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Abstract

Rapidly-exploring Random Tree star (RRT*) has recently gained immense popularity in the mo-
tion planning community as it provides a probabilistically complete and asymptotically optimal
solution without requiring the complete information of the obstacle space. In spite of all of its
advantages, RRT* converges to optimal solution very slowly. Hence to improve the convergence
rate, its bidirectional variants were introduced, the Bi-directional RRT* (B-RRT*) and Intelligent
Bi-directional RRT* (IB-RRT*). However, as both variants perform pure exploration, they tend
to suffer in highly cluttered environments. In order to overcome these limitations we introduce a
new concept of potentially guided bidirectional trees in our proposed Potentially Guided Intelligent
Bi-directional RRT* (PIB-RRT*) and Potentially Guided Bi-directional RRT* (PB-RRT*). The
proposed algorithms greatly improve the convergence rate and have a more efficient memory uti-
lization. Theoretical and experimental evaluation of the proposed algorithms have been made and
compared to the latest state of the art motion planning algorithms under different challenging envi-
ronmental conditions and have proven their remarkable improvement in efficiency and convergence
rate.

Keywords: Motion planning, Sampling based planning algorithms, RRT*, Optimal path
planning, Artificial Potential Fields, Bidirectional trees.

1. Introduction

Motion planning has been a major problem in robotics since the mid twentieth century, but with
the rise in robotics becoming a part of our everyday life, research in this field has become an
even greater need. In the motion planning problem, given the initial and goal configuration of the
robot, the objective is to plan from the initial state to the goal region while avoiding obstacles
along the way. Motion planning finds its application in our everyday life, in fields such as smart
cars [1], robotic surgery [2], aerial, underwater and amphibious robotics [1], humanoid robotics [3]
and in countless others. As humans explore the outer-space more and more, motion planning in
outer-space [4] is also a becoming a challenging task. With the advancement in micro chip and
nano-technology motion planning finds its application in nano-robotics and in micro-flow control
and automation of bio-molecular computation (MF-BMC) [5].

Due to such a comprehensive requirement of motion planning, many motion planning algo-
rithms were developed as mentioned in [6]. Motion planning algorithms are either complete which
return a solution if one exists in finite time and reports a failure if a solution does not exist, or are
not complete but assure resolution or probabilistic completeness [6]. Complete motion planning
algorithms such as Visibility Graphs have been developed. But these algorithms require explicit
representation of the configuration space. Such a representation requires a lot of computational
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power especially for higher degree of freedom systems which renders such algorithms inefficient
for practical purposes. In case of resolution or probabilistic complete algorithms, these algorithms
either first discretize the given configuration space and then apply graph-based searches or use
random sampling in case of sampling based algorithms respectively [6]. Graph-based search algo-
rithms up to their resolution, find the optimal solution if one exists. One such example is “exact
road maps”, which discretizes the given configuration space that in turn places a heavy compu-
tational burden in higher dimensions. Another resolution complete algorithm, Artificial Potential
Fields (APF) [7] also exits. But it is only effective if its resolution parameters are finely tuned, and
another issue with APF is that it is greedy i.e it performs pure exploitation. Although exploitation
might help compute the path quickly in some situations but it also causes the robot to get stuck
in the local minima in APF [7].

Hence in order to avoid discretization of the state space and to avoid the above stated problems
such as the local minima, sampling based stochastic searches were introduced such as Expansive
Space Trees (ESTs) [8], Probabilistic Road Maps (PRMs) [9] and Rapidly-exploring Random Trees
(RRTs) [10]. These stochastic sampling based searches are probabilistically complete, meaning that
probability of finding a solution goes to one as the number of samples approach infinity. These
algorithms performed very well in high dimensional spaces as well due to the fact that these
algorithms do not require the complete construction of obstacle space. A major limitation of
the above stated sampling-based algorithms is that they did not take into account the path cost
and hence could not guarantee an optimal solution. Urmson and Simmons used heuristic-based
sampling named h-RRT, to improve the path cost of RRT [11]. Ferguson et al. [12] used the
anytime version of RRT, the anytime-RRTs improved the cost iteratively after finding an initial
solution path. However, both these h-RRTs and anytime-RRTs did not guarantee optimal solution.
Recently Karaman et al. [13] introduced an optimal variant of RRT, the RRT*. The RRT* first
finds an initial path quickly, it then improves the solution by re-wiring the samples and replacing
old parents with new parents whose cost in terms of Euclidean distance from initial state is less than
them. This makes RRT* asymptotically optimal, meaning it guarantees convergence to optimal
solution as the number of samples go to infinity. RRT* performs pure exploration, which can cause
it to have very slow rates of convergence to optimal solution in highly cluttered environments and
high dimensional spaces.

In order to improve the rates of convergence to optimal solution of RRT*, techniques such
as sample-biasing [14], sample-rejection [15], sampling-heuristics [11], multiple trees [16], iterative
searches [15] and anytime searches [12] were used. Qureshi et al. [14] used potential biasing
on the randomly sampled states in RRT* to get to the optimal solution faster in his P-RRT*
Algorithm, which is an extension of previously proposed APGD-RRT* Algorithm [17]. Karaman
et al. [15] implemented the anytime version of RRT* using graph pruning. Multiple tree search
based methods such as Bi-directional RRT* (B-RRT*) [16] and Intelligent Bi-directional RRT*
(IB-RRT* ) [18] have recently been introduced and have shown to increase the convergence rate
to optimal solution. In such a bidirectional search one Rapidly-exploring Random Tree (RRT) is
grown from the initial state and the other Rapidly-exploring Random Tree is grown from one of
the goal states. The bidirectional nature of these algorithms makes them inherently faster than
the single-tree versions due to the fact that the samples that are too far away from the initial
starting state are closer to the goal state. Whereas these samples are not directly connectable to
the nodes of the growing tree in the single-tree version and could be used efficiently by connecting
to the tree growing from the goal region in the bidirectional tree version. However, the problem
with these bidirectional variants of RRT* is that they perform pure exploration, even though two
trees are involved but there exist no sample-biasing to guide the two trees towards each other for
faster convergence to optimal solution. In B-RRT* pure exploration is performed and each tree
is grown one by one and a hybrid greedy connection heuristic checks if a connection between the
two trees is possible or not. While IB-RRT* also performs pure exploration, a simple sampling
heuristic adds the randomly sampled state to that tree out of the two bidirectional trees, from
which the cost (in terms of Euclidean distance) of an obstacle free path from that tree to the
randomly sampled state is less than the other tree. Then a connection heuristic checks if the two
trees are connectable. Since, B-RRT* and IB-RRT* perform pure exploration, they also suffer
in highly cluttered environments. In this paper, we introduce the concept of potentially guiding
two Rapidly-exploring Random Trees towards each other in bidirectional sampling based motion
planning by incorporating the proposed bidirectional potential gradient heuristics for alternatively
directing each successive randomly sampled state towards each of the two trees out of the bidi-
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rectional trees and hence guiding both trees towards each other for faster convergence to optimal
solution. This paper presents new bidirectional potential gradient heuristics, to potentially guide
and directionalize two Rapidly-exploring Random trees towards each other in the bidirectional ver-
sions of RRT*, and hence the two proposed algorithms are the Potentially Guided Bi-directional
RRT* (PB-RRT*) and Potentially Guided Intelligent Bi-directional RRT* (PIB-RRT*). The
idea of potentially guiding two Rapidly exploring Random Trees towards each other for faster rate
of convergence to optimal solution, as per authors knowledge, is novel.

In this paper PB-RRT* and PIB-RRT* have been rigorously tested in challenging 2-D and 3-D
environments and are compared with the latest optimal sampling based algorithms such as RRT*,
IB-RRT* and P-RRT*. The remainder of the paper is divided into following sections. Section 2
and 3 gives an explanation of our problem definition and a review of some previous algorithms.
Section 4 explains our proposed algorithms, PB-RRT* and PIB-RRT*. Section 5 presents in
depth analysis of the proposed PB-RRT* and PIB-RRT* algorithms regarding their probabilistic
completness, asymptotic optimality, rapid asymptotic convergence to optimal path, computational
complexity and efficiency. Section 6 follows up with experimental proof, supporting the theoretical
implications. Section 7 concludes the paper with some suggestions for further research in the
future. Section 8 closes the paper with acknowledgements followed by references.

