time. We have identified that in

order to achieve our goals, the ideal automatic segmentation framework, in terms of

computer vision and image processing, needs to be incorporated with a combination

of the following techniques: prior information, shape and probabilistic analysis, user-

independence non-rigid registration.

However, the state-of-the-art methods described above, especially image processing

based techniques, are not robust, due to their nature of reliance on specific regulators and

rules, with certain assumptions. In contrast to artificial neural network (ANN) based

algorithms, deep learning methods do not require such strong assumptions and have

demonstrated superiority in region and object segmentation and classification, which

suggests that the state-of-the-art innovation in MRI segmentation of human thigh mus-

cles, may be achieved by adapting such approach. Moreover, the segmentation output

performance from most recent applications of network models in medical imaging [86–89],

in association with image processing technique [90] and in conjunction with the utiliza-

tion of better and upgradable hardware, such as graphics processing units (GPUs), are

remarkably accurate and fast.

From the literature, it may be concluded that for a development of a reliable and robust

automatic thigh MRI segmentation system, it is di�cult to achieve great segmentation

accuracy with fast processing time in the same package. Researchers are generally

advised to set the priority on the accuracy division and optimizing the processing time

later.
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Methodologies in Medical Image

Segmentation

This chapter presents the basics, fundamental and mathematical concepts behind

algorithms in image processing that often linked and associated to segmentation,

especially in medical imaging.

3.1 Introduction

With output images from selected medical imaging modalities (such as X-ray, CT or

MRI scanners), segmentation of certain body segments or structures can be performed

just using low-level image processing (such as image thresholding and classification of

pixel’s intensity). In general, however, segmentation is a challenging task and requires

more significant human interactions (for semi-automatic segmentation e↵ort) and so-

phisticated algorithms (for automatic segmentation), especially when involving analysis

for region of interest (ROI) with asymmetrical structures. For example, the distribu-

tion of intensity values corresponding to one structure may overlap those of another

structure, defeating intensity-based segmentation techniques, hence driving the need for

pattern recognition or prior knowledge-driven techniques.

Segmentation approaches by boundary detection such as snakes and “EdgeFlow” [91,

92], are generally native algorithms that require the presence of some image features

(such as an edge or intensity flow vector), along the boundary of the object of interest,

35
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and gravitate toward that feature. These techniques are computationally fast however,

naturally, these methods are sensitive to the initial curve position and may over- or

under-segment through the boundary of the object of interest if the edge feature is not

su�ciently salient in a certain region in the image.

Level-set based segmentation, introduced in [93, 94], involves deciphering the minimiza-

tion of energy-based snake active contours problem by using geodesics or minimal dis-

tance curves [95, 96], where a curve is usually embedded as a zero level set at a higher

dimensional surface. The entire surface is converged to metric minimization, outlined by

the image gradient and curvature. Previous works based on level-set include extensions

such as texture models [97], regularization of two shared-dimensions [98], pedal curve

evolution [99] and global intensity statistics [100].

Technically, when segmenting anatomical structures of interest, establishing prior knowl-

edge or information about the expected shape of that structure could substantially aid in

the segmentation process. Both Cootes et al. [101] andWang and Staib [102] examined a

set of corresponding points through a set of training images and constructed a statistical

analysis of shape variation that was later employed in the localization of the boundary.

Staib and Duncan [103] integrate global shape information into the segmentation task by

exploiting an elliptic Fourier decomposition of the boundary and insertion of a Gaussian

prior on the Fourier coe�cients. And finally, a shape prior technique for musculoskeletal

segmentation by using shape matching and deformable models, was derived by Gilles

and Pai [104], that was able to estimate elastic deformations of large muscle tissue.

For medical imaging, the aims of segmentation are: studies of anatomical structure;

to locate and identify pathological structures or abnormalities; diagnosing (quantify,

measure and compare the severity of the contracted disease); and treatment planning.

In this chapter, we present the existing methodological and conceptual techniques that

address the issues related to segmentation in medical imaging, including the state-of-

the-art approaches designed to tackle muscle segmentation.

3.2 Segmentation Methods

In this section, the segmentation algorithms were categorized into three groups, each

representing the di�culty level of methodological development, and often associated
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with the derivation timeline of those algorithms.

3.2.1 First Generation

Algorithms within this group are considered as entry- or low-level methods. However,

due to their computational simplicity, one of this group’s major strengths is fast pro-

cessing time.

3.2.1.1 Thresholding

Thresholding is a simple but e�cient technique that distinguishes regions in an image

(usually into a foreground and background), by creating binary partitioning based on its

intensity. Its procedures include first determining a global intensity value, which divides

the desired regions based on image histograms. Assuming a threshold value of T applied

to an image f(x, y), the resulting segmented image g(x, y) is defined by:

g(x,y) =

8

>

<

>

:

1, if f(x,y) � T

0, if f(x,y) < T

(3.1)

Threshold value can be generated in many ways, i.e. manual interaction, adaptive

method, multi-thresholding [105] or automatic thresholding (such as Otsu’s [106]). Otsu’s

thresholding involves computing a set of histogram data, usually from a grayscale im-

age. Then for each possible threshold value (the histogram bin number), the variance

of all the bins before and the bins after that point is measured to evaluate the spread

within each of the classes. As each potential threshold is evaluated, the threshold that

produced the minimum intra-class variance (�2
W

) is discovered. Statistically, this can be

defined by:

�2
W

= W1�
2
1 +W2�

2
2 , (3.2)

where W
x

is the weighting of the class given by:

W
x

=
X

b

a

P (i), (3.3)

where P (i) is the class probability, i.e. the total number of pixels in the image divided by

the number of pixels in the class. Practically, analyzing the intra-class variance �2
W

, is a
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time consuming process. Alternatively, variance between classes �2
B

, can be calculated

instead. The between class variance is the opposite of the intra-class variance in that

the threshold that produces the maximum amount of variance is reserved, rather than

the minimum. This can be measured using the following formula:

�2
B

= W1W2(µ1 � µ2)
2, (3.4)

where µ
x

is the class means level of the original image. All pixels with intensities greater

than the normalized intensity value (global threshold) are then grouped into one class

and all other pixels into another class, converting an intensity image to a segmented

binary image.

Figure 3.1: Results of di↵erent thresholding procedures on an MR image. (a) Original
image. (b) Otsu’s thresholding. (c) Adaptive thresholding.

3.2.1.2 Edge Detection

Edge detection, also known as edge tracing is a common technique in image processing

for discovering the object boundaries within an image [107, 108]. It works by identifying

intensity discontinuities or gaps. This method is widely applied in image segmentation

and feature extraction in many areas related to medical image processing and computer

vision, mainly for estimating structures and properties of objects in an image. Roberts,

Sobel, Prewitt and Canny are some of the most common edge description operators used

for edge detection.

Discontinuities in the image intensity can be either step discontinuities, or line discon-

tinuities. However, step and line edges are rarely emerge in ideal condition. Because

of the smoothing introduced by most sensor components, sharp discontinuities rarely

exist. Step edges become ramp edges and line edges become roof edges, where intensity
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changes are not instantaneous but occur over a finite distance. Figure 3.2 illustrates the

profile for each of these edges.

Figure 3.2: Edge profiles.

In one-dimensional data, a step edge is associated with a local peak in the first derivative.

The gradient is a measure of change in a function, and an image can be considered to

be an array of samples of some continuous function of image intensity. Theoretically,

significant changes in the gray values in an image can be detected by using a discrete

approximation to the gradient [109]. The gradient is the two-dimensional equivalent of

the first derivative and is defined as the vector :

G [f(x, y)] =

2

4

G
x

G
y

3
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2
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3

5 (3.5)

Two important properties associated with the gradient are the vector G[f(x, y)] points

in the direction of the maximum increase rate of the function f(x, y) and the other one

is the gradient magnitude, where:

G [f(x, y)] =
q

G2
x

+G2
y

, (3.6)
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equals the maximum increase rate of f(x, y) per unit distance in G direction. However,

it is practically common to approximate the gradient magnitude by absolute values of:

G [f(x, y)] ⇡ |G
x

|+ |G
y

|, or (3.7)

G [f(x, y)] ⇡ max(|G
x

|, |G
y

|). (3.8)

From vector analysis, the gradient direction is defined as:

↵(x, y) = tan�1

✓

G
y

G
x

◆

, (3.9)

where the angle ↵ is measured with respect to the x -axis. Note that the gradient

magnitude is independent of the edge direction and this condition is known as isotropic

operators or isotropic edge detectors [110]. There are four steps for edge detection, which

consist of:

1. Smoothing. Commonly used to improve the performance of an edge detector with

respect to noise. However, there is a trade-o↵ between edge strength and noise

reduction. More filtering to reduce noise results in a loss of edge strength.

2. Enhancement. Emphasizes pixels where there is a significant change in local in-

tensity values and is usually performed by computing the gradient magnitude.

3. Detection. Determine which edge pixels should be discarded as noise and which

should be retained (usually, thresholding provides the criterion used for detection).

4. Localization. Edge location and orientation can be estimated with sub-pixel reso-

lution if required for the application.

Next, some commonly used edge detection operators will be presented and note that

the use of the computational approach (the inclusion of one or more of the above four

steps) is di↵er from one operators to another.

1. First Derivative.

(a) Roberts Operator. The Roberts cross operator [111] provides a simple

approximation to the gradient magnitude, where:

G [f(i, j)] = |f [i, j]� f [i+ 1, j + 1] |+ |f [i+ 1, j]� f [i, j + 1] |. (3.10)
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By introducing convolution masks, this becomes:

G [f [i, j]] = |G
x

|+ |G
y

|, (3.11)

where G
x

and G
y

are measured using the following masks:

G
x

=
1 0

0 �1
G

y

=
0 �1

1 0
(3.12)

As with the previous 2⇥2 gradient operator, the di↵erences are computed at

the interpolated point [i+ 1
2 , j+

1
2 ]. The Roberts operator is an approximation

to the continuous gradient at that point and not at the point [i, j].

(b) Sobel Operator. Another way to avoid having the gradient calculated

around an interpolated point between pixels is by using a 3⇥3 neighbourhood

for the gradient calculations. Consider the arrangement of pixels around the

[i, j] pixel as shown in Figure 3.3 below:

Figure 3.3: Neighbourhood pixels labelling for Sobel and Prewitt operators.

The Sobel operator [112] is the gradient magnitude computed by:

M =
q

s2
x

+ s2
y

, (3.13)

where the partial derivatives are computed by:

s
x

= (a2 + ca3 + a4)� (a0 + ca7 + a6), (3.14)

s
y

= (a0 + ca1 + a2)� (a6 + ca5 + a4), (3.15)
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by using a constant of c = 2. Like the other gradient operators, s
x

and s
y

can be implemented using convolution masks of:

s
x

=

�1 0 1

�2 0 2

�1 0 1

s
y

=

1 2 1

0 0 0

�1 �2 �1

(3.16)

where emphasis is prioritize on pixels that are closer to the center of the mask.

(c) Prewitt Operator. The Prewitt operator [111] uses the same equations as

the Sobel operator, except that the constant c = 1.

s
x

=

�1 0 1

�1 0 1

�1 0 1

s
y

=

1 1 1

0 0 0

�1 �1 �1

(3.17)

However, unlike Sobel operator, Prewitt operator does not place any emphasis

on pixels that are closer to the center of the masks.

2. Second Derivative. The edge detectors discussed earlier computed the first

derivative and, if it was above a threshold, the presence of an edge point was

assumed. This results in detection of too many edge points. A better approach

would be to find only the points that have local maxima in gradient values and

consider them edge points. This means that at edge points, there will be a peak

in the first derivative and, equivalently, there will be a zero crossing in the second

derivative. Thus, edge points may be detected by finding the zero crossings of the

second derivative of the image intensity [108].

(a) Laplacian Operator. This second derivative of a smoothed step edge is a

function that crosses zero at the location of the edge and employed a two-

dimensional equivalent of the second derivative [113]. The Laplacian operator

function with respect to f(x, y) is:

r2f =
@2f

@x2
+

@2f

@y2
. (3.18)

The second derivatives along x and y directions are approximated using di↵er-

ential equations, and since the approximation is centred around pixel [i, j+1],
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the final functions of Laplacian operator, with respect to x and y are:

@2f

@x2
= f [i, j + 1]� 2f [i, j] + f [i, j � 1], (3.19)

@2f

@y2
= f [i+ 1, j]� 2f [i, j] + f [i� 1, j]. (3.20)

(b) Laplacian of Gaussian. Therefore, it is desirable to filter out the noise

before edge enhancement. Laplacian of Gaussian [108], with the combina-

tion approaches of Gaussian filtering and edge detection by Laplacian are

employed, mainly for noise filtering before extracting edges. The output of

this operator - h(x, y), is computed by the convolution operation of:

h(x, y) = r2[g(x, y) ⇤ f(x, y)]. (3.21)

By applying the derivative rule for convolution, also known as Mexican hat

operator [114], the function simplified as:

h(x, y) = [r2g(x, y)] ⇤ f(x, y), (3.22)

where:

r2g(x, y) =

✓

x2+y2�2�2

�4

◆

e�
(x2+y

2)

2�

2 . (3.23)

This results in a formula mathematically equivalent to the following two meth-

ods, which are: (i) Convolve the image with a Gaussian smoothing filter and

compute the Laplacian of the result and; (ii) Convolve the image with the

linear filter that is the Laplacian of the Gaussian filter.

3. Gaussian Edge Detection.

(a) Canny Edge Detector. The Canny edge detector [109] is the first deriva-

tive of a Gaussian and closely approximates the operator that optimizes the

product of signal-to-noise ratio and localization. Its algorithm is summarized

by the following notation. Let I[i, j] denote the image. The result from con-

volving the image with a Gaussian smoothing filter using separable filtering

is an array of smoothed data:

S[i, j] = G[i, j;�] ⇤ I[i, j], (3.24)
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where � is the spread of the Gaussian and controls the degree of smoothing.

The gradient of the smoothed array S[i, j] can be computed using the 2 ⇥ 2

first derivative approximations to produce two arrays P [i, j] and Q[i, j] for

the x and y partial derivatives:

P [i, j] ⇡ (S[i, j + 1]� S[i, j] + S[i+ 1, j + 1]� S[i+ 1, j])/2 , (3.25)

Q[i, j] ⇡ (S[i, j]� S[i+ 1, j] + S[i, j + 1]� S[i+ 1, j + 1])/2 . (3.26)

The finite di↵erences are averaged over the 2⇥ 2 square so that the x and y

partial derivatives are computed at the same point in the image [109]. The

magnitude and orientation of the gradient can be computed from the standard

formulas for rectangular-to-polar conversion:

M [i, j] =

q

P [i, j]2 +Q[i, j]2 , (3.27)

✓[i, j] = arctan (Q[i, j], P [i, j]), (3.28)

where the arctan function takes two arguments and generates an angle over

the entire circle of possible directions. These functions must be computed ef-

ficiently, preferably without using floating-point arithmetic. Next, to identify

edges, the broad ridges in the magnitude array must be thinned so that only

the magnitudes at the points of greatest local change remain. This process is

called nonmaxima suppression (nms) [114].

N [i, j] = nms(M [i, j], Sector(✓[i, j]))

= nms(M [i, j], ⇣[i, j]) .
(3.29)

And finally, the application of double thresholding [115] (also known as hys-

teresis thresholding) ⌧1 and ⌧2 to the nonmaxima-suppressed image N [i, j],

with ⌧2 ⇡ 2⌧1, to produce two thresholded edge images ⌧1[i, j] and ⌧2[i, j], for

finer edges extraction.
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Figure 3.4: Results of di↵erent edge detection operators. Cameraman image courtesy
of Mathworks.

3.2.1.3 Region Growing

Region growing [116] is another algorithm in image processing and computer vision

for object extraction that is connected based on some predefined criteria or sometimes

referred to as similarity constraints, such as intensity information, colour or edges in the

image. This method requires a seed point that can be manually selected by an operator

or adaptively placed by using prior information, and extracts all neighbouring pixels

that satisfy one or more similarity constraints as above.

Region growing is useful to isolate structures in an image, especially when the regions of

interest and background have defined edges, overlapping pixel intensities and separated

by some partition. Like most methods, region growing also employed with a set of other

algorithms, particularly to increase the e�cacy of small delineation processes of simple

structures, such as tumours and lesions [117].

The major drawback of this algorithm is its higher computational time. As it is con-

sidered a data parallel method, the numbers of threads change as the border expands.

This usually involves evaluation of all the values over the global memory, which is time

consuming and requires additional works and initiates branch divergence, restricting

the potential speedup over an enhanced sequential operation. Issues related to noise

however, can be dominated by using additional masks for hole and outliers filtration.

Figure 3.5 demonstrates region growing application with an addition of thresholding to

separate the prominent muscle mass area without splitting the image apart.
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Figure 3.5: Seed-based region growing segmentation. Left - Original thigh MR im-
age. Right - region growing segmentation result after seeding point placement (yellow
marker) on the muscle region.

3.2.2 Second Generation

Considered as mid-level approaches and often used in conjunction with methods in the

first group.

3.2.2.1 Clustering

Clustering, in general, is a process of grouping objects in an image based on information

found in the data that describes the objects and their connections. The goal is that

the objects within a cluster (or group) be related to one another and dissimilar from

objects in other clusters. In image processing, it is considered as the most important

unsupervised learning technique and also one of the most used algorithms in image

segmentation [118], due to its intuitive and easy nature. Four commonly used clustering

algorithms are the K-means [119], the fuzzy c-means [120], Hierarchical clustering [121]

and mixture of Gaussians [122].

K-means. This clustering technique classifies data or objects by iteratively comput-

ing mean intensity for a certain number of clusters (named k clusters) and segmenting

the image by associating each pixel to the appropriate cluster with the closest mean.

When the assigning process is complete, the k new centroids require a re-calculation for

a new binding of the same data set to the k new centroids. This looping process gener-

ates changes to the k centroid location, and iteratively occurs until no further changes
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are possible [119]. This produces a separation of the objects into clusters from which

the metric to be minimized can be measured by an objective function of:

J =

k

X

j=1

n

X

i=1

�

�

�

x
(j)
i

� c
j

�

�

�

2
, (3.30)

where
�

�

�

x
(j)
i

� c
j

�

�

�

2
is a chosen distance measure between a data point x

(j)
i

and cluster

centre c
j

, with a distance indicator of n data points from the respective cluster centres.

Figure 3.6 shows 2 examples of K -means segmentation of data with 2 and 4 clusters,

respectively.

Figure 3.6: K -means applications on 2 (top row) and 4 (bottom row) clusters of
random data. First columns represent random data generations. Second columns:
clusters initialization. Third columns: assignment of data points to closer cluster.
Final columns: Centre (final centroid location) of each cluster.

Fuzzy C-mean. This technique is considered as an extension of K -means clustering

and lets data points to be assigned to more than one clusters [120]. The algorithms is

based on minimization process of the following objective function:

J
m

=
N

X

i=1

C

X

j=1

um
ij

kx
i

� c
j

k2, (3.31)

where 1  m < 1; u
ij

is the membership degree of x
i

in the cluster j ; x
i

is the ith of

d-dimensional measured data; c
j

is the d-dimensional centre of the cluster; and || ⇤ || is

any norm expressing the similarity between any measured data and the centre. Fuzzy
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clustering is processed through an optimization iteration of the objective function shown

above, with the update of membership u
ij

and the cluster centres c
j

by:

u
ij

=
1

P

C

k=1

⇣

kx
i

�c

j

k
kx

i

�c

k

k

⌘

2
m�1

, (3.32)

c
j

=

P

N

i=1 u
m

ij

.x
i

P

N

i=1 u
m

ij

. (3.33)

Iteration stops when max
ij

n

|u(k+1)
ij

� u
(k)
ij

|
o

< ", where " is termination criterion be-

tween 0 and 1; and k is the iteration steps. This process converges to a local-minima or

a saddle point of J
m

. Figure 3.7 illustrates a simple 1-dimension data, distributed along

the x -axis, with corresponding post-processing output by K -means and fuzzy c-means

(FCM), respectively.

Unlike K -means, FCM o↵ers a better solution for intersected data due to data point

membership is assigned to each cluster centre and may belong to more than one cluster

centre. However, unequal weight underlying factors by Euclidean distance measure-

ments may results in an expensive number of iteration, hence a further processing time

compared to K -means [120].

3.2.2.2 Watershed

Watershed is a classic region-based segmentation approach proposed by Digabel and

Lantuejoul [123, 124] and later improved by Beucher and Lantuejoul [125]. The concept

of this method is based on topography, where an image is viewed as a three-dimensional

object. The third dimension is the height of each pixel based on its intensity value, or in

this regards also known as local topology or elevation. The algorithm floods catchment

basins from local minima (or sometimes referred to as hole) and build watershed lines

(or divide lines) when di↵erent water sources from other basins are about to merge. The

height of watershed lines are increased at the same rate as the water level increases and

this process stops after the water reaches the highest point in the topology, corresponding

to the pixel with maximum intensity.

Watershed is a popular method in image processing, including medical image segmen-

tation due to its simplicity, intuitive, fast and can be paralleled [126] to further speedup
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Figure 3.7: Top 1-D graph - Data distribution along x -axis. Mid graph - Mem-
bership function of two clusters by K -means. Bottom graph - Membership function
of two clusters by FCM. The point marked as a red dot, although belongs to B
cluster, also belongs to A cluster, with membership degree valued at 0.2. Courtesy:
http://home.deib.polimi.it

the processing time. However, there are also certain important issues related to this

method such as over-segmentation; sensitivity to noise; poor detection of areas with

prominent low contrast boundaries; and poor detection of thin areas. Some adaptation,

especially on medical image segmentation, have been completed to improve such issues.

[127, 128] recording good segmentation performance and reducing over-segmentation

errors by controlling marker (local minima) location with mathematical morphology.
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Figure 3.8: Left - Simulated image with two dark blobs. Right - How water-
shed algorithm treats image on the left, such that the dark regions are “low” and
bright regions are “high”, resulting watershed line and catchment basins. Courtesy:
http://uk.mathworks.com

Over-segmentation can also be minimized by adjusting the opening-closing (or erosion-

dilation) of morphological gradient [129]. A new and improved segmentation algorithm

of watershed transformations by prior knowledge [130] that employs di↵erent functions

based on di↵erent objects used (instead of the usual application of intensity gradient)

demonstrated substantial segmentation accuracy on MRI and CT images.

3.2.2.3 Active Contour

Part of a parametric deformable model family and considered to be one of the most

applied algorithms in image processing [131]. This simulated closed parametric curves

capable of contraction or extension, with a number of iterations over time, and adapts

to certain features for a given image, by the means of energy minimizing function.

Edge-based. Introduced by Kass et al. [91] and also known as “snake” algorithm.

This edge-based snake model represents a controlled continuity spline that can deform

to match any shape, under the influence of image forces and external constraint forces.

The internal spline forces add a piecewise smoothness constraint. The image features

attract the snake to the salient image features, such as lines, edges and terminations.
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Figure 3.9: Image segmentation by watershed. (a) Original image. (b) Watershed
transformation of (a). (c) Watershed transformation with Euclidean distance trans-
form of the binary image (a). (d) Segmentation result with desired location minima.
Courtesy: http://uk.mathworks.com

The total energy of the snake can be written as:

E⇤
snake

=

Z 1

0
E

snake

(v(s))

=

Z 1

0
[Eint(v(s)) + E

image

(v(s)) + E
con

(v(s))]ds,

(3.34)

where E
int

represents the internal energy of the spline and computed from within the

curve for smooth deformation, E
image

represents the image forces that drive the curve

toward the desired feature of interest, and E
con

represents the external constraint forces.

v denotes a parametric curve as:

v = v(s) = (x(s), y(s)), (3.35)
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where s 2 [0, 1] and s is subset material of an image. The internal energy can be written

as:

Eint = (↵(s)|v
s

(s)|2 + �(s)|v
ss

(s)|2)/2 . (3.36)

The first order term represents the stretching force (elasticity) of the snake while the

second order term represents its bending force (rigidity). The values of ↵ and � act as

balancing parameters.

The image energy can later be inscribed as:

E
image

= !
line

E
line

+ !
edge

E
edge

+ !
term

E
term

. (3.37)

The external constraint energy E
con

has 2 major forms; spring energy and repulsion

force. The snake algorithm will iteratively deform the model and try to find the config-

uration with minimum total energy E⇤
snake

, which corresponds to the best fit as to the

preliminary shape of the template image as a structure regulator [132].

Region-based. Although e↵ective in generating closed parametric curves of regions

of interest to an image, dependency to proximity of edges to the image energy, E
image

of edge-based active contour yields higher sensitivity of this model to noise [131]. This

may lead to inaccurate object segmentation, especially due to poor edges detection. An

upgraded version of deformable active contour approach was proposed by Blake et al.

[133] and Mumford and Shah [134], termed region-based active contour, with energy

minimization function of:

E(u,C) =
1

2

Z

⌦
(I � u)2dx+ �2 1

2

Z

⌦/C

|ru|2dx+ ⌫|C|, (3.38)

where C is the curve, I is the image, u is the piecewise smooth function. The first term

maps the similarity of u with I, the second term penalizes edges gaps of u excluding

on the curve boundary C and the final term confines the C length to segment only

important objects. Equation 3.38 is further improved with a simpler function by setting

the limit of �!1 [134] and giving a new function of:

E({u
i

}, C) =
1

2

X

i

Z

R

i

(I � u
i

)2dx+ ⌫|C|, (3.39)
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where u
i

is a partition of image I into constant regions R
i

determined by curve C. An

introduction of Gaussian probabilistic model for each region with constant grayscale

value by Zhu et al. [135] resulted in a new function of:

E({↵
i

}, C) =
1

2

X

i

Z

R

i

� logP (I|↵
i

)dx+ ⌫|C|, (3.40)

where P (I|↵
i

) is the posterior probability by computing image I intensity values, inside

region R
i

given distribution parameter of ↵
i

. A hybrid extension of edge- and region-

based function for energy minimization by standard gradient descent method, termed

di↵usion snake has been introduced by Cremers et al. [136]:

E(u,C) =
1

2

Z

⌦
(I � u)2dx+ �2 1

2

Z

⌦/C

|ru|2dx+ ⌫

Z

|C
s

|2 , (3.41)

by adapting equation terms on 3.38 external energy and equation 3.34 internal elastic

constraint, where ⌫
R

|C
s

|2 = Eint(v(s)). Another region-based energy model by Chan

and Vese [137], which is the representation of an energy minimization-based segmenta-

tion as in original fitting term of:

F
a

(C) + F
b

(C) =

Z

inside(C)
|I(x, y)� k

a

|2dxdy

+

Z

outside(C)
|I(x, y)� k

b

|2dxdy ,

(3.42)

where both variable curves (inside/outside)C and their dependant constants k
a

, k
b

are

the average derivations of inside and outside image I, respectively, providing an obvious

fitting term minimizer to the object’s boundary C0, where:

inf
C

{F
a

(C) + F
b

(C)} ⇡ 0 ⇡ F
a

(C0) + F
b

(C0). (3.43)
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Energy curve fitting and regularization terms above were further minimized by additional

Euler-Lagrange-based H
"

and �
"

regularizing functions as "! 0, and defined as:

F
"

(k
a

, k
b

,�) =µ

Z

⌦
�
"

(�(x, y))|r�(x, y)|dxdy

+ v

Z

⌦
H

"

(�(x, y))dxdy

+ �
a

Z

⌦
|u0(x,y)� k

a

|2H
"

(�(x, y))dxdy

+ �
b

Z

⌦
|u0(x,y)� k

b

|2(1�H
"

(�(x, y)))dxdy ,

(3.44)

where � is level set function represents the curve, C and
R

⌦ |r�
!

|dxdy is the lower

semi-continuity of the total variation. Region-based approaches possess substantial ad-

vantages over edge-based methods, especially robustness against initial curve placement,

flexibility of dealing with noise in image and customizable energy minimization model

[132, 138].

Figure 3.10: Image segmentation by di↵erent mode of active contours on putamen
brain’s sub-cortex MR image. First column represents di↵erent curve initializations
on the image. Second column - Curve convolutions by region-based algorithm. Third
column - Curve transformations by edge-based. Last column - Segmentation results by
hybrid active contour. Courtesy: http://www.shawnlankton.com/2007/02/cool-hybrid-
segmentation/



Chapter 3. Methodologies in Medical Image Segmentation 55

3.2.2.4 Level Set

Level set was introduced by Dervieux and Thomasset [139] and classified as geometric

deformable models [140]. Its application is mainly to solve certain issues that active

contour is unable to address and uses evolving curves C implicitly as the zero level line

location of a function:

C = {x 2 ⌦|�(x) = 0} , (3.45)

where � : ⌦ ! R, and integrated with snake’s energy minimization function, with

C : [0, 1]! ⌦ [141, 142] to produce:

E(C) =

Z 1

0
↵E

int

(C(p)) + �E
img

(I(C(p))) + �E
ext

(C(p))dp , (3.46)

where E
int

controls curve smoothness, E
img

is data term that drives the curve towards

boundaries, I is the image, E
ext

is prior term set by the user, and parametric constants

of ↵,�, � to harmonize the equation. This function is minimized by variational form

approach of:
@C

@t
= �@E(C)

@C
= F.n , (3.47)

where F represents speed function and n is normal vector of the curve. By joining the

level set formulation to the previous equation produces:

@

@t
� = �|r�|F . (3.48)

This indicates the implicit function (�) progression at boundaries location. Some of

the earliest applications in level set form incorporating Geodesic Active Contours model

[93, 94] with evolution function is given by:

@

@t
� = |r�|div

✓

g(I)
r�
|r�|

◆

, (3.49)

where g represents edge function that expands proportionally with the edges strength

in image I. This equation represents an internal flow, which contracts the initial curve

towards the discovered edges. Generally, its application is considered as a signed distance
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function to the curve transformation:

�(x) =

8

>

>

>

<

>

>

>

:

0 , x 2 C ,

D(x,C) , x 2 C
in

,

�D(x,C) , x 2 C
out

,

(3.50)

where D(x,C) is Euclidean distance from x to C, C
in

⇢ ⌦ and C
out

⇢ ⌦ denote the re-

gion inside and outside of C, respectively. As the function is dependable to initialization

of curve C and fragile to local extrema variations, a global regional term, incorporated

with energy model of [137, 142] was proposed:

E(�, ✓1, ✓2) =

Z

⌦
�H(�) log p(I|✓1)� (1�H(�)) log p(I|✓2) + w|rH�|dx , (3.51)

where p(I|✓
i

) is the posterior probability to detect I by specified region model parame-

ter ✓
i

. H represents Heaviside step function, where H(x) = 1, x 2 C
in

, and H(x) = 0.

Practically, H is considered as a smooth di↵erentiable approximation of the Heaviside

distribution. ✓
i

denotes region parameters and can either be customized as a statistical

prior knowledge properties of the objects region [143], or projected in a di↵erent opti-

mization method [137]. This formulation was later restructured to various deviations and

applications, such as multi-phase segmentation [144] and non-parametric approximation

of density functions [145].

3.2.2.5 Statistical Analysis for Shape Representation

Internal organs and their inner structures for all individuals, in general, share similar

shapes and profile characteristics. Statistical shape analysis is an important tool for

modelling these anatomical structures, especially from medical images [146, 147]. Given

a set of pre-segmented or training images from di↵erent individuals, the goal is to model

the geometric variability of the anatomical structures within a class of images, in which

e�cient parameterization of the geometric variability of human anatomy can be of-

fered. These models may be used as seeding points for shape deformations during image

segmentation [148], valuable in understanding human development through monitoring

growth and disease [149] or even for gait recognition studies [150].

Some of the most common statistical analysis approaches capable of representing or

modelling shapes are Statistical Shape Models (SSM) [151], Active Shape Models (ASM)
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Figure 3.11: Lemons and CT vessel (top and bottom row, respectively) image segmen-
tation by level set. Left column represents initial contours. Mid column - intermediate
contours after certain number of interations. Right column - final contours. Courtesy:
Li et al. - A Level Set Method for Image Segmentation in the Presence of Intensity
Inhomogeneities with Application to MRI.

[148], Active Appearance Models (AAM) [152] and Principle Component Analysis (PCA)

[153]. However, in this section only PCA will be presented as other techniques em-

ployed slightly di↵erent parametric and geometric modelling approaches, suitable for

other imaging modalities.

Principle Component Analysis. PCA is a very powerful and fast method for pat-

tern recognition and dimensionality reduction (especially in computation that involves

abundant of data with equal dimensions) due to one of its major characteristics of linear

combination of data re-expression [154, 155]. PX = Y represents a basic form of PCA

as an orthogonal regression method, with linear transformation of P , and X and Y are

equal to m⇥ n matrices [156]. Another form to express data means following the above

equation is a common measure of ratio of variances �2 or signal-to-noise ratio (SNR),

SNR = �

2
data

�

2
noise

, with SNR ⌧ 1 and SNR � 1 indicates low and high precision data,

respectively [156]. Covariance generalization of the resultant variance of dataset K and

L summarized as �2
KL

= hk
i

l
i

i
i

, where i represents a single grouped observation of the

k and l variables, which after the conversion of row vectors of dataset K and L becomes
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[157]:

�2
kl

⌘ 1

n� 1
klT . (3.52)

At this stage, each row and column of X is equal to x
i

and
�!
X (entire vector of X),

respectively, resulting in a foundation covariance matrix of:

S
X

⌘ 1

n� 1
XXT , (3.53)

where S
X

is a symmetric dimension matrix m⇥m and XXT is ijth value corresponds

to x
i

and x
j

as per Equation 3.52. S
X

is also refers as scatter matrix of:

S =
n

X

k=1

(x
k

� µ)(x
k

� µ)T , (3.54)

where µ is the mean vector, described as:

µ =
1

n

n

X

k=1

x
k

. (3.55)

Figure 3.12 demonstrates spatial minimizations by PCA to seismic volume or strata-grid

attributes by using di↵erent weights and di↵erent combinations of the variables in the

data sets.

3.2.2.6 Registration

Image registration is important in many aspects of functional image analysis, not only

to basic concept of image stitching and alignment, satellite imaging, geospatial tagging

and mapping, audio and video editing but also to medical imaging. The results of these

image transformations can be used to model di↵erent registration elements of the same

subject, image alignment and also as an e↵ective tool for seeding points placement for

optimum curve evolution process, especially if any statistical model analysis is involved

[104, 158, 159].

Feature-based. This geometric feature-based method corresponds to physical points

(point landmarks) in an image or between two images, where transformation process is

measured physically according to these points.
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Figure 3.12: Projection of 3-D dataset into 2-D pattern expressions using
PCA. The data compresses with minimal information degradation. Courtesy: ht-
tp://www.geomodeling.ca/principal-component-analysis/

Rotation, Translation and Scaling

For each point (x
a

, x
b

, x
c

) in an image or MRI scan, an a�ne mapping can be defined

into the co-ordinates of another space (y
a

, y
b

, y
c

). This is expressed as:
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z

, (3.56)

which is often represented by a simple matrix multiplication [160] of y = mx:
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where (m
x

,m
y

,m
z

) are arbitrary translation vectors, and (m
d

�m
l

) is 3 ⇥ 3 rotation

matrix [160] defined by:
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(3.58)

where for example, m
a

, rotates the image around axis a by an angle ↵
a

. The elegance

of formulating these transformations in terms of matrices is that several of them can be

combined, simply by multiplying the matrices together to form a single matrix. This

means that repeated re-sampling of data can be avoided when re-orienting an image.

Inverse a�ne transformations are obtained by inverting the transformation matrix.

If a point x is to be translated by k units, then the transformation is simply: y = x+ k

and can be inscribed in matrix as [161]:
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The a�ne transformations described so far will generate purely rigid curvature map-

pings. Scaling are needed to change the size of the shape model and represent zooming

in or out along the orthogonal axes, and can be represented as:
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A single zoom by a factor of -1 will flip an image. Two flips in di↵erent directions

will merely rotate it by ⇡ radians (a rigid image transformation). In fact, any a�ne
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transformation with a negative determinant will render the image flipped.

Let’s assume two 2-D images, a�ne object (I 0) and original object I are related by reg-

istration transformation such that: I 0(x) = I(Ax+T ), where A is the linear component

matrix a�ne mode consists of scaling and rotation, and T is the 2-D translation vector.

If both I 0 and I are related, then each point I 0(x
I

0 , y
I

0) in a�ne object corresponds to

point I(x
I

, y
I

) according to the matrix equation of:
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where s is the scale factor, � is the angle of rotation and � is the translation in (x, y)

unit. Homogeneously, for any pixel of I 0(x, y), it is proven that:

I(x, y) = I 0(�x+ s ⇤ (x cos�� y sin�),�y + s ⇤ (x sin�+ y cos�)). (3.62)

For finite disconnection of I 0 and I, both are assumed to be square in shape, with any

given pixel area. Note that practically, in real medical images, the transformation of

I 0 by modes of image registration introduces di↵erences due to occlusions as some data

moves into or out of the image frame. Figure 3.13 demonstrates the transformation

process of a hexagonal shape, I 0 according to points in original hexagonal shape I.

Intensity-based. This approach match image’s intensity patterns by statistical mea-

surements, where intensity similarity between the source and the target images are

computed and the transformation is adjusted until optimum similarity is registered.

Measures of similarity includes squared di↵erences in intensities, correlation coe�cient,

measures based on optical flow, and information-theoretic measures such as mutual in-

formation.

The sum of squared di↵erences [162] is considered as the simplest method for intensity-

based registration, which assumes that the images are similar at registration except for

(Gaussian) noise. The correlation coe�cient [158] assumes that matching intensities in

the images have a linear correlation. These two methods are suitable for mono-modal

registration where the intensity characteristics are very identical in the images.
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Figure 3.13: Sample of a�ne transformation process of a hexagonal shape.

For multi-modal registration, other similarity methods have been developed to accom-

modate issues related to weaker associations between intensities, especially on di↵erent

imaging modalities. The correlation ratio [163] assumes that corresponding intensities

are functionally related at registration and information-theoretic measures like mutual

information [159] assume only that a probabilistic connection between landmark inten-

sities is optimized at registration. This mutual information, MI is defined as:

MI(A,B) = H(B)�H(B|A), (3.63)

where A and B are two images and correlation of Shannon’s entropy [164]:

H(A) =
X

i2A
p
i

log

✓

1

p
i

◆

, (3.64)

where, p
i

is the probability of current pixel i gray value in image A. The probability p
i
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can be calculated from the image’s histogram. MI can be interpreted as the reduction

in image B’s ambiguity, in which when the MI is high, images A and B are similar.

Figure 3.14: Registering multimodal MR images by intensity-based image
registration. Image on the left represents moving image. Mid image -
Fixed (template) image. Image on the right - Registered moving image with
a�ne registration mode - Registration is done by using Matlab. Courtesy:
http://uk.mathworks.com/help/images/registering-multimodal-mri-images.html

3.2.2.7 Markov Random Field

Markov Random Field (MRF) is also known as unidirected graphical model (UGM) or

Markov network [165]. It is a powerful method for modelling spatial continuity and can

be used within image segmentation, where all pixels in the image are treated as nodes in

a graph. All nodes are linked and each pixel has an authority to its neighbouring pixels

and these are demonstrated in Figure 3.15. Each node contains a Markov distribution

integrated with it, which consists of the probability of the pixel fitting to each class and

dependable to its closest neighbours.

Figure 3.15: Markov model graph. (a) Grids of a simple 4-connected pixels. (b) Grids
with extra connections. (c) Grids with irregular pattern. Courtesy: Andrew Blake and
Pushmeet Kohli - Introduction to Markov Random Fields

In image segmentation, MRF goal is to find the segmentation (x,y) that maximizes

the probability p(x, y|z), where z is the observed image to be segmented [166]. (x, y)

can express several di↵erent segmentation classes (x segmentation vector; y intensity
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inhomogeneity vector) for each pixel and makes MRF an ideal solution for multi-label

segmentation. By using Bayesian [166] rule this relationship becomes:

p(x, y|z) / p(z|x, y)p(x)p(y). (3.65)

In this function, p(z|x, y) is the probability of observing an image z given a segmentation

(x, y). p(x, y) is the probability of a segmentation, and can be used to model how a

segmentation result should look like. p(z) is considered to be a normalization constant,

and is therefore ignored in the calculations. Structures of interest can be segmented by

creating di↵erent expressions for p(z|x, y) and p(x, y).

3.2.3 Third Generation

Third generation algorithms were developed to fulfil the growing demand for automation

analysis in medical imaging (especially MR imaging and CT scanning) and corresponds

with the development of current state-of-the-art medical imaging technology. While

automation processes are clearly desirable for clinical scanning applications, its reliability

in terms of processing speed and compatibility are still arguably volatile and unstable.

Listed here are some of the concepts that lead to the development of state-of-the-art in

medical image segmentation techniques.

3.2.3.1 Atlas-based

This approach employs the concept of atlas formation and registration, where atlas image

is generated (interactively or statistically from manual annotation of several similar

shaped objects or regions) and compiled for its properties on the structure that requires

segmenting. This atlas is then used as a reference frame for segmenting the targeted

images and applied in the spatial domain of the image rather than in a feature space.

Typical atlas-based approaches consider segmentation procedures as a registration prob-

lem [160]. The initial step involves discovering transformation of new image to be pro-

cessed within the same dataset, which usually has similar distinguishable spatial frames

as the template atlas image. This warping process may be implemented by linear trans-

formations [167–169] or also by nonlinear transformations [170–172]. This segmentation
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technique has been employed mostly in MR imaging of various brain structures [170]

and spatial volume extraction [173].

[174] demonstrates a fine example of atlas-based method, in which a variational principle

for joint registration and segmentation model with a given formulation of:

minE(v, C̃) = Seg(I2, C̃) + dist(v(C), C̃) + Reg(I1, I2, v), (3.66)

where I1 is atlas image containing the atlas shape C, I2 is image to be segmented and v is

the vector field. The transformation process is centred in I2 and non-rigid deformation

will be defined between the I1 and I2. The first Seg term on the right hand side of

equation 3.66 represents the segmentation functional. C̃ is the boundary contour of

the anticipated anatomic shape of I2. The second term measures the distance between

the transformed atlas v(C) and C̃ of targeted image and the final term denotes the

function of non-rigid registration I1 and I2. This joint registration-segmentation model

is demonstrated in Figure 3.16.

Figure 3.16: Segmentation model of joint-registration method. Courtesy: Wang et
al. - Joint Registration and Segmentation of Neuroanatomic Structures From Brain
MRI

The spatial matrices of an atlas image, such as feature, geometric and intensity are

easily transferrable to moving or targeted image and this is one of the main advantage

by applying this approach as it allows for inexpensive computational iterations and

bring useful prior information to segmentation and registration tasks [175]. However,
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segmenting complex structures such as cerebral cortex, often proved to be di�cult and

with the integration of methods like probabilistic atlases [176], the e�ciency in modelling

anatomical variation can be enhanced considerably. This however, requires additional

processing time and interaction for data accumulation.

3.2.3.2 Shape Prior

Deformable model driven shape prior technique is arguably the most common technique

in shape prior based image segmentation. The template shape boundary can be manually

approximated or through statistical shape analysis from training datasets or images.

Like previous atlas-based method, shape prior evolves the initial shape of the template

boundary according to the image to be segmented, with restricted contour deformation

protocols.

In [177], the deformation process is done locally based on image gradients and globally

towards the probability of maximum a posteriori (MAP) of a shape model’s position

and model. [178] incorporates variational prior info into geodesic active contours, where

the function is minimized when deformable model has detained high image gradients

and shape prior. The integration of shape model in [177] into a reduced Mumford-

Shah functional by [137] has been proposed in [179, 180], where implicit shape prior

is reliant on shape vector and pose vector. [97] proposed a shape model by level-set

representation and segmentation procedure by a modified geodesic active regions. And

finally an integration of modified Mumford-Shah function to two statistical parametric

shape models introduced in [136], for better segmentation results even with the presence

of noise, occlusion or cluttered background.

Another variational model by using local and global image information with a PCA

driven geometric shape prior is presented in [181], given a function of:

F = �
s

F
shape

(C, x
pca

, x
T

) + �
b

F
boundary

(C) + �
r

F
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(x
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where:

F
shape

=

I 1

0
�̂2(x

pca

, h
x

T

(C(q)))|C 0(q)|dq , (3.68)

F
boundary

=

I 1

0
g(|rI(C(q))|)C 0(q)|dq , (3.69)
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(3.70)

where C is the active contour, �̂ is the shape function of the object of interest given by

the PCA, x
pca

is the vector of PCA eigencoe�cients, h
x

T

is an element of a group of

geometric transformations parametrized by x
T

(the vector of parameters), g is an edge

detecting function, ⌦
in

and ⌦
out

are the inside and outside regions of the zero level set

of �̂, u
in

and u
out

are smooth approximations of the original image I in ⌦
in

and ⌦
out

and �
b

, �
s

, �
r

are arbitrary positive constants that balance the contributions of the

boundary, shape and region terms. This shape prior function advances the work from

[178] with integration of shape model from [177] Mumford-Shah function in [134, 182],

where it enforces the boundary to get a shape of interest, regardless of the boundary’s

position.

Other shape prior based image segmentation approaches include deformable template

[183], superquadrics and hyperquadrics [184] and landmark-based model [148].

Figure 3.17: Image segmentation by statistical shape prior using manifold learn-
ing on right ventrical on cardiar MR image. (a), (b), (c) and (d) represent original
image with respected initialization of shape prior curve. (e), (f), (g) and (h) - seg-
mentation results, from respective top row. Courtesy: http://www.litislab.fr/members-
cpetitjean/shapepriorsegm/
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3.2.3.3 Neural Network

A neural network or sometimes referred to as Artificial Neural Network (ANN) is an

information processing model that is inspired by how neurons in our brain, process

data and learn. The fundamental element of this approach is the unique configuration

of the data processing system. It is comprised of a large amount of highly unity and

interconnected processing elements to solve particular problems. Like human, ANN

learns by experience or example and typically designed for a specific purpose, such as

data classification or pattern recognition, through a learning process [185]. Learning in

biological systems involves adjustments to the synaptic networks that exist between the

neurons and ANN also functions in such ways. Although the architecture and algorithm

involved in modern neural network are substantially complex, any enthusiast can fairly

certainly understand the foundation of operational concept, structure and function of

ANN. Figure 3.18 shows the model of an artificial neuron, which forms the basis for

designing a large family of ANN.

Just as in biological neurons, artificial neuron takes in some number of inputs, x1, x2, ..., xn,

each of which is multiplied by its respective weight, w1, w2, ..., wn

. These weighted inputs

are summed together to produce R
k

=
P

n

i=0wi

x
i

[186]. In many cases, computation also

includes a bias constant, b
k

. The signal is then passed through an activation function

f , and produce the output of y
k

= f(R
k

+ b
k

). This output can be used to stimulate

other neurons in the network.

Figure 3.18: Schematic model for a neuron in an ANN.
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Convolutional Neural Network

Convolutional Neural Networks (CNNs) are comparable to ordinary ANNs, which are

supposedly constructed by artificial neurons that have learning capabilities of weights

and biases. The whole network still expresses a single di↵erentiable output probability

from raw input image pixels on one end to feature extractions or classifications at the

other. In short, CNN architecture in basic building block is a list of “layers” or “oper-

ations” that transform the input image into an output classification based on image’s

class score [186]. Some of distinct types of layers in a CNN include convolution, recti-

fied linear unit (ReLU), pooling (or sometimes referred to as downsampling) and fully

connected (or sometimes referred to as classification layer), each of which accepts an

input 3-D volume and transform it to an output 3-D volume through some dedicated

functions. Figure 3.19 summarises the foundation of arguably one of the earliest and

established CNN architecture by Yann LeCun [187], that later propelled the field of deep

learning.