2. Problem definition

This section describes the motion planning algorithms that will be addressed in this paper along
with the notations used. In the motion planning problem, a feasible path from initial state to the
goal region has to be found in the least amount of time possible. Let Ta and Tb represent the
two Rapidly-exploring Random Trees growing from initial and goal state, respectively. The state
space of the configuration space is represented by the set Z ⊂ Rn, n ∈ N and n ≥ 2, where n
is the number of dimensions and z ∈ Z is a particular configuration of the robot. Zobs ⊂ Z are
the states that are present in our obstacle configuration space and are a no go configuration for
the robot. Zfree are the traversable state for the robot such that Zfree = Z/Zobs. Let Va and Ea

be the vertices and edges of the tree Ta such that Ta = (Va, Ea) ⊂ Zfree. Similarly for tree Tb,
Tb = (Vb, Eb) ⊂ Zfree. Let µ(.) be the Lebesgue measure, which denotes the n-dimensional volume
of the given state space. Let a path be denoted by τ : [0, 1] and Σfree is the set of all collision
free paths. Let τ

′

a be the path of tree Ta from initial state zinit to any random state z, such that
τ
′

a[0, 1] → {τ ′a(0) = zinit, τ
′

a(1) = z} ⊂ Zfree. Similarly for tree Tb, τ
′

b is the path from goal state

zgoal to any random state z such that τ
′

b[0, 1]→ {τ ′b(1) = z, τ
′

b(0) = zgoal} ⊂ Zfree. In order to get a

solution, both trees Ta and Tb must be connected such that τ
′

a(1) = τ
′

b(1) = z. Then the resulting

concatenated solution will be given by τ
′

f = τ
′

a | τ
′

b ∈ Zfree. Finally, let J(τ) be the cost of the
path τ in terms of Euclidean metric in Z. U : Rd → R describes the artificial potential function.
Let Iz describe the intensity of near vertices and ϑALG denote the total rewiring per iteration
of Algorithm ALG. Optimal path planning is a very basic requirement of motion planning. It is
formally defined below.

Optimal Path Planning: Optimal path planning problem is formally defined as given a path
planning triplet {zinit, Zgoal, Zfree} and a path cost function J(.). From all the feasible collision-free
paths Σfree, find a path τ∗ ∈ Σfree that minimizes the given function of path cost J : Σfree → R ≥ 0,
such that τ∗ : [0, 1]→ τ∗(0) = zinit, τ

∗(1) = Zgoal. Optimal path τ∗ can hence be formally written
as the following.

J(τ∗) = argmin
τ∈Σfree

{J(τ)|τ(0) = zinit, τ(1) = Zgoal, τ : [0, 1] ∈ Σfree}

3. Related work

In this section, previously proposed algorithms such as Potential Function Based-RRT* (P-RRT*)
[14], Bi-directional RRT* (B-RRT*) [16] and Intelligent Bi-directional RRT* (IB-RRT*) [18] are
briefly explained. These algorithms form the base of our proposed Potentially Guided Bidirection-
alized RRT*.
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(a) PIB-
RRT*:i=197344,t=47s,J=241

(b) PB-
RRT*:i=210285,t=52s,J=241

(c)
RRT*:i=3371861,t=1045s,J=241

(d) Optimal path
solution:J∗=241

Figure 1: PIB-RRT*, PB-RRT* & RRT* performance comparison in 2-D Maze

Algorithm 1: P-RRT* (zinit, zgoal)

1 Va ← {zinit};
2 Ea ← ∅;
3 T ← (V,E);
4 for i← 0 to N do
5 zrand ← RandSample(i);
6 zprand ← RGD(zrand);
7 Znear ← NeighboringVertices(i, T, zprand);
8 if Znear = ∅ then
9 Znear ← NearestVertex(T, zprand);

10 L← ListSorting(zprand, Znear);
11 zparent ← PickBestParent(L);
12 if zparent then
13 T (V,E)← VertexInsert(zprand, zparent, T );
14 E ← RewiringVertices(zprand, L,E);

15 return T (V,E)

3.1. P-RRT* Algorithm

The P-RRT* [14] Algorithm extends the RRT* Algorithm for better convergence properties by
introducing a Random Gradient Descent (RGD) method. The RGD method guides the randomly
sampled states towards the goal region using APF [7]. This guiding by P-RRT* results into faster
computation of an optimal solution as compared to the original RRT* method. Algorithm 1
outlines the pseudo-code of P-RRT*. The procedures used in Algorithm 1 are described below.

Algorithm 2: ListSorting(zrand, Znear)

1 L← ∅;
2 while z′ ∈ Znear do

3 τ
′ ← Steer(z′, zrand);

4 J ′ ← J(zinit, z
′) + J(z′, zrand);

5 L← (z′, J ′, τ ′);

6 L← Sort(L);
7 return L

RandSample: This function returns independent and identically distributed (i.i.d.) samples form
the obstacle-free space as zrand ∈ Zfree.

RGD: This heuristic guides the randomly sampled state z incrementally downhill in the direction
of decreasing potential so that the resulting guided samples is zprand.

NeighboringVertices: This procedure returns the vertices that are the neighboring vertices of the
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randomly sampled state zrand located inside a ball of volume Bz,r of radius r centered at z such
that r = γ(log n/n)1/d, where γ is a constant, n is the number of vertices and d is the dimension
of the state space.

NearestVertex: As suggested from its name, this function returns the vertex from the tree T (V,E)
which is nearest to the randomly sampled vertex in terms of cost determined by the cost heuristic
function J().

ListSorting: This function sorts the list L in terms of ascending order of its cost J ′ as seen in
Algorithm 2.

Steer: This function takes two states z1 and z2 as inputs and connects them in such a way that
a straight trajectory collision-free path τ : [0, 1] is formed such that τ(0) = z1 and τ(1) = z2.
Steering is done in small incremental step.

PickBestParent: This procedure chooses the parent zparent ∈ Znear for the randomly sampled state
which returns a collision-free path τ ′ with the minimum cost from zinit to the randomly sampled
state.

VertexInsert: Given a vertex z, this method assigns a parent zparent to the vertex z, and then
computes the edge connecting the assigned parent zparent and the vertex z. Furthermore, it also
determines the cost connecting zinit to z via zparent. Finally, this vertex z and edge are interested
into the tree T (V,E).

RewiringVertices: This function checks if the cost of the vertices in Znear in terms of Euclidean
distance from the root state of the tree they belong to, is less through the new randomly sampled
state than through their original parents. If so, then their original parents are removed and the
randomly sampled vertex/state is made their new parent.

The P-RRT* Algorithm presented in Algorithm 1 is also asymptotically optimal like its baseline
Algorithm RRT*. Along with being asymptotically optimal it is also probabilistically complete.
But due to incorporation of APF into RRT* in P-RRT* it is many folds faster than its parent
RRT* in finding the optimal solution especially in cluttered environments. First the tree T (V,E)
is initialized with its first vertex zinit. Then as iteration, i, goes from 0 to N, zrand ∈ Zfree is
randomly sampled from obstacle-free configuration space Zfree. After this the randomly sampled
state zrand is potentially guided by the RGD() heuristic downhill towards decreasing potential so
that it becomes zprand (line 6, Algorithm 1). Then the P-RRT* searches its neighboring vertices
located around the potentially guided randomly sampled state zprand in a ball of of volume Bz,r
to form the set Znear. If this set Znear is empty it then populates Znear with the nearest vertex
to zprand located anywhere in the tree (line 8–9, Algorithm 1). P-RRT* then makes a list L of
neighboring vertices Znear in the function ListSorting() as explained in Algorithm 2. This list L is
made in ascending order of the total cost J ′. The total cost J ′ (line 4, Algorithm 2) is the sum of
the cost of a collision-free path (in terms of Euclidean distance) of the neighboring vertex z′ ∈ Znear

from root state zinit plus the cost of the collision-free path from the neighboring vertex z′ ∈ Znear

to the potentially guided randomly sampled state zprand. Then coming back to Algorithm 1, the
function PickBestParent() chooses the vertex z′ ∈ Znear as the parent of the sample zprand which
has the least cost J ′ returning a collision-free path τ ′. Then the vertex zprand is added to the tree
T (V,E) and rewiring is done around zprand (line 12–14, Algorithm 1). This process is repeated
until i→ N .

3.2. B-RRT* Algorithm

Jordan and Perez [16] came up with optimal Bi-directional Rapidly-exploring Random trees in
their B-RRT* Algorithm. It is implemented as shown in Algorithm 3. Some of the new functions
used by B-RRT* are as follows.

Extend: Extend(z1, z2) returns a new vertex znew such that znew ∈ Zfree and znew is closer to z2

than z1 in terms of cost, the Euclidean distance.