Figure 3.19: Architecture of a simple CNN model. Courtesy: https://www.clarifai.co-
m/technology

Figure 3.19 illustrates a CNN model with two sets of Convolution, ReLU and Pooling

layers. The second Convolution layer performs convolution procedure on the output of
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the first Pooling layer using six feature detectors (or sometimes referred to as kernel

maps or filters) to produce a total of six feature maps. ReLU is then applied separately

on all of these six feature maps. Max Pooling was later performed individually on each

of these six rectified feature maps. Together, these layers extract useful descriptions

and features from input image, introduce non-linearity in the network model and reduce

feature spatial while aiming to build the extracted features rather diversify to scale and

translation [188]. The output of the second Pooling layer acts as an input to the Fully

Connected layer, in which every neuron in the previous layer is connected to every neuron

on the next layer by using classifier activation function such as softmax or Support Vector

Machine (SVM), with an objective of exploiting feature-rich output from previous layers

for classifying the input image into various classes based on the training dataset [188].

In general, the network model uses an input image as a form of it’s training pur-

poses by forward propagation step and then discovers the output probabilities for each

class. Since weights are randomly allocated for the initial training computation, out-

put probabilities are also random. Total error at the output layer is measured by

E
total

=
P 1

2
(Ideal

output

� Actual
output

)2 [186]. Next, “Backpropagation” is applied

to compute the gradients of the error with respect to all weights in the network and

gradient descent is later engaged to update all weights and parameter values to reduce

the output error. This whole process is known as training and crucial to the network

model so that all of it’s weights and parameters are optimized to precisely recognize

patterns or classify images from the training dataset.

Solver Types

In CNNs, the solver algorithm is introduced to organize model optimization by synchro-

nizing the forward pass and backward pass to adjust parameter updates for the weights

for minimizing the loss. In other words, the learning responsibilities are distributed be-

tween the solver employed and the network model to optimize the parameter update of

the weight that contribute to the minimization of loss function and gradient. Stochastic

Gradient Descent (SGD) is arguably predominantly used in the methodology of training

a deep learning model, mainly due to its strength of simplicity in implementation and

fast processing, even for problems (or datasets) with many training patterns.
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Generally, for a dataset D, the objective of optimization is the average loss over all |D|

data instances throughout the dataset. This is given in a formulation of [189]:

L(W ) =
1

|D|

|D|
X

i

f
W

(x(i)) + �r(W ), (3.71)

where f
W

(x(i)) is the loss on data instance x(i) and r(W ) is a regularization term with

weight �. Practically |D| can be a very large number, hence stochastic approximation

is used in each solver iteration to achieve the objective and by drawing a mini-batch of

N << |D| instances, the formulation becomes:

L(W ) ⇡ 1

N

N

X

i

f
w

(x(i)) + �r(W ). (3.72)

f
W

is quantified in the forward pass, while the gradient rf
W

is computed in the back-

ward pass. The parameter update �W is produced by the solver from the error gradient

rf
W

and the regularization gradient rr(W ).

Stochastic Gradient Descent (SGD). This solver method [190] updates the weights

W by a linear combination of the negative gradient rL(W ) and the previous weight up-

date V
t

. The learning rate ↵ is the weight of the negative gradient. The momentum µ

is the weight of the previous update.

The following equations are applied to compute the update value V
t+1 and the updated

weights W
t+1 at iteration t+1, given the previous weight update V

t

and current weights

W
t

:

V
t+1 = µV

t

� ↵rL(W
t

), (3.73)

and

W
t+1 = W

t

+ V
t+1 . (3.74)

Learning rate ↵ and momentum µ “hyperparameters” may require a manual tuning

for best results, depending on the task of the image/problem to be trained. (General

recommended initialization value for deep learning with SGD for: ↵ ⇡ 10�2 and µ = 0.9).

Adam. Proposed by Kingma et al. [191], this solver is conceptually similar to SGD

as it is a gradient-based optimization method, which also includes an “adaptive moment
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estimation” (m
t

, v
t

) and can be considered as a generalization of another solver type of

AdaGrad [192]. The weight update formulas are:
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i
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i

, (3.75)
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with proposed default value of �1 = 0.9, �2 = 0.999, ✏ = 10�8 (recommended by Kingma

et al. [191]) for momemtum, momentum2, delta, respectively in Ca↵e [193] platform.

Other solver types include AdaDelta [194], AdaGrad [192], Nesterov’s Accelerated Gra-

dient (NAG) [195] and RMSprop [196].

3.3 Segmentation Performance Assessment

Several numerical coe�cients have been proposed as a mode of segmentation similarity

comparison over the benchmark ground truth image, object or sample datasets for the

past few years [197]. However, only three of the most widely used coe�cients for binary

data in segmentation accuracy of image processing will be presented here.

3.3.1 Jaccard Similarity Index

Also known as Jaccard Index or Jaccard Similarity Coe�cient, JSI [198] is described

as the measure between the intersection and the union of the two associate images and

utilizing region property algorithms to measure the corresponding spaces.

JSI =
|S

gt

\ S
s

|
|S

gt

[ S
s

| , (3.78)

where S
gt

and S
s

are the manual ground truth region space and segmented region space,

respectively, for a specified image, object or tissue class.
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3.3.2 Dice Similarity Coe�cient

Also known as Sorensen Index, Sorensen-Dice Index or Dice’s Coe�cient, DSC is an-

other popular similarity comparison tool in image processing [199] and given by the

formulation of:

DSC =
2⇥ |S

gt

\ S
s

|
|S

gt

|+ |S
s

| . (3.79)

3.3.3 Zijdenbos Similarity Index

Another method to measure similarity or accuracy is Zijdenbos Similarity Index (ZSI)

[200], which was derived from the kappa,  coe�cient [201]:

ZSI =
2⇥ {S

gt

\ S
s

}
{S

gt

}+ {S
s

} , (3.80)

which results in a coe�cient function that is identical to DSC as above.

3.4 Materials

This section covers the experimentation material for the research, where MR images of

the thigh were collected locally at Manchester Metropolitan University laboratory, from

18-93 year-old men and women. All scans were acquired using the same T1-weighted

Turbo 3-D sequences using a 0.25-Tesla MRI scanner (Esaote G-scan; Italy). All MRI

scans consisted of serial transverse-plane slices, each with 0 mm inter-slice gap and image

matrix of 256 ⇥ 256 (in pixels). Each MRI dataset consists of either 13 scans (of 10.0

mm to 11.3 mm thickness) or 26 scans (of 6.3 mm thickness). Figure 3.20 and 3.21 show

the datasets with 13 and 26 scans each, respectively. The top left image represents the

first scan followed by the serial scans next to it. These are 2 samples of typical dataset

configurations that were processed in the work presented in this thesis (especially for

methods analysis in Chapter 6 and 7).
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Figure 3.20: Dataset with 13 scans.

Figure 3.21: Dataset with 26 scans.

3.5 Discussion and Conclusion

Methodologies in medical image segmentation were classified into three groups, each

indicating the level of those algorithms. The earliest group comprises of the first gener-

ation algorithms, in which these methods denote a low-level processing technique. The

second group contains algorithms that examine the image’s parametric or geometric
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models, optimization (or minimization) methods, statistical analysis and feature extrac-

tion models. The final group is occupied by algorithms that are capable of incorporating

knowledge and associates with frameworks developed towards fully automatic medical

image segmentation and provides an outline for classifying the wide variety of possible

methods towards automation solution. The research is focused primarily on the segmen-

tation of MR images. However, most methods listed here may also be applied to other

image types and to images from other modalities.

Thresholding and edge detection are often employed as part of a pre-processing stage

in a sequence of image processing analysis. Their main limitations are that, in their

simplest form, only two classes are generated, and cannot be applied to multichannel

images. Furthermore, thresholding does not consider the spatial properties of an image

and as a result, making it more sensitive to noise and bias field, which is a common

occurrence in MR images. Both of these artefacts e↵ectively disrupt image histogram,

making segmentation more challenging.

A primary goal of statistical shape analysis is to describe the variability in any given

data population of geometric objects and additionally as a mean of dimension reduction

from data abundance. Principal component analysis (PCA) is considered a standard

technique to accomplish this goal. However, its limitation is that it is only e↵ective

for computation of data within Euclidean vector space and futile against more complex

shape representations.

Although atlas based and shape prior based segmentations are becoming less interac-

tive and more user independent (or in a simple word automated), their dependency

towards the low- and mid-level algorithms are still present. In fact, any future enhance-

ments of such entry- and mid-level algorithms would present important developments in

medical imaging as these may result in a more robust “atlas or shape memory” devel-

opment towards prior knowledge, optimize computation time (as most of these methods

are processed iteratively or branch divergence) and precision in segmentation accuracy,

especially on complex images. The robustness and reliability of the segmentation algo-

rithms can also be enhanced by integrating the increasingly popular Artificial Neural

Networks (ANN) through Convolutional Neural Networks (CNN), Fully Convolutional

Neural Networks (FCN) or other machine and deep learning models, due to its indepen-

dency of strong assumptions or specific regulators.
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Jaccard Similarity Index (JSI) and Dice Similarity Coe�cient (DSC) are two of the most

commonly used indices in image processing as a statistical validation metric to evaluate

the performance, accuracy and reliability of the results of the proposed segmentation

frameworks over the reference data, range from 0 (no overlap) to 1 (complete overlap).

Both algorithms are sensitive to misplacement of the segmentation label. However, they

are relatively insensitive to volumetric under- and over-estimations. Shape duplicity is

only captured if the deviation is volumetrically high impact as a thin disparity would

not result in a large deviation from one. DSC is currently more popular than the JSI

and this is inauspicious because JSI is numerically more sensitive to mismatch when

there is reasonably strong overlap. Measurement results from DSC look nicer because

they are higher for the same pair of segmentations compared to JSI. One of the major

drawback of both algorithms is that they are unsuitable for comparing segmentation

accuracy on objects that di↵er in size [202]. Manual reference segmentations drawn by

experts normally approximate ground truth, in which case user can use them as gold

standard, but not as the ground truth itself (unless can be certain that it is the image

of a phantom) due to the intra- and inter-observer variability of manual segmentation.



Chapter 4

Semi Automatic Segmentation of

MRI Human Thigh Muscles

This chapter serves as an introductory material within 4 contributory chapters

available in this thesis. Its contents are fundamentally assembled to produce a

semi-automatic segmentation framework for thigh MR images.

4.1 Introduction

This chapter describes a method of semi-automatically segmenting MR images of quadri-

ceps muscles and corresponding femur cross-sections, which can then be used by re-

searchers and clinicians to facilitate further analysis of the underlying (patho) physiology.

The semi-automatic segmentation method is based on adaptive and automatic thresh-

olding, followed by convex hull pixel identification for unwanted background removal,

manual heterogeneous digital marker line drawing and analysis of region of interest

(ROI).

4.2 Manual Annotation Process

This section elaborates the preparation of thigh MR images dataset for the acquisition

of ground truth image. In current practice, the thigh muscle regions are segmented

using a manual annotation procedure (also known as “Gold Standard”) for the means
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of output image analysis. In the science of computing however, the output of this

manual annotation procedure is used mainly for data comparison measurement purposes;

and secondarily for procedural phase analysis of annotation (time taken for manual

image annotation experiments). Consequently, a reliability assessment (intra- and inter-

operator variations) can also be observed and evaluated.

The manual annotations were done by physiologists using OsiriX [203], an advanced

open-source imaging software exclusively built to process MR output image in Digital

Imaging and Communications in Medicine (DICOM or .dcm) format1. Once OsiriX was

installed and loaded with MRI datasets, the manual annotation can be done straight

away. Figure 4.1 and 4.2 demonstrate OsiriX environment and a manually annotated

MR image, respectively.

Figure 4.1: OsiriX layout and environment.

As can be seen on these figures, although it can be acquired and installed legitimately

without a cost (freely available if it is unrelated to medical usage), the OsiriX plat-

form and environment are considerably well designed and intuitive. DICOM formatted

images are also naturally encrypted with information packages and once loaded, these

information can be seen and attuned accordingly within the environment (refer Figure

4.1). Once a subject was selected, another window showing the whole MR images within

dataset of the subject will be displayed. User can then scroll through individual images

of this subject and start the annotation, at his/her convenient. For the best manual an-

notation results of the ROI, users are recommended to: firstly study about the concept

1For DICOM images MRI datasets acquisition, please refer here.
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Figure 4.2: Sample of manual annotation by OsiriX.

of quadriceps anatomy and its general geometrical configurations and orientations; and

secondly refer/analyse the previous and the next MR images in the series/dataset, prior

to segmentation process.

Some other features including, 2-D Viewer (which includes subtraction, annotation,

convolution filters, etc.), 3-D Viewer (which includes 3-D volume and surface rendering,

3-D endoscopy, etc.) and a section for plugins installations to unlock or explore extra

OsiriX features, mostly from independent developers. For visual purposes, some of 3-

D models of manually segmented dataset are demonstrated and these can be seen in

Appendix A.1.

4.3 Methods for Semi Automatic Segmentation

4.3.1 Image Pre-processing

To improve image contrast and intensity distributions from di↵erent tissues and image

background, noise filtering and correction of intensity inhomogeneity methods are used

primarily to increase the segmentation accuracy and reliability. For images that badly

a↵ected by intensity inhomogeneity, the correction method, described as nonparametric

non-uniform intensity normalization (N3) method [204], from dedicated Medical Image

Processing, Analysis and Visualisation (MIPAV) application [205], is mainly used in



Chapter 4. Semi Automatic Segmentation of MRI Human Thigh Muscles 80

this proposed method for image pre-processing. N3 algorithm is pulse sequence inde-

pendent, without need of prior dataset training and insensitive to pathological data that

might otherwise disrupt model assumptions. To eliminate the dependence of the field

estimate on tissue structure, an interactive approach is employed to estimate both the

multiplicative bias field and the distribution of the true tissue intensities [204].

The algorithm of correction of intensity inhomogeneity is classically originated from this

equation [204, 206, 207]:

I(r) = F (r).T (r) +N(r), (4.1)

where observed image I(r) consists of true image T (r) modified by an inhomogenous coil

sensitivity F (r) and the added noise N(r). Noise has most influence on low intensity

pixels and considering a noise-free case, and using the notation Î(r) = log[I(r)] the

image formation model estimation becomes:

Î(r) = F̂ (r) + T̂ (r). (4.2)

Non-uniformity distribution F̂ (r) of N3 correction method is then treated by employing

suitable correction strategy, field estimation, implementation details and image smooth-

ing to acquire the exceptional pre-processed output result. Figure 4.3(a) demonstrates

the badly a↵ected non-uniformity distribution on an image and after application of N3

correction; Figure 4.3(b).

Figure 4.3: MRI N3 correction of intensity inhomogeneity method by MIPAV. (a)
Before and (b) After correction.

Intensity inhomogeneity in images like Figure 4.3(a) can naturally be observed on up to

2 to 3 earlier and later MRI scans in a dataset, mainly due to the surface coils used in

this MRI machine. Surface coils are very popular because they are a RF-receive-only

coil and have a good signal-to-noise ratio for tissues adjacent to the coil. In general,
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the sensitivity of a surface coil drops o↵ as the distance from the coil increases, giving a

poor quality, bias field (black patches) a↵ected scanning results in earlier and later few

MRI scans in the series (dataset).

4.3.2 Background Removal

4.3.2.1 Adaptive and Automatic Grayscale Threshold

Figure 4.3 shows prominent structure components of thigh tissues, with femur cortical

layer (outer bone) and image background having low pixel intensity value, followed

by muscle tissues and well-contrasted adipose tissues, bone marrow (inner bone) and

intermuscular fat (or sometimes referred to as inter-muscular adipose tissue, IMAT) that

have high-intensity signals. As there are only 3 apparent region intensities involved, the

methods of adaptive and automatic thresholding segmentation are employed to segment

di↵erent tissues of the thigh but mainly to register high intensity adipose tissue and bone

marrow. This method involves conversion of the original MRI image format to grayscale,

followed by adaptive and automatic grayscale thresholding based on the image grayscale

histogram intensity level. Finally, the morphological method of removing any small

objects within both muscle and adipose regions is implemented to refine the product, as

illustrated in Figure 4.4(c).

Figure 4.4: Adaptive and automatic grayscale thresholding for unwanted background
removal. (a) Original grayscale. (b) Application of proposed threshold method. (c)
Refinement result.

4.3.2.2 Convex Hull Pixel Identification

The method described in Section 4.3.2.1 will remove all high intensity pixels that are rep-

resentative of adipose tissue, bone marrow and intermuscular fat. Therefore, convex hull
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is used to preserve the original masks value of binary muscles, femur and intermuscular

fat (if any) and removes everything outside this region.

Convex hulls are a common feature in computational geometry that are used for pat-

tern recognition, regression, collision detection, estimation, spectrometry, cartography,

topology and as a preliminary step to solve many seemingly unrelated problems [208].

The convex hull of a set S of random points in 2-D Euclidean space is defined to be the

smallest convex polygon that contains all the elements of S. If you were to shrink wrap

S, the shape, the plastic shrink-wrap formed around S, describes the convex hull.

Figure 4.5: (a) A set of S random points in 2-D Euclidean space. (b) Convex hull of
points in (a).

Following the creation of the masks with the applied convex hull algorithm on thresh-

olded binary in Section 4.3.2.1, the unwanted pixels of skin and adipose tissue and even

pixels from the adjacent thigh (Figure 4.3(a) and 4.3(b)) can be eliminated and the high

intensity pixel value of bone marrow and intermuscular fat tissue (if any) is retained, as

shown in Figure 4.6 below. There are some minor binary pixels corresponding to thigh

skin in Figure 4.6(b) but due to the size and format restrictions, these can barely be

seen.

Figure 4.6: (a) Application of convex hull method from output of Figure 4.4(c). (b)
Skin and adipose tissue removal. (c) Mask of binary blob ROIs in (b) reverted back to
original grayscale value.
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4.3.3 Heterogeneous Digital Line Drawing

The second stage is ROI identification. As stated earlier, this often proves di�cult to au-

tomatically segment, due to the limitation of output from the MRI device where images

are shown in grayscale and have substantial noise, echo, overlapping of pixel or voxel

intensities, various thigh tissue compositions, inter- and intra-MRI slice inconsistency;

and even for a well-trained physiologist it can be challenging to di↵erentiate muscles

borders (e.g. Figure 1.1(b)). At the time of writing [209], there are no automatic seg-

mentation methods published on quadriceps and it appears the only semi-automatic

quadriceps segmentation method [9], su↵ers from segmentation inconsistency and inac-

curacy. Therefore, a step for the operator to interactively draw a line to delineate the

border between the quadriceps and other muscles of the thigh (red line as shown in

Figure 4.7(b)) is included.

Figure 4.7: (a) Original MR image. (b) Segmented output result, where red digital
marker line is the only interaction needed from the operator.

The manual interaction allowed us to confidently identify objective ROIs, i.e. quads

muscles and femur bone, and to remove the unwanted regions (hamstring, adductors

and abductor muscles).

4.3.4 ROI Processing

In the final stage, region property algorithms were developed to process ROI for each

semi-automatically segmented MR image, and generate parametric data for all ROI

components (cross sectional area (CSA) of quads muscles, bone marrow and bone cortical

wall, in pixels).
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Figure 4.8: (a) Product of proposed MRI semi-automatic segmentation. (b) Binary
image of total ROI. (c) Binary blob masks of ROI in (a).

To measure the performance of the proposed algorithms, the results obtained from this

semi-automated process were compared to results from the “Gold Standard” manual

segmentation (annotation) by the physiologist in OsiriX, for each associated MRI images.

4.4 Experiments and Results

Thigh MRI scans from 100 subjects (MRI output profile of Figure 2.9(f) - thigh MRI of

young subjects), with 2 mid-scan slices per subject (between images no. 4-23 for dataset

with 26 scans or images no. 4-10 for dataset with 13 scans) were selected from the

database and semi-automatically segmented using procedures described in Section 4.3

above. The main objective is to segment the total CSA of the quadriceps muscles and

femur (cortical and marrow) bone. The “Gold Standard” of manual segmentation of this

ROI (named Total Area or TA) for all 200 images was carried out by a physiologist using

OsiriX [203], in a procedure as described earlier in Section 4.2. To measure segmenta-

tion similarity or accuracy between output images from the semi-automated method and

ground truth manual segmentation by OsiriX, a standard validation method in medi-

cal image processing/segmentation [210–212] of Jaccard Similarity Index (JSI) [198] is

employed, as an extent of spatial overlap.

As described earlier in Chapter 3, JSI is a measurement method between the intersection

and the union of the two associate images and utilizing region property algorithms to

measure the corresponding spaces (for formulation please refer equation 3.78), where

S
gt

and S
sa

are the manual ground truth region space (acquired from OsiriX) and semi-

automatically segmented region space (from the developed method), respectively, for a

specified tissue class. Another method widely used to measure similarity or accuracy is
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Zijdenbos Similarity Index (ZSI) [200], in which the application of its algorithm varies

slightly from JSI (again, for formulation please refer to equation 3.80).

The measurements have an average JSI of 0.95 (95% accuracy) and an average ZSI

of 0.98 (98% accuracy) for all 200 images. The small di↵erence between JSI and ZSI

was likely due to the fact that both algorithms introduce di↵erent metrics to compute

distances between such regions in the respective specified tissue space. However ZSI

gave a slight increment of similarity/accuracy compared to JSI.

There was one poorly rescaled OsiriX manually segmented TA original image to the

standard 256⇥ 256 pixels format used for image analysis and similarity comparison.

However, even with such incompatibility and mismatching between image resolutions

during accuracy measurement, ZSI still gave a reading of 0.86, while JSI gave a reading

of 0.75. This suggests ZSI could be more tolerant/forgiving hence why the accuracy

measurement restriction and robustness standard of JSI was preferred. There is no

definite indication as to what value these indices should be for any processed image, but

several papers [9, 213, 214] suggest an index value of 0.7 or above is considered accurate.

The standard deviation (SD) of output results was 0.0091 and this indicates that 68% of

the segmented images fall between 0.9444 (94.44%) to 0.9627 (96.27%) of similarity/ac-

curacy (Mean ±1SD) and 99% of the segmented images fall between 0.9261 (92.61%)

to 0.9809 (98.09%) of similarity/accuracy (Mean ±3SD), which indicates accurately

exceptional in segmented output images from the semi-automated method.

The research analysis mainly focussed on TA, which consists of quads, femur cortical

and bone marrow area. However, the images were also processed in order to separately

analyse the areas of the quadriceps, the cortical bone and the trabecular (marrow) bone.

Measurement of area of quads and bone marrow, in cyan and red colour, respectively

(such as in Figure 4.8(c) and 4.9(b)), indicate the region’s CSA in pixels. CSA of femur

Table 4.1: Summary of results for 200 processed MRI images.

ROI Mean Standard Average Average
JSI Deviation Manual Semi-Auto

(SD) Annotation Annotation
Time Time

TA 0.95 0.0091 132 sec 17 sec
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cortical (the bonal hard tissue) is acquired by subtraction of TA to accumulation of

quads and bone marrow.

Figure 4.9: (a) Manual segmentation by OsiriX. (b) Product of semi-automatic seg-
mentation method.

The average time required for manual processing of one MR image in OsiriX (in this

case, thigh region) was 132 ± 42 seconds. The mean processing time required for un-

supervised analysis of one slice was previously reported as 52 ± 7 seconds, without the

need of any user interactions [8]. Thus, around 66% of time could be saved compared

to the method in [8]. The proposed algorithms are developed to improve speed and e�-

ciency and increase the ability to distinguish between di↵erent tissue types and generate

quantitative data. The method is able to analyse (segmentation and CSA computation)

the desired ROI in less than 17 seconds per image (time calculated including the manual

process stated above), which represents a time saving of 87%. Three OSX (presently

known as macOS) based machines were used (with di↵erent configurations of processor,

memory, GPU and internal disc speed) for manual ROI segmentation of the thigh MRI

by OsiriX to evaluate of any a↵ects towards the time domain during the manual segmen-

tation procedure. Conclusively, the di↵erences are not perceptible and worthy of any

discussion as measurements of the ROI segmentation are done through a simple OsiriX

closed polygon application. Conspicuous time di↵erences are recorded however when a

complex OsiriX application such as 3-D volume rendering or 3-D surface rendering is

used.

4.5 Discussion

In this chapter, a semi-automated segmentation method for analysis of MRI of human

thigh muscle and bone was proposed. Compared with conventional manual analysis
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of such images, the semi-automatic approach has cut the analysis time by 87% (132

seconds has been reduced to 17 seconds) and provides an exceptional segmentation

accuracy of 95% (by JSI ). This will be of use to researchers and clinicians aiming to

distinguish between and determine changes over time to muscle, bone and fat tissue with

development, ageing, diet and disease.

To further enhance the functionality and practicality, this method can be refined at the

image pre-processing step. At the time of writing [209], MIPAV is used to universally pre-

process MR images that badly a↵ected by intensity inhomogeneity. The long processing

time, due to complexity of N3 correction algorithms is the main reason as to its exclusion

into the proposed method. To overcome this issue, a built-in correction of intensity

inhomogeneity, based on image property, compatibility and simplicity of equation 4.1,

from image-feature based automatic correction method in [206] will be included in future

framework’s development. The correction method of Koivula et al. [206] is based on the

evaluation of a compensating function by using bright pixels from an image, which have

low relative noise to approximate the anti-log of equation 4.2, i.e.:

I(r) = F (r).T (r). (4.3)

The compensating C(r) =
D

F (r)�1
E

can then be analysed when:

T (r) = I(r).C(r). (4.4)

Measuring homogeneous phantom and applying a proper Gaussian averaging filter on

an image are two possibilities to generate C(r).

The major issue related to intensity inhomogeneity a↵ected images (such as MRI out-

put profile shown in Figure 2.9(a) and Figure 4.5(a)) is ine↵ective tissue segmentation,

which corrupts the precision of final segmentation output. As part of the framework is

using convex shield based methods, convex hull algorithm su↵ers the most under this

circumstance due to unrecognised distribution of tissue intensity. Therefore, for future

development, a simple but e↵ective intensity non-uniformity correction pre-processing

technique will be included in the framework.

Besides the novel approach of convex shield pixel identification for background removal,

the only operator interaction, manually segmentation line drawing of TA inner posterior
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border, is also a highlight in this chapter. Due to consistent composition of tissues in

thigh MRI images, especially those in mid-scan image of a dataset used here (MRI output

profile as shown in Figure 2.9(f) - thigh MRI of young subjects), this technique will be

further developed with an automated segmentation application to measure important

variables on MRI scans, not just to MRI of the thigh, but also to any MRI scans with

similar configurations or properties.

Another important reason this technique is preferred because it requires very little time

processing, which would not have been possible had the inclusion of other state-of-the-

art segmentation methods are adapted. At this stage, the technique does not require

the creation of templates or shape prior for feature extraction or bundled of iterations

to analyse the edges of tissue and intensity variability, which making ROI calculation

smooth and e�cient.

Inter- and intra-operator variability is another crucial component to be considered for

further explorations in the future. Manual processing of images can be prone to inter-

assessor variability and it is also the case that no two semi-automated segmentations

would give an identical result, even if the same person completed the segmentation on the

same image. We have begun to determine the inter-operator variability of our technique

(results not reported here).

The proposed method was developed by analysing two mid-scan slices (between images

no. 4-23 for dataset with 26 scans or images no. 4-10 for dataset with 13 scans) from

MRI datasets obtained from 100 people (MRI output profile of Figure 2.9(f) - thigh MRI

of young subjects). These MR images were selected from a much larger database that

includes MRI scans from around 300 di↵erent people. By testing the method against

this complete database of images, a more reliable, mature and stable semi-automated

segmentation framework can be developed. However, there are some issues related to our

image acquisition that must be discussed. The database of images was derived from a

0.25-Tesla MRI scanner (Esaote G-scan, Genoa, Italy), which generates a lower intensity

of magnetic field and more limited scanning area compared with more common 1.5-Tesla

or 3-Tesla MRI scanners. As explained earlier in Section 2.5, about 20% of the whole

MRI database is made up of images such as in Figure 2.9(a)-(e), where Figure 2.9(a)-(c)

are usually related to the technicality during the image acquisition. However, the MRI

slices within the thigh images, especially those in the middle, where images are tend



Chapter 4. Semi Automatic Segmentation of MRI Human Thigh Muscles 89

to be less a↵ected by bias field, are comparable to those collected from more powerful

scanners. Therefore, the semi-automated analysis technique is proven of its robustness

and can be used to analyse thigh images derived from any MRI scanner from 0.25-Tesla

or higher. Nonetheless, processing and testing new MRI datasets that are acquired from

other MRI machines are also admirable and will be considered for our future work.

4.6 Conclusion

A semi-automatic segmentation framework that separates and measures quadriceps,

bone marrow and femur cortical area in MRI scans of the human thigh has been success-

fully developed. The method needs minimal supervision and yields accurate results, with

mean accuracy performance by JSI of 0.95 (95%) in a short processing time (average

processing time of 17 sec per image).

Further development to a reliable fully automated ROI segmentation framework would

be the ultimate goal, at this point. And such developments will include a built-in

correction of intensity inhomogeneity, without compromising the overall processing time

and accuracy.



Chapter 5

Automatic Segmentation of MRI

Human Thigh Muscles

This chapter outlines the procedure for automated segmentation of human thigh

magnetic resonance images. Datasets that included sequential transverse-plane images

(approximately 20 sequential images) were used to develop the framework and the

images of the mid-thigh were selected to establish the segmentation algorithm because

these images contain essential parametric and geometric information that represents

the subsequent images of the same dataset. Hence, if the mid-thigh can be decomposed

accurately, it would significantly improve the prospects of decomposing all remaining

transverse images within the dataset. The segmentation framework was designed based

on the integration of statistical signal processing and medical imaging algorithms and

the results showed good segmentation accuracy and fast processing time.

5.1 Introduction

Skeletal muscle strength is a main component of functional capacity and when strength

of leg muscles is low it can impact adversely on a person’s mobility levels and quality of

life. For these reasons, strength is commonly assessed in research studies into physical

health [14–18]. The main interest is to understand the association between muscle

strength and functional deficiencies, what causes such conditions and its mechanisms.

To date, it is still not clear what causes the age associated reductions in muscle mass

90
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and strength, but they are ascribed to an inherent ageing process [215], that is often

modified by dietary deficiencies [216, 217] and/or disease [218].

Muscle strength is often presented as the maximum amount of force that someone can

exert, regardless of body size or weight and naturally it is higher in those with larger

muscles, but there is also variation between people in the force that can be produced

per unit muscle mass and this is sometimes referred to as muscle “quality”. The muscle

quality can be estimated from a simple division of maximum force into muscle cross

sectional area. Measurements of skeletal muscle force are straightforward and require

the patient simply to apply as much force as possible against an immovable object. The

object includes a strain gauge that measures forces. However, measuring skeletal muscle

mass is more di�cult [219]. There are various techniques commonly used, ranging from

limb-circumference which is fraught with error, through to the modern clinical X-ray or

magnetic resonance imaging techniques. For any measurement of the muscle quality, it

is clearly vital to include an accurate measurement of the skeletal muscle size and in

this respect the MRI is the gold-standard. The aim of this chapter specifically and this

thesis as a whole, is to develop a method to automatically and accurately determine

muscle size from thigh MRI scans.

Magnetic resonance imaging (MRI) is considered the gold standard for assessing muscle

size, and has the additional benefits that it can help in diagnosing muscular pathologies.

It is non invasive, non-ionizing and can also identify fat infiltrations and bone size.

Automatic segmentation techniques have been successfully developed and published [7,

8, 68–77], with some generating excellent segmentation accuracies in a short period of

time.

Indeed, establishing automated system for individual muscle segmentations within skele-

tal muscles or within the same muscle group of the same body segment is a key challenge

in medical imaging because it is technically di�cult to achieve due to poor contrast be-

tween connective and muscle tissues, and sometimes none or little information of muscle

borders to assist the segmentation, even within the same muscle group. With this in

mind, the most commonly used approach is to manually segment the regions of inter-

est (ROI) and this requires a very good knowledge of human anatomy. This process is

operator-dependent, tedious, time-consuming and can have questionable reproducibil-

ity by novice users. The issue holding back development of automatic segmentation of
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individual muscles from MR images is that individual muscles share similar MR prop-

erties and can appear indistinguishable from neighbouring muscles. So far, only a few

methods targeting automatic segmentation of individual muscles have been reported

[11, 13, 78–80], delivering a promising initiation for in depth muscles segmentation for

future investigation.

This chapter describes the development of an automated segmentation method for MRI

of the thigh, based on combination frameworks of shape model analysis, edge detection

by phase congruency, dynamic transformations of shape model depending on image to

segment and smoothing procedure by fuzzy c-means. Segmentation is focused on mid-

scan thigh MR image of one dataset, with ROI that consists of quadriceps, femur and

marrow.

5.2 Data

MRI scans of the thigh were collected from men and women aged 18-90 years [220]. All

scans were collected using the same T1-weighted Turbo 3-D sequences using a 0.25-Tesla

MRI scanner (Esaote G-scan; Italy). All MRI scans consisted of serial transverse-plane

slices, each with 6.3 mm thickness and 0 mm inter-slice gap and image matrix of 256 x

256 (in pixels).

Generally, automatic segmentation of MRI scans often proves di�cult due to image

artefacts, echo and other substantial noise. The low signal-to-noise ratio (SNR) output

images are a↵ected by gradient pulse eddy current e↵ects and inherent e↵ects of pulsed

radiation on MRI radio frequency (RF) coils from the MRI machine. Other potential ele-

ments that may further escalate this issue are the internal variations of electro-chemicals

and biochemistry, fluid circulation and tissue density of the scanned subject, the lack

of precisely defined muscle boundaries and issues related to intensity inhomogeneity or

bias field across an image.

In addition, the sensitivity of a surface coil decreases as the distance from the coil

increases, resulting in a significant amount of noise especially in the most proximal and

distal scans located at the limits of the scanning coil’s detection. For this reason, the

mid-scan MR image was selected (image no.7 for dataset with 13 scans or image no.13 for
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dataset with 26 scans)1 as this is least a↵ected by the disturbances and inconsistencies

described above.

5.3 Methods for Automatic Thigh MRI Segmentation

This section is divided into two subsections. The first subsection covers the application

of algorithms to automatically segment general components in thigh MR image, such

as adipose tissue, muscle, femur, bone marrow and/or inter-muscular adipose tissue

(IMAT), if any.

The second subsection highlights the major contribution of this chapter, where the

proposed segmentation framework was developed by integrating the algorithms in the

First, Second and Third Generations, as described earlier in Section 3.2.

5.3.1 Segmentation of Components of Thigh MR Images

The segmentation process starts with image pre-processing technique by image con-

version and compatibility algorithms, followed by the removal of adipose tissue, using

algorithms in Section 4.3.2, (i.e. the combination of thresholding and pixels masking by

convex hull). The results are a grayscale MR image of the thigh and an image of solid

binary adipose tissue as a result from thresholding.

Next, muscle, femur, bone marrow and IMAT are segregated. As there are clear dis-

tinctions in the signal intensity of these tissues, application of thresholding and region

properties algorithms can distinguish between muscle and bone marrow. This is illus-

trated in Figure 5.1.

For subsequent steps, the image processing toolbox of morphological algorithms, such as

filling holes, image subtraction, structuring element and open image, were applied. The

procedures are summarized in pseudocode 1 and results of components segmentation is

demonstrated in Figure 5.2.

Most, if not all of the techniques described in this subsection are combinations of al-

gorithms within First Generation and Second Generation, as in Section 3.2 and consist

1For DICOM images MRI dataset samples, please refer here.
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Figure 5.1: Application of thresholding and region properties. (a) Original MR image.
(b) Muscle (gray) and bone marrow regions (white).

Algorithm 1 Automatic segmentation of major components of thigh MR image - Mor-
phological procedure

Require: Array elements that are members of set array of muscle and bone marrow
Ensure: Original image is trimmed (without adipose tissue)
BEGIN
component1 array elements of: muscle and bone marrow (mbm)
component2 filling holes of: component1
raw muscle image subtraction of: component1; component2
femur and marrow open image by disk structuring element of: raw muscle
gaps image subtraction of: raw muscle; femur and marrow
marrow with gaps image subtraction of: muscle; mbm; component1
marrow filling holes of: marrow with gaps
femur image subtraction of: femur and marrow; marrow
muscles image subtraction of: component2; femur and marrow
END

Figure 5.2: Automatic segmentation general components of thigh MR image. (a)
Original MR image. (b) Adipose tissue (binary). (c) Muscles, femur and marrow
in grayscale. (d) Absolute muscles (binary). (e) Relative muscles area (binary). (f)
Smoothed femur cortex (binary). (g) Smoothed bone marrow (binary).

of algorithms that are routinely applied in earlier publications related to general thigh

MRI segmentation [7, 8, 68–77], as per Section 2.4.
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5.3.2 ROI (Quadriceps, Femur and Bone Marrow) Segmentation

This subsection is divided into four parts. The first part covers the construction of a

shape model for the mid-scan image; second part highlights the processing techniques of

the input image, which focuses on pre-processing, phase congruency and edge enhance-

ment; followed by transformation of a shape model that is adaptable to properties of

the mid-scan image; and finally curve transformation for quadriceps segmentation. The

automation framework is capable of ROI segregation in a short period of time.

5.3.2.1 Shape Model for Mid-scan

The initial approach employed for automatic object segmentation covers geodesic active

contours [93, 94] by integrating shape information of the ROI into the evolution process.

We first compute a statistical shape model of the ROI over a training set of ROI samples.

For a more robust statistical result and an average shape model that represents the best

universal ROI shape, this training set is loaded with 85 manually segmented mid-scan

MRI of the thigh (MRI output profile such as in Figure 2.9(f) - thigh MRI of young sub-

jects, i.e. MRIs from which usually menifest consistent muscles composition). Boundary

localization of all manually segmented ROIs were extracted and non-parametric distance

map based on Euclidean metric [221] of Ed
ab

=
q

(x
a

� x
b

)2 + (y
a

� y
b

)2 that represents

these ROIs correspondent to background pixels were generated and stacked together into

a single matrix to eventually obtain the mean shape of the ROI by the computation of

principle component analysis (PCA).

PCA is a very powerful and quick technique for pattern analysis and spatial reduction,

especially for calculations that contain abundant data with identical dimensions [156].

This is true since one of its distinctive features includes linear combination of data re-

expression, i.e. to define data in a di↵erent way, usually explicitly. And as a highlight,

PX = Y represents a basic form of PCA as an orthogonal regression method, with linear

transformation of P , and X and Y are equal to m⇥ n matrices.

Another form that best expresses data mean following the above equation is the ratio

of variances �2 or signal-to-noise ratio (SNR), SNR = �

2
data

�

2
noise

, where SNR ⌧ 1 and

SNR� 1 indicates low (much less-than) and high (much greater-than) precision data,

respectively. Covariance generalization of the resultant variance of dataset K and L is
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summarized as �2
KL

= hk
i

l
i

i
i

, where i represents a single grouped observation of the k

and l variables, which after the conversion of row vectors of dataset K and L becomes

equation 3.52. At this stage, each row and column of X is equal to x
i

and
�!
X (entire

vector of X), respectively, resulting in a foundation covariance matrix of equation 3.53,

where S
X

is a symmetric dimension matrix m⇥m and XXT is ijth value corresponds to

x
i

and x
j

as per equation 3.52. S
X

is also refers as scatter matrix (equation 3.54), where

µ is the mean vector (equation 3.55) that establishes the average form of shape model.

Figure 5.3 summarizes variation modes of the shape model, following the application of

PCA.

Figure 5.3: Major primary variance modes of the shape model training dataset. (a)
Training dataset of 85 aligned shape models. (b) Variation eigenmode of mean value,
�2�. (c) Mean shape of shape model. (d) Variation eigenmode of mean value, +2�.

5.3.2.2 Processing of Input Image

Pre-processing. Image conversion and compatibility are the two earliest image

pre-processing algorithms applied, followed by combination of image thresholding and

properties methods for removal of adipose tissue and skin layer that covers the thigh,

without excluding the marrow or other intermuscular tissues (which both tend to share

approximately similar histogram extension as adipose tissue). This prominent adipose

tissue is eliminated by a simple yet e�cient Otsu’s thresholding method [106]. Figure

5.4 shows some mid-scan samples of before and after the pre-process stage.
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Figure 5.4: Outputs of pre-processing technique to mid-scan. (a) Original mid-scans.
(b) Pre-processing results.

Phase Congruency. Phase congruency [222] is a low-level invariant model for fea-

ture detection (such as step edges, image corners and lines), where fundamentally, the

phases of a quadrature filter responses at di↵erent scales are similar. A quadrature filter

consists of even (symmetrical) section and odd (anti-symmetrical) section, both of which

are the Hilbert or Riesz [223] transforms of each other. Let u(x) be an even function

with finite energy, and v(x) = H(u)(x) be its Hilbert transform. The functions are then

considered in a quadrature state. Both of these functions can be integrated as one filter

by multiplying the odd section by i and adding them together, where g(x) = u(x)+iv(x).

Convolving the filter with a signal, f(x), generates a complex response where the even

section becomes the response to the even filter and the odd section becomes the response

to the odd filter, f
A

(x) = (f ⇤ g)(x). Phase is the argument of this complex response,

where � = argf
A

(x) and separated from the amplitude of the response A = |f
A

(x)|.

Phase describes the shape of the signal at a point (within even and odd), while amplitude

describes the strength. This independence is important as it means signals with di↵erent

strengths can be compared. If the phase is the same at multiple scales, then there is

likely to be signal features and this is referred to as phase congruency.

One major motivation for using phase congruency to detect image features is that it

provides an absolute measure of the significance of features. Unlike edge detection
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techniques, this allows one to set thresholds that are applicable across wide classes of

images [224]. The other major motivation being that we are not required to make any

assumptions about the luminance profile of the feature. We are simply looking for points

where there is order in the frequency domain. Step discontinuities, line and roof edges

are all detected. Figure 5.5 illustrates some results on mid-scans containing line features

and step discontinuities of various magnitude and orientations.

Figure 5.5: Feature extractions by phase congruency. (a) Top row - Pre-processed
images. (b) Bottom row - Phase congruency results.

Edge Enhancement Technique. Generally, the standard MRI scanning output

provides strong correlation from one image to another although the advantages are not

always clear between muscle borders, even within the same scan. In order to establish

noticeable borders, especially towards the border between quads and hamstring, an

edge enhancement technique is included in the process. This simple stacking procedure

is carried out to take advantage of the correlation between scans in one MRI dataset, by

utilizing the femur as an anchor point. This non-expensive procedure ideally requires 5

mid-scan images (images no. 5-9 for 13-image dataset or images no. 11-15 for 26-image

dataset) to extract influential border. Extra images to stack usually are unnecessary

and practically thicken the line (border) features, due to the helical curvature of thigh

muscles. Figure 5.6 shows some results on mid-scans containing line features and step

discontinuities of various magnitude and orientations.



Chapter 5. Automatic Segmentation of MRI Human Thigh Muscles 99

Figure 5.6: Stacking of phase congruency images. (a) Top row - Application of phase
congruency to images (images were taken from a 26-image dataset, with the first 7
middle images (image no. 10-16) were used and processed) . (b) Middle row - i) The
mid-scan phase congruency image (image no. 13). ii) Stacking of 3 mid-scan images
(images no. 12-14). iii) Stacking of 5 mid-scan images (images no. 11-15). iv) Stacking
of 7 mid-scan images (images no. 10-16). (c) Bottom row - Default 64-color “parula”
colormap (heatmap) of (b).

Phase congruency has not been used optimally for feature detection mainly because of

its response to noise. The calculation of phase congruency is ill-conditioned if all the

frequency components of the signal are very small, or if there is only one (or nearly to one)

frequency component present in the signal [223]. Any system that uses normalization to

provide invariance to contrast and illumination must inevitably su↵er from sensitivity

to noise. This is crucial especially for medical or biological imaging, where precision

analysis is prioritized.

This is especially an issue for images such as those shown in Figure 5.6 (iii), where 5

phase congruency images that were aligned together are visibly feature-rich and practi-

cally prone to segmentation inaccuracies. To overcome this, some image morphological

techniques were included to limit the excessive features or line characteristics. The meth-

ods remove pixels so that objects without holes shrink to a point and objects with holes

shrink to a connected ring; and removes pixels on the boundaries of objects without

allowing objects to break apart; whilst preserving the Euler number.
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Figure 5.7: Image morphological methods. From left to right - sample of 5 phase
congruency stacked images; object shrinking; and image skeleton process.

5.3.2.3 Transformation of Shape Model

Providing proper curve representation of the ROI shape model (obtained from the result

of the mean shape of the PCA described above) based on information from image to

segment (mid-scan image) is desirable and results in e↵ective seeding points for an

ideal and optimum curve deformation process later. In doing so, this section will cover

the foundation of image transformations of ROI shape model employed in the process,

which are part of the rigid or a�ne image registration, and a subset of the more general

transformations.

Let’s assume two 2-D images, ROI shape model SM and MRI mid-scan image I are

related by registration transformation such that: SM(x) = I(Ax + T ), where A is the

linear component matrix a�ne mode consists of scaling and rotation, and T is the 2-D

translation vector. If both SM and I are related, then each point SM(x
SM

, y
SM

) in

ROI shape model corresponds to point I(x
I
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I

) according to the matrix equation of:
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, (5.1)

where s is the scale factor, � is the angle of rotation and � is the translation in (x, y)

unit. Homogeneously, for any pixel of SM(x, y), it is proven that:

I(x, y) = SM(�x+ s ⇤ (x cos�� y sin�),�y + s ⇤ (x sin�+ y cos�)). (5.2)

For finite disconnection of SM and I, both are assumed to be square in shape, with pixel
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area of 256 ⇥ 256. Note that practically, the transformation of SM by modes of image

registration introduces di↵erences due to occlusions as some data moves into or out of

the image frame. Figure 5.8 demonstrates the scaling and translation process of ROI

shape model. This newly adapted ROI shape model will be used as a background seed

mask for active contour evolution in order to segment the MRI mid-scan image later.

Figure 5.8: Scaling and translation process of ROI mean shape model. (a) Pre-
processed MRI mid-scan image with ROI mean shape model (green boundary). (b)
Major and minor axes of ellipse equivalent for both mid-scan, in red; and shape model
(SM), in green. (c) SM scaling process, with s of equal to 0.9. (d) SM translation to a
fourth of mid-scan major axis length.

5.3.2.4 Active Contour and Smoothing Process

To segment the ROI from a mid-scan image, the progress of active contour evolution

was carried out both locally, based on curvature of mid-scan image, and globally to a

maximum a-posteriori estimate of shape and position of the modified shape model. The

initial active contour model used is a region-based energy model by Chan and Vese [137],

which is the representation of an energy minimization-based segmentation as in original
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fitting term of:
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and regularization term of:
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where both variable curve C and its dependent constants k
a

, k
b

are the average deriva-

tions of inside and outside image u0. Energy curve fitting and regularization terms above

were further minimized by additional Euler-Lagrange-based H
"

and �
"

regularizing func-

tions as "! 0, and defined as:

F
"

(k
a

, k
b

,�) =µ

Z

⌦
�
"

(�(x, y))|r�(x, y)|dxdy

+ v

Z

⌦
H

"

(�(x, y))dxdy

+ �
a

Z

⌦
|u0(x,y)� k

a

|2H
"

(�(x, y))dxdy

+ �
b

Z

⌦
|u0(x,y)� k

b

|2(1�H
"

(�(x, y)))dxdy .