Connect: Algorithm 4 states the Connect heuristic in detail. Just like RRT-connect heuristic [19]
it is greedy.
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Algorithm 3: B-RRT* (zinit, zgoal)

1 Va ← {zinit};Vb ← {zgoal};
2 Ea ← ∅;Eb ← ∅;
3 Ta ← (Va, Ea);Tb ← (Vb, Eb);
4 τbest ←∞;
5 for i← 0 to N do
6 zrand ← RandSample(i)
7 znearest ← NearestVertex(zrand, Ta)
8 znew ← Extend(znearest, zrand)
9 Znear ← NeighboringVertices(znew, Ta)

10 L← ListSorting(znew, Znear);
11 zparent ← PickBestParent(L);
12 if zparent then
13 Ta(Va, Ea)← VertexInsert(znew, zparent, Ta);
14 Ea ← RewiringVertices(znew, L,Ea);

15 zconn ← NearestVertex(znew, Tb)
16 τnew ← Connect(znew, zconn, Tb)
17 if τnew 6= ∅ and J(τnew) < J(τbest) then
18 τbest ← τnew;

19 SwapTrees(Ta, Tb);

20 return {Ta, Tb} = (V,E)

Algorithm 4: Connect(z1, z2, Tb)

1 znew ← Extend(z2, z1)
2 Znear ← NeighboringV ertices(znew, Tb)
3 List← ListSorting(z1, Znear);
4 zparent ← PickBestParent(List);
5 if zparent then
6 E ← (zparent, z1);
7 τfree ←MakePath(zparent, z1);
8 return τfree

9 return NULL

B-RRT* is explained in detail in Algorithm 3. It first initializes two trees, Ta and Tb. Ta is
initialized by zinit as its root vertex such that zinit ∈ Zfree. Tb is initialized with zgoal as its
root vertex where zgoal ∈ Zgoal. The initial operations are just like RRT* where first a vertex is
randomly sampled, then after insertion and rewiring of the sample into the selected tree Ta, zconn

is searched, which is the nearest vertex from tree Tb to the node znew. Then the Connect heuristic
tries to connect the two trees Ta and Tb, returning a path τnew ∈ Σfree. If the cost of the new path
J(τnew) is less than the previously calculated best cost J(τbest), τbest is overwritten by τnew. Then
the trees Ta and Tb are swapped and the whole procedure is again executed until i→ N .

3.3. IB-RRT* Algorithm

Qureshi et al. [18] proposed their optimal bidirectional variant of RRT* in his Intelligent Bi-
directional RRT* (IB-RRT*) Algorithm. The procedures used by this Algorithm are same as the
ones used in RRT* except for the GetBestTreeParent heuristic, which has been explained below.

GetBestTreeParent: This heuristic calculates the best parent with the minimum cost from both
trees Ta and Tb around the randomly sampled zrand. Then the parent which has the least cost
among the two trees Ta and Tb is made the parent of the randomly sampled state zrand.

Algorithm 5 outlines the implementation of IB-RRT*. First the two trees Ta and Tb are initialized
with their respective vertices (line 1–2). Then a vertex is randomly sampled and the near neighbor
vertices from both trees are calculated in Za

near and Zb
near (line 6–9). Both the neighboring vertex
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Algorithm 5: IB-RRT* (zinit, zgoal)

1 Va ← {zinit};Vb ← {zgoal};
2 Ea ← ∅;Eb ← ∅;
3 Ta ← (Va, Ea);Tb ← (Vb, Eb);
4 τbest ←∞;
5 Connection← True
6 for i← 0 to N do
7 zrand ← RandSample(i)

8 {Za
near, Z

b
near} ← NeghboringVertices(zrand, Ta, Tb)

9 if Za
near = ∅ and Zb

near = ∅ then
10 {Za

near, Z
b
near} ← NearestVertex(zrand, Ta, Tb)

11 Connection← False

12 La ← ListSorting(zrand, Z
a
near)

13 Lb ← ListSorting(zrand, Z
b
near)

14 {zparent,flag, τfree} ← GetBestTreeParent(La, Lb,Connection)
15 if (flag) then
16 Ta ← VertexInsert(zrand, zparent, Ta)
17 Ta ← RewiringVertices(zrand, La, Ea)

18 else
19 Tb ← VertexInsert(zrand, zparent, Tb)
20 Tb ← RewiringVertices(zrand, Lb, Eb)

21 E ← Ea ∪ Eb

22 V ← Va ∪ Vb

23 return ({Ta, Tb} = V,E)

sets Za
near and Zb

near are sorted in ascending order by the function ListSorting (line 10–11). Then
the GetBestTreeParent heuristic selects the best parent zmin from Ta or Tb. If the best parent
zmin is from Ta then zrand is inserted in Ta along with its edges and is then rewired (line 13–15).
And if the best parent zmin is from Tb then zrand is inserted in Tb and rewired (line 16–18). This
process continues till i→ N .

4. Potentially Guided Bidirectionalized RRT*

4.1. PB-RRT* & PIB-RRT*

In this section we present our proposed algorithms, PB-RRT* (Potentially Guided Bi-directional
RRT*) and PIB-RRT* (Potentially Guided Intelligent Bi-directional RRT*). The proposed al-
gorithms PB-RRT* and PIB-RRT* incorporate APF (Artificial Potential Fields) [7] into Bi-
directional RRT* (B-RRT*) [16] and Intelligent Bi-directional RRT* (IB-RRT*) [18] respectively
by using the proposed BPG() (Bi-directional Potential Gradient) heuristic. BPG() heuristic has
been explained later in this section. The APF was introduced by Khatib [7]. In this method the
artificial potential field Uatt pulls the robot Ri located at position z ∈ Zfree towards the goal region
zg ∈ Zgoal and the artificial potential field Urep repels the robot away from obstacles lying in the

obstacle configuration space Zobs. Force F̂r generated on the robot is the negative gradient of the
resultant potential i.e, F̂r = −grad[Ur].

Uatt =

{
1
2kp‖z − zg‖2, if ‖z − zg‖ > rg
1
2kp(rg‖z − zg‖ − r2

g), if ‖z − zg‖ ≤ rg
(1)

F̂att =

{
−kp‖z − zg‖, if ‖z − zg‖ > rg

−kprg
‖z−zg‖
d(z,zg) , if ‖z − zg‖ ≤ rg

(2)

Where rg is the radius of the boundary around the goal region zg ∈ Zgoal. kp is the attractive
potential gain.

d∗nearest = argmin
z′∈Zobs

‖z − z′‖ (3)
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Algorithm 6: PB-RRT* (zinit, zgoal)

1 Va ← {zinit};Vb ← {zgoal};
2 Ea ← ∅;Eb ← ∅;
3 Ta ← (Va, Ea);Tb ← (Vb, Eb);
4 τbest ←∞;
5 for i← 0 to N do
6 zrand ← RandSample(i)
7 zpb ← BPG(zrand, i)
8 znearest ← NearestVertex(zpb, Ta)
9 znew ← Extend(znearest, zpb)

10 Znear ← NeighboringVertices(znew, Ta)
11 L← ListSorting(znew, Znear);
12 zparent ← PickBestParent(L);
13 if zparent then
14 Ta(Va, Ea)← VertexInsert(znew, zparent, Ta);
15 Ea ← RewiringVertices(znew, L,Ea);

16 zconn ← NearestVertex(znew, Tb)
17 τnew ← Connect(znew, zconn, Tb)
18 if τnew 6= ∅ and J(τnew) < J(τbest) then
19 τbest ← τnew;

20 SwapTrees(Ta, Tb);

21 return {Ta, Tb} = (V,E)

Urep =

{ 1
2krep( 1

d∗nearest
− 1

dobs
)2, if d∗nearest ≤ d∗obs

0, if d∗nearest > d∗obs

(4)

Ur = Uatt + Urep (5)

F̂r = F̂att + F̂rep (6)

In reference to Equation 3, d∗nearest is the distance of the robot to the nearest obstacle. dobs is a
constant value and is usually very small. In Equation 4, krep is the repulsive potential gain. The

resultant force on the robot is F̂r i.e, F̂r = −grad[Ur] where Ur = Uatt + Urep as seen in Equation
5. Force Fr keeps acting on the robot until −grad[Ur] = 0 and when this zero potential gradient
condition happens and F̂r = 0 then the robot has either reached its goal or is stuck in a local
minima configuration.

The proposed PB-RRT* and PIB-RRT* fuse APF (Artificial Potential Fields) [7] with bi-
directional variants of RRT* [16] [18] using the BPG() heuristic. The pseudo code of PB-RRT*
and PIB-RRT* is given in Algorithm 6 and 7 respectively. The flow of the algorithms PB-RRT* and
PIB-RRT* is the same as that of B-RRT* (Algorithm 3) and IB-RRT* (Algorithm 4) respectively,
with only difference of BPG() heuristic. Hence only BPG() heuristic is discussed in detail.

4.2. BPG()

APF [7] is incorporated in the proposed algorithms PB-RRT* and PIB-RRT* using the proposed
BPG() (Bi-directional Potential Gradient) heuristic. Pseudo-code of BPG() heuristic is presented
in Algorithm 8. Let zrand ∈ Zfree be the randomly sampled state. After being potentially guided by
the BPG() heuristic, the randomly sampled state zrand becomes potentially guided bidirectional
randomly sampled state zpb such that zrand → zpb, where zpb ∈ Zfree. Some of the new heuristics
used by BPG() are discussed below.

BPGgoal(Zgoal, zpb): BPGgoal() (Bi-directional Potential Gradient towards goal state) imple-
ments Equation 1 and Equation 2 of the APF Algorithm in the form of Equation 7 and Equation
8 as shown below.

Uatt =
1

2
kp‖zrand − zgoal‖2 : zgoal ∈ Zgoal (7)

F̂att = −kp‖zrand − zgoal‖ : zgoal ∈ Zgoal (8)

8



Algorithm 7: PIB-RRT* (zinit, zgoal)

1 Va ← {zinit};Vb ← {zgoal};
2 Ea ← ∅;Eb ← ∅;
3 Ta ← (Va, Ea);Tb ← (Vb, Eb);
4 τbest ←∞;
5 Connection← True
6 for i← 0 to N do
7 zrand ← RandSample(i)
8 zpb ← BPG(zrand, i)

9 {Za
near, Z

b
near} ← NeghboringVertices(zpb, Ta, Tb)

10 if Za
near = ∅ and Zb

near = ∅ then
11 {Za

near, Z
b
near} ← NearestVertex(zpb, Ta, Tb)

12 Connection← False

13 La ← ListSorting(zpb, Z
a
near)

14 Lb ← ListSorting(zpb, Z
b
near)

15 {zparent,flag, τfree} ← GetBestTreeParent(La, Lb,Connection)
16 if (flag) then
17 Ta ← VertexInsert(zpb, zparent, Ta)
18 Ta ← RewiringVertices(zpb, La, Ea)

19 else
20 Tb ← VertexInsert(zpb, zparent, Tb)
21 Tb ← RewiringVertices(zpb, Lb, Eb)

22 E ← Ea ∪ Eb

23 V ← Va ∪ Vb

24 return ({Ta, Tb} = V,E)

As seen in Algorithm 8 in the BPG() heuristic if the iteration count i is even then the potentially
guided bidirectional randomly sampled state zpb is passed to the BPGgoal() heuristic. In the
BPGgoal() heuristic, Equation 8 is used for the calculation of attractive potential force vector
F̂att. F̂att is acting on zpb with the goal region Zgoal acting as the attractive pole pulling zpb

towards it. Hence the name BPGgoal() is given to this function. kp is the attractive potential
gain. It is to be noted that the canonical portion of Equation 1 and Equation 2 is ignored in their
implementation in Equation 7 and Equation 8 of BPGgoal() as the potential force is being applied
on the randomly sampled state and not physically on the robot hence it does not need to be slowed
down by the canonical portion of the equation for avoidance of over-shooting Zgoal.

NearestObstacleSearch(Zobs, zpb): This heuristic computes the distance d∗nearest of the nearest ob-
stacle in the obstacle-space from the bidirectional potential gradient randomly sampled state zpb.

BPGinit(zinit, zpb): BPGinit() (Bi-directional Potential Gradient towards initial state) uses the
Equation 1 and Equation 2 of the APF Algorithm in their modified form in Equation 9 and
Equation 10 as shown below.

U ′att =
1

2
kp‖zrand − zinit‖2 : zinit ∈ Zfree (9)

F̂ ′att = −kp‖zrand − zinit‖ : zinit ∈ Zfree (10)

When the iteration count i is odd in BPG() heuristic then the potentially guided bidirectional
randomly sampled state zpb is passed to the BPGinit() heuristic. Using Equation 9 and Equation

10, BPGinit() heuristic computes the attractive potential force vector F̂ ′att acting on zpb with the
initial root state zinit acting as the attractive pole for zpb. Hence the name BPGinit() is given
to this heuristic. Similarly as in BPFGoal() heuristic, the canonical portion of Equation 1 and
Equation 2 are ignored. kp is the attractive potential gain.

Algorithm 8 explains in detail BPG() (Bi-directional Potential Gradient) heuristic. The ran-
domly sampled state zrand is first fed to potentially guided bidirectional randomly sampled state
variable zpb (line 1). The iteration count i being currently run in the main loop is taken in BPG()

9



Algorithm 8: BPG (zrand, i)

1 zpb ← zrand;
2 if i mod 2 = 0 then
3 for k ← 0 to n do

4 F̂att = BPGgoal(Zgoal, zpb);
5 d∗nearest ← NearestObstacleSearch(Zobs, zpb);
6 if d∗nearest ≤ d∗obs then
7 return zpb

8 else

9 zpb ← zpb + ε F̂att

‖F̂att‖

10 else
11 for k ← 0 to n do

12 F̂ ′att = BPGinit(zinit, zpb);
13 d∗nearest ← NearestObstacleSearch(Zobs, zpb);
14 if d∗nearest ≤ d∗obs then
15 return zpb

16 else

17 zpb ← zpb + ε
F̂ ′att
‖F̂ ′att‖

18 return zpb

heuristic as an input. If the iteration count i is even then zpb is passed to the BPGgoal() heuristic

which computes the potential force vector F̂att acting on zpb with the goal region Zgoal acting as
the attractive pole for zpb (line 4). Then the distance to the nearest obstacle d∗nearest from the
sample zpb is computed (line 5). If this distance d∗nearest is smaller than a certain constant value
d∗obs then the loop breaks and returns zpb. d∗obs must be a very small value, its importance will
be told in the coming section. But if d∗nearest > d∗obs then the sample zpb is directed down-hill
in direction of decreasing potential towards goal region in ε sized small steps (line 9). This loop
continues in the same way until k → n where n ∈ N. But if i is odd then the potentially guided
bidirectional randomly sampled state zpb is passed to the BPGinit() heuristic which computes the

potential force vector F̂ ′att acting on the potentially guided bidirectional randomly sampled state
zpb with the initial root state zinit acting as the attractive pole for zpb (line 12). The rest of the
procedure is same as mentioned above until either d∗nearest ≤ d∗obs or until k → n. In this way for
even iterations i, the potentially guided bidirectional randomly sampled state zpb is potentially

directed down-hill towards goal region Zgoal by the potential force vector F̂att, bringing it closer to
tree Tb being grown from the goal region Zgoal. While for odd iterations i, the potentially guided
bidirectional randomly sampled state zpb is pulled towards initial root state zinit by the potential

force vector F̂ ′att where the tree Ta was grown hence bringing close both the trees Ta and Tb faster
by the application of BPG() (Bi-directional Potential Gradient) heuristic, hence achieving faster
rate of convergence to optimal path as shown in the following sections. In order to keep a balance
between exploitation and exploration, the value of n in k ← 0 to n (line 3,11), has to be chosen
such that it is not too high that too much exploitation occurs or is too low that no exploitation
occurs almost. In the following section we will be analysing our proposed algorithms.

5. Analysis

5.1. Probabilistic Completeness

Let ALG denote any Algorithm and Gi denote the sampling-based tree search graph with i total
iterations. Vi is the set of vertices of the tree generated by Algorithm ALG in GALG

i .

Probabilistic Completeness: For an Algorithm ALG, it is probabilistically complete, if for any
path planning problem triplet {Zfree, zinit, Zgoal}, as the total number of iterations i go to infinity,
the probability of finding a feasible solution path from initial to goal configuration goes to one.
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RRT* also ensure probabilistic completness (Karaman and Frazzoli 2011) [13] as formally stated
below.

Theorem 1([13]) RRT* is a probabilistically complete Algorithm. For any robustly feasible path
planning problem triplet {Zfree, zinit, Zgoal}, as the number of iterations approach infinity, the prob-
ability of finding a feasible solution approaches one.

lim
i→∞

P ({∃ zgoal ∈ V RRT∗
i ∩ Zgoal in G

RRT∗
i }) = 1

Similarly the proposed algorithms PB-RRT* and PIB-RRT* ensure probabilistic completness as
stated in the following Theorem 2.

Theorem 2 For a given feasible path planning problem triplet {Zfree, zinit, Zgoal}, the probability
of finding a feasible solution is as follows.

lim
i→∞

P ({∃ zgoal ∈ V PB−RRT∗
i ∩ Zgoal in G

PB−RRT∗
i }) = 1

lim
i→∞

P ({∃ zgoal ∈ V PIB−RRT∗
i ∩ Zgoal in G

PIB−RRT∗
i }) = 1

As the number of iterations i approach infinity, probability of finding a feasible solution if one
exists, goes to one.