(5.5)

Apparent under segmentation results near the region of the ROI that corresponds to the

posterior section of femur (in black pixels) is one of the disadvantages that associated

with active contour as the curve transformation always try to find the configuration with

the least total energy of:

E⇤
snake

=

Z 1

0
E

snake

(v(s))

=

Z 1

0
[Eint(v(s)) + E

image

(v(s)) + E
con

(v(s))]ds.

(5.6)

This issue was overcome by a smoothing process of femur extraction by fuzzy c-means

clustering (FCM) [20], where the intensity of the extracted femur is adjusted and over-

lapped with the original image, to preserve precise segmentation. Figure 5.9 demon-

strates the result of segmentation, without and with the application of the FCM process

as above, respectively.
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Figure 5.9: Segmentation results of (a) Under segmentation (due to black pixels (low
energy) correspond to femur region). (b) With the application of FCM smoothing
process.

5.4 Experiments and Results

Fifty-one 2-D mid-scan thigh MR images of between 18-90 year-old people were used

to test the e↵ectiveness of the combination frameworks as described above. The main

intention was to segment the ROI of quadriceps, femur and marrow as precise as possible.

Segmentation accuracy was quantified by Jaccard Similarity Index (JSI):

JSI =
|A

gt

\A
s

|
|A

gt

[A
s

| , (5.7)

where A
gt

indicates the area of “ground truth” of ROI manual segmentation by using

OsiriX, an open-source imaging software for DICOM extension file format; and A
s

indi-

cates segmented ROI area by the proposed system. The similarity of the output results

from manual segmentation and the proposed system for a corresponding mid-scan is

measured by the intersection and union in Equation 5.7.

Four experiments, each of which is a diversity or an extension from one another, were

performed to validate the analysis. The first experiment (Method 1) was a segmentation

system as proposed in Subsection 5.3.2, but without integrating phase congruency on the

input mid-scan image. Deformation of active contour of this system operates directly

on the original pre-processed mid-scan, with a fixed scaling factor s, of 1.1 for the

transformation of shape model.

The second experiment (Method 2) was an extension of Method 1, with the integration

of phase congruency on the input mid-scan image. Active contour performs on the 5
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stacked phase congruency mid-scan images, with a fixed scaling factor s, of 1.1 for the

transformation of the shape model. The third experiment (Method 3) was performed

exactly like Method 2, but the end segmentation result was overlaid as a new curve

representation of the shape model before another active contour process on initial pre-

processed mid-scan image was executed. The final experiment (Method 4) was our

proposed segmentation system; an extension of the algorithms in Method 3, but with

the smoothing treatment of fuzzy c-means on the femur region of original pre-processed

mid-scan image. Table 5.1 summarizes the segmentation accuracy for all methods as

described above.

Table 5.1: Average segmentation accuracy for Method 1-4.

Segmentation Mean Standard
Method JSI (%) Deviation (SD)

Method 1 84.21 0.1203

Method 2 76.81 0.1502

Method 3 80.21 0.1213

Method 4 85.26 0.0915

5.5 Discussion

The main reason for experimenting with mid-scan MR images for this proposed au-

tomatic segmentation framework is because these images contain essential parametric

and geometric information that represents the subsequent images of the same dataset.

Therefore, if the analysis of the mid-thigh images can be deciphered accurately, it would

significantly improve the prospects of interpreting all remaining transverse images within

the dataset.

The inclusion of phase congruency on the input mid-scan image and smoothing function

by fuzzy c-means (FCM) clustering on original pre-processed mid-scan image before

another active contour process was executed clearly benefits this proposed segmentation

framework. The improvement is not substantial, but enough to further explore other

edge detection, edge enhancement, clustering, classification and or hybrid algorithms in

the future.

Phase congruency generally associates with extraction of significant features in images.

This edge detection algorithm is independent of di↵erences in contrast and illumination
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of an image, and reflects the characteristic of the image in the frequency domain. Edge-

like features have many of their frequency components in the same phase and this concept

is almost identical to coherence, except that it implements to di↵erent wavelength func-

tions. FCM works by classifying membership to each data location corresponding to

each cluster center on the basis of distance between the cluster center and the data loca-

tion. The closer the data to the cluster center, the greater its membership towards that

particular cluster center. In this case, as there are 3 distinctive regions in the mid-scan

image, the extraction of hard tissue of femur bone (corresponds to the ring-shaped and

black region in the center of the mid-scan) was highly e↵ective by the application of

FCM. The double active contour implementations, where the initial segmentation result

(from 5 stacked phase congruency images) was overlaid as a new curve representation

of the shape model before another active contour process on original pre-processed mid-

scan image was executed, is required, as the initial segmented contour holds significant

value of the mid-scan geometrical information.

Method 2 provides the least segmentation accuracy mainly due to the non-inclusion

of smoothing treatment of FCM and double active contour implementations, as precise

information of femur bone can be reproduced by FCM and robust contour that represent

the quadriceps of the image to segment can be estimated by the execution of initial

active contour, respectively. The application of second active contour also essential

to compromise any loss of data that associate to the border of quadriceps of image

to segment during edge enhancement technique and as a cheap alternative (in time

domain) compared to other complex statistical or iteration-dependent algorithms, which

evidently benefited Method 4 (with the incorporation of both steps - 85.26% in Method

4 versus 76.81% in Method 2). Highest value in Standard Deviation also indicates that

the segmented images by Method 2 have the biggest divergence from the mean value of

Method 2, which again validate the distinction of both FCM and double active contour

implementations during the segmentation process.

The average manual annotation time per MRI slice (by OsiriX) was 132 seconds. In

our previous works, the segmentation time was reduced to 17 seconds per image (semi-

automated [209]); and further improved to just 3 seconds per image (automated dataset

segmentation [220]). Average segmentation time per image by the proposed method was

around 22 seconds, a distance margin compared to [220] but advantageous nevertheless

as the method proposed here is fully-automated without any user interventions. The
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processing time of proposed method also is a significant improvement compared to man-

ual annotation by OsiriX (exactly 6 times faster) and comparable to the semi-automated

work in [209]. Region-based active contour approach employed in the proposed frame-

work has substantial advantages over edge-based methods, especially robustness against

initial curve placement, flexibility of dealing with noise in image and customizable energy

minimization model [138]. In the future, optimized values of its dependent constants k
a

and k
b

will be experimented to enhance the computations of average derivation of inside

and outside of shape model’s placement, which hypothetically may improve segmenta-

tion accuracy and reduce segmentation time.

Additional experiments focusing on the scaling factor s, of shape model was performed

by tackling issue related to its placement. A fixed s value of 1.1 was used throughout all

experiments (Method 1-4). However, with supervised adjustments of s value within 1.0

to 1.3, depending on the size of the mid-scan image, the average segmentation accuracy

of Method 1 was successfully improved slightly from 84.21% to 86.52%. Hypothetically,

this altered Method 1 may have similar precision e↵ects on Method 4. Therefore for

future developments, automated scaling factor of the shape model will be established into

overall framework to optimize the segmentation accuracy. As far as the topic concerned,

the procedure will ideally involve automation process of shape model’s orientation (�)

and rotation angle (�) also. Figure 5.10 demonstrates the e↵ect of scale factor s, in the

segmentation framework.

5.6 Conclusion

A reliable and good precision of automatic segmentation method for mid-scan thigh

image has been successfully developed by the integration of algorithms in Subsection

5.3.2. The method is fully automated and requires no interactions from the user and

o↵ers good performance in terms of segmentation accuracy of the ROI (quadriceps,

femur and marrow) and processing time. However, with the replacement of a fixed

value of scaling factor s, together with the applications of more dynamic and adaptive

computation of orientation �, and rotation angle �, of the shape model, the proposed

segmentation method may have been a much more optimized and robust framework.

These will be explored in our future investigations.
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Figure 5.10: Sample of segmentation results on variations of s. (a) Top row: s = 1.1,
accuracy = 95.18%. (b) Bottom row: s = 1.0, accuracy = 90.99%.



Chapter 6

Combination Frameworks

Leading to Automated Dataset

Segmentation

In Chapter 4, we have covered the framework for semi automatic segmentation of an

MR image. In previous chapter, we also have covered the framework for automatic

segmentation of an MR image. Now we will discover the automatic segmentation

framework for all images in one MRI dataset of the thigh.

6.1 Introduction

Image segmentation of anatomic structures is often an essential step in medical image

analysis. At the time of writing [220], a variety of segmentation methods have been

proposed, but none provides comprehensive evidence of e�cacy, precision and robust-

ness automatic segmentation of the thigh. In magnetic resonance (MR) images of the

thigh, the segmentation is complicated by factors, such as artefacts (e.g. intensity inho-

mogeneity and echo) and inconsistency of soft and hard tissue compositions, especially

in muscles from older people, where accumulation of intermuscular fat is greater than

muscles in young person. In this chapter, combination frameworks that lead to a seg-

mentation enhancement method for region of interest (ROI) segmentation in one dataset

are demonstrated.
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As discussed earlier in Chapter 1, 2 and 3, several algorithms [19–23] have been devel-

oped and widely used for basic segmentation needs in medical imaging. The application

of active contour models or snakes for ROI segmentation or extraction is a common

approach in computer vision and medical image analysis and to date, these techniques

have been progressively developed and carefully adapted (according to datasets to be

processed). Generally, the technique attempts to minimize an energy associated to the

initial contour and object contour as a sum of an external or internal energy. Con-

ventionally, active contour models can be divided into several groups, with two of the

major ones being; edge-based [91, 94] and region-based [137, 182] models. Meanwhile,

over- or under-segmentation commonly occurs in snakes due to its energy function sen-

sitivity, weak or without edges and gradient variations in an image. Several researchers

[177, 180, 225–228] have incorporated active contour when segmenting various kinds of

images, including medical images. Therefore, to enhance the snake’s deformable model

robustness or border convergence, practical customizations with other algorithms should

be considered.

This chapter mainly describes the automated dataset segmentation for ROI (quadriceps,

femur cortical layer and bone marrow) extractions (with minimal user interactions). The

manual stage requires the user to trace a single line across the image of a single MRI

slice to identify the particular ROI. This manual interaction (of framework as in Chapter

4) is re-adapted since the main goal of this framework is to achieve the exceptional ROI

output segmentation as possible. Following this, a combination of automated processes

uses low-, mid- and high-level image analysis algorithms (exclusively by using template-

based methods) to automatically segment the ROI in serial images within the same

dataset.

6.2 Methods for Automatic Dataset Segmentation

6.2.1 Semi-Automatic Segmentation

The proposed segmentation method is started by selecting a “mid-scan image” of one

MRI dataset (image no.7 for a dataset with 13 scans (refer Figure 3.20); image no.13

for a dataset with 26 scans (refer Figure 3.21)). Image conversion and compatibility

algorithms are part of the image pre-processing techniques that first get initiated here,
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followed by an optional bias field correction method [229] that helps minimizing the e↵ect

of intensity inhomogeneity. For unwanted soft tissues (adipose tissue and skin) elimi-

nation, Otsu’s [106] thresholding method is employed due to its simplicity yet powerful

gray-level histogram discriminant criterion, i.e. by accurately expanding the discrimi-

nant measure of segregation of the resultant tissues in MRI of the thigh. For details

formulation of Otsu’s thresholding technique, please refer sub-Subsection of 3.2.1.1.

After the Otsu’s thresholding, convex hull pixel identification algorithm is applied, fol-

lowed by manual interactions to define muscle borders. Figure 6.1(a) shows the original

MR image and the result of optional bias field correction method (on original MR image)

- Figure 6.1(d), the application of convex hull with adaptive thresholding as in [209] and

the application of convex hull with Otsu’s thresholding (without and with the procedure

of bias field correction), respectively.

Figure 6.1: Pre-processing techniques. (a) Original MRI image. Unwanted back-
ground removal by: (b) Adaptive thresholding. (c) Otsu’s thresholding. (d) Bias field
correction application on original image (a). Unwanted background removal by: (e)
Adaptive thresholding with bias field correction. (f) Otsu’s thresholding with bias field
correction.

Manual interactions were necessary because of the deficiencies in MRI output such as

noise, echo or overlapping of pixel/voxel intensities. Such imperfections in the image

of muscle tissue can be seen in a single transverse-plane MRI section (Figure 6.2) and

occurred due to inherent e↵ects of pulse radiation on MRI radio frequency (RF) coils,

gradient pulse eddy current e↵ects, internal variations of water content, local electro-

chemical and biochemical di↵erences in the muscle tissue, variations in tissue density,
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such as related to regional and local di↵erences in intracellular glycogen and triglyceride

storage, and inaccuracies from body movement during scanning.

Intensity inhomogeneity in images like Figure 6.2(a) can naturally be observed on up

to 2-3 proximal (earlier) and distal (later) MRI scans in one MRI dataset, mainly due

to the surface coils used in this MRI machine. Surface coils are very popular because

they are a RF-receive-only coil and have a good signal-to-noise ratio (SNR) for tissues

adjacent to the coil. In general, the sensitivity of a surface coil drops o↵ as the distance

from the center of the coil increases.

Figure 6.2: MRI outputs. (a) Noise patches in intensity inhomogeneity. (b) Limb
movement during scans. (c) Muscles compositions in elderly and echo e↵ects.

The final output image from semi-automatic segmentation method is basically the re-

quired ROI and template image initialization is established from this output image.

Unlike [209], only parametric details from ROI boundary are registered. Figure 6.3

illustrates the process of the semi-automatic segmentation method.

6.2.2 Automatic Segmentation

The same pre-processing step of image conversion and compatibility techniques (as semi-

automatic segmentation method) are again initiated and performed routinely at this

early stage of the automatic segmentation method, to subsequent MR images in the

same dataset as the mid-scan MR image. The influences of noise are suppressed by a

Gaussian derivation before discovering the edges of the image. The following Gaussian

distribution, centered at (x0, y0) with a standard deviation �, is applied for this purpose.

G(x, y) =
1

2⇡�2
e�(x2+y

2)/2�2
(6.1)
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Figure 6.3: Summary of semi-automatic segmentation process.

The weight of each pixel point can be measured by the above function, with regards to

the value of its eight nearest points and the value of sigma (standard deviation).

The curve transformation on the targeted MRI scan is done using the Kass et al. snake

algorithm [91]. This edge-based snake model represents a controlled continuity spline

that can deform to match any shape, under the influence of image forces and external

constraint forces. The internal spline forces add a piecewise smoothness constraint.

The image features attract the snake to the salient image features, such as lines, edges

and terminations. For details formulation of the total energy of the snake, please refer

sub-Subsection of 3.2.2.3 - Edge-based active contour.

Polygonal masking is later applied to extract the segmented ROI, as part of the early

post-processing technique, followed by region properties for cross sectional area (CSA)

quantification. The parametrical boundary information of the segmented ROI output

image is eventually registered as a template and acts as a “shape memory” to segment

the serial scans in the dataset. This is a continuous procedure until all MRI scans in

the dataset have been processed and analysed.
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Figure 6.4 outlines the diagram of the segmentation method. The new combination

framework demonstrates significant improvements over the previous work and will be

discussed in next section.

Figure 6.4: The operational flow of proposed segmentation method.

6.3 Experiments and Results

Seventeen MRI datasets (15 datasets with 26 scans and 2 datasets with 13 scans) with a

total of 416 images were processed and evaluated by the combination framework of the

segmentation methods.

The main objective of the proposed method was to segment the ROI (quadriceps, femur

cortex and bone marrow) and to quantify the CSA of the ROI. To measure the accuracy

of the segmented ROI, Jaccard Similarity Index (JSI), a measurement for assessing

segmentation accuracy (as per equation 3.78) was employed, where S
gt

represents the

area of “ground truth” or “gold standard” of the manual segmentation of ROI by using

OsiriX and S
sa

represents segmented ROI area by the proposed method. The similarity

of the output results (of manual segmentation and proposed method) for a corresponding

MRI scan is computed by the intersection and union of S
gt

and S
sa

in the given JSI

function.

Figures 6.5 and 6.6 show examples of the ground truth manual ROI segmentation results

(green border) by OsiriX and; segmentation results by the proposed method (red border),

respectively, for one dataset (matching dataset as in Figure 3.21). The first four rows
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depict segmentation within OsiriX and MATLAB environment, respectively followed by

the next four rows, which are ROI extractions of corresponding first four rows.

Figure 6.5: Manual segmentation results by OsiriX.

Overall, the mean JSI is 0.9334 (93.34% accuracy) for the 416 processed images (from 17

datasets), with a standard deviation (SD) of 0.0352. Assuming a normal distribution,

this indicates that 68.3% (Mean ± 1SD) of the segmentation results were populated

between the accuracy of 89.82% and 96.86%.

The average manual annotation time for one MRI slice using OsiriX was 132±42 seconds.

In our previous work (Chapter 4), we were able to reduce the processing time to an

average of 17 seconds per image when using a semi-automatic analysis [209]. With this
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Figure 6.6: Segmentation results by proposed method.

method, the average annotation time has been further improved to just 3 seconds per

image, a reduction in annotation time of 82.35% compared to the average processing

time in [209], and 97.73% compared to average manual annotation in OsiriX. Tables 6.1

and 6.2 provide a summary of results for all assessed MRI images.

ROI was labelled as Total Area (TA) and consists of 3 major components: quadriceps

muscles, femur cortical layer and bone marrow. Algorithms to describe region properties

for ROI analysis were deployed for quantitative evaluation, for each of these components

in the segmented images. The CSA of black pixels that represents femur cortex was
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Table 6.1: Average segmentation accuracy for 416 processed MRI images

ROI Mean JSI (%) Standard Deviation (SD)

TA1 0.9334 (93.34%) 0.0352

Table 6.2: Average annotation time per image (in seconds)

Manual Semi-Auto [209] Proposed method [220]

132 17 3

obtained by subtracting the TA blob and the accumulation CSA of quads (in grey

pixels) and bone marrow (in near white pixels).

6.4 Discussion

A new automatic segmentation method to process and analyse multiple transverse-plane

images in one MRI dataset has been presented in this chapter. The proposed combina-

tion framework provides an average segmentation accuracy of 93.34%, which is similar to

the level of agreement between two di↵erent manual assessors and between two di↵erent

days when the same manual assessor examines the same images [209]. Moreover, the

analysis of MRI muscle scans with the new method took just 2.27% of total processing

time needed with conventional manual segmentation [209].

A built-in correctional method of intensity inhomogeneity or bias field, based on the

partition matrix of fuzzy c-means [229], is only an optional procedure in the method’s

pipeline, as bias field rarely a↵ects mid-scan slices from any single MRI dataset, opposite

to the earlier and later 2 to 3 scans in a dataset, which are usually a↵ected by bias field.

Insignificant accuracy di↵erences to the segmentation results also indicate that the active

contour curve transformation performance is una↵ected by the bias field, even when bias

field correction was applied to the subsequent images in one MRI dataset. However, when

needed, clustering functions will assemble the image data into object classes, estimate

the margins of the classes and adjust the varying illumination artefacts. And with added

c-programming based MATLAB execution code by Ahmed et al [229], this correctional

method provides a quick solution for bias field correction, thus not a↵ecting the overall

processing time.

1
Total Area - Consists of quadriceps, femur cortex and bone marrow.
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To establish the curve internal deformable energy (equation 3.37), the spline energy of

the first order term controlled by the stretching force (↵ - elasticity) was used alongside

the second order term controlled by its bending force (� - rigidity). The weights of ↵ and

� in the snake model in this scenario have to be adjusted according to the global image

gradient for all datasets in the database to ensure spline continuity and smoothness in

membrane transformations. To achieve consistent and exceptional results for automatic

segmentation, all mid-scan images in the 17 processed datasets have been pre-segmented

by the semi-automatic segmentation method as described in Chapter 4. The experiments

suggested that the e�ciency (segmentation accuracy) of the automatic segmentation

method is dependent on the image quality of the mid-scan image being segmented. This

is true since the curve transformations are dependent on the initial geometric information

(of the template image from semi-automatic segmentation product) as the prior shape

regulator.

A smoothing procedure to the femur region by fuzzy c-means (FCM) clustering [20] that

was adapted on Chapter 5’s framework is also included in the overall automation process.

It is performed by tuning down the intensity of the extracted femur and the result of

intensity adjustment to the femur is then overlaid with the original image, before the

application of automatic segmentation. The procedure is necessary so that over- or

under-segmentation outcome can be avoided, mainly due to the converging factor to

the least total energy in an object/image that naturally associated with snake or active

contour E⇤
snake

algorithm.

Once the segmentation is done, the framework provides the CSA of TA and could there-

fore benefit scientists who require a quick estimate in the size of the thigh in studies

of muscle wasting and disease [230]. Measuring muscle size will have relevance for

conditions such as metabolic syndrome (diabetes, high blood pressure, obesity) and/or

analysing physiological relationships of the subject to muscle disorders (muscle atrophy

and muscle wasting).
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6.5 Conclusion

A reliable and accurate combination framework that leads to an automatic dataset seg-

mentation method has been developed, with added benefits of elements (quadriceps, fe-

mur cortex, bone marrow) extraction and ROI image analysis (parametric cross-sectional

area). The method requires only one simple manual interaction to segment the mid-scan

MR image and automatically segments serial images in the same MRI dataset by the

customized framework of snake active contour curve transformation, based on template

geometric information as the shape regulator.

The method needs minimal supervision and o↵ers exceptional performance in terms of

segmentation accuracy and processing time. However, the overall development of the

method is still at its infancy and there is a need to develop a more robust segmentation

system.

In the future, our main aim is to replace the semi-automatic segmentation method in

this combination framework to an automatic mid-scan MR image segmentation method.

Based on early investigations, combination frameworks of statistical data training for

shape analysis algorithms (such as prior shape/positional information or deformable

part model), partial di↵erential based algorithms, fast marching method, image registra-

tion based technique (atlas-registration) and artificial neural network (ANN) application

(through the emerging of convolutional neural network (CNN) and its many variational

models) appear to be five major techniques with promising solution to the ROI auto-

matic segmentation of the mid-scan MR image. Further developments in conjunction to

the above methods will be adapted and explored in future work.



Chapter 7

Semantic Segmentation of MR

Images of Human Thigh Muscle

This chapter presents the application of deep learning techniques for semantic

segmentation of ROI of MRI human thigh muscle.

7.1 Introduction

In digital image processing and computer vision analysis, semantic segmentation is an

attempt to partition meaningful parts that belong to the same object class of an image

together [231] and is mostly applied in object detections [232–234]. Classifying images

based on pixel-wise (or pixel) classification, leads to the same outcome but is regarded in

a slightly di↵erent nuances in the terminology [235, 236]. Both semantic segmentation

and pixel-wise classification algorithms are principally trying to achieve the same goal of

analysing the role of each pixel in the image. In relation to the deep convolutional neural

networks, a collection of images and its corresponding pixel-labelled images are needed

to train a semantic segmentation model, where every pixel value in a pixel-labelled image

represents the class label of that pixel. For example, in a grayscale magnetic resonance

(MR) image in its simplest form (with black-coloured pixels represent the background,

gray-coloured pixels correspond to soft muscle tissue and white-coloured pixels to bone

marrow or adipose tissues), this could be represented by three class labels. RGB images

119
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in contrast, could have more class labels (depending on labelled classes), for object

classification and network training purposes.

Figure 7.1: The output domain of a convolutional neural network (CNN) in MRI of
the thigh. (a) Object classification - the task of identifying that there is a quadriceps
in the image. (b) Object localization - class label including a bounding box to show
the location of the object (ROI). (c) Object segmentation - class labelling and outlining
the predicted region. Note: other major domain in CNN includes object detection -
localization of multiple of objects (objects can be from di↵erent classes) in an image.

Deep learning is a set of algorithms within an artificial neural network (ANN) structure,

inspired by the neurological system and a subfield or branch of machine learning. Over

the past few years, deep learning has been established as one of the emerging paradigms

in the evolution of Artificial Intelligence (AI) [237], Big Data [238] and other analytic

architectures [239, 240]. Deep learning is used by major global brands such as Google,

Amazon, Facebook and Nvidia in many of their applications such as voice, image and

pattern recognition algorithms and engaged in self-making or logical decisions based on

data or input from the user [241–244]. Its approach to AI is showing improvements in

the autonomous and unsupervised learning systems, which in turn, revolutionize many

industries and bring significant shifts in society through developments in healthcare

analysis and treatment [245–247]. The application of deep learning is extended to skin

analytics for the detection of abnormal skin lesions such as skin cancer and diabetic foot

ulcer [248–250].