Sketch of proof: For the proof of the above theorem we will use the following three arguments: 1)
The bidirectional trees generated by PB-RRT* and PIB-RRT* just as in RRT* are connected trees
i.e, whenever a state is randomly sampled, it is connected to its nearest neighbor state within the
particular tree which is selected to grow by the PB-RRT* and PIB-RRT* algorithms respectively;
2) By convention we have V RRT∗

o = V PB−RRT∗
o = V PIB−RRT∗

o = zinit, hence the random trees
generated by PB-RRT* and PIB-RRT* have zinit as one of its states just like RRT*; 3) PB-RRT*
and PIB-RRT* direct randomly sampled states towards goal region Zgoal and initial root state
zinit at every even and odd loop iteration i respectively by using the BPG() heuristic. Therefore
in the proposed algorithms PB-RRT* and PIB-RRT*, the probability that the two bi-directional
trees grown with their roots at zinit and Zgoal respectively, will connect to each other and hence
find a feasible path approaches to one as the number of iterations i approach infinity. Based on the
above stated arguments, it can be stated that the proposed algorithms PB-RRT* and PIB-RRT*
ensure Probabilistic Completeness.

(a) PIB-
RRT*:i=155375,t=38s,J=183

(b) PB-
RRT*:i=124782,t=30s,J=183

(c)
RRT*:i=2830541,t=705s,J=183

(d) Optimal path
solution:J∗=183

Figure 2: PIB-RRT*, PB-RRT* & RRT* performance comparison in 2-D Box

5.2. Asymptotic Optimality

Let τ∗ ∈ Zfree denotes the optimal path such that for a sequence of feasible paths {τn} where
{τn} ∈ Zfree ∀n ∈ N such that lim

n→∞
τn = τ∗ and lim

n→∞
J(τn) = J(τ∗) = J∗, where J∗ is the

optimal path cost. An Algorithm is asymptotically optimal if it computes a minimum cost feasible
path τ∗ : [0, 1] → τ∗(0) = zinit, τ

∗(1) = Zgoal and the optimal cost J∗ of the optimal path
τ∗ is the minimum achievable cost of any feasible path in the particular path planning problem
{Zfree, zinit, Zgoal}. Let Y ALG

n be the extended random variable which corresponds to the minimum-
cost solution returned in graph GALG

n by the Algorithm ALG at iteration n. Asymptotic optimality
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(a) PIB-
RRT*:i=19489,t=8s,J=125

(b) PB-
RRT*:i=30682,t=10s,J=125

(c)
RRT*:i=1745250,t=445s,J=125

(d) Optimal path
solution:J∗=125

Figure 3: PIB-RRT*, PB-RRT* & RRT* performance comparison in 2-D Cluttered

has been formally defined below.

Asymptotic Optimality: An Algorithm ALG is asymptotically optimal if for a cost function
J : Σ→ R ≥ 0 it admits a robustly feasible solution with cost J∗.

P ({lim sup
n→∞

Y ALG
n = J∗}) = 1

Theorem 3 Let the conditions mentioned above in the definition of asymptotic optimality hold,
then the proposed algorithms PB-RRT* and PIB-RRT* are asymptotically optimal if d ≥ 2 and
γ > γ∗ := 2d(1 + 1

d )µ(Zfree).

Sketch of proof: In reference to theorem 38 (Karaman and Frazzoli 2011) [13], PB-RRT* and
PIB-RRT* our proposed potentially guiding bi-directional variants of RRT*, after potentially
guiding the randomly sampled state zrand ∈ Zfree, attempt to add nearby vertices in a radius
of rPB−RRT∗

n = γPB−RRT∗( lognn )
1
d and rPIB−RRT∗

n = γPIB−RRT∗( lognn )
1
d respectively to form an

edge so that the bi-directional trees are grown outwards in PB-RRT* and PIB-RRT*. As the same
procedures happen is RRT*, therefore from Lemma 56, 71 and 72 (Karaman and Frazzoli 2011)
[13] it can be derived that PB-RRT* and PIB-RRT* are asymptotically optimal as shown by the
following derived relations.

P ({lim sup
n→∞

Y PB−RRT∗
n = J∗}) = 1

P ({lim sup
n→∞

Y PIB−RRT∗
n = J∗}) = 1

5.3. Swift Convergence to Optimal Path

Proof of swift convergence to optimal path of PB-RRT* and PIB-RRT* is given in this section
based on the following assumptions.

Assumption 1: Let Σfree denote set of all collision free paths. Given two paths τ1 and τ2, let
τ1 | τ2 denote their concatenation and J(.) be the cost function such that for all τ1, τ2 ∈ Σfree,
J(τ1) ≤ J(τ1 | τ2).

Assumption 2: For z ∈ Zfree, there exists a ball of volume Bz′,δ ⊂ Zfree of radius δ ⊂ R > 0
centered around z′ ∈ Zfree such that z′ ∈ Bz′,δ.

Assumption 1 defines that if two paths are concatenated, then the combined cost will be no less
than the individual cost of the paths. Assumption 2 tells us about the existence of collision free
space around an obstacle and the path τ known as δ-spacing which can be used to converge the
path τ to optimal solution τ∗. Having Assumption 2 under consideration let us define two terms,
δ-interior state intδ(Zfree) and δ-exterior state extδ(Zfree). If a ball region of volume Bz,δ of radius
δ centered at z lies entirely inside the collision-free space Zfree, then z is said to be in the δ-interior
state of Zfree. The δ-interior of Zfree is defined as intδ(Zfree) := {z ∈ Zfree | Bz,δ ⊆ Zfree}. While
δ-exterior states are those states that are close to the obstacles but not entirely inside, such that

12



for a state z′ ∈ Zfree a ball region of volume Bz′,δ of radius δ centered at z′ lies partially inside the
collision-free space Zfree and some of the states in its volume lie in obstacle space Zobs, then z′ is said
to lie in the δ-exterior state. The δ-exterior state is represented as extδ(Zfree) := Zfree/intδ(Zfree).
Paths with a strong and a weak δ-clearance will be explained below.

(a) PIB-
RRT*:i=18762,t=12s,J=220

(b) PB-
RRT*:i=21474,t=14s,J=220

(c)
RRT*:i=544852,t=106s,J=265

(d) Optimal path
solution:J∗=220

Figure 4: PIB-RRT*, PB-RRT* & RRT* performance comparison in 3-D Maze

Path with strong δ-clearance: If a feasible path τ ∈ Σfree comprises entirely of δ-interior states of
Zfree, then that path is said to have a strong δ-clearance for δ > 0.

Path with weak δ-clearance: Let τ1 : [0, 1] and τ2 : [0, 1] be two collision free paths. Both paths have
same initial and goal states τ1(0) = τ2(0), τ1(1) = τ2(1) respectively. The path τ1 is homotopic
to the path τ2 by the homotopy function ψ : [0, 1] such that ψ(q) is a collision free path where
q → [0, 1] and ψ(0) = τ1 has weak δ-clearance and ψ(1) = τ2 has strong δ-clearance and for all
β ∈ [0, 1], their is δβ > 0 such that ψ(β) has δβ-clearance.

The following lemma states that the proposed BPG() heuristic potentially guides the random
samples z ∈ Zfree towards weak δ-clearance region where optimal solution exists.

Lemma 1 The BPG() heuristic directs the random sample z ∈ Zfree towards δ-exterior extδ(Zfree)
region, where δ-clearance is weak.

Sketch of proof: The BPG() heuristic causes the random sample z ∈ Zfree to be potentially pulled
by the attractive pole which is either the goal region Zgoal or the initial root state region zinit which
are swapped on each alternate iteration. As the random sample is being potentially guided down
the slope towards the attracting pole in small ε steps for n time or till a very minute distance d∗obs

from any obstacle is reached as seen in Algorithm 8. The minute distance d∗obs causes the random
sample to achieve weak δ-clearance as it is being potentially guided there.

Let τ ′n and τn be two paths such that τ ′n ∈ Σfree and τn ∈ Σfree and τ ′n is closest to τn in terms
of bounded variation norm among all paths in Σfree. The following lemma states that convergence
to optimal solution is surely guaranteed if, the random variable ‖τ ′n − τn‖BV converges to zero

Lemma 2([3]) A sampling based Algorithm converges to optimal solution if, the random variable
‖τ ′n − τn‖BV converges to zero i.e,

P ({ lim
n→∞

‖τ ′n − τn‖BV = 0}) = 1

Corollary 2 As the number of iterations approach infinity τ ′n will eventually converge to the
optimal path τ∗.

P ({limn→∞ τ ′n = τ∗}) = 1

Let Iz denote the intensity of near vertices Znear around a random state z ∈ Zfree in a ball of radius
r such that

Iz := {card(Znear/µ(Bz,r) : Znear | z = Bz,r ∩ Vn}
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Sketch of proof: Let ε ∈ R. Znear is the set of near vertices around a randomly sampled state zrand ∈
Zfree located inside a ball of volume Bz,r of radius r centered at z such that r = γ(log n/n)1/d,
where γ is a constant, n is the number of vertices and d is the dimension of the state space. The
randomly sampled state zrand can make any state z′ ∈ Znear as its parent which has the lowest cost
of connecting zrand to the root zinit of the tree out of all the vertices in Znear. This means that
‖zrand − z′‖ = ε, where ε < r = γ(log n/n)1/d. This ensures that the tree in the algorithm grows
in small incremental steps of d′ where d′ ≤ ε. For incremental expansion or wavefront expansion
of trees it is proven that regions near the root of trees are more dense [10]. Hence if the randomly
sampled state zrand lies closer to the generation of the tree, there is a high probability of having
high cardinality of set Znear.