Recently, the deep learning has provided various end-to-end solutions in the semantic

segmentation of abnormalities such as breast cancer, brain tumour, skin lesions, foot

ulcers etc. in medical imaging [85, 248, 250]. As mentioned in Chapter 2, there are

several studies in semantic segmentation using deep learning on MRI of the brain and

heart, but only one attempt has been made on MRI thigh segmentation [12]. The

model integrates a probabilistic neural network to facilitate the generation of probability

estimates at each pixel for use in an iterative segmentation process. This preliminary
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study on MRI thigh segmentation using one of the simplest forms of neural network

reported that the segmentation result is una↵ected by the quality of the training dataset.

This study only analyzed a single MR image of the thigh and su↵ered from tissue

misclassification, thus raising questions of the validity of their application, procedure and

result. At the time of writing this thesis, no other study has been made in segmentation

of MR images of human thigh muscles by using the deep learning approach, neither in

the form of conventional ANNs, nor popular and emerging ANNs such as convolutional

neural network (CNN). Current state-of-the-art methods described in Chapter 2 and

3, especially image processing based techniques, are not robust, due to their nature of

reliance on specific regulators and rules, with certain assumptions. In contrast to ANNs,

deep learning methods do not require such strong assumptions and have demonstrated

superiority in region and object segmentation and classification, which suggests that the

robust fully automated MRI segmentation of human thigh muscles may be achieved, by

adapting such approach. Moreover, the segmentation output performance from most

recent applications of network models in medical imaging [86–89], in association with

image processing technique [90] and in conjunction with the utilization of better and

upgradable graphics processing unit (GPU), are remarkably accurate and fast.

In this chapter, five pre-trained models from three di↵erent existing deep learning archi-

tectures will be reviewed and applied to the thigh MR images for semantic segmentation

tasks. The region of interest (ROI) (the same as in previous chapters), consists of quadri-

ceps muscles, bone and marrow. The main objective of the proposed work in this chapter

is to discover whether CNN could: 1) be a reliable end-to-end solution for (semantically)

segmenting the ROI; and 2) achieve a significant performance improvement compared

to the previous benchmark set in Chapter 4.

7.2 Deep Learning Architectures

Semantic segmentation architecture is commonly considered as a pre-trained classifica-

tion network (or in general terms an encoder network). An encoder network is architec-

turally di↵erent to a decoder network, where the decoder’s task is to semantically assign

the discriminative activation maps (or features) in lower resolution. These feature maps

are learned by the encoder onto the pixel-wise space in higher resolution to get a dense

classification. In image classification, identifying the object of interest in the image is
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the main objective of the network and this is di↵erent to semantic segmentation, where

the segmentation process involves class labelling and delineating the boundaries of the

object of interest. Those di↵erences are due to the di↵erent mechanisms employed in

encoder and decoder networks like skipping fully connected layers, dropout layers, etc.

This section describes the foundation architecture of every deep convolutional neural

network (CNN) used in this work, which consist of AlexNet, VGG-16 and PSPNet.

There are several other networks available, however during the preliminary tests, these

networks are the most applicable for the configuration of MR images used.

7.2.1 AlexNet

AlexNet [1] by Krizhevsky et al. is arguably the one that was revitalizing ANN, revo-

lutionizing the deep CNN and is considered as one of the most notable deep learning

architecture in the field. In 2012, it won the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) with a top 5 test error rate of 15.4% and test accuracy of 84.6%,

while the next best model achieved an error rate of 26.2%. AlexNet has a relatively

simple layout which was made up of five convolutional layers, max-pooling layers, non-

linear activation function of Rectified Linear Units (ReLUs), dropout layers and three

fully-connected layers. This network is designed for classification with 1000 potential

categories and is trained by using batch stochastic gradient descent, on ImageNet data,

which are comprised of over 15 million annotated images from a total of over 1000

categories. Figure 7.2 demonstrates the AlexNet architecture.

Figure 7.2: The network architecture of AlexNet [1].
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7.2.2 VGG-16

In 2014, K. Simonyan and A. Zisserman of the Visual Geometry Group (VGG) from

the University of Oxford proposed a CNN model known as VGG-16 (also referred to as

VGGNet) [251] and secured the first and second place in localization and classification,

respectively in the ImageNet Challenge 2014, with a test error rate of 7.3% and test

accuracy of 92.7% in ILSVRC 2014 submission. This 16-layer (and up to 19-layer) deep

CNN utilizes small-sized 3x3 feature detectors and 2x2 max-pooling together with small

stride of 1 and 2, respectively, unlike AlexNet’s 11x11 kernel size. With an e↵ective

receptive field of 5x5, such hierarchical representations resulted in fewer parameters

and more non-linearities of ReLU. This is true since smaller-sized kernels doubles the

convolutional layers and in turn doubles the ReLU layers and the depth of the volumes,

as the computations goes deeper down the network. The VGG-16 architecture is trained

with mini-batch gradient descent with momentum and suitable for image recognition,

localisation and classification tasks. Figure 7.3 illustrates the architecture of VGG-16.

Figure 7.3: The network architecture of VGG-16 [2].

7.2.3 PSPNet

In 2016, Zhou et al. proposed a network architecture called Pyramid Scene Parsing Net-

work (PSPNet) [3]. In this work, the research team from Chinese University of Hong
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Kong and SenseTime Group Limited used the global context information proficiency by

aggregation of a di↵erent-region-based context. The global spatial context is important

since it provides suggestions on the distribution of the segmentation classes. This pro-

cedure is done by the combination of a pyramid pooling module (applying large kernel

pooling layers) and the proposed PSPNet, and proved to have an e↵ective global prior

representation capable to produce good results in the scene parsing tasks and pixel-level

predictions. Other key features of this architecture include: integrating dilated convolu-

tions as a means of modifying the base architecture of Residual Network ResNet [252],

a 152-layer network architecture proposed by Microsoft Research Asia in late 2015. The

proposed method achieved the first place in ImageNet scene parsing challenge 2016,

PASCAL VOC 2012 benchmark and Cityscapes benchmark. The paper also reported

that PSPNet model yields accuracy of 85.4% (by mean intersection over union (mIoU))

on PASCAL VOC 2012 and accuracy of 80.2% on Cityscapes. Figure 7.4 shows the

PSPNet architecture.

Figure 7.4: The network architecture of PSPNet [3].

Spatial pyramid pooling module is added after the encoder network mainly to concate-

nates the feature maps from modified ResNet with upsampled output of parallel pooling

layers with ascending sizes of kernels (hence the name pyramid). An auxiliary loss is

introduced as an input to pyramid pooling module to optimize overall learning process.

PSPNet is proposed by the motivation of tackling issues related to mismatched rela-

tionship, confusion categories and inconspicuous classes. The pyramid pooling module

combines features based on four di↵erent pyramid scales. The first pyramid level in the

red coloured box (as in Figure 7.4) is a global pooling layer that produces a single bin

output. The feature map is separated into di↵erent sub-regions and di↵erent locations of

pool representation are formed in the next pyramid level. Each pyramid pooling module

holds di↵erent sizes of feature map and a 1 x 1 convolutional layer is applied after each
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level to preserve the weight of the global feature and this results in a reduced depth

of context representation to 1/N of the original input, where N is equal to the level of

pyramid.

To get the identical original size of feature map, the low-dimension feature maps are

directly upsampled via bilinear interpolation. The final pyramid pooling layer depicts

global features that are concatenated from di↵erent levels of features. To train the

final classifier, the main branch used softmax loss and another classifier (the res4b22

residue block)[3] is employed after the fourth stage. To assist in optimizing the learning

process, the auxiliary loss (with additional weight to balance it) is used and this yields

the master branch loss to take the most responsibility. For testing, the auxiliary branch

is abandoned and instead only the optimized master branch is used for the final model

prediction.

7.3 Experiments

7.3.1 Datasets

MRI scans of the thigh were collected from men and women aged 18-90 years [220]. All

scans were collected using the same T1-weighted Turbo 3-D sequences using a 0.25-Tesla

MRI scanner (Esaote G-scan; Italy). All MRI scans consisted of serial transverse-plane

slices, each with 6.3-mm thickness and 0-mm inter-slice gap and image matrix of 256 x

256 (in pixels).

The datasets are separated into two groups, with the first group, being the collection of

MRI mid-scans (image no.7 for datasets with 13 scans or image no.13 for datasets with

26 scans)1, which contains 110 images. The second group consists of 1000 MR images

and is a combination of serial MR images of the whole-scan dataset (all 13 or 26 scans

per subject/dataset) as per Figure 3.20 and 3.21.

To train, validate and test the MR images on the customized deep CNNs, all of the

original 1110 grayscale MR images are converted to an RGB format, with corresponding

images manually annotated2 according to the ROI. These extracted ground truth binary

1For DICOM images MRI dataset samples, please refer here.
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ROI images are then converted into the Pascal VOC images (labelled as 8-bit single-

channel paletted images, with 3-channel colour profile of sRGB IEC61966-2.1).

In this Pascal VOC format, 0 maps are indexed to black pixels corresponding to the

background and 1 (in red) denotes the ROI (consists of quadriceps, femur and marrow).

This procedure is simplified in Figure 7.5 below.

Figure 7.5: Preparation of MRI Datasets.

7.3.2 Transfer Learning

Having a su�cient amount of data is crucial to e↵ectively train a deep neural network.

However, in reality it is not often possible and this is why the idea of transfer learning has

emerged in recent years as a new learning framework [253, 254]. Instead of starting from

the beginning or rather generating random weight initializations from the beginning,

transfer learning is the method that uses the weights from a pre-trained model and fine-

tuning the weights with the original dataset collections of interest. This helps: 1) As

we go deeper down the network of a pre-trained model that has been trained on a large

2For DICOM images manual annotation process, please refer here.
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dataset such as on ImageNet [255], it will detect features like edges and curves and;

2) Less computation time, especially for network training. Depending on the domain

of the problem (classification, detection, recognition, etc.) and the type of data to be

processed, this pre-trained model can be attuned as a feature detector. By removing

the final layers of this pre-trained model and replacing it with a specific classifier, one

can use the weights from the pre-trained model and emphasise more on other important

layers for training purposes.

In this work, the values of the weights are initialized from a pre-trained transfer learning

procedure. First, each model was trained on an ImageNet dataset, where the final

layers of its fully connected layer are removed and the pre-trained weights from earlier

convolutional and pooling layers are then transferred to the next model. The weights

associated to these pre-trained models are subsequently used to fine-tune the customized

deep CNNs for training, validation and testing the thigh MRI datasets. This transfer

learning process is demonstrated in Figure 7.6.

7.3.2.1 Customized Deep CNNs (Pre-trained Models)

The customizations of deep CNNs used in this chapter are all inspired by the work of

Long et al. [256]. Typical CNNs are comprised of basic components such as convolution,

activation function (ReLU) and pooling layers. These layers operate according to local

input regions and depend on relative spatial coordinates, which satisfy the following

properties:

y
ij

= f
ks

({x
si+�i,sj+�j

}0�i,�jk

), (7.1)

where x
ij

and y
ij

are the corresponding layer’s input and output (at location (i,j )),

respectively, k is the kernel size, s is the stride and f
ks

determines the layer type, which

is either a convolution, a pooling, or a ReLU activation function, and so on for other

types of layers in the network. This function operation is preserved with the composition

of kernel size and stride that conform to the transformation function of:

f
ks

� g
k0s0 = (f � g)

k0+(k�1)s0,ss0 . (7.2)

Generally, traditional deep CNNs with fully connected layers are only capable of pro-

cessing certain input sizes (standard version of AlexNet for example, input image with



Chapter 7. Semantic Segmentation of MR Images of Human Thigh Muscle 128

Figure 7.6: Transfer learning procedure of deep CNNs to obtain optimized weights
initializations. Three fully connected layers of CNN were removed and replaced by
three convolutional layers, making the pre-trained model fully convolutional.

a fixed size of 224 x 224 will be processed regardless of the original size of the input

image) and compute a general nonlinear “function”. However, fully convolutional net-

works (FCNs) compute a nonlinear “filter” and are therefore able to work on any size

of input images with equal size of output images.

FCN-AlexNet. FCN-AlexNet is a customized FCN model based on AlexNet ar-

chitecture. Since AlexNet specializes in object classifications (due to being trained on

ImageNet dataset - with 15 million of images and with 1000 of di↵erent object classes),
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a few adjustments are made at its fully-connected classification layers. Earlier network’s

convolutional, ReLU and pooling layers are maintained (for lower- and high-level features

extraction), while the fully connected layers are removed and replaced with equivalent

convolutional layers.

Due to the nature of the fully connected layer that normalises the vectors of output from

previous layers, these often resulted in extracted features with relative coordinates and

thus, produced non-spatial predictions for the final output of the domain task. The sizes

of the kernels are adjusted according to the input size of these additional convolutional

layers. Deconvolutional layers with similar stride sizes and scaling factors to the previous

convolutional layers are then introduced to generate a pixel-wise prediction (based on

object classes) for every pixel of the input image.

FCN-VGGNet. VGG-16 architecture is customized to three models, FCN-32s,

FCN-16s and FCN-8s, where each model magnifies the output with di↵erent upsam-

pling layers. For FCN-32s, the fully connected layers are convolutionized and a 32-pixel

stride size is applied in deconvolution layers. This works well for object classification,

localization and detection tasks as precise pixel-wise predictions are not the main prior-

ity. FCN-16s and FCN-8s perform better for object segmentation tasks, as both extract

extra low-level features from the input image to produce a more precise output result

by 16 x 16 and 8 x 8 pixel blocks, respectively.

In FCN-16s, the final output is a product of upsampling of two layers, which are upsam-

ples of the fourth pooling layer and (upsampling of the seventh convolutional layer) x 2.

For FCN-8s, the final output of the model is a product of upsampling of the third pool-

ing layer, (upsampling of the fourth pooling layer) x 2 and (upsampling of the seventh

convolutional layer) x 4.

PSPNet. In this chapter, the implementation of PSPNet is a straightforward process,

without any customization to its “prototxt” or model layers.

7.3.3 Configurations

Machine 1. (1) Hardware: CPU - Intel i7-6700 @ 4.00Ghz, GPU - NVIDIA 1080

TITAN X 11Gb, RAM - 32Gb DDR5 (2) Framework: Ca↵e [193] (3) Training and
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validation: All pre-trained models are applied to mid-scan MRI dataset (4) Training

epochs: 30 (5) Solver type - Stochastic Gradient Descent (SGD) and Adam. (6) Base

learning rate: 0.0001.

Machine 2. (1) Hardware: CPU - Intel i7-6700 @ 4.00Ghz, GPU - 2 x NVIDIA

GeForce GTX 980 Ti 6Gb, RAM - 32Gb DDR5 (2) Framework: Pytorch [257] (3)

Training and validation: All pre-trained models are applied to whole-scan MRI dataset

(4) Training epochs: 50 (5) Solver type - Stochastic Gradient Descent (SGD). (6) Base

learning rate: 0.0001.

7.4 Results

Two datasets of 1110 MR images were manually segmented and labelled. To implement

the semantic segmentation domain, these segmented MR images are then trained, val-

idated and tested by the pre-trained models of FCN-AlexNet, FCN-VGG-16 (consists

of FCN-32s, FCN-16s and FCN-8s) and PSPNet. Both mid-scan and whole-scan MRI

datasets were split into the configuration of 70%, 10% and 20% for training, valida-

tion and testing, respectively (mid-scan MRI dataset: 77, 11, 22 images and whole-scan

MRI dataset: 700, 100, 200 images), with 5-fold cross-validation procedure (5 processing

batches to analyse all MR images).

To evaluate the performance of these FCN models, all of the semantically segmented

(tested) images are compared and measured with the corresponding labelled (manually

segmented ROI) images. In addition to Jaccard Similarity Index (JSI) used in previous

chapters, Sensitivity, Specificity, Matthews Correlation Coe�cient (MCC) and Dice Sim-

ilarity Coe�cient (DSC) indexes are also employed as the performance metrics for the

evaluation of segmented ROI. The formulations of each metric are described as follows:

Sensitivity =
TP

TP + FN
, (7.3)

where TP = |MP ^GT | and FN = |GT |� TP .

Specificity =
TN

FP + TN
, (7.4)
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where TN = 8 � |MP _ GT | and FP = |MP | � TP . MP, GT, TP, TN, FP and FN,

as they stand for are: Model Prediction image, Ground Truth image, True Positives,

True Negatives, False Positives and False Negatives, respectively. Matthews Correlation

Coe�cient (MCC) [258] is given as:

MCC =
TP ⇥ TN � FP ⇥ FN

p

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (7.5)

and Dice Similarity Coe�cient (DSC) (also shown in Section 3.3.):

DSC =
2⇥ TP

(2⇥ TP + FP + FN)
. (7.6)

Sensitivity (also called the true positive rate or the recall) measures the proportion of

positives that are correctly identified or predicted as an ROI. It measures the proportion

of excellent ROIs who were correctly identified to the total number of excellent ROIs.

Specificity (also called the true negative rate) measures the proportion of negatives that

are correctly identified as such, measures the proportion of poor ROIs who were cor-

rectly rejected to the total number of poor ROIs. Both Sensitivity and Specificity are

most commonly associated with a binary classification test and statistically determine

the performance of the test. A good binary classification test always results with high

metric values (or percentage). Generally, if Sensitivity is high and Specificity is low,

there is no need to concern about the excellent candidates (of a dataset) but the poor

candidates must be re-assessed to eliminate false positives (poor candidates that mis-

takenly selected). However, excellent candidates must be re-assessed to eliminate false

negatives (excellent candidates that mistakenly rejected), when Sensitivity value is low

and Specificity is high. An average binary classification test always results with average

values which are almost similar for both Sensitivity and Specificity. Matthews Corre-

lation Coe�cient (MCC) often used in machine learning as a means of the quality of

binary classifications (of two classes), with formulation that based on values of true and

false positives and negatives. MCC is considered as a balanced evaluation, which can be

used even if the classes are di↵erent in size [259] and regarded as a correlation coe�cient

between the observed and predicted binary classifications. It returns a value between

-1 and +1, where coe�cient of +1 represents a perfect prediction and -1 indicates total

disagreement between prediction and observation. Table 7.1 summarizes the mean index

of semantic segmentation results of all the FCNs for the testing of 1110 MR images.
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Table 7.1: Mean performance index for all models on mid-scan (MD) and whole-scan
(WD) datasets.

JSI DSC Sensitivity Specificity MCC

Network MD WD MD WD MD WD MD WD MD WD

PSPNet 0.8263 0.9194 0.9026 0.9565 0.9029 0.9583 0.9252 0.9611 0.828 0.9209

FCN-AlexNet 0.8487 0.8923 0.9169 0.9332 0.901 0.9446 0.9804 0.9769 0.8925 0.9153

FCN-32s 0.8198 0.9211 0.899 0.9581 0.8796 0.9768 0.9776 0.9467 0.8712 0.9232

FCN-16s 0.8669 0.9199 0.9266 0.9574 0.9399 0.9782 0.9743 0.9442 0.9059 0.922

FCN-8s 0.8973 0.9316 0.9442 0.9639 0.9708 0.9822 0.9748 0.9514 0.9282 0.9336

Overall, FCN-8s performed best in regards to the semantic segmentation task of the

ROI of thigh MR images, with an average accuracy of 0.8973 (89.73%) for mid-scan

dataset (MD) and 0.9316 (93.16%) for whole-scan dataset (WD) by JSI. The average

DSC performance index for the corresponding datasets was also notably higher, i.e.

0.9442 (94.42%) and 0.9639 (96.39%), for MD and WD, respectively. For the uniformity

of the thesis as a whole and the less-forgiving nature of its measurement, JSI will be used

comprehensively from here after. DSC was included partially because it was universally

employed as a means of performance evaluation in machine learning. Although both

JSI and DSC adapted a slightly di↵erent formulation from one another, both indexes

are good for performance assessment purpose.

FCN-8s also excelled at Sensitivity and MCC indexes and ranked third overall in the

Specificity performance division. The di↵erence however, was not substantial from the

first-ranked FCN-AlexNet model, in this regard (0.0056 and 0.0255 of Specificity di↵er-

ences for MD and WD, respectively).

7.4.1 FCN-8s model with di↵erent solver types

Stochastic Gradient Descent (SGD) [190] is arguably predominantly used in the method-

ology of training a deep learning model, mainly due to its strength of simplicity in im-

plementation and fast processing, even for problems (or datasets) with many training

patterns. Semantic segmentation results in Table 7.1 also generated by the application

of SGD as its solver type in all pre-trained models.

Table 7.2 demonstrates the performance impact on the application of di↵erent solver

methods used for semantic segmentation in thigh MR datasets by FCN-8s model.

From Table 7.2, the various applications of solver types on FCN-8s during the training

and validation suggested that Adam solver generally performs better for the semantic
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Table 7.2: Mean JSI performance index for di↵erent solver types used in FCN-8s on
mid-scan (MD) and whole-scan (WD) datasets.

MD WD
AdaGrad [192] Adam [191] NAG [195] RMSprop [196] SGD Adam SGD

JSI 0.8778 0.927 0.8972 0.8829 0.8973 0.9469 0.9316

segmentation of thigh MRI, with both MD and WD datasets having a JSI performance

increment of 0.0297 (2.97%) and 0.0153 (1.53%) in accuracy, respectively compared to

FCN-8s with SGD solver. Unfortunately, none of the results can be generated here with

the application of AdaDelta solver [194] on FCN-8s due to the lower percentage (⇡ 70%)

of learning accuracy and higher loss during the training and validation, even after the

number of epoch was increased.

7.4.2 Segmentation of MRI Whole-scan Dataset Trained Models on

MRI Mid-scan Dataset

The main intention of distributing the dataset into two (MD and WD) is to observe

for any significance in JSI performance index for the semantic segmentation task of the

ROI of the thigh MRI. Should the ROI segmentation of a whole-scan dataset succeed

with greater level of accuracy compared to the results in Chapter 6, then adapting the

FCN-8s model (as it proves to be the best model to this domain thus far) on whole-

scan dataset can be further explored, replacing the previous proposed framework, as in

Chapter 6, for a fully-automated ROI segmentation model.

However, should better semantic segmentation results of the mid-scan dataset be ob-

tained compared to results in Chapter 4, then the application of FCN-8s model on

mid-scan dataset will be used, replacing the benchmark of semi-automatic frameworks

in Chapter 4. This in turn can be employed to the framework as proposed in Chapter

6 for further investigations to enhance the overall segmentation framework.

To further observe the behaviour of the pre-trained models, we combined the MD and

WD datasets, and trained this newly refreshed “all-scan” dataset (AD) with all the

pre-trained models proposed. For this purpose, the new training, validation and testing

configurations are segregated as: 900, 100 and 110 images, respectively, with 1000 images

in WD being used for training and validation and 110 images in MD primarily for testing.

The hypothesis was that the value of weight initialization will be much more optimized
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since there are more images involved for training and validation procedures, and therefore

the testing performance of each pre-trained model should be higher than that of MD

and WD datasets. Table 7.3 shows the results of this experiment, with results for MD

and WD are also included, for comparisons.

Table 7.3: Mean JSI performance index of all models on mid-scan (MD), whole-scan
(WD) and all-scan (AD) datasets.

Model
FCN-AlexNet FCN-8s FCN-16s FCN-32s PSPNet
Adam SGD Adam SGD SGD SGD SGD

MD 0.897 0.8487 0.927 0.8973 0.8669 0.8198 0.8263
Dataset WD 0.9253 0.8923 0.9469 0.9316 0.9199 0.9211 0.9194

AD 0.9228 0.8988 0.9388 0.9391 0.9378 0.9412 0.9081

As expected, overall FCN-8s (with Adam solver) performed better compared to the other

pre-trained models, throughout all the datasets (MD, WD or AD), with FCN-8s for WD

dataset (94.69%) remains the best. However, surprisingly for AD, the incorporation of

SGD solver on FCN-32s performed better (compared to the other models within AD),

with average JSI performance of 0.9412 (94.12%), an increment of 0.201 (or 2.01%) by

JSI compared to FCN-32s for WD. Also note that the mean JSI performances for FCN-

8s (with both Adam and SGD solver methods), FCN-16s and FCN-32s, in AD dataset

are also close to one another, with only a small performance di↵erence between them

(±0.0034 or 0.34%). This suggests that an AD dataset trained, validated and tested on

VGG-16 customized models (FCN-8s, -16s and -32s) has the potential to perform well in

the domain of semantic segmentation and confirms the concept of having su�cient input

(and labelled) ground truth data will improve the output domain of the deep learning

model. Table 7.4 depicts the average processing (semantic segmentation testing) time

(in second) for a single thigh MR image for all proposed models.

Table 7.4: Mean processing (testing) time (in second) for all models to semantically
segment an ROI of thigh MR image.

Model
FCN-AlexNet FCN-8s FCN-16s FCN-32s PSPNet
Adam SGD AdaGrad Adam NAG RMSprop SGD Adam SGD Adam SGD SGD

MD 0.34 0.24 0.46 0.64 0.45 0.37 0.61 0.58 0.39 0.61 0.55 0.05
Dataset WD 0.18 0.15 - 0.1 - - 0.03 - 0.03 - 0.03 0.05

AD 0.1 0.09 - 0.17 - - 0.03 - 0.04 - 0.03 0.05

FCN-8s with SGD solver (in AD and WD) was the best in terms of computation time for

the semantic segmentation task of thigh MRI, with 30 ms (0.03 sec) average processing

time per image. That was 100 times faster than the proposed method in Chapter 6
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(3 sec), 567 times faster than the proposed method in Chapter 4 (17 sec) and 733

times faster the proposed method in Chapter 5 (22 sec). In correlation to the best

performer in terms of accuracy (FCN-8s with Adam solver in WD; average processing

time of 0.1 sec per image), the processing time was 30, 170 and 220 times faster than

the frameworks in Chapter 6, 4 and 5, respectively. This indicates that in general, the

FCN-8s model is ideal for the domain of semantic segmentation as it is not only accurate,

but also considerably fast. Overall, the application of any pre-trained model for testing

(semantic segmentation) the ROI of thigh MRI is reliable in terms of processing time,

with FCN-8s (with Adam solver in MD) taking the longest time - 0.64 sec. And that

still is 4.7 times faster than the proposed method in Chapter 6.

This is also confirms: 1) the general influence of utilizing the simplicity of update value

formulation of the weight W
t+1 as per Equation 3.74 for SGD, evidently results in

faster computation, compared to the complexity of Adams’s weight update (W
t+1)

i

as

of Equation 3.77; and 2) vice-versa for the accuracy department, as Adam generally

performed better throughout all datasets, compared to SGD.

7.4.3 Post-processing

Notwithstanding the promising results set out above, there is still a need to investigate

the possibility of improving the end results of semantic segmentation by the FCN-8s

model. Here, the inclusion of a post-processing stage by image processing techniques

will be explored, with the goal of enhancing the ROI segmentation result. This FCN-

8s model dedicated experimentations will be applied to both Adam and SGD solvers

on all datasets (MD, WD and AD). The process involves image filtering and morpho-

logical procedures to the segmented ROI. Figure 7.7 demonstrates the significance of

the inclusion of this stage and Table 7.5 shows the mean JSI performance index with

the implementation of post-processing stage by image processing techniques described

earlier.

The results above demonstrated that by incorporating the proposed post-processing

stage, the semantic segmentation output could be enhanced. The overall accuracy per-

formances are increased throughout all of the datasets, with FCN-8s (Adam solver in

WD) achieved the best result. However, the performance increment was minimal, due to

the fact that only < 1% (or 0.86% to be exact across output in Table 7.5) of semantically
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Figure 7.7: Image filtering and morphological to the semantic segmentation image.
(a) Ground truth label (in white) with original MR image. (b) Semantic segmentation
result by FCN8-s model (for this sample: with Adam solver in WD dataset). (c) Post-
processing result of (b).

Table 7.5: Mean JSI performance index of FCN-8s model on mid-scan (MD), whole-
scan (WD) and all-scan (AD) datasets, without and with post-processing, respectively.

FCN-8s
Without post-processing With post-processing
Adam SGD Adam SGD

MD 0.927 0.8973 0.927 0.9006
Dataset WD 0.9469 0.9316 0.9502 0.9325

AD 0.9388 0.9391 0.9398 0.9392

segmented images are a↵ected by this “oversegmentation” condition as shown in Figure

7.7(b). With additional processing, the overall mean processing time to process a thigh

MR image also increased. It is measured that an extra 17 ms (0.017 sec) is needed for

this purpose (for FCN-8s with Adam solver in WD), increasing the overall processing

time to 0.1 + 0.017 = 0.117 sec, which was still 26, 145 and 188 times faster than the

frameworks in Chapters 6, 4 and 5, respectively.

This also indicates that it has out-performed the mean JSI benchmark of 0.95 (or 95%)

set in Chapter 4 for the semi-automatic segmentation framework, and therefore warrants

the in depth analysis before further application. Table 7.6 shows the average time taken

(in minute) per image for training and validation procedures for all models used. Red and

green boxes represent procedures that was performed by either Machine 1 or Machine 2

configurations, respectively.
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Table 7.6: Average time taken for training and validation procedures for all models
used (in minute) for an image. Red and green boxes depict model that was trained in
Machine 1 and 2, respectively.

Model
FCN-AlexNet FCN-8s FCN-16s FCN-32s PSPNet
Adam SGD AdaGrad Adam NAG RMSprop SGD Adam SGD Adam SGD SGD

MD 0.37 0.26 0.73 1.15 1.28 1.26 0.79 1.26 0.73 1.58 1.03 0.15
Dataset WD 0.22 0.23 - 0.67 - - 0.35 - 0.35 - 0.29 0.6

AD 0.55 0.48 - 1.09 - - 0.99 - 0.91 - 0.91 1.32

7.5 Discussion

Five pre-trained models of FCN-AlexNet, FCN-32s, FCN-16s, FCN-8s and PSPNet, from

three existing deep learning architectures (AlexNet, VGG-16 and PSPNet) have been

explored for the semantic segmentation task of the thigh MRI. All deep models (apart

from PSPNet) were customized by removing the fully connected layers and replacing

these layers with additional convolutional layers. These pre-trained FCN models are

then transferred for the task of ROI semantic segmentation. Some of the benefits of

this conversion and transfer learning process are: 1) capability to process input image

of various sizes; and 2) the number of parameters to update are significantly reduced

because of the weight distributions in a convolutional layer, making the learning process

faster, allow robust pixel-wise prediction from the extracted feature maps and better

overall performance.

FCN-8s emerges as the best all-around deep learning model for the task, and Adam solver

type works the best overall for the thigh MR images, although evidently Adam solver

also proved as one of the slowest, due to the complexity in its parameter updates of the

weight during forward and backward pass. By default, this FCN-8s with Adam solver,

trained, validated and tested on mid-scan (MD), whole-scan (WD) and all-scan (AD)

datasets, produced a mean semantic segmentation accuracy by JSI of 0.927 (92.7%),

0.9469 (94.69%) and 0.9388 (93.88%), within an average processing time per image of

0.64 sec, 0.1 sec and 0.17 sec, respectively for the corresponding datasets.

With the implementation of post-processing stage of image filtering and morphology to

the ROI segmented output, the results are enhanced to 0.927 (92.7%), 0.9502 (95.02%)

and 0.9398 (93.98%) for MD, WD and AD, respectively. The best JSI performance

result of 0.9502 (95.02%) suggests that FCN-8s model with Adam solver in WD has

out-performed the mean JSI benchmark of 0.95 (or 95%) set in Chapter 4 for the

semi-automatic segmentation framework. And this was achieved by segmenting images
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throughout the whole dataset (one MRI dataset consist of either 13 or 26 images) not

just some random MR image or mid-scan MR image like the analysis in Chapter 4 and

5. Overall, the performance of the combination framework of customized deep CNN

with image processing technique is exceptional, in terms of accuracy (0.9502 or 95.02%),

speed (0.117 sec testing/segmentation time per image) and reliability (< 1% of images

are a↵ected by issue related to oversegmentation).

However, in machine learning, having a sole end-to-end network for your domain task

is preferable and considered as the best solution for an automated domain system. And

since by default (without the inclusion of post-processing stage), the output performance

of FCN-8s is comparable to the new benchmark achieved, in the future it is: (1) best

to explore other potential deep CNNs that are specified in the semantic segmentation

domain (such as U-Net [260], SegNet [261] and FCN-DenseNet [262]) and investigate,

evaluate and compare their performances with the current benchmark method; (2) mak-

ing adjustments to FCN-8s parameters (type of layer used, additional dropout loss if

necessary or enhance batch normalization) and hyperparameters (learning rate, momen-

tum or regularization coe�cient) for better optimization in terms of training and testing;

and (3) the prospect of developing our own deep nets that specifies and optimizes to the

ROI segmentation for significant scientific outcome.

Hypothetically, in our endeavour to engineer an end-to-end solution for ROI segmen-

tation by using deep learning algorithm, proposing our own network can possibly be

accomplished by: (1) training the model with more MRI samples; (2) re-evaluation on

derivation of the normalized initialization for better regularization; and (3) configur-

ing the best architecture model for weight optimization and distribution by referring to

the analysis gathered from exploring other semantic segmentation specialized models as

above.

7.6 Conclusion

In general, automatic segmentation of ROI of MRI of the thigh by classic image pro-

cessing technique, computer vision and/or statistical analysis algorithms is prone to

susceptibility due to their reliance on specific rules with certain assumptions. Here, we

have successfully demonstrated the application of several ANNs in the form of FCNs that
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may progressively expand their application towards the automated analysis on medical

imaging. End-to-end performances of accuracy (by JSI ) and processing time by FCN-8s

(a VGG-16 based CNN) with Adam solver type are 0.9469 (94.69%) and 0.1 sec per

image, respectively. Combined with additional post-processing stage, the segmentation

accuracy increased to 0.9502 (95.02%), whilst the processing time increased to 0.117

sec per image. Overall, the automatic segmentation framework by FCN-8s (with Adam

solver) is fast, accurate and robust and has out-performed the mean JSI benchmark of

0.95 (or 95%) set in Chapter 4.



Chapter 8

Conclusion

This chapter summarizes the main research findings and interprets them in respect of

the existing literature and other solutions to similar challenges for ROI segmentation

of skeletal muscles as well as highlighting possible future directions.

8.1 Introduction

For the past thirty years, medical imaging has developed significantly in terms of de-

sign and engineering; image or data acquisition; reliability and sustainability; and out-

put performances. For the output performance, medical image analysis has gradually

transformed from a fully supervised technique to a more flexible unsupervised method,

whether it is for classification, detection, localization or segmentation.

The work set out in this thesis focused on medical imaging analysis of human skeletal

muscles obtained by MRI. This focus was chosen because human muscles play important

roles in providing support for posture and making movement possible, in thermoregula-

tion and in paracrine and endocrine functions and in any situation where muscle mass

and structure are compromised it has the potential to restrict physical function and

cause disability. During ageing, physical activity levels decrease and the consequent

disuse alongside other biological processes such as hormonal and/or other endocrine

changes contribute to muscle atrophy or muscle wasting and in turn muscle weakness.

Several large-scale research projects to investigate the causes of atrophy and weakness

140
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of leg muscle have been performed. In one such study at Manchester Metropolitan Uni-

versity (MMU), MR images were collected from hundreds of adults aged between 18 and

90 years. The MR images can be analyzed for muscle, fat and connective tissue content

by examining pixel areas and pixel intensity, and quantification of the results reveals a

lower muscle mass and more fat infiltration in older people compared to young people

(the e↵ects of ageing or disease).

The current “gold standard” manual analysis for specified regions of interest (ROI) seg-

mentation for the thigh MRI is well established but laborious, time consuming, operator

dependent and prone to intra- and inter-operator variability. Therefore, the main goal

of the work presented in this thesis was to automate the current image analysis of thigh

MRI without compromising output performance. An automated segmentation frame-

work would o↵er substantial time saving, especially for scientists that are studying the

e↵ects of ageing or other conditions on “muscle quality” using MR images of the thigh

skeletal muscles.

8.2 Research Findings

The five major objectives of the projects are: 1) establishing the best algorithms for the

ROI segmentation task; 2) designing a reliable, fast and accurate ROI segmentation and

quantification framework for thigh MRI; 3) developing an automated segmentation and

quantification framework for MRI of the thigh. The framework should provide acceptable

results without any supervision; 4) proposing an ROI segmentation and quantification

framework for serial MR images within the same dataset (subject); and 5) designing a

semantic segmentation framework for MR image of the thigh based on current machine

learning approach of deep learning algorithm. The ROI (for all segmentation frame-

works) consists of quadriceps muscle, femur and bone marrow.

In the first step (Chapter 4), image processing techniques such as thresholding, followed

by convex hull pixel identification for unwanted background removal and analysis of

cross-sectional area for the ROI were combined with the human input to delineate the

quadriceps from the hamstring muscles. The mean accuracy as determined by JSI and

processing time per image for this semi-automated segmentation framework were 0.95

and 17 sec, respectively. The proposed algorithms in this chapter were developed to
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improve speed (a time saving of 87% compared to manual segmentation), e�ciency and

increase the ability to distinguish between di↵erent tissue types and generate quanti-

tative data. Although this foundation segmentation framework yields accurate results,

reliable and fast, it was semi-supervised (partially operator-dependent) and analysis was

done on MR images within the middle region of a dataset, where images are tend to be

less a↵ected by bias field.

Next, the research continued with the development of a fully automated process by using

a combination of statistical analysis and image processing algorithms without the need of

user interactions (Chapter 5). The analysis was done exclusively on a single transverse-

plane section of the mid-thigh MR images. The overall performance for this automatic

segmentation framework was 0.8526 and 22 sec, for mean segmentation accuracy by JSI

and processing time per image, respectively. Three major limitations of this proposed

framework will be explored in future investigations: 1) The inclusion of more mid-scan

MR images in the training dataset to re-construct the shape model (by PCA) for a

more robust representation of the initial contour before the application of deformable

model; 2) The re-configuration of optimized values of the region-based active contour

dependent constants k
a

and k
b

to enhance the computations of average derivation of

inside and outside of shape model’s placement; and 3) In theory, a more optimized and

robust ROI segmentation output performance can be accomplished by engaging a more

dynamic and adaptive computation of the transformation properties (scaling factor s,

orientation �, and rotation angle �) of the shape model.

In the next step, the development of combination frameworks that leads to an automatic

MRI dataset segmentation method was proposed (Chapter 6). To acquire the best

results, the semi-automated framework of Chapter 4 was re-applied and this is done by

only one simple manual interaction to segment the mid-scan MR image. Serial images in

the same MRI dataset are then automatically segmented by the customized framework

of snake active contour curve transformation, based on template geometric information

of the earlier semi-automatically segmented mid-scan image as the shape regulator.

Overall, the method needs minimal supervision and o↵ers exceptional performance in

terms of segmentation accuracy (mean JSI of 0.9334) and processing time (mean of 3

sec per image). As part of the segmentation process was originated from the foundation

framework of algorithms in Chapter 4, this proposed framework also limited by its
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dependency on human interaction. However, this restriction was progressively refined

and the results were reported in Chapter 7.

With the aim of replacing the semi-automatic segmentation method in Chapter 4 and

Chapter 6 to a fully automatic thigh MR image segmentation method, the next step

was to apply an artificial neural network, a concept in machine learning that is inspired

by the nervous system. Five pre-trained models of FCN-AlexNet, FCN-32s, FCN-16s,

FCN-8s and PSPNet, from three existing deep learning architectures (AlexNet, VGG-16

and PSPNet) have been explored for applicability to the semantic segmentation task of

thigh MRI. All deep models (apart from PSPNet) were customized by removing the fully

connected layers and replacing these layers with additional convolutional layers. These

pre-trained FCN models were then transferred for the task of ROI semantic segmenta-

tion. This improved capability of the models to deal with various sizes of input images

and most importantly, results in a significant reduction in training and testing time due

to the weight optimization. With the implementation of the post-processing stage of

image filtering and morphology to the ROI segmented output by FCN-8s model (with

Adam solver) on whole-scan (WD) dataset, the results have out-performed the bench-

mark set in Chapter 4. However, further investigations are desired for the end-to-end

solution by machine learning algorithm and to do so, requirements have been defined

that may improve the image segmentation further such as: 1) training the model with

more MRI samples; 2) re-evaluation on derivation of the normalized initialization for

better regularization; and 3) configuring the best architecture model for weight opti-

mization and distribution by referring to the analysis gathered from exploring other

semantic segmentation specialized neural networks. Conclusively, this is one potential

avenue for future work.

The research has overall progressed from a manual segmentation performed by special-

ized technicians prior to any research set out in this thesis and moved through novel

frameworks first requiring manual and supervised interactions, towards a fully auto-

mated framework able to accurately quantify skeletal muscle tissue and bone of the

human thigh. The mid-scan is universally the preferred MR image to process as it is

here that muscle has the largest cross-sectional area and images have fewer artefacts,

echo and other substantial noise such as intensity inhomogeneity, which is a consequence

of gradient pulse eddy current e↵ects and inherent e↵ects of pulsed radiation on MRI

radio frequency (RF) coils from the MRI machine.
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Table 8.1 outlines the results of all contributory chapters (Chapter 4-7) of this research

and illustrates the progress of the research over time, in general.

Table 8.1: Mean performance index of research findings from Chapter 4, 5, 6 and 7,
including manual “ground truth” procedure.

Ground Truth Chapter 4 Chapter 5 Chapter 6 Chapter 7

Segmentation
Framework

Manual
Semi-automatic

MR Image
Automatic
MR Image

Automatic
MRI Dataset

Semantic
(Automatic)

Mean Accuracy (JSI ) - 0.95 0.8526 0.9334 0.9502
Standard Deviation - 0.0091 0.0915 0.0352 0.0184

Mean Processing Time
(per image)

132 sec 17 sec 22 sec 3 sec 0.117 sec

The MRI dataset used in this project is currently unavailable for public use in any

form or media but can be requested and released upon consensus and mutual agreement

from both the potential researcher(s) and research group of The Institute for Biomedical

Research into Human Movement (IRM) and School of Healthcare Science, Manchester

Metropolitan University (MMU). Benchmarking the proposed frameworks in the con-

tributory chapters of this thesis with other MRI datasets used in previous works of

thigh MRI segmentation for immediate, explicit and thorough comparisons was also not

feasible at the moment, due to the similar inaccessible reason (and vice-versa scenario

for our MRI dataset implementation on previous related works, i.e. the codes were not

available to public and due to the framework’s complexity, it was laborious to replicate

the previous related works).

The database of our MR images was derived from a 0.25-Tesla MRI scanner (Esaote G-

scan, Genoa, Italy), which generates a lower intensity of magnetic field and more limited

scanning area compared with more common 1-Tesla, 1.5-Tesla or 3-Tesla MRI scanners

generally used from previous related works. Even with such limitation, our analysis

has proven of its robustness and can be used to analyse thigh images derived from any

MRI scanner from 0.25-Tesla or higher. Technically, with such quality, the proposed

frameworks also can be applied to other MR images with virtually similar transverse

plane configurations of body segments such as lower leg or upper arm MRIs, that are

acquired also from any MRI scanner from 0.25-Tesla or higher.
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8.3 The Challenges

Figure 8.1 demonstrates the MR images of the thigh of three di↵erent subjects, from

proximal, mid-scan and distal scans.

Figure 8.1: Configuration of MR images from three di↵erent subjects, from proximal,
mid-scan and distal scans.

Processing and analysing MRI scans with di↵erent muscles configurations, even within

the same subject, were some of the major challenges for this research as the shape of the

individual muscle changes significantly along the length of the muscle (as illustrated in

Figure 8.1). Other substantial noise such as intensity inhomogeneity, image artefact and

echo can also be observed from this figure and such complications are always associated

with MR images in proximal and distal sections and may considerably a↵ecting the

overall performance of the segmentation framework.

In terms of ROI analysis, the manual segmentation is prone to intra- and inter-operator

variability [8, 11]. Even if the manual annotation is done by the same person on the

same MR image, it is di�cult to get 100% accuracy.

Moreover, in OsiriX, the output resolution of the ground truth image is natively pro-

cessed in 1526 x 1526 resolution. This raster (pixel-based) image is then downsized to a
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256 x 256 dimension for performance measurement, as the analysis of input and output

of proposed segmentation frameworks are all done within the 256 x 256 resolution. This

downsizing reflected upon the proposed algorithm performances, especially when pro-

cessing MR images with substantial edges/corners of the ROI (usually near the exterior

region of the Rectus Femoris muscle) and could suggest another strain towards achieving

the 100% accuracy.

Ideally, having a great amount of data is paramount to e�ciently train a deep neural

network. However, in the real world it is not often possible and for this research,

additional labelled images for training means extra time has to be reserved and spent

for the manual annotation procedure and this was another challenge that associates to

the research.

8.4 The Trials

After the proposed semi-automatic segmentation framework, an approach towards auto-

matic segmentation method by combining the framework of atlas construction (based on

segmented mid-scan MR image) and image registration methods for MRI thigh segmen-

tation were explored. These methods propagate the desired ROI between atlas image

and the targeted MR image for quadriceps muscles, femur cortical layer and bone marrow

segmentations. Among all image registration methods that can be put to use in achiev-

ing model-based segmentation, one popular approach is based on maximizing mutual

information [263, 264]. Good results with this technique have been reported for rigid

and non-rigid registration [162, 265, 266]. Atlas-based segmentation was successfully

achieved using the fluid-flow model introduced in [267] and overall was computationally

e�cient. Authors in [268, 269] presented a joint registration-segmentation scheme, but

could only accommodate rigid motion and an improved method was later developed

by using the Bayesian method [270] that simultaneously estimates linear registration.

Methods in [271–273] worked with non-rigid registration. However, these methods only

work well with images that are matched/paired from the same imaging modality or with

similar intensity profile. Our experimentations for this atlas-based registration approach

su↵ered in all performance departments (accuracy, processing time and reliability), espe-

cially the analysis on sequential images apart from a few middle-scanned images. Figure

8.2 depicts our trial with this method.
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Figure 8.2: Atlas-registration method. (a) Atlas (reference) image. (b) Atlas region.
(c) Atlas registration. (d) Moving (targeted) image. (e) Overlay of atlas boundary on
moving images. (f) Ideal atlas-registration process.

Another trial includes the computation of the “suspected area” of muscle border, which

is an area that statistically lies within ±15 pixels (in x -axis) of centroid location of

mid-scan image, with the orientation of a shape model (that was formed by PCA, in

Chapter 5). Hessian and Canny Edge Detection methods are employed to segregate any

edges within this “suspected area”, combined with thresholding to filter any unwanted

(or weak) edges. The “suspected area” with its content (of useful objects associated

with muscle border) is extracted. Any objects unequal to orientation of the shape

model and with a size that is substantially small ( 5 pixels), are then eliminated.

Remaining objects are thresholded by morphological application of a skeleton . This

gives us information such as branch-points and end-points of the remaining objects,

which are then utilized to predict the muscle border, by using polynomial coe�cients.

The measured spline curve is used as part of the regulator for the mid-scan image before

the process of convergence by active contour takes place. This method was evaluated as

a means to regulate the spline curve estimation area that represents the muscle border

between the quadriceps and the rest of the thigh muscles (such as hamstring, etc). In

the ideal scenario (MR images with prominent image features that represent muscle

borders and little artefact), the required information can be extracted and processed

accurately with this method. However, the reality of the images used throughout this
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thesis meant that the analysis was badly a↵ected by the generic estimation results and

it was therefore deemed unsuitable for the ROI segmentation of thigh MRI. Figure 8.3

shows our trial with this method. For this reason, it was necessary to develop the novel

solutions set out in this thesis.