The proposed algorithms PB-RRT* and PIB-RRT* are designed to converge to optimal solution
very quickly. Since the intensity of near vertices Iz is higher in region closer to the generation of
the tree [10], following Lemma 2 states that Bi-directional Potential Gradient BPG() heuristic
directs the random samples towards higher intensity Iz regions where higher probability of optimal
solution exists.

Lemma 3 The proposed BPG() heuristic guides the random sample z ∈ Zfree towards the regions
closer to point of generation of the trees where the intensity of near vertices Iz is much higher.

Sketch of proof: The BPG() heuristic of the proposed PB-RRT* and PIB-RRT* guides the random
sample z ∈ Zfree towards the goal region Zgoal and initial root state zinit as the poles of attraction
change on every iteration in BPG(), directing the random sample down the slope under the
influence of the attractive pole, either it be zinit or Zgoal region pole. These are the points of
generation of the bidirectional trees Ta and Tb, generated at zinit and Zgoal respectively. Hence
this means that the intensity of near vertices Iz is much higher at the root of the trees and
the random sample z ∈ Zfree is directed towards higher Iz region causing increased rewiring per
iteration of both proposed algorithms represented as ϑPB−RRT∗ and ϑPIB−RRT∗ respectively. Such
potential fields in bidirectional tree search do not exist in RRT* hence, ϑPB−RRT∗ > ϑRRT∗ and
ϑPIB−RRT∗ > ϑRRT∗. Since rewiring tries to minimize the bounded variation ‖τ ′n − τn‖BV as
mentioned before, causes convergence to optimal path faster than RRT*.

Based on Lemma 2 and Lemma 3, Theorem 4 is formalized as follows stating that the conver-
gence to the optimal solution of the proposed PB-RRT* and PIB-RRT* is faster than RRT* due
to increased rewiring per iterations in the proposed algorithms than RRT* as explained above.

Theorem 4 From Lemma 2 and Lemma 3 it is derived that BPG() heuristic in PB-RRT* and
PIB-RRT* guides the random sample z ∈ Zfree towards higher intensity Iz regions such that
ϑPB−RRT∗ > ϑRRT∗ and ϑPIB−RRT∗ > ϑRRT∗.

(a) PIB-
RRT*:i=26902,t=11.1s,J=70

(b) PB-
RRT*:i=19444,t=7.4s,J=70

(c)
RRT*:i=1355329,t=150s,J=70

(d) Optimal path
solution:J∗=70

Figure 5: PIB-RRT*, PB-RRT* & RRT* performance comparison in 3-D Columns

On the basis of Theorem 4, Lemma 4 has been derived and is stated as follows.

Lemma 4 In the given path planning problem {Zfree, zinit, Zgoal}, the proposed BPG() heuristic
guides the random sample z ∈ Zfree in such a manner that the two tree in the bi-directional search
are potentially pulled towards each other.

Sketch of proof: The BPG() heuristic contains BPFgoal() and BPFinit() heuristics. BPFgoal()
heuristic causes the goal region Zgoal to become the attractive pole while BPFinit() heuristic
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(a) PIB-
RRT*:i=134682,t=29s,J=79

(b) PB-
RRT*:i=160652,t=43s,J=79

(c)
RRT*:i=1949183,t=545s,J=79

(d) Optimal path
solution:J∗=79

Figure 6: PIB-RRT*, PB-RRT* & RRT* Initial performance comparison in 3-D Cluttered

causes the initial root state region zinit to become the attractive pole. As there are two trees Ta

and Tb initial root state and goal region respectively in the proposed PB-RRT* and PIB-RRT*.
BPFgoal() and BPFinit() potentially pull the random sample towards the attracting pole which
is either the goal region where the origin of tree Tb is located or towards zinit which is the origin of
tree Ta and on the next iteration the pole is swapped. This causes the random sample z ∈ Zfree to
be potentially pulled towards origins of both trees, Ta and Tb on alternate iterations causing both
trees to grow and be potentially pulled towards each other due to the BPG() heuristic resulting
faster convergence to optimal solution. Based on Corollary 1 and Lemmas 1,2,3 and 4, Theorem 5
formally states the faster convergence of PB-RRT* and PIB-RRT* due to the BPG() heuristic.

Theorem 5 The BPG() (Bi-directional Potential Gradient) heuristic (1) potentially directs the
random sample z ∈ Zfree towards higher intensity Iz regions where rewirings per iteration are related
as, ϑPB−RRT∗ > ϑRRT∗ and ϑPIB−RRT∗ > ϑRRT∗; (2) the random sample after being potentially
guided becomes zpb so that P (zpb ∈ Zextδ) > 0; (3) The resulting solution path τ very quickly
converges to optimal path τ∗ so that ‖τ ′n − τn‖ = 0 where τ ′n = τ∗.

Hence from Theorem 1,2,3,4 and 5 it has been deduced that the proposed PB-RRT* and PIB-
RRT* algorithms find the feasible solution to a motion planning problem and converge to optimal
solution very quickly.

5.4. Computational Complexity

The computational complexity of PB-RRT* and PIB-RRT* has been discussed in this section. Let
MALG

n define the total computations performed by Algorithm ALG. MPB−RRT∗
n and MPIB−RRT∗

n

are the total processes performed by PB-RRT* and PIB-RRT* respectively. Theorem 6 proposes
that the computational complexity of PB-RRT* and PIB-RRT* are a constant times higher than
that of RRT* where as Theorem 7 an Theorem 8 state the comparison of PB-RRT* with B-RRT*
and PIB-RRT* with IB-RRT* respectively.

Theorem 6 There exists constants Φ1, Φ2 ∈ R+ such that the computational complexity ratio of
PB-RRT* and PIB-RRT* with RRT* is as follows.

lim sup
n→∞

E

[
MPB−RRT∗

n

MRRT∗
n

]
≤ Φ1

lim sup
n→∞

E

[
MPIB−RRT∗

n

MRRT∗
n

]
≤ Φ2

Theorem 7 The computational complexity ratio of PB-RRT* and B-RRT* is such that there exists
a constant Φ3 ∈ R+

lim sup
n→∞

E

[
MPB−RRT∗

n

MB−RRT∗
n

]
≤ Φ3
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Theorem 8 Let Φ4 ∈ R+ be a constant so that the computational complexity ratio of PIB-RRT*
and IB-RRT* is as follows.

lim sup
n→∞

E

[
MPIB−RRT∗

n

M IB−RRT∗
n

]
≤ Φ4.

Sketch of proof: When compared to RRT* along with being bi-directional another procedure
BPG() has been incorporated in the proposed PB-RRT* and PIB-RRT*. PB-RRT* has an addi-
tional Connect() heuristic along with BPG() heuristic. PIB-RRT* has GetBestTreeParent() in
place of PickBestParent() in RRT* and BPG() heuristic. BPG() heuristic can be executed
in a constant number of iterations and does not depend upon the number of vertices in the
tree. It has to find nearest obstacle form the random sample z ∈ Zfree which requires at least
Ω(log10 n) time. Furthermore in PB-RRT* and PIB-RRT* both execute NearestV ertex() and
NeighbouringV ertices() procedure for both trees Ta and Tb just like RRT* which adds up a
constant computation overhead when compared to RRT* in log10 n terms. Hence as seen in The-
orem 6, PB-RRT* and PIB-RRT* only vary from RRT* by Φ1 and Φ2 in terms of computational
complexity ratio.

In Theorem 7 the computational complexity ratio of PB-RRT* and B-RRT* is given and as
BPG() heuristic is the only additional procedure in PB-RRT* as compared to B-RRT*, hence
their computational complexity only differs by a constant ratio Φ3 ∈ R+. Similarly in Theorem 8
PIB-RRT* differs from IB-RRT* by a constant Φ4 ∈ R+ in computational complexity ratio.

Environment Algorithm imin imax iavg tmin(s) tmax(s) tavg(s) ϑavg J(τ∗) Fail

2D-Maze (Fig 1)

PIB-RRT* 180,484 224,306 198,608 44 57 48 1.09 241
PB-RRT* 191,273 234,547 215,505 47 58.7 53 1.02 241
IB-RRT* 256,374 335,877 290,126 62 70 66 0.74 241
P-RRT* 300,001 375,661 332,127 67 74 72 0.66 241
RRT* 3,234,592 3,799,518 3,371,861 922 1140 1045 0.35 241 70%

2D-Box (Fig 2)

PIB-RRT* 122,355 189,826 157,941 34 43 38 0.84 183
PB-RRT* 100,001 158,870 125,186 25 39 30.4 0.93 183
IB-RRT* 214,341 271,247 232,315 54 61 59 0.70 183
P-RRT* 247,984 330,541 294,187 61 71 66 0.65 183
RRT* 2,247,984 2,830,541 2,424,187 611 705 687 0.31 183 50%

2D-Cluttered (Fig 3)

PIB-RRT* 13,452 26,731 20,539 6.3 9.9 8.1 1.25 125
PB-RRT* 17,537 31,345 22,124 7.2 10.1 8.7 1.18 125
IB-RRT* 35,164 39,402 38,152 12 14 13.5 0.97 125
P-RRT* 66,373 71,324 68,332 24 28 26.5 0.63 125
RRT* 1,458,373 1,926,184 1,670,140 320 531 420 0.39 125 50%

3D-Maze (Fig 4)

PIB-RRT* 14,011 19,719 17,430 10.5 13 11.5 0.98 220
PB-RRT* 18,602 24,361 21,459 11.7 15 14.1 0.88 220
IB-RRT* 33,400 42,100 38,213 18.2 22 19.5 0.77 220
P-RRT* 74,300 79,613 77,641 28 31.5 29.6 0.62 220
RRT* - - - - - - - - 100%

3D-Columns (Fig 5)

PIB-RRT* 23,484 26,902 24,629 9.3 11.1 10.4 0.99 70
PB-RRT* 17,624 21,337 19,647 6.2 8.1 7.5 1.05 70
IB-RRT* 35,444 43,404 39,583 14 21 18 0.71 70
P-RRT* 81,561 84,321 83,523 32.5 34 33 0.58 70
RRT* 678,001 1,246,149 900,132 124 271 174 0.43 70 70%

3D-Cluttered (Fig 6)

PIB-RRT* 110,629 151,784 131,542 26.3 32 28.5 1.31 79
PB-RRT* 130,242 177,804 153,358 31 47 41 1.12 79
IB-RRT* 200,963 244,618 223,493 59 64 61 1.02 79
P-RRT* 352,693 385,284 369,381 72 75 74 0.91 79
RRT* 1,857,381 1,949,183 1,908,392 514 545 529 0.63 79 60%

6. Experimental Results

In this section the numerical path planning experiments are provided that make a comparison of
the proposed PB-RRT* and PIB-RRT* algorithms with other aysmptotically optimal sampling
based algorithms such as IB-RRT*,P-RRT* and RRT* on a variety of environments. Different
state dimensions were used in different environments to thoroughly test the algorithms. The size
and configuration space of the different environments was varied from very large to very small but
was kept constant for a particular environment so that a just comparison could be made between
different algorithms while simulating on that environment. Due to randomization the algorithms
were run up to 50 times with a common pseudo-random seed which was varied on every re-run of
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(a) Iterations for initial solution. (b) Time consumed for initial solution.

(c) Iterations for optimal solution. (d) Time consumed for optimal solution.

Figure 7: Performance Comparison in 10 complex cluttered environments

the Algorithm. The simulations were performed on a 2.30GHz Intel core i3 processor with 2GB
RAM.

If the total number of iterations exceeded 5×106, the simulation was terminated and the result
was declared as failed to restrict the computational time. The results of the above mentioned
algorithms in different environments are provided in Table 1. Maximum, minimum and average
iterations and time are provided in Table 1. Fail columns denote the percentage of the total 50 re-
runs the Algorithm has failed to find the optimal solution. The column ϑavg rewiring per iteration
denotes the average number of rewiring occurring from start to termination of the simulation. J∗

indicates the optimal path cost in terms of Euclidean metric of the particular environment within a
specified tolerance of the true optimum. PB-RRT* and PIB-RRT* along with the above mentioned
algorithms were tested in a variety of environments (e.g, Figs 1-6), though only the figures of
simulations of PB-RRT*, PIB-RRT* and RRT* are displayed due to limited space available. Each
environment tested a different aspect of the Algorithm. Results of the testing and simulations are
discussed below.

Fig 1 is a 2-D highly cluttered environment used to test the efficiency of the above mentioned
algorithms in an environment ladened with obstacles, where it is very hard to find the optimal
solution. As seen from Table 1, PIB-RRT* is able to find the optimal solution in this highly
cluttered environment the most quickly (iavg = 198, 608) with highest rewiring per iteration average
(ϑPIB−RRT∗ = 1.09). After PIB-RRT*, PB-RRT*, IB-RRT* and P-RRT* find the optimal solution
the quickest respectively while RRT∗ failed to find the optimal solution 70% of the times within
the specified range. PIB-RRT* is quickest to find the optimal solution due to the Intelligent
Sample Insertion it inherited from IB-RRT* which was specifically designed for highly cluttered
environments and coupling Intelligent Sample Insertion with the proposed BPG() heuristic for
PIB-RRT* gave us the optimal solution in the least amount of time. After PIB-RRT*, PB-RRT*
was the quickest in finding the optimal solution of Fig 1 due to the BPG() heuristic coupled with
Bi-directional RRT* (B-RRT*). Fig 2 is another 2-D environment, as seen it is not as highly
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cluttered as Fig 1 and PB-RRT* is the quickest to find the optimal solution in this environment
due to the BPG() heuristic pulling both Bi-directional trees towards each other, coupled with
the partial greedy heuristic of B-RRT* it has given the optimal solution in this environment the
most quickly taking least number of average iterations to optimal solution at (iavg = 125, 186)
. After PB-RRT*, PIB-RRT* was second in least number of iterations to optimal solution at
(iavg = 157, 941). Then came IB-RRT* and P-RRT* respectively at higher average iterations to
optimal solution, while RRT* had failed to converge to an optimal solution 50% of the times.

Fig 3 is another 2-D environment which is highly cluttered and PIB-RRT* was the quickest to
find the optimal solution with the least number of average iterations to optimal solution (iavg =
20, 539) and it had the highest average rewiring per iteration rate (ϑPIB−RRT∗ = 1.25). While
PB-RRT* was second with (iavg = 22, 124) and (ϑPB−RRT∗ = 1.18). Then came IB-RRT* and
P-RRT* respectively in quickness too find the optimal solution while RRT* failed 50% of the times
to find the optimal solution in this environment. Fig 4 shows a 3-D environment which is highly
cluttered, having many obstacles between initial and goal regions. PIB-RRT* due to its BPG()
heuristic coupled with Intelligent Sample Insertion was able to find the optimal path the quickest
(iavg = 17, 430). Then came PB-RRT* (iavg = 21, 459) and then IB-RRT* (iavg = 38, 213)
and P-RRT* (iavg = 77, 641) while RRT* failed to find the optimal path. Fig 5 shows a 3-D
environment with narrow passages through vertical columns and as seen from Table 1, PB-RRT*
was the quickest in finding the optimal solution in this environment (iavg = 19, 647) with rewiring
per iteration of (ϑPB−RRT∗ = 1.05). PIB-RRT* was the second (iavg = 24, 629) while IB-RRT*
(iavg = 39, 583) and P-RRT* (iavg = 83, 523) came third and fourth respectively in quickness to
optimal solution and RRT* took an extraordinary number of iterations to converge to the optimal
solution (iavg = 900, 132).

Fig 6 is a 3-D environment and has a highly obstacle ridden cluttered environment from initial to
goal regions. We found PIB-RRT* to be the fastest to optimal solution in this environment (iavg =
131, 542) with highest rewiring per iteration rate (ϑPIB−RRT∗ = 1.31) and PB-RRT* was second in
quickness to optimal solution (iavg = 153, 358) with rewiring per iteration of (ϑPB−RRT∗ = 1.12)
and IB-RRT* (iavg = 223, 493), P-RRT* (iavg = 369, 381) and RRT* (iavg = 1, 908, 392) came
third, fourth and fifth respectively in quickness to optimal path. In this environment RRT* failed
60% of the times to reach an optimal solution. In Fig 7 different bar graphs are presented. These
bar graphs have been obtained after experimentation and simulation in 10 different 2-D and 3-D
environments for comparing PIB-RRT*, PB-RRT*, IB-RRT*, P-RRT* and RRT*. In Fig 7(a)
the comparison is made in iterations required to find the initial feasible path in all environments
for each Algorithm. Fig 7(b) shows the time required to find the initial feasible path for all the
environments. Similarly Fig 7(c) and Fig 7(d) show the comparison of iterations required to find
the optimal path and time required to find the optimal solution respectively. It is seen from Fig
7 that PIB-RRT* and PB-RRT* require very less iterations and time to find the initial path and
the optimal solution when compared to IB-RRT*, P-RRT* and RRT*. It is noted that in some
cases PIB-RRT* performs better than PB-RRT* and in some cases PB-RRT* performs better
than PIB-RRT*. Mainly in highly cluttered environments PIB-RRT* has shown to perform better
than PB-RRT* due to the inclusion of IntelligentSampleInsertion with BPG() heuristic while
in less cluttered environments PB-RRT* takes the lead in performance due to its greedy heuristic
coupled with BPG() heuristic. But this greedy heuristic becomes less efficient in highly cluttered
environments.