Figure 8.3: Procedure of isolating the “suspected area” and spline curve estimation.

8.5 Future Works

Although the overall performance of the proposed segmentation framework by fully

convolutional network model can be regarded as the best solution, there are still certain

areas that can be improved. These future works or further recommendations are outlined

as follows:
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1. The possibilities of investigating and studying with raw DICOM (.dcm) image

resolution (rather than just a 256 x 256 image resolution that we are currently

working with) and analysing the core di↵erences. In theory, output analysis and

performance could be enhanced, due to the additional feature maps (such as edges

and curves) that can be extracted by the algorithm rather than working within

the restrictions of a confined and compressed image.

2. The re-configuration of optimized values of the region-based active contour depen-

dent constants k
a

and k
b

of the framework in Chapter 5 to enhance the computa-

tions of average derivation of inside and outside of shape model’s placement.

3. With the replacement of a fixed value of scaling factor s, together with the appli-

cation of more dynamic and adaptive computation of orientation � and rotation

angle � of the shape model, the proposed segmentation method may be optimized

further to provide better overall performance.

4. As mentioned in the conclusion section of Chapter 7, having a sole end-to-end

network for the segmentation task is preferable and considered as the best solution

for an automated domain system in machine learning. By default (without the

inclusion of post-processing techniques), the output performance of FCN-8s is still

credible to the new benchmark achieved (mean segmentation accuracy by JSI of

0.9469 compared to 0.9502). In the future it is best to explore other potential deep

CNNs that are specified in the semantic segmentation domain (such as U-Net [260],

SegNet [261], FCN-DenseNet [262] and many more) and investigate, evaluate and

compare their performances with the current benchmark method.

5. Formulating prospective adjustments to FCN-8s parameters, hyperparameters or

overall architecture for better regularization and optimization in terms of training

and testing.

6. Developing and assembling our own deep convolutional network that specify and

optimise to semantic segmentation of the ROI.

7. To further optimise the weight initialization of the deep network model, more MR

images and datasets for training and validation procedure will be performed. This

may also include MR images acquired from other MR machines and protocols, to

develop a universally applicable segmentation solution.
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8. Future developments should find solutions to provide clinicians with the individual

details of each of the quadriceps muscles (Vastus Lateralis, Vastus Medialis, Vastus

Intermedius and Rectus Femoris) for a more robust and detailed framework.

8.6 Final Remarks

This thesis has presented works designed to establish and improve the current image

analysis of thigh MRI. The proposed automatic segmentation framework is developed

and analyzed from the combination of image processing and the novelty and emerging

machine learning techniques and yields exceptional ROI segmentation output perfor-

mances (excellent precision, fast processing time and robust) and is hoped to be of

benefit and utilized for the medical community.



Appendix A

OsiriX

A.1 3-D Viewer for Volume and Surface Rendering

Figure A.1 shows a concept on how the initiation of ROI volume reconstructions would

be. The red-ish or brown-ish region represents segmented muscles fibers and yellow-ish

regions represent femur bone marrow. 3-D reconstruction would require the simulation

of fiber generation to fill in the gaps for one thigh MRI dataset/scans (muscles and

marrow gaps as per figure A.1).

A.2 Area Conversion

Figure A.2 demonstrates optimum dimension measurements of MATLAB and OsiriX

applications used in the development of semi- and fully-automatic segmentation frame-

work. The framework’s code structure was designed and processed using MATLAB and

since MATLAB is strictly matrix dependent, the processed output (for image) data will

always displayed in pixels. Pixel to cm2 area conversions is required as a quantitative

measurement and comparison for physiologists and physicists. Red arrows correspond

to exact output image dimension view size in MATLAB environment while blue arrows

associate with OsiriX. Therefore the conversion of pixel to cm2 :

D
cm

=
D

pix

⇥ 18

256
, (A.1)
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Figure A.1: 3-D volume rendering by OsiriX for one thigh MRI dataset.

Figure A.2: Corresponding dimensions of pixel (in red arrows from MATLAB) and
cm (in blue arrows from OsiriX).
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where D
pix

= ROI equivalent diameter (in pixel); D
cm

= measurement of ROI equivalent

diameter in cm. Area (in cm2) can then be measured by circle surface equation of:

Area(cm2) =
⇡(D

cm

)2

4
. (A.2)



Appendix B

Architecture Visualization for

Convolutional Neural Network

This appendix demonstrates the architecture visualization of Convolutional Neural

Networks employed in Chapter 7.
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B.1 AlexNet Based Models

B.1.1 AlexNet
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B.1.2 FCN-AlexNet
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B.2 VGG-16 Based Models

B.2.1 VGG-16
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B.2.2 FCN-32s
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B.2.3 FCN-16s
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B.2.4 FCN-8s



Appendix B. Architecture Visualization of Convolutional Neural Network 161

B.3 PSPNet



Appendix C

Publications

All (front pages) of the related publications during the research progress are attached to

this appendix.
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C.1 Published Article(s)

C.1.1 SPIE 2014

Atlas-registration based image segmentation of MRI human thigh 
muscles in 3-D space 

 
Ezak Ahmada, Moi Hoon Yapa, Hans Degensb and Jamie S. McPheeb 

aSchool of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom 
bSchool of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom 

{e.ahmad, m.yap, h.degens, j.s.mcphee}@mmu.ac.uk 
 

ABSTRACT 

Automatic segmentation of anatomic structures of magnetic resonance thigh scans can be a challenging task due to 
the potential lack of precisely defined muscle boundaries and issues related to intensity inhomogeneity or bias field 
across an image. In this paper, we demonstrate a combination framework of atlas construction and image 
registration methods to propagate the desired region of interest (ROI) between atlas image and the targeted MRI 
thigh scans for quadriceps muscles, femur cortical layer and bone marrow segmentations. The proposed system 
employs a semi-automatic segmentation method on an initial image in one dataset (from a series of images). The 
segmented initial image is then used as an atlas image to automate the segmentation of other images in the MRI 
scans (3-D space). The processes include: ROI labeling, atlas construction and registration, and morphological 
transform correspondence pixels (in terms of feature and intensity value) between the atlas (template) image and the 
targeted image based on the prior atlas information and non-rigid image registration methods. 

Keywords: Image segmentation, image registration, magnetic resonance imaging (MRI) 

 

1. INTRODUCTION 

Human thigh muscles play an important role in locomotion and other interactions with the environment. Thigh 
muscles consist of two main compartments - the quadriceps muscle group on the anterior and the hamstrings on the 
posterior. Physical activity levels evidently decrease during aging [1] and the consequent disuse can impact on 
muscle size and function. The effect of ageing is not only limited to disuse, factors such as hormonal and other 
endocrine changes also contribute to muscle degeneration [2]. Figure 1, shows a transverse-plane cross section of 
the mid-thigh in a young (Figure 1(a)) and older (Figure 1 (b)) man and it is clear that the muscles of the older man 
were smaller and the whole-thigh had more fatty adipose tissue. 

 

 

 

 

 

 

Figure 1: MRI scans from (a) Young and (b) Elderly. 
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C.1.2 ICCSCE 2014

Enhancement of MRI Human Thigh Muscle
Segmentation by Template-based Framework

Ezak Ahmad⇤, Moi Hoon Yap⇤, Hans Degens† and Jamie McPhee†
⇤School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, M1 5GD, UK

†School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, UK

Abstract—Image segmentation of anatomic structures is often
an essential step in medical image analysis. A variety of segmen-
tation methods have been proposed, but none provides automatic
segmentation of the thigh. In magnetic resonance images of the
thigh, the segmentation is complicated by factors, such as arti-
facts (e.g. intensity inhomogeneity and echo) and inconsistency
of soft and hard tissue compositions, especially in muscle from
older people, where accumulation of intermuscular fat is greater
than in young muscles. In this paper, the combination framework
that leads to a segmentation enhancement method for region of
interest segmentation are demonstrated. Appropriate methods
of image pre-processing, thresholding, manual interaction of
muscle border, template conversion and deformable contours in
combination with image filters are applied. Prior geometrical
information in an initial template image is used to automatically
derive the muscle outlines by application of snake active contours,
in serial images within a single MRI dataset. Our approach has
an average segmented output accuracy of 93.34% by Jaccard
Similarity Index, and reduced the processing time by 97.73%
per image compared to manual segmentation.

Index Terms—Magnetic resonance imaging, image segmenta-
tion, active contour

I. INTRODUCTION

Medical imaging provides a vast amount of physiolog-
ical and functional information, which improves diagnosis
and patient treatment, especially when supported by modern
quantitative image analysis methods. However, the analysis
of images to provide information to clinicians and the patient
presents many problems and requires substantial technical and
medical expertise. By definition, segmentation in computing is
a process that allows the partitioning of an image (in 2- or 3-
dimensions) into contiguous regions with mutual and cohesive
properties (such as intensity or texture).

Manual segmentation of specified regions of interest (ROI)
in MRI is well established, but laborious, time consuming and
operator dependent [1], [2]. Methods for performing segmen-
tation by computer vision algorithms vary widely depending
on the specific application, imaging modality and targeted
anatomical area. A reliable computerized (semi-automatic or
fully-automatic) segmentation system will help tremendously
in large-scale research to increase efficiency and reduce analy-
sis time compared to manual segmentation. However, difficul-
ties can arise due to image artifact, noise, echo, overlapping
of pixel/voxel intensities and non-uniform 2-D pixel intensity
on its output.

In recent years, several segmentation algorithms have been
developed and applied to a small number of images, but the
issue of compatibility of these algorithms to one another has
not been properly documented. A popular technique for image
segmentation proposed in [3], derived from k-means method,
is the fuzzy c-mean (FCM) algorithm. It performs fuzzy
partitioning through iterative optimization of the objective
function with update to cluster centers. However, the algorithm
does not incorporate any information about the spatial context,
which makes it susceptible to noise and artifacts [4]. To
overcome this issue, various modifications that integrate local
spatial information as constraints in the objective function
were proposed, such as by Li and Shen [4]. Yang et al.
[5] and Li et al. [6] described a comprehensive version of
the robust fuzzy clustering method (RFCM) for noisy image
segmentation. While Xue-xi et al. [7] suggested a hybrid
intelligent color segmentation method, which combines the
region growing and clustering methods.

The application of active contour models or snakes for
ROI segmentation or extraction is a common approach in
computer vision and medical image analysis and to date, these
techniques have been progressively developed and carefully
adapted (according to datasets to be processed). Generally,
this framework attempts to minimize an energy associated to
the initial contour and object contour as a sum of an external
or internal energy. Conventionally, active contour models can
be divided into several groups, with two of the major ones
being; edge-based [8], [9] and region-based [10], [11] models.
Meanwhile, over- or under-segmentation commonly occurs
in snakes due to its energy function sensitivity, weak or
without edges and gradient variations in an image. Researchers
[12]–[17] have incorporated active contour when segmenting
various kinds of images, including medical images. Therefore,
to enhance the snake’s deformable model robustness or border
convergence, practical customizations with other algorithms
should be considered.

In a recent publication, Ahmad et al. [18] used Atlas-
Registration for automated segmentation of the quadriceps
muscles of the human thigh. An atlas image was constructed
from the output of a semi-automatic segmented region. Inten-
sity, energy gradient, geometric formation and feature infor-
mation of the atlas were registered and these details were used
as references for automatic segmentation of serial MRI scans
within the same dataset by using image registration method.
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C.1.3 ICBET 2018

Automatic Segmentation of MRI Human Thigh Muscles:
Combination of Reliable and Fast Framework Methods for

Quadriceps, Femur and Marrow Segmentation

Ezak Ahmada, Jamie S. McPheeb, Hans Degensb, Moi Hoon Yapa

aSchool of Computing, Mathematics and Digital Technology
bSchool of Heathcare Sciences

Manchester Metropolitan University, Manchester, UK
ezak@dr.com

ABSTRACT
This paper outlines the procedure for automated segmenta-
tion of human thigh magnetic resonance images. Datasets
that included sequential transverse-plane images (approxi-
mately 20 sequential images) were used to develop the frame-
work and the images of mid-thigh were selected to establish
the segmentation algorithm because these images contain
essential parametric and geometric information that repre-
sents the subsequent images of the same dataset. Hence, if
the mid-thigh can be decomposed accurately, it would sig-
nificantly improve the prospects of decomposing all remain-
ing transverse images within the dataset. The segmentation
framework was designed based on the integration of statisti-
cal signal processing and medical imaging algorithms. The
results showed good segmentation accuracy and fast pro-
cessing time.

Keywords
Magnetic resonance imaging (MRI), Image processing, Au-
tomatic segmentation, Thigh muscles, Quadriceps.

1. INTRODUCTION
Skeletal muscle strength is a main component of functional
capacity and when strength of leg muscles is low it can im-
pact adversely on a person’s mobility levels and quality of
life. For these reasons, strength is commonly assessed by
research studies into physical health [1, 2, 3, 4, 5]. The
main interest is to understand the association between mus-
cle strength and functional deficiencies, what causes such
conditions and its mechanisms. To date, it is still not clear
what causes the age associated reductions in muscle mass
and strength, but they are ascribed to an inherent ageing
process [6], that is often modified by dietary deficiencies [7,
8] and/or disease [9].

Muscle strength is often presented as the maximum amount
of force that someone can exert, regardless of body size or
weight and naturally it is higher in those with larger mus-
cles, but there is also variation between people in the force
that can be produced per unit muscle mass and this is some-
times referred to as muscle “quality”. The muscle quality
can be estimated from a simple division of maximum force
into muscle cross sectional area. Measurements of skeletal
muscle force are straightforward and require the patient sim-
ply to apply as much force as possible against an immovable
object. The object includes a strain gauge that measures
forces. However, measuring skeletal muscle mass is more
di�cult [10].

In medical imaging, various image modalities has been
used to screen di↵erent human anatomy [11, 12]. For thigh,
there are various techniques commonly used, ranging from
limb-circumference which is fraught with error, through the
modern clinical x-ray or magnetic resonance imaging (MRI)
techniques, to computer vision technique using depth sen-
sor [13, 14]. For any measurement of the muscle quality, it
is clearly vital to include an accurate measurement of the
skeletal muscle size and in this respect the MRI is the gold-
standard. The aim of this paper specifically is to develop
a method to automatically and accurately determine mus-
cle size from thigh MRI mid-scans. MRI has the additional
benefits that it can help in diagnosing muscular pathologies.
It is non-invasive, non-ionizing and can also identify fat infil-
trations and bone size. Automatic segmentation techniques
have been successfully developed and published [15, 16, 17,
18, 19, 20, 21, 22], with some generating excellent segmen-
tation accuracies in a short period of time.

Indeed, establishing automated system for individual mus-
cle segmentations within skeletal muscles or within the same
muscle group of the same body segment is a key challenge
in medical imaging. It is technically di�cult to achieve due
to poor contrast between connective and muscle tissues, and
sometimes none or little information of muscle borders to as-
sist the segmentation, even within the same muscle group.
With this in mind, the most commonly used approach is to
manually segment the regions of interest (ROI) and this re-
quires a very good knowledge of human anatomy. This pro-
cess is operator-dependent, tedious, time-consuming and can
have questionable reproducibility by novice users. The issue
holding back development of automatic segmentation of in-
dividual muscles from MR images is that individual muscles
share similar MR properties and can appear indistinguish-

1
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C.2 Other(s)

C.2.1 Journal of Software: Practice and Experience

For Peer Review
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Formulating Efficient Software Solution for Digital Image
Processing System

Thomas Sherwood, Ezak Ahmad, Moi Hoon Yap⇤

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Chester Street,
Manchester, M1 5GD, UK

SUMMARY

Digital Image Processing Systems are complex, being usually composed of different computer vision
libraries. Algorithm implementations cannot be directly used in conjunction with other algorithms developed
using other computer vision libraries. This paper formulate a software solution by proposing a processor with
the capability of handling different types of image processing algorithms, which allow the end-users to install
new image processing algorithms from any library. This approach has other functionalities like capability
to process one or more images; manage multiple processing jobs simulteneously; and maintain the manner
in which an image was processed for later use. It is a computational efficient and promising technique to
handle variety image processing algorithms. To promote the reusability and adaptation of the package for
new types of analysis, a feature of sustainability is established. The system past the testing procedures by
using unit testing, integration testing and usability testing. Future work involves introducing the capability
to connect to another instance of processing service with better performance. Copyright c� 2010 John Wiley
& Sons, Ltd.

Received . . .

KEY WORDS: image processing, software solution, sustainability, plugin, OpenCV, Matlab

1. INTRODUCTION

Digital image processing is complex and inconsistence due to various programming languages
and variation computer vision libraries. The domain of image processing has increased vastly in
recent years [1], spanning across a range of applications such as photography, forensics and medical
imaging [2]. The term simply relates to the process (or set of processes) applied to the detector and
dataset of a radiograph exposure [3]. Motivations for processing an image stem from not only the
amount of information perceived as image form, but also for autonomous machine control [4].

A mechanism for implementing the algorithms is required, in order to provide a means to perform
the transformations. Larkins et. al. [5] discuss an existing high-level toolbox known as Matlab,
providing a plethora of existing algorithms and components for re-use in building more complex
algorithms. They highlight how Matlab is easy enough for novice users to grasp while still providing
powerful processing and data crunching capabilities. However algorithm implementations cannot be
directly used in conjunction with other algorithms developed using other technologies, for instance
C++ processing classes. Culjak et. al.[6] discusses an alternative to Matlab known as OpenCV,
which provides a suite of processing algorithms and assistant classes written in C. They discuss
how the library is also widely used, providing heavily optimised solutions to particular algorithms.
A C++ wrapper is available for OpenCV, allowing for easy integration into higher-level languages.

⇤Correspondence to: School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Chester Street, Manchester, M1 5GD, UK.

Copyright c� 2010 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

Page 1 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Appendix C. Publications 167

C.2.2 SPIE 2018 - Paper 1

Capillary Detection in Transverse Muscle Sections
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ABSTRACT

Manual identification of capillaries in transverse muscle sections is laborious and time consuming. Although the
process of classifying a structure as a capillary is facilitated by (immuno)histochemical staining methods, human
judgement is still required in a significant number of cases. This is mainly due to the fact that not all capillaries
stain as strongly: they may have an elongated appearance and/or there may be staining artefacts that would
lead to a false identification of a capillary. Here we propose two automated methods of capillary detection:
a novel image processing approach and an existing machine learning approach that has been previously used
to detect nuclei-shaped objects. The robustness of the proposed methods was tested on two sets of di↵erently
stained muscle sections. On average, the image processing approach scored a True Positive Rate of 0.817 and a
harmonic mean (F1 measure) of 0.804 whilst the machine learning approach scored a True Positive Rate 0.843
and F1 measure of 0.846. Both proposed methods are thus able to mimic most of the manual capillary detection,
but further improvements are required for practical applications.

Keywords: histology, muscles, capillary detection, machine learning, image processing

1. INTRODUCTION

Muscles are indispensable for locomotion and maintenance of posture in most animals. The muscle performs
its function by the sliding of myosin and actin filaments along each other thereby shortening and producing
force at the same time, resulting in motion or maintenance of body posture. This process requires adenosine
triphosphate (ATP) that can be generated both anaerobically and aerobically. The latter process generates more
ATP per glucose moiety than anaerobic metabolism and also can be used to generate ATP form fatty acids. The
aerobic energy metabolism requires an adequate supply of oxygen and energy substrates that is derived from
the capillary blood and it is indeed a common observation that the capillary network is denser in muscle with a
large aerobic potential than those with a low aerobic potential [1–4].

The exploration of the human body has a long history. One of the first recorded instances of human dissection
was performed by the ancient Egyptians to unravel the anatomy and understand how the human body works [6].
With the advancements in screening technology, many techniques have been developed [7] that opened up ways
to study anatomy even at the microscopical level. One such area that has been studied with microscopy is the
micro-circulation and initially capillaries were identified by injecting Indian ink into the circulation [1]. Recent
work analysing the capillary network in muscle tissues used staining protocols to reveal capillaries [8–10], where
the subsequent identification of capillaries and muscle fibres is performed manually [2, 3]. More recent work by
Ballak et al. [11] has shown that at least some of the analysis can be automated. However, the identification of
muscle fibres and capillaries was still done manually.

It is highly desirable to automate the capillary identification and therefore, this paper evaluates the e�cacy
of two methods of automated capillary detection on two image datasets; a novel image processing method and
a machine learning method [12].
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ABSTRACT

The existing methods for breast ultrasound lesions detection and recognition are based on multi-stage processing,
such as preprocessing, filtering/denoising, segmentation and classification. The performance of these processes
dependent on the prior stages. To improve the current state of the art, we proposed an end-to-end breast
ultrasound lesions detection and recognition using a deep learning approach. We implemented a popular semantic
segmentation framework, i.e. Fully Convolutional Network (FCN-AlexNet) for our experiment. To overcome data
deficiency, we used the pre-trained model from ImageNet for the transfer learning FCN-AlexNet. We validated
our results on two datasets, which consists of a total of 113 malignant lesions and 356 benign lesions. We assessed
the performance of the model using the following split: 70% for training data, 10% for validation data, and 20%
testing data. The results shown that our proposed method performed better on benign lesions, with a Dice score
of 0.6879, when compared to the malignant lesions with a Dice score of 0.5525. When considering the number of
images with Dice score > 0.5, 79.45% of the benign lesions were successfully segmented and correctly recognised,
but only 65% of the malignant lesions were successfully segmented and correctly recognised. This paper provides
the first end-to-end solution for breast ultrasound lesions recognition. The future challenges for this proposal is
to obtain more datasets and customize the deep learning framework to improve the results.

Keywords: breast ultrasound lesions, breast cancer detection, fully convolutional network, AlexNet

1. INTRODUCTION

According to Breast Cancer Care [1], breast cancer is the most common cancer in the UK. One in eight women
will be diagnosed with breast cancer in their lifetime and one person is diagnosed every 10 minutes [1]. Over the
past years, many research into using di↵erent image modalities [2] and technical methods were developed [3, 4]
to aid early diagnosis of the disease. These e↵orts has led to further research challenge and demand for robust
computerised method.

Mammography is known as the gold standard for breast cancer diagnosis [2] . However, ultrasound is an im-
portant complementary modality to increase the accuracy of the diagnosis and for those who are vulnerable even
to a tiny radiation exposure. Other alternatives are tomography or magnetic resonance. However, ultrasound is
the cheapest option and widely used in clinical practice [5].

Conventional computerised methods on breast ultrasound cancer diagnosis composed of muti-stages, including
pre-processing, detection of region of interest (ROI), segmentation and classification [6–8]. These processes rely on
hand-crafted features including descriptions in spatial domain (texture information, shape and edge descriptors)
and frequency domain. With the advancement in deep learning methods, we can detect and recognise objects
without hand-crafted features. This paper presents the limitation of the state of the art and conducts a feasibility
study on the use of a deep learning approach as an end-to-end solution for fully automated breast lesions
recognition.
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Improving clustering algorithms for image segmentation using contour and region

information. In Automation, Quality and Testing, Robotics, 2006 IEEE Interna-

tional Conference on, volume 2, pages 315–320. IEEE, 2006.

[119] Guy B Coleman and Harry C Andrews. Image segmentation by clustering. Pro-

ceedings of the IEEE, 67(5):773–785, 1979.



Bibliography 181

[120] James C Bezdek, LO Hall, and L P Clarke. Review of mr image segmentation

techniques using pattern recognition. Medical physics, 20(4):1033–1048, 1992.

[121] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–

254, 1967.

[122] Bing Jian and Baba C Vemuri. A robust algorithm for point set registration

using mixture of gaussians. In Computer Vision, 2005. ICCV 2005. Tenth IEEE

International Conference on, volume 2, pages 1246–1251. IEEE, 2005.
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