In Fig 8, after several runs in an obstacle filled 3D environment, the cost (in terms of Eu-
clidean distance) versus the running time graph was plotted for PIB-RRT*, PB-RRT* and RRT*
algorithms respectively. It can be seen that PIB-RRT* and PB-RRT* converge to optimal cost
solution quite quickly as compared to RRT* due to BPG() heuristic combined with bidirectional
tree search. Fig 9 shows the running time ratio of PIB-RRT* over RRT* and PB-RRT* over
RRT* after numerous runs in an obstacle-free 3D environment. As expected from the computa-
tional complexity analysis of Section 5.4 and as stated in Theorem 6, Fig 9 shows that the running
time ratios of PIB-RRT* and PB-RRT* w.r.t RRT* settle at a constant value as the number of
iterations increase.

Fig 10 displays the effect of k parameter of the BPG() heuristic used in the proposed PIB-
RRT* and PB-RRT* algorithms. The effects of k parameter on exploitation and exploration can
be clearly seen in Fig 10. As seen in the figure, lower values of k biases our Algorithm towards more
exploration while higher values of k causes more exploitation. A balance has to be kept between
exploration and exploitation for the proposed algorithms to work in all kinds of environments.
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Figure 8: Cost vs Running Time Figure 9: Running Time Ratio w.r.t RRT*

In Figure 11,12,13 and 14, PIB-RRT* and RRT* were run in the same environment till initial
path was found. As seen in Fig 13 and Fig 14, RRT* took 1398 samples to find the initial solution
path. The Voronoi biasing of RRT* is depicted in Fig 14, as observed it is quite uniform as no
sample-biasing is present hence it took RRT* 1398 samples just to find the initial solution path and
the resultant path had a non optimal cost. Where as in Fig 11, PIB-RRT* took only 30 samples
to find the solution path in the same environment. Fig 12 shows the effect of BPG() heuristic of
PIB-RRT* on the Voronoi biasing. As seen the BPG() heuristic potentially guides the random
samples towards regions of higher intensity Iz regions where rewiring rate is higher as stated in
Theorem 4 and Theorem 5, hence the initial solution path was found in only 30 iterations and as
seen in Fig 11, the initial path has optimal cost.

7. Conclusions and Future work

In this paper we have presented Bi-directional potential functions based asymptotically optimal,
sampling path planning algorithms, PIB-RRT* and PB-RRT* which use BPG() heuristic to po-
tentially guide two Rapidly-exploring Random Trees towards each other, arguably the first of its
kind, these algorithms PIB-RRT* and PB-RRT* have proven to be both theoretically and exper-
imentally (1) similar in computational complexity as IB-RRT*, B-RRT* and RRT*; (2) provide
asymptotic optimality; (3) avoids getting stuck in local minima as APF does; (4) converges to
optimal solution faster than its state of the art counter parts such as IB-RRT*, P-RRT* and RRT*;
(5) lesser memory is consumed by PIB-RRT* and PB-RRT* as lesser iterations and time is re-
quired by them. By employing Bi-directional potential fields for the first time through fusing APF
[7] into bi-directional variants of RRT* by using the proposed BPG() heuristic, we have shown
our proposed algorithms converge to optimal solution in the least amount of time and hence are
of great importance in the physical real-time applications of motion planning of robots and online
motion panniing of virtual characters and even can be used in nano robotics for surgery in the
future.

In our future research, we plan to extend our algorithm for motion planning in dynamic en-
vironments due to its rapid convergence to optimal solutions. Moreover, we also plan to leverage
machine learning to cache feasible motion paths for experience-based motion planning that will
enable our method to perform informed search for planning in new unseen environments.

8. Ackowledgements

The authors are greateful to Dr. Sertac Karaman of MIT for sharing the implementation of
RRT* Algorithm.

[1] J.-C. Latombe, Motion planning: A journey of robots, molecules, digital actors, and other
artifacts, The International Journal of Robotics Research 18 (11) (1999) 1119–1128.

[2] R. D. Howe, Y. Matsuoka, Robotics for surgery, Annual Review of Biomedical Engineering
1 (1) (1999) 211–240.

19



(a) PIB-RRT*: i=30000, k=1 (b) PIB-RRT*: i=2500, k=300

(c) PIB-RRT*: i=1500, k=600

Figure 10: Effect of k on exploitation/exploration

Figure 11: PIB-RRT* Figure 12: 30 Samples PIB-RRT*

Figure 13: RRT* Figure 14: 1398 Samples RRT*

20



[3] J.-C. Latombe, ROBOT MOTION PLANNING.: Edition en anglais, Springer, 1990.

[4] T. L. Kunii, Visual Computing Integrating Computer Graphics with Computer Vision,
Springer-Verlag, 1992.

[5] J. Reif, Z. Sun, Nano-robotics motion planning and its applications in nanotechnology and
biomolecular computing, Tech. Rep. Duke University, Durham, NC 27705, Department of
Computer Science, Duke University (May 1999).

[6] S. M. LaValle, Planning algorithms, Cambridge university press, 2006.

[7] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, The interna-
tional journal of robotics research 5 (1) (1986) 90–98.

[8] D. Hsu, J. C. Latombe, R. Motwani, Path planning in expansive configuration spaces, in:
Proceedings of International Conference on Robotics and Automation, Vol. 3, 1997, pp. 2719–
2726 vol.3. doi:10.1109/ROBOT.1997.619371.

[9] L. E. Kavraki, P. Svestka, J. C. Latombe, M. H. Overmars, Probabilistic roadmaps for path
planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Au-
tomation 12 (4) (1996) 566–580. doi:10.1109/70.508439.

[10] S. M. LaValle, Rapidly-exploring random trees a new tool for path planning, Tech. Rep.
TR-98-11, Computer Science Department Iowa State University, Ames, Iowa, United States
(October 1998).

[11] C. Urmson, R. Simmons, Approaches for heuristically biasing RRT growth, in: International
Conference on Intelligent Robots and Systems (IROS 2003), Vol. 2, IEEE, 2003, pp. 1178–
1183.

[12] D. Ferguson, A. Stentz, Anytime RRTs, in: International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2006, pp. 5369–5375.

[13] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning, The Inter-
national Journal of Robotics Research 30 (7) (2011) 846–894.

[14] A. H. Qureshi, Y. Ayaz, Potential functions based sampling heuristic for optimal path plan-
ning, Autonomous Robots 40 (6) (2016) 1079–1093.

[15] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, S. Teller, Anytime motion planning using the
RRT*, in: IEEE International Conference on Robotics and Automation, 2011, pp. 1478–1483.
doi:10.1109/ICRA.2011.5980479.

[16] M. Jordan, A. Perez, Optimal bidirectional rapidly-exploring random trees, Tech. Rep. MIT-
CSAIL-TR-2013-021, Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA (August 2013).

[17] A. H. Qureshi, S. Mumtaz, K. F. Iqbal, B. Ali, Y. Ayaz, F. Ahmed, M. S. Muhammad,
O. Hasan, W. Y. Kim, M. Ra, Adaptive potential guided directional-RRT, in: IEEE Interna-
tional Conference on Robotics and Biomimetics (ROBIO), 2013.

[18] A. H. Qureshi, Y. Ayaz, Intelligent bidirectional rapidly-exploring random trees for optimal
motion planning in complex cluttered environments, Robotics and Autonomous Systems 68
(2015) 1 – 11.

[19] S. R. Lindemann, S. M. LaValle, Incrementally reducing dispersion by increasing voronoi bias
in RRTs, in: Robotics and Automation. Proceedings. ICRA’04. IEEE International Conference
on, Vol. 4, IEEE, 2004, pp. 3251–3257.

[20] H. Chang, T.-Y. Li, Assembly maintainability study with motion planning, in: Robotics and
Automation. Proceedings. IEEE International Conference on, Vol. 1, IEEE, 1995, pp. 1012–
1019.

[21] M. Girard, A. A. Maciejewski, Computational modeling for the computer animation of legged
figures, in: ACM SIGGRAPH Computer Graphics, Vol. 19, ACM, 1985, pp. 263–270.

21



[22] J. T. Schwartz, M. Sharir, On the piano movers problem. ii. general techniques for computing
topological properties of real algebraic manifolds, Advances in applied Mathematics 4 (3)
(1983) 298–351.
